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Abstract

Carnap’s theory of descriptions was restricted in two ways. First, the
descriptive conditions had to be non-modal. Second, only primitive pred-
icates or the identity predicate could be used to predicate something of
the descriptum. The motivating reasons for these two restrictions that are
to be found in the literature will be critically discussed. Both restrictions
can be relaxed, but Carnap’s theory can still be blamed for not dealing
adequately with improper descriptions.

1 Introduction

The subject of this article is Carnap’s modal logic with descriptions and its
varied sorrows. Since Carnap’s modal logic is not widely known and since it has
some peculiar features, I will devote section 2 to an introduction to it. Also,
it will be used to fix some notation. Moreover, Carnap’s modal logic will be
introduced against the background of more general modal logics, which can
serve as background theories for arguments that are not tied to the particular
modal logic devised by Carnap.

In section 3 I will introduce Carnap’s theory of descriptions. It will be
explained that it is faced with a problem that involves the exact formulation of
the uniqueness condition. The problem, its scope, and the solutions proposed
in the literature will be scrutinized and I will settle on one solution.

In section 4 I will introduce what I call ‘self-predication principles’, e.g. if
there is one and only one queen of England, then the Queen of England is a
queen. I will use self-predication to argue for the claim that Carnap’s theory
of descriptions inadequately copes with improper descriptions. Also, I will set
the stage for a discussion of two arguments by Føllesdal for the claim that
modal distinctions collapse in Carnap’s modal logic with descriptions. This will
be done by showing that certain self-predication principles are valid, whereas
others are not.

In section 5 I will discuss Føllesdal’s first collapse argument, which uses an
instantiation of a restricted self-predication principle. The problem with this
argument is that it assumes the principle of the necessity of identity, which is
invalid in a Carnapian interpretation. I will also discuss the relations between
Føllesdal’s argument and a collapse argument and a slingshot argument by
Quine. It will turn out that the connections between collapse arguments and
slingshot arguments is tighter than has been recognized by some.
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In section 6 I will discuss Føllesdal’s second collapse argument, which uses
an instantiation of an unrestricted self-predication principle. I will then formu-
late another collapse argument that is in some interesting respects weaker than
Føllesdal’s (or Quine’s, for that matter). The problem with these arguments
is that that the self-predication principle is invalid. Moreover, they violate a
certain restriction by Carnap. This restriction and its alleged motivation will
be discussed as well.

2 Carnapian modal logic

In this section I will introduce Carnapian intensional logic against the back-
ground of two other intensional logics. The first logic is a very general logic,
viz. a ‘contingent identity system’, known as S+CI (‘Contingent Identity’). On
the model-theoretic level, its main feature is that the variables range over ‘allow-
able’ individual concepts. The second logic is an extension of the first logic that
will be called S5+IC (‘Intensional Concepts’). On the model-theoretic level,
its main feature is that the variables range over all individual concepts. The
third logic is a Carnapian intensional logic, C. On the model-theoretic level, its
main features are that variables range over all individual concepts and that the
class of worlds includes (in a sense to be specified) all possible worlds. It should
be clear that a C-model is a S+CI-model, but not vice versa. By moving from
a textbook system S+CI to a not so well-known system C, one can gradually
get to know the characteristic features of the latter special logic.

Let L be a first-order language with identity and with the modal operator �.
Well-formed terms, formulas and sentences are defined as usual. The S+CI-
interpretation of L can be found in a textbook [7, p. 333-334]. An S+CI-
model for L is a quintuple 〈W,R,D, I, V 〉 with W a non-empty set (of ‘possible
worlds’), R a two-place (‘accessibility’) relation on W , D is a non-empty set
(the ‘domain’), I is a set of functions from W to D (the ‘allowable individual
concepts’) and V is a function defined as follows: if Pn is a n-place predicate,
then V (Pn, w) ⊆ Dn. The assignment function a is a function from the set of
variables to the set of the allowable individual concepts.

