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Abstract. In this article von Neumann’s proposal that in quantum mechanics projections

can be seen as propositions is followed. However, the quantum logic derived by Birkhoff

and von Neumann is rejected due to the failure of the law of distributivity. The options

for constructing a distributive logic while adhering to von Neumann’s proposal are inves-

tigated. This is done by rejecting the converse of the proposal, namely, that propositions

can always be seen as projections. The result is a weakly Heyting algebra for describing

the language of quantum mechanics.
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1. Introduction

Empirical investigation of a scientific theory requires a rigorous formulation
of the propositions about possible outcomes for possible experiments that
play a role in the theory. The possible experiments within the theory usually
concern the possible measurements of observables. In quantum mechanics,
every observable is identified with a self-adjoint operator A acting on a Hil-
bert space H with domain dense in H. The set of possible outcomes for a
measurement of A is given by the spectrum σ(A) of A. I will denote the
proposition that a measurement of A will yield a result in Δ with probabil-
ity one for some Borel set Δ ⊂ σ(A) with “A ∈ Δ”. It then follows from the
axioms that this proposition is true iff the state of the system (described
by a non-zero element of H) lies in the subspace μA(Δ) H, where μA is the
projective measure associated with the operator A.

The above observations led von Neumann [12, §III.5] to the idea that the
projection μA(Δ) may be directly associated with the proposition A ∈ Δ.
Since every projection is of this form the credo ‘projections as propositions’
is readily established. Some years later von Neumann together with Birk-
hoff [1] extrapolated this credo to identify projections with propositions. An
investigation of how such propositions should behave with respect to logical
connectives led to the introduction of the quantum logic L(H). Explicitly,
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they showed that the set L(H) of projections on H is turned into a complete
bounded lattice by the partial order

P1 ≤ P2 ⇐⇒ P1 H ⊂ P2 H . (1)

Besides introducing the logical connectives ‘and’ and ‘or’ (as the meet and
join in L(H)) also an operation for the negation was introduced:

¬P := 1 − P, (2)

where 1 denotes the unit operator and top element of L(H).

The lattice L(H) is almost a Boolean algebra, except for the fact that
the laws of distributivity

P1 ∨ (P2 ∧ P3) = (P1 ∨ P2) ∧ (P1 ∨ P3) (3)

and

P1 ∧ (P2 ∨ P3) = (P1 ∧ P2) ∨ (P1 ∧ P3) (4)

do not hold in general. Consequently, it is hard to interpret the meet and
join as the logical connectives “and” and “or” (cf. [6]). Needless to say,
quantum logic has struggled with interpretational problems ever since it
was conceived.

The source of the counter-intuitive aspect of Birkhoff and von Neumann’s
result may be sought in the assumption that all propositions can be identi-
fied with projections. This idea indeed seems somewhat reckless. The credo
‘projections as propositions’ was based on considerations of propositions of
the form A ∈ Δ. However, there is of course no guarantee that new proposi-
tions formed from such propositions using logical connectives should again
be of this form. In the next section I discuss two perspectives that lead to
an expansion of the set of propositions. The first is an intuitionistic perspec-
tive, criticizing the disjunction in L(H) for being too weak, and the second
is a more classical perspective, criticizing the negation for being too strong.
It is then shown that both result to the same Boolean logic for quantum
mechanics.

In the final section I argue that this Boolean logic is actually unsatisfac-
tory from the intuitionistic perspective. I show that upon defining the new
stronger disjunction, the meaning of the negation has shifted. I then propose
to keep both the new disjunction and the old negation and show that this
can be done consistently within the framework of weakly Heyting algebras.
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2. Two Perspectives

The peculiarity of quantum logic becomes explicit when focusing on the
law of excluded middle. The proposition P ∨ ¬P is a tautology for every
P ∈ L(H). Consequently, for every P ′ ∈ L(H) one has P ′ ∧ (P ∨ ¬P ) = P ′.
But it is not hard to find a pair P, P ′ with P ′ 	= ⊥ such that P ′ ∧ P = ⊥
and P ′ ∧ ¬P = ⊥.

