Skip to main content
Log in

Relativity and Equivalence in Hilbert Space: A Principle-Theory Approach to the Aharonov–Bohm Effect

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

This paper formulates generalized versions of the general principle of relativity and of the principle of equivalence that can be applied to general abstract spaces. It is shown that when the principles are applied to the Hilbert space of a quantum particle, its law of coupling to electromagnetic fields is obtained. It is suggested to understand the Aharonov–Bohm effect in light of these principles, and the implications for some related foundational controversies are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Expositions of the principle along similar lines are found in Einstein’s more formal review of the theory such as [9]. The conceptual relations between general covariance, relativity and symmetry are a matter of an enduring controversy [22]

  2. From Einstein’s reply to Friedrich Kottler, Annalen der Physik 51:639–642 (1916) as, quoted in [21].

  3. To avoid ambiguities, it is emphasized that the terms ‘passive’ and ‘active’ are used throughout this paper to distinguish between transformations of the mathematical representation (that do not alter the physical state), and transformations which replace one physical configuration with a different one.

  4. See Footnote 2.

  5. A comprehensive discussion of the different interpretations is given in [3].

  6. Wallace [35] reaches a similar conclusion based on the AB effect.

  7. Different arguments for structural realism based on the group-theoretic structure of the electromagnetic interaction are provided by Lyre [19].

  8. The Aharonov–Bohm effect (like ’tHooft’s double slit experiment with a phase shifter [33]), is thus considered as an observation of (global) gauge symmetry in analogy to the observation of boost-symmetry in Newtonian mechanics using the Galilean ship experiment. See detailed discussion in [12].

  9. This issue is the subject of the lion’s of the contemporary philosophical discourse about the topological approach to the effect, see for example [23, 30] and references therein.

  10. See Footnote 3.

  11. This is an approximation assuming that the wave packets are fast, such that they do not change their form during the experiment.

References

  1. Aharonov, Y., Bohm, D.: Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115(3), 485 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  2. Arntzenius, F.: Space, Time, and Stuff. Oxford University Press, Oxford (2014)

    MATH  Google Scholar 

  3. Belot, G.: Understanding electromagnetism. Br. J. Philos. Sci. 49(4), 531–555 (1998)

    Article  MathSciNet  Google Scholar 

  4. Ben-Menahem, Y.: Symmetry and causation. Iyyun 61, 193–218 (2012)

    Google Scholar 

  5. Brown, H.R.: Aspects of objectivity in quantum mechanics. In: Butterfield, J., Pagonis, C. (eds.) From Physics to Philosophy. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  6. Dirac, P.A.M.: The Principles of Quantum Mechanics, 4th edn. Oxford University Press, London (1958)

    MATH  Google Scholar 

  7. DiSalle, R.: Space and time: inertial frames. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy, Winter, 2016th edn. Stanford University, Metaphysics Research Lab (2016)

    Google Scholar 

  8. Earman, J.: World Enough and Space-Time: Absolute Versus Relational Theories of Space and Time. The MIT Press, Cambridge (1989)

    Google Scholar 

  9. Einstein, A.: Die Grundlage der allgemeinen relativitätstheorie Annalen der Physik: English translation in Lorentz H.A. et al.: The Principle of relativity. Methuen and Company, London 1923, 111–164 (1916)

  10. Einstein, A.: What is the theory of relativity. The London Times (1919). Reprinted in Einstein, A.: Ideas and opinions. Crown Publisher, New York (1954)

  11. French, S., Ladyman, J.: Remodelling structural realism: quantum physics and the metaphysics of structure. Synthese 136(1), 31–56 (2003)

    Article  MathSciNet  Google Scholar 

  12. Hetzroni, G.: Gauge and ghosts. Br. J. Philos. Sci. (2019). Forthcoming. https://doi.org/10.1093/bjps/axz021

  13. Ladyman, J.: What is structural realism? Stud. Hist. Philos. Sci. 29(3), 409–424 (1989)

    Article  Google Scholar 

  14. Lange, L.: On the law of inertia. Eur. Phys. J. H 39(2), 251–262 (2014). Translation of “Über das Beharrungsgesetz” (1885), translated by Herbert Pfister

    Article  ADS  Google Scholar 

  15. London, F.: Quantenmechanische deutung der theorie von Weyl. Zeitschrift für Physik A Hadrons and nuclei 42, 375 (1927). English translation, ‘Quantum-mechanical interpretation of Weyl’s theory’ in O’Raifeartaigh, L.: The dawning of gauge theory. Princeton University Press (1997)

  16. Lyre, H.: A generalized equivalence principle. Int. J. Mod. Phys. D 9(06), 633–647 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  17. Lyre, H.: The principles of gauging. Philos. Sci. 68(S3), S371–S381 (2001)