Given an S+CI-model M, an assignment function a and a well-formed
term t of L, let VM (t, w, a) be a function defined as follows: if x is a variable
and if a (x) = i, then VM (x,w, a) = a (x) (w) = i (w). Given an S+CI-
model M, an assignment function a and φ a well-formed formula of L, let
VM (φ,w, a) be a function defined as follows: if Pn is a n-place predicate of L
and if t1, . . . , tn are well-formed terms L, then VM (Pn (t1, . . . , tn) , w, a) = T
iff 〈VM (t1, w, a) , . . . , VM (tn, w, a)〉 ∈ V (P,w) and VM (t1 = t2, w, a) = T iff
VM (t1, w, a) = VM (t2, w, a); the clauses for ¬ and ∧ are as can be expected;
VM (∀xφ,w, a) = T iff VM (φ,w, a[i/x]) = T for every i ∈ I; VM (�φ,w, a) = T
iff VM (φ,w′, a) = T for every w′ ∈ W such that wRw′. Validity and model-
theoretic consequence are defined as usual.

S+CI consists of the following axioms, axiom schemes and rules (with φ, ψ ∈
L, unless otherwise stipulated) [7, p. 333-334]:
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S’ If S ` φ with φ belonging to the language of modal propositional logic, and
if ψ1, . . . , ψn ∈ L, then S + CI ` φ[ψ1/p1, . . . , ψn/pn]

BF ∀x�φ→ �∀xφ

SI x = x

CI x = y → (φ→ φ (y/x)) for all φ ∈ L\{�}

UI ∀xφ (x)→ φ (y/x)

N If S + CI ` φ, then S + CI ` �φ

MP If S + CI ` φ, and S + CI ` φ→ ψ, then S + CI ` ψ

UG If S + CI ` ψ → θ, then S + CI ` ψ → ∀xθ if x is not free in ψ

The above theory is sound and complete for the given interpretation. Note that,
if Contingent Identity systems had contained the unrestricted principle of the
substitutivity of identicals, then NI would have been a theorem of them [7, 313].

NI ∀x∀y (x = y → �x = y)

As one can readily verfiy, NI is invalid under the interpretation described above,
so it is a good thing that the theory does not contain the unrestricted principle
of the substitutivity of identicals.

Now that we are familiar with S+CI we can start to familiarize ourselves
with S5+IC. The language stays the same. The interpretation differs however
([7, p. 331-332, 335]; [11, p. 632-664]). A S5+IC-model is a S+CI-model
that satisfies two requirements: first, the accessibility relation is an equivalence
relation and, second, the class of allowable individual concepts is the class of
all functions from the set of possible worlds to the domain. The definition of
the denotation of a well-formed term at a given world under a given assignment
to the variables and the definition of the satisfaction of a well-formed formula
at a given world under a given assignment to the variables remain the same.
S5+IC is exactly like S5+CI, except for the facts that BF is a theorem and
not an axiom of quantified S5 [7, p. 246-247] and that it contains the following
axiom schemes:

rGF �∃xφ→ ∃x�φ for all φ ∈ L\{�}

CO ∀x∃y (x = y ∧ ∀z (x = z → � (x = y → x = z)))

The above axiomatization is due to Kripke [12].1 Given that every S5+IC-
model is also a S+CI-model, the soundness proof of the other principles of

1See [7, p. 332]. The proof only works if the well-formed formula within the scope of
the existential quantifier and the modal operator is itself purely extensional. Unfortunately,
it is claimed in [7, p. 332, p. 348, n.6] that the unrestricted Ghilardi Formula is valid too.
Shapiro pointed the invalidity of the unrestricted Ghilardi Formula out to Mart́ı [13, n17].
His example made use of individual constants, which are not included in the language under
consideration, but it easy to adjust his example so as to work for L.
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S5+IC is textbook material, so one can conclude that S5+IC is sound for the
given interpretation. Kripke [12, p. 72] claims that the proof of the completeness
theorem is reducible to the one for S+IC. Interestingly, if the class of allowable
individual concepts is the class of all individual concepts, then one cannot prove
completeness if the theory is as strong as or weaker than quantified S4.3.1 [7,
p. 336-342] or quantified B.