This can be traced back to Heisenberg’s uncertainty principle [7]. If P is
a proposition about the position of some particle and P ′ about the momen-
tum of that particle, then this principle suggests that no certainty can be
obtained about P ′ ∧P or P ′ ∧¬P . It has become consensus that this uncer-
tainty is not just epistemic. It was shown by Kochen and Specker [10] that
one cannot consistently attribute definite values to all observables. This
result raises the question how one can meaningfully maintain that a dis-
junction A ∈ Δ ∨ A ∈ Δc can be true while rejecting that either of the
disjuncts is true. A more extensive discussion on this issue may be found in
[11]. Either way, for someone who upholds that a disjunction is only true if
at least one of the disjuncts is true, the disjunction introduced by Birkhoff
and von Neumann is unsatisfactory. Consequently, the law of excluded mid-
dle has to fail.1 This is also roughly the viewpoint Coecke expresses in [4],
and he argues that for an intuitionistic view on quantum mechanics

“we formally need to introduce those additional propositions that
express disjunctions of properties and that do not correspond to a
property in the property lattice.”

Note that this conclusion is obtained under the assumption that A ∈ Δc

is the correct reading of the negation of A ∈ Δ. This form of negation is
somewhat intuitionistic in nature; it transforms a ‘positive’ proposition (con-
cerning something happening with certainty) into another ‘positive’ propo-
sition. The classical logician will want to uphold the law of excluded middle
and thus opt for a new negation. I will return to this point later on.

In [4] the additional disjunctions are introduced by making use of Bruns
and Lakser’s theory of injective hulls [2]. Concretely, this means that the
quantum lattice L(H) is replaced by the lattice of distributive ideals of the
quantum lattice:

DI(L(H)) := {I ⊂ L(H) ; I is a distributive ideal}, (5)

1A more extensive motivation for the use of intuitionistic logic in quantum mechanics
may be found in [8, Ch. 5].
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where a distributive ideal is a non-empty subset I such that

(i) If P ∈ I and P ′ ≤ P , then P ′ ∈ I.

(ii) If K ⊂ I and ∀P ′ ∈ L(H):
(∨

P∈K P
) ∧ P ′ =

∨
P∈K (P ∧ P ′), then∨

P∈K P ∈ I.

This new set is turned into a lattice with the partial order

I1 ≤ I2 ⇐⇒ I1 ⊂ I2, (6)

where the join and meet are given by
∧

I∈I
I =

⋂

I∈I
I, I ⊂ DI(L(H)), (7)

∨

I∈I
I =

∧
{I ′ ∈ DI(L(H)) ; I ≤ I ′∀I ∈ I}, I ⊂ DI(L(H)). (8)

With these definitions, DI(L(H)) is a complete distributive lattice. The
propositions of the original lattice L(H) are identified with elements of
DI(L(H)) by the injection

i : L(H) → DI(L(H)), P →↓ P := {P ′ ∈ L(H) ; P ′ ≤ P}. (9)

As such, the construction of DI(L(H)) meets the desires; the new dis-
junction ↓ P1∨ ↓ P2 is not of the form ↓ P whenever P1P2 	= P2P1 and thus
does not correspond to any element in the original lattice. Because the new
lattice is complete and the infinite laws of distributivity hold, it is also a
complete Heyting algebra if one introduces the relative pseudo-complement

I1 → I2 :=
∨

{I3 ∈ DI(L(H)) ; I3 ∧ I1 ≤ I2}. (10)

Complementary to the approach above, instead of introducing a new dis-
junction that is more intuitionistic in nature than the one in quantum logic,
one may want to define a new negation that is more classical in nature than
the one in quantum logic. Indeed, if one reads the negation literally, the
proposition ¬(A ∈ Δ) should be identified with the proposition that a mea-
surement of A will not yield a result in Δ with probability one; i.e. one is
not entirely certain that the measurement of A will yield a result in Δ. This
statement is true for all the states in the set (H \μA(Δ) H) ∪ {0}.

To make this more formal, it is convenient to identify states with rays in
the Hilbert space. The ray space is defined as

R(H) := {[ψ] ; ψ ∈ H0}, [ψ] := {λψ ; λ ∈ C}, H0 := H \{0}. (11)
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Propositions may then be identified with elements of the power set P(R(H)).
Indeed, the proposition A ∈ Δ is now identified with the set

{[ψ] ∈ R(H) ; ψ ∈ μA(Δ) H0} (12)

and its negation, ¬(A ∈ Δ), with the complement of this set. The set
P(R(H)) is turned into a Boolean algebra in the usual way:

S1 ≤ S2 ⇐⇒ S1 ⊂ S2, (13)
∧

S∈S
S =

⋂

S∈S
S,

∨

S∈S
S =

⋃

S∈S
S. (14)