    Article  MathSciNet  Google Scholar 

  18. Lyre, H.: On the equivalence of phase and field charges. arXiv preprint hep-th/0303259 (2003)

  19. Lyre, H.: Holism and structuralism in U(1) gauge theory. Stud. Hist. Philos. Sci. Part B: Stud. Hist. Philos. Mod. Phys. 35(4), 643–670 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  20. Meli, D.B.: The emergence of reference frames and the transformation of mechanics in the enlightenment. Hist. Stud. Phys. Biol. Sci. 23(2), 301–335 (1993)

    Article  Google Scholar 

  21. Norton, J.: What was einstein’s principle of equivalence? Stud. Hist. Philos. Sci. 16(3), 203–246 (1985)

    Article  MathSciNet  Google Scholar 

  22. Norton, J.: General covariance and the foundations of general relativity: eight decades of dispute. Rep. Prog. Phys. 56(7), 791–861 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  23. Nounou, A.M.: A fourth way to the Aharonov-Bohm effect. In: Brading, K., Castellani, E. (eds.) Symmetries in Physics: Philosophical Reflections. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  24. Redhead, M.: The interpretation of gauge symmetry. In: Brading, K., Castellani, E. (eds.) Symmetries in Physics: Philosophical Reflections. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  25. Rickles, D., French, S.: Quantum gravity meets structuralism: Interweaving relations in the foundations of physics. In: Rickles, D., French, S., Saatsi, J.T. (eds.) The Structural Foundations of Quantum Gravity, pp. 1–39. Oxford University Press, Oxford (2006)

    Chapter  Google Scholar 

  26. Rickles, D., French, S., Saatsi, JTe: The Structural Foundations of Quantum Gravity. Oxford University Press, Oxford (2006)

    Book  Google Scholar 

  27. Rovelli, C.: Why gauge? Found. Phys. 44(1), 91–104 (2014)

    Article  ADS  Google Scholar 

  28. Ryckman, T.A.: The philosophical roots of the gauge principle: Weyl and transcendental phenomenological idealism. In: Brading, K., Castellani, E. (eds.) Symmetries in Physics: Philosophical Reflections. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  29. Ryder, L.H.: Quantum Field Theory. Cambridge University Press, Cambridge (1996)

    Book  Google Scholar 

  30. Shech, E.: Idealizations, essential self-adjointness, and minimal model explanation in the Aharonov-Bohm effect. Synthese 195(11), 4839–4863 (2018)

    Article  MathSciNet  Google Scholar 

  31. Steiner, M.: The Applicability of Mathematics as a Philosophical Problem. Harvard University Press, Harvard (1998)

    MATH  Google Scholar 

  32. Teller, P.: The gauge argument. Philos. Sci. 67, S466–S481 (2000)

    Article  MathSciNet  Google Scholar 

  33. ’t Hooft, G.: Gauge theories of the forces between elementary particles. Sci. Am. 242(6), 90–116 (1980)

    Article  Google Scholar 

  34. Viefers, S., Koskinen, P., Deo, P.S., Manninen, M.: Quantum rings for beginners: energy spectra and persistent currents. Physica E 21(1), 1–35 (2004)

    Article  ADS  Google Scholar 

  35. Wallace, D.: Deflating the Aharonov-Bohm effect. arXiv preprint arXiv:1407.5073 (2014)

  36. Weyl, H.: Gravitation and electricity. Sitzungsber. Königl. Preuss. Akad. Wiss. 26, 465–480 (1918)

    MATH  Google Scholar 

  37. Weyl, H.: Elektron und gravitation. i. Zeitschrift für Physik A Hadrons and Nuclei 56(5), 330–352 (1929)

    ADS  MATH  Google Scholar 

  38. Wigner, E.: The unreasonable effectiveness of mathematics in the natural sciences. Commun. Pure Appl. Math. 13(1), 1–4 (1960)

    Article  ADS  Google Scholar 

  39. Wu, T.T., Yang, C.N.: Concept of nonintegrable phase factors and global formulation of gauge fields. Phys. Rev. D 12(12), 3845 (1975)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

I would like to thank Yemima Ben-Menahem and Daniel Rohrlich for their guidance and advice, and an anonymous reviewer for his helpful feedback. This research was supported by the Israel Science Foundation (Grant No. 1190/13) and by The Open University of Israel’s Research Fund (Grant No. 41240).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy Hetzroni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hetzroni, G. Relativity and Equivalence in Hilbert Space: A Principle-Theory Approach to the Aharonov–Bohm Effect. Found Phys 50, 120–135 (2020). https://doi.org/10.1007/s10701-020-00322-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-020-00322-y

Keywords

Navigation