It was already claimed that one can prove a stronger but still restricted
substitutivity of identicals principle in S+CI. One can prove in S5+IC a weak
unrestricted substitutivity of identicals principle, namely the principle of the
substitutivity of necessary identicals:

SNI �x = y → (φ (x)→ φ (y/x))

The above principle was endorsed by Carnap [3, p. 177].
After having desribed S+CI and S5+IC, it is easier to present Carnap’s

system C.2 The C-model is a maximal S5+IC-model, i.e. a S5+IC-model that
is such that |D| = |N|; R = W 2; for every predicate Pn of L (other than identity)
and for every D∗ ⊆ Dn, there is a world w ∈W such that V (Pn, w) = D∗; for
all w,w′ ∈W , if V (Pn, w) = V (Pn, w′) for every Pn of L, then w = w′.

Just as S+CI-models have a class of individual concepts and S5+IC-models
have the class of all individual concepts, so S5+IC-models have a class of
possible states of the world and Carnap’s original model has the class of all
possible worlds [3, p. 184].3

The maximality of the C-model has interesting consequences for soundness
and completeness. It can be proved that, for any proposition letter and the
C-modelM (restricted to the language of propositional modal logic) and world
w, it is the case that VM (♦p, w) = T . As a result, the S’ rule is not sound
anymore, since it would follow from the hypothetical soundness S’ and the
noted fact about C that

VM (♦ (Pn (x1, . . . , xn) ∧ ¬Pn (x1, . . . , xn)) , w, a) = T

for any possible world w and assignment a.

2There are three works by Carnap in which he discusses model-theory for modal logic: [2],
[3], and [4]. Readers who are interested in the exact relations between those three theories
should be pay close attention to [3, p. 183, n. 3] and [3, p. 891, n.10; p. 892, n. 11]. It
will become clear that the systems discussed in those three works differ greatly. The system
discussed in this section is close to the one presented in his latest work. The main differences
are that the language of the system in this section is first-order and not type-theoretical
and that it does not contain individual constants, functions, descriptions and lambda terms.
Moreover, in order to give a more modern, Kripke-style model theory, I will borrow from
[15, p. 51-52]. See [18] for more on the peculiar properties of Carnap’s modal logic. In [18]
Carnap’s propositional modal logic is referred to as C, whereas in this paper C is used to
refer to his first-order modal logic.

3Carnap intended his modal system to be a system of logical modality. That is why he
designed the range of the box operator as what is in a sense the class of all first-order models
for the given language. Whether he has succeeded or not, depends on how one answer certain
vexed questions, such as: ‘Should it be a logical truth that there exists more than or even
infinitely many individuals?’. Questions about the intended interpretation will be set aside in
this paper, because there are other questions to be answered as well.
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C is not completely and effectively axiomatizable. Suppose that it were,
and suppose that C 0 φ for some closed φ ∈ L\{=,�}. Ergo, φ is not a
theorem of predicate logic without identity. By completeness, there must be
a model of predicate logic without identity that makes φ false and, hence, ¬φ
true. By the Löwenheim-Skolem theorem, there is a model with an enumerably
infinite domain that makes ¬φ true. One can turn that model into a world
in the maximal C-model M. It follows that for every assignment a, world
w, VM (♦¬φ,w, a) = T . Consequently, C ` ♦¬φ. Since C is assumed to
be effectively axiomatizable, its theorems are recursively enumerable. A subset
consists of the theorems of the form ♦¬φ for C 0 φ and φ ∈ L\{=,�}. But then
one also has a recursive enumeration of the non-theorems of non-modal first-
order logic without identity, which is in contradiction with the undecidability
of the latter [1, p. 271].