Although this approach differs strongly from the intuitionistic approach,
it is remarkable that both constructions are in fact identical:

Theorem 2.1. The lattices DI(L(H)) and P(R(H)) are isomorphic (as
complete bounded lattices). Consequently, the Heyting algebra DI(L(H)) is
Boolean.2

Proof. For the proof the following definition is useful:

∀S ∈ P(R(H)) : S0 := {ψ ∈ H0 ; [ψ] ∈ S} ∪ {0}. (15)

Define the following function f : P(R(H)) → P(L(H)):

f(S) :=
{
P ∈ L(H) ; P H ⊂ S0

}
. (16)

This function satisfies

f(R(H)) = L(H), f(∅) = {0} and f({[ψ]})={Pψ} ∀[ψ] ∈ R(H), (17)

where Pψ is the one-dimensional projection on the subspace spanned by ψ.
Now, for every S ∈ P(R(H)), f(S) is a distributive ideal. This is proven

by showing that f(S) satisfies the properties (i) and (ii). Suppose P ∈ f(S)
and P ′ ≤ P . Then

P ′ H ⊂ P H ⊂ S0 (18)

and thus P ′ ∈ f(S). To show property (ii) assume that S 	= R(H) (for
S = R(H) (ii) is trivially satisfied). Suppose K ⊂ f(S) such that for every
P ′ ∈ L(H):

(∨
P∈K P

) ∧ P ′ =
∨
P∈K (P ∧ P ′). It then has to be shown that∨

P∈K P ∈ f(S).
Suppose this isn’t the case. Then there exists a non-zero vector ψ ∈(∨
P∈K P

)H such that [ψ] /∈ S and Pψ∧P = 0 for all P ∈ K. It then follows
that

2This second statement is in fact a consequence of a more general result in [4] where
it is shown that DI(L) is Boolean whenever L is atomic.
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Pψ =

(
∨

P∈K
P

)

∧ Pψ =
∨

P∈K
(P ∧ Pψ) = 0 (19)

which is a contradiction since ψ 	= 0 being an element of the complement of
S0. This proves that f : P(R(H)) → DI(L(H)).

Next, consider the map

g : DI(L(H)) → P(R(H)), g : I →
⋃

P∈I
{[ψ] ∈ R(H) ; ψ ∈ P H0}. (20)

It will be shown that this is the inverse of f . For every set S ∈ P(R(H))
one has

g(f(S)) =
⋃

P∈f(S)

⋃

ψ∈P H0

{[ψ]} = S. (21)

Indeed, for every [ψ] ∈ S it holds that Pψ ∈ f(S) and thus [ψ] ∈ g(f(S)).
Conversely, if [ψ] ∈ g(f(S)) then ∃P ∈ f(S) such that ψ ∈ P H. Then,
because P H ⊂ S0, [ψ] ∈ S.

The other way around one has that for every I ∈ DI(L(H)) f(g(I)) = I.
This can be shown directly:

f(g(I)) = {P ∈ L(H) ; P H ⊂ g(I)0}
= {P ∈ L(H) ; P H0 ⊂ {ψ ∈ H0 ; [ψ] ∈ g(I)}}
= {P ∈ L(H) ; P H0 ⊂ {ψ ∈ H0 ; [ψ] ∈

⋃

P ′∈I
{[ψ′] ; ψ′∈P ′ H0}}}

= {P∈L(H) ; P H0 ⊂ {ψ∈H0 ; ∃P ′∈I such that ψ∈P ′ H0}}
= {P ∈ L(H) ; P H0 ⊂ {ψ ∈ H0 ; Pψ ∈ I}}
= {P ∈ L(H) ; Pψ ∈ I ∀ψ ∈ P H} = I (22)

where it has been used that I is a distributive ideal and that P ∈ I iff Pψ ∈ I
for all ψ ∈ P H.

This shows that DI(L(H)) and P(R(H)) are isomorphic as sets. How-
ever, since both f and g respect the partial order structure, it follows that
DI(L(H)) and P(R(H)) are also isomorphic as complete lattices.