In this section I have described three different logics: S+CI, S5+IC, and
C. In the first logic the quantifiers range over a class of possible worlds and
the modal operators range over a class of individual concepts. In the second
logic the quantifiers range over the class of all individual concepts, whereas the
modal operators still range over a class of possible worlds. In the third logic
the quantifiers also range over the class of all individual concepts, but now the
modal operators range over the class of all possible worlds. The first two logics
are axiomatizable, whereas the third logic is not.

All three logics were formulated in a language that did not contain any
individual constants or description operators. In the next section we will see
what happens if one adds individual constants and description operators to the
language.

3 Carnapian theories of descriptions

Carnap did not only device a modal first-order logic, he also came up with a
theory of descriptions [3, p. 37]. Let L∗ be identical to the language of modal
first-order logic, L, except for the fact that it contains a denumerably infinite
set C of individual constants cn for all n ∈ N, and a term-forming operator ι. If
φ is a well-formed formula, then ιxφ is a well-formed term.4 The S+CI-models,
the S5+IC-models, and the C-model are as before, except for the facts that
(i) they now contain a element d∗ ∈ D, a distinguished element of the domain,
and (ii) the denotatum of an individual constant is an element of the domain
(V (c) ∈ D), and the denotatum of the distinguished individual constant is
the distinguished element of the domain (V (c0) = d∗), and (iii) they have a
denotation clause for descriptions.

Before stating Carnap’s theory of descriptions, it is useful to give an abbrevi-
atory definition: 1φ (x) =df ∀y (φ (y)↔ y = x). With the help of this definition
one can formulate Carnap’s theory of descriptions as follows:5

4Note that the well-formed terms and formulas of L∗ are to be given a simultaneous
recursive definition instead of successive recursive definitions.

5Carnap was indifferent to the the choice between either giving a contextual and eliminative
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Cι ψ (ιx (x))↔ (∃x (1φ (x) ∧ ψ (x)) ∨ (¬∃x1φ (x) ∧ ψ (c0)))

Carnap infamously restricted the range of possible instantiantions of the
above axiom scheme. He wrote the following:

In order to avoid certain complications, which cannot be explained here,
it seems advisable to admit in [C] only descriptions which do not contain
[‘�’]. But any description may, of course, occur within the scope of [a
‘�’]. The smallest matrix in which a description occurs (in the primitive
notation) is always a nonmodal context, because the description must be
an argument expression either of a primitive predicator constant or of [=].
This smallest matrix is then taken as the context of ‘−−ιx (. . . x . . . )−−’,
which can be eliminated into [the right-hand side Cι]

So a more accurate statement of Carnap’s description axiom is the following:

Cι ψ (ιx (x))↔ (∃x (1φ (x) ∧ ψ (x)) ∨ (¬∃x1φ (x) ∧ ψ (c0)))

for all φ ∈ L∗\{�} and for all atomic ψ ∈ L∗

In this section only the first restriction, viz. the restriction on the descriptive
conditions, will be discussed. The second restriction is a topic for a later section.

The reason Carnap gives for this restriction remains obscure: he only speaks
about ‘certain complications’. As a result, there was some speculation about
what these ‘complications’ could be. Føllesdal gave the following reason:

As a matter of fact, [φ↔ �φ] is not derivable in Carnap’s system. How-
ever, what prevents it from being derivable is a restriction which Carnap
puts on definite descriptions in his system, to the effect that no descrip-
tion may contain a modal operator. No justification is given for that
restriction; all Carnap says is that “in order to avoid certain complica-
tions, which cannot be explained here, it seems advisable to admit in [C]
only descriptions which do not contain [p�q]”. If one lifts the restriction
one sees what these complications are: modal distinctions collapse. [5, p.
150]

Discussion of Føllesdal’s reason will be postponed until the sixth section. Mart́ı
believes she knows she knows Carnap’s motivation [13, p. 583-585]. She puts
forward the following explanation:

The bottom line is that if there is more than one individual in the universe
of discourse the uniqueness condition cannot be satisfied, and thus all
descriptions with inner modalities [are co-referential with c0]. I think
that this is the problem Carnap is trying to avoid when he talks about
the “complications which cannot be explained”. It is a technical problem
and it is given an ad hoc solution. [13, 584-585]

definition of well-formed formulas containing the description operator ι or giving an axiom
scheme for ι and adding ι to the language of first-order modal logic [3, p. 37]. But one could
also have eliminated individual constants [7, p. 184]. Moreover, in this article the possibility
of languages with uneliminable descriptions will also be considered, so the second option is
the preferred one.
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Her argument goes as follows. Let φ be a well-formed formula belonging to
L∗\{=,�} (Mart́ı spoke of ‘properties’.) What is to be proved, is that for every
C-model M with |D| ≥ 2 (and all C-models have a domain with the same
cardinality as the set of natural numbers), for every world w, and for every
assignment a,

VM (∃x∀y (�φ (y)↔ y = x) , w, a) = F.

The proof is by reductio ad absurdum. Suppose that there is a C-model M
with |D| ≥ 2, a world w, and an assignment a, such that

VM (∃x∀y (�φ (y)↔ y = x) , w, a) = T.

It follows that there is an i such that

VM (∀y (�φ (y)↔ y = x) , w, a[i/x]) = T.

Let i (w) = d Now either φ is a theorem of non-modal first-order logic without
identity, or it is not. In the first case, it will be satisfied by any element of the
domain in every world. Consequently, there will be an individual concept i′ and
an element d′ such that d′ 6= d, i′ (w) = d′, and VM (�φ (y) , w, a[i/x; i′/y]) = T ,
but VM (x = y, w, a[i/x; i′/y]) = F . Since the variables range over all individ-
ual concepts, this suffices to contradict the assumption. Suppose φ is not a
theorem of the relevant kind. Then there will be a world w′ ∈ W , and in-
dividual concept i′, and an element d′ such that i′ (w) = d, i′ (w′) = d′ and
VM (φ (y) , w′, a[i/x; i′/y]) = F . The latter follows from the maximality of ev-
ery C-model. Since the variables range over all individual concepts, this again
suffices to contradict the assumption. This establishes the conclusion.

The scope of Mart́ı’s result is restricted in two ways. First, there are more
possible descriptive conditions in which a box operator occurs than the ones of
the form �φ. Hence, Mart́ı’s argument supports only a more limited restriction
than Carnap’s. Take for instance the descriptive condition F (y)∧¬�F (y). Now
consider a C-model that is such that there is an element d ∈ D such that there
is a world w such that V (F,w) = d. There is a class I ′ = {i′ ∈ I ′|i′ (w) = d}. It
is clear that all and only i′ satisfy F (x) at w and, since all individual concepts
satisfy ¬�F (x), it follows that

VM (∃x∀y ((F (y) ∧ ¬�F (y))↔ y = x) , w2, a) = T.

At this point one might wonder whether Mart́ı’s reason for Carnap’s restriction
is correct, or one might conclude that Carnap could have introduced a weaker
restriction. Second, Mart́ı’s argument cannot be repeated for S5+IC-models
and ipso facto not for S+CI-models, since the proof depends on the maximality
property of C-models. There is a S5+IC-model with at least two elements in its
domain and a descriptive condition �φ (y) such that the uniqueness condition as
formulated by Carnap is fullfilled. LetD = {d∗, d1}, W = {w1, w2}, V (F,w1) =
d1, (F,w2) = d∗, V (G,w1) = ∅, V (G,w2) = d1. Let φ be (F (y) ∨G (y)). It
can be verified that

VM (∃x∀y (�φ (y)↔ y = x) , w1, a) = T.
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Mart́ı herself tried to fix the problem by replacing 1φ (x) in Cι by iφ (x) =df

∀y (�P (x)↔ �x = y), when φ is of a problematic form. As a result, the de-
scriptive condition is required to be satisfied by a unique individual concept
rather than an unique individual ([13, p. 585], [11, at p. 630]). Moreover, Mart́ı
had to retain Cι for descriptions with non-modal descriptive conditions, since
it is clearly to though-minded to expect intensional uniqueness for extensional
descriptive conditions.