3. Weakly Intuitionistic Quantum Logic

The fact that the application of Bruns and Lakser’s theory to the quantum
lattice results in the construction of a Boolean algebra may be explained in
the following way. The introduction of a new disjunction forces the intro-
duction of a new negation. Indeed, the new negation in DI(L(H)) is defined
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as ¬I := I →↓ 0 and it is much weaker than the negation in quantum logic
because one has

↓ ¬P ≤ ¬ ↓ P, ∀P ∈ L(H) (23)

with equality iff P = 0 or P = 1. From the perspective of P(R(H)) it is
clear to see that the negation in DI(L(H)) behaves classical rather than
intuitionistic. This is made more explicit by introducing the embedding r :
L(H) → P(R(H)) given by r(P ) := {[ψ] ∈ R(H) ; ψ ∈ P H0}. Theorem 2.1
then shows that the diagram

L(H) � � i ��
� �

r

��

DI(L(H))

f−1

�����������������������������

P(R(H))

f

�����������������������������

(24)

commutes.
It would seem more intuitionistic if one could generalize the negation of

the quantum lattice to a negation in the lattice DI(L(H)). That is, by intro-
ducing a function ∼: DI(L(H)) → DI(L(H)) such that ∼↓ P =↓ ¬P for
all P ∈ L(H). In such a scheme, the negation of A ∈ Δ would coincide with
A ∈ Δc like in quantum logic, but the disjunction of A ∈ Δ and A ∈ Δc

would not be a triviality.
The introduction of ∼ is actually straightforward. First note that

r(¬P ) = {[ψ] ∈ R(H) ; 〈ψ, φ〉 = 0 ∀φ ∈ P H}. (25)

This suggests the definition

∼ S := {[ψ] ∈ R(H) ; 〈ψ, φ〉 = 0 ∀φ with [φ] ∈ S}. (26)

Indeed, this satisfies ∼ r(P ) = r(¬P ) for all P ∈ L(H). The ‘pseudo-nega-
tion’ ∼ also behaves typically intuitionistic since one has

S∨ ∼ S = R(H) iff S = ∅ or S = R(H), (27)

∼ S∨ ∼∼ S = R(H) iff S = ∅ or S = R(H), (28)

while maintaining

∼∼ (S∨ ∼ S) = R(H), ∀S ∈ P(R(H)). (29)

One may also show that of the De Morgan laws only

∼ S1∧ ∼ S2 =∼ (S1 ∨ S2), ∀S1, S2 ∈ P(R(H)) (30)
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holds, and the other only holds in one direction:

∼ S1∨ ∼ S2 ≤∼ (S1 ∧ S2), ∀S1, S2 ∈ P(R(H)). (31)

The pseudo-negation also relates the ‘intuitionistic’ disjunction of P(R(H))
to the ‘classical’ disjunction of L(H) by the equality

∼∼
(
∨

P∈K
r(P )

)

= r

(
∨

P∈K
P

)

∀K ⊂ L(H). (32)

So for any subset S of R(H), its double pseudo-negation coincides with the
closed linear subspace spanned by all the elements of S.

Although the pseudo-negation appears to behave intuitionistic, there
is no trivial way to incorporate the lattice (P(R(H)),∨,∧,∼) in a Hey-
ting algebra. This is because the relative pseudo-complement for the lattice
(P(R(H)),∨,∧) is uniquely defined. There may however still be the pos-
sibility that a satisfactory implication relation → (that is not a relative
pseudo-complement) may be defined on this lattice such that S → ⊥ =∼ S
for all S ∈ P(R(H)). It turns out that this is indeed possible within the the-
ory of weakly Heyting algebras, where a weakly Heyting algebra is defined
as follows.

Definition 3.1. A weakly Heyting algebra (L,∨,∧,→) is a bounded dis-
tributive lattice with an implication relation that satisfies

(i) S1 → S1 = �,

(ii) S1 → (S2 ∧ S3) = (S1 → S2) ∧ (S1 → S3),

(iii) (S1 ∨ S2) → S3 = (S1 → S3) ∧ (S2 → S3),

(iv) (S1 → S2) ∧ (S2 → S3) ≤ S1 → S3,

for all S1, S2, S3 ∈ L.

The merit of this framework is that if an implication relation satisfies
these rules one immediately acquires some more properties one would expect
to hold for such a relation e.g.3

(a) If S1 ≤ S2, then for all S3 S3 → S1 ≤ S3 → S2 and S2 → S3 ≤ S1 → S3.

(b) If S1 ≤ S2, then S1 → S2 = �.

(c) For all S1, S2, S3 (S1 → S2) ∧ (S1 → S3) ≤ S1 → (S2 ∨ S3).

3Proofs may be found in [3].
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A straightforward approach to finding an implication relation on the lattice
(P(R(H)),∨,∧) would be to generalize the Sasaki arrow on L(H) given by

P1
S→ P2 := ¬P1 ∨ (P1 ∧ P2). (33)

However, this approach is bound to fail. The rules (i), (ii) and (iv) would
then have to hold also for the Sasaki arrow on L(H) (because the injection
r preserves order and meets). But although S→ does satisfy (i) and (ii), a
counter example for (iv) is found for taking H = C

2 and P1 = Px, P3 = Px+y
and P2 the unit matrix. (iv) then reads P3 ≤ ¬P1 which is clearly false. On
the other hand this may be a merit because of the criticism the Sasaki arrow
has received c.f. [5].

That there does exist an implication relation with the desired properties
is shown in the following theorem:

Theorem 3.2. There exists an implication relation on (P(R(H)),∨,∧) such
that (P(R(H)),∨,∧,→) is a weakly Heyting algebra and

(v) S → ⊥ =∼ S for all S ∈ P(R(H)).

Proof. The implication relation will be defined in steps. Because of (b) one
requires that ⊥ → S = � for every S ∈ P(R(H)). Now let [ψ] ∈ R(H). If
[ψ] ∈ S then because of (b) {[ψ]} → S = �. On the other hand, if S = ⊥,
then because of (v) {[ψ]} → ⊥ =∼ {[ψ]}. In all other cases one has

{[ψ]} → S
(i)
= ({[ψ]} → S) ∧ ({[ψ]} → {[ψ]})

(ii)
= {[ψ]} → ⊥ =∼ {[ψ]}. (34)

To sum up:

{[ψ]} → S =

{
�, [ψ] ∈ S,

∼ {[ψ]}, [ψ] /∈ S.
=∼∼ (∼ {[ψ]} ∨ ({[ψ]} ∧ S2)) . (35)

Now the general case can be defined by assuming (iii) to hold for arbitrary
joins and meets:

S1 → S2 :=
∧

[ψ]∈S1

{[ψ]} → S2 =
∧

[ψ]∈S1

∼∼ (∼ {[ψ]} ∨ ({[ψ]} ∧ S2))

=
∧

[ψ]∈S1\S2

∼ {[ψ]},
(36)

where the empty meet is identified with �.
It will now be shown that (36) indeed satisfies (i)–(v). In fact, (i) is trivial.

(ii),(iii) and (iv) follow by writing out.
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S1 → (S2 ∧ S3) =
∧

[ψ]∈S1\(S2∧S3)

∼ {[ψ]} =
∧

[ψ]∈(S1\S2)∨(S1\S3)

∼ {[ψ]}

=

⎛

⎝
∧

[ψ]∈S1\S2

∼ {[ψ]}
⎞

⎠ ∧
⎛

⎝
∧

[ψ]∈S1\S3

∼ {[ψ]}
⎞

⎠

= (S1 → S2) ∧ (S1 → S3).

(37)

(S1 ∨ S2) → S3 =
∧

[ψ]∈(S1∨S2)\S3

∼ {[ψ]} =
∧

[ψ]∈(S1\S3)∨(S2\S3)

∼ {[ψ]}

=

⎛

⎝
∧

[ψ]∈S1\S3

∼ {[ψ]}
⎞

⎠ ∧
⎛

⎝
∧

[ψ]∈S2\S3

∼ {[ψ]}
⎞

⎠

= (S1 → S3) ∧ (S2 → S3).

(38)

(S1 → S2) ∧ (S2 → S3) =

⎛

⎝
∧

[ψ]∈S1\S2

∼ {[ψ]}
⎞

⎠ ∧
⎛

⎝
∧

[ψ]∈S2\S3

∼ {[ψ]}
⎞

⎠

=
∧

[ψ]∈(S1\S2)∨(S2\S3)

∼ {[ψ]} ≤
∧

[ψ]∈S1\S3

∼ {[ψ]}

= (S1 → S3).

(39)

Finally, it remains to be shown that (v) holds:

S → ⊥ =
∧

[ψ]∈S
{[ψ]} → ⊥ =

∧

[ψ]∈S
∼ {[ψ]} =∼ S. (40)

The proof almost shows that the defined implication is also unique. At
least it is the unique one satisfying (iii) for arbitrary joins and meets. A more
formal and general proof of uniqueness follows from the following theorem
by observing that (P(R(H)),∨,∧) is a Boolean lattice.

Theorem 3.3. Suppose (A,∨,∧) is a Boolean lattice and suppose both →
and →′ turn (A,∨,∧) into a weakly Heyting algebra. If

∀a ∈ A : a → ⊥ = a →′ ⊥, (41)

then →=→′.

Proof. It was shown in [3] that every weakly Heyting algebra (A,∨,∧,→)
with (A,∨,∧) a Boolean lattice is derived from a normal modal algebra
(A,∨,∧,c ,♦) by the rule a1 → a2 = (♦(a1 ∧ ac2))

c, where c denotes the



Weakly Intuitionistic Quantum Logic 911

complement in the Boolean lattice (A,∧,∨). The reverse rule is given by
♦a = (� → ac)c.

Now let (A,∨,∧,c ,♦) be the normal modal algebra corresponding to the
weakly Heyting algebra (A,∨,∧,→) and (A,∨,∧,c ,♦′) the one correspond-
ing to (A,∨,∧,→′). Because a → ⊥ = a →′ ⊥ for all a, it follows that

∀a ∈ A : (♦(a ∧ ⊥c))c = (♦′(a ∧ ⊥c))c. (42)

Consequently, ♦a = ♦′a for all a and thus →=→′.

The relation between weakly Heyting algebras with a Boolean lattice and
normal modal algebras is also useful for investigating the weakly intuition-
istic quantum logic defined by (36). For one, it allows the introduction of
the modal operator ♦ given by

♦S := (� → Sc)c =

⎛

⎝
∧

[ψ]∈S
∼ {[ψ]}

⎞

⎠

c

= (∼ S)c. (43)

In the simple case where S is of the form A ∈ Δ (i.e. S = r(μA(Δ)), see
section 1) ♦S corresponds to the set of all rays given by states ψ for which
the probability of obtaining a value in Δ upon a measurement of A is greater
than zero. This coincides nicely with the interpretation of ‘possibility’ for ♦.

The simple propositions of the form A ∈ Δ are also the most convenient
for revealing the main features of the implication relation. One may show
that for any pair of observables A1, A2 one has

A1 ∈ Δ1 → A2 ∈ Δ2 =

{
�, if μA1(Δ1) ≤ μA2(Δ2),
∼ (A1 ∈ Δ1), else.

(44)

This is to be contrasted with the original Sasaki implication

μA1(Δ1)
S→ μA2(Δ2) = ¬μA1(Δ1) ∨ (μA1(Δ1) ∧ μA2(Δ2)). (45)

They coincide iff μA1(Δ1) ≤ μA2(Δ2) or μA1(Δ1) ∧ μA2(Δ2) = ⊥ and these
are the situations in which they both behave reasonably. It is a peculiar phe-
nomenon of the weakly intuitionistic implication in other situations that it
is true precisely when the antecedent is false (or not possible in the classical
sense: A1 ∈ Δ1 → A2 ∈ Δ2 = (♦A1 ∈ Δ1)c). This has an explanation in
the case where A1 and A2 are incompatible observables (i.e. they cannot be
measured simultaneously) for then it makes sense that a proposition about
A1 has no bearing on any proposition about A2 except when reasoning from
a contradiction (A1 ∈ Δ1∧ ∼ (A1 ∈ Δ1)). The Sasaki arrow on the other
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hand completely ignores the incompatibility between antecedent and conse-
quent in the case of incompatible observables. But in the case where A1 and
A2 are compatible (44) seems wrong. For example, if A1 = A2 and Δ2 ⊂ Δ1

one would want that at least A2 ∈ Δ2 ≤ A1 ∈ Δ1 → A2 ∈ Δ2.
In conclusion, the weakly Heyting algebra (P(R(H)),∨,∧,→) solves some

of the interpretational problems that arise in the standard quantum logic of
Birkhoff and von Neumann. One of the main advantages is that the laws of
distributivity are recovered. Also the failure of the law of excluded middle
may be seen as merit in connection with the impossibility of assigning def-
inite values to all observables. However, some problems remain, especially
when it comes to the implication relation. The source of these problems may
be sought in the fact that the weakly intuitionistic logic (like the standard
quantum logic) does not distinguish propositions concerning incompatible
observables from propositions concerning compatible observables. It may
be interesting to investigate the possibilities for making this distinction. At
least the results in this paper may serve as a source for inspiration.
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