The solution proposed by Mart́ı does not work however. Suppose for a
reductio ad absurdum that there is a C-model, a world w and an assignment
a such that VM (∃x∀y (�φ (y)↔ y = x) , w, a) = T . φ is subject to the same
restrictions as above. As Mart́ı noted, this implies that there is one and only one
individual concept i satisfying �φ (x). As a consequence, there is no w ∈ W
such that φ (x) is true of d and d′ (with d 6= d′) at w, since otherwise there
would be two individual concepts i, i′ satisfying �φ (x), because one can define
i′ as follows: i′ (w′) = i (w′) for all w′ ∈ W , except that i′ (w) = d′, whereas
i (w) = d. But consider the world w′ such that all predicate symbols in φ (x) are
assigned the empty set at w′. This world is in W , since the model is maximal.
It can be proved that at w′ φ (x) is either satisfied by all assignments a or by
no a. If the first, then there cannot be a unique individual concepts satisfying
�φ (x). If the second, there is no individual concept at all satisifying �φ (x).
Either way, the reduction assumption is false. The proof is by induction on the
complexity of φ. The atomic case is trivial: φ is by the choice of w′ satisfied by
no assignment. I leave the other cases to the reader.

Kremer noted that (i) one can have extensional uniqueness for descriptive
conditions as well and, as a result, one only needs one description axiom (or
contextual definition), and (ii) one can (still) avoid Mart́ı’s result. His proposal
is to replace 1φ (x) in Cι by !φ (x) =df φ (x) ∧ ∀y (φ (y)→ y = x). In classical
first-order logic the definition of !φ (x) and the definition of 1φ (x) are provably
equivalent, but not so in Carnapian quantified modal logic, since the proof in-
volves the unrestricted classical substitution principle. The resulting description
principle is:

Kι ψ (ιx (x)) ↔ (∃x (!φ (x) ∧ ψ (x)) ∨ (¬∃x!φ (x) ∧ ψ (c0))) for all φ ∈ L∗ and
for all atomic ψ ∈ L∗

Now there are no more restrictions on the descriptive conditions. Mart́ı’s ar-
gument depended crucially on there being an equivalence in the uniqueness
conditions, but now it has been replaced by a left-to-right arrow, the argument
breaks down. Moreover, one can prove that there is a φ, a C-model, a world
w and an assignment a such that VM (∃x∀y (�φ (y)→ y = x) , w, a) = T . Let
φ be F (x) ∨ ¬∃zF (z). Let w be such that V (F,w) = d. Let a (i x) and
i is defined as follows: i (w) = d and for all w′ ∈ W such that w′ 6= w, if
V (F,w′) 6= ∅, then i (w′) ∈ V (F,w′). This example is not due to Kremer. It
could not have been, since he did not discuss C-models but rather S5+IC-
models. Anyway, since it works, Kι will be used from now on. As a result,
the denotation clause of description terms reads: VM (ιxφ,w, a) = d if for some
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i (∈ I), VM (φ,w, a[i/x]) = T and for every i, if VM (φ,w, a[i/x]) = T , then
i (w) = d; VM (ιxφ,w, a) = d∗ otherwise.

In this section Carnap’s theory of descriptions was presented. Carnap re-
stricted the allowable descriptive conditions to non-modal conditions. Føllesdal
speculated that the reason for this restriction was that one could otherwise de-
rive a modal collapse. This will be the topic for the sixth section. Mart́ı pointed
out that there was a problem with the uniqueness condition as it was formu-
lated by Carnap: the uniqueness condition was never satisfied. This problem
is limited in two ways. First, the problem identified by Mart́ı justifies strictly
speaking only a more relaxed restriction than Carnap’s. Second, the problem is
limited to C. Mart́ı proposed an alternative, but it was proved that it does not
solve the problem. Kremer proposed yet another alternative, and this alterna-
tive does the job.

Before closing this section, I would like to point out a fact that will prove
useful in discussing Føllesdal’s argument. In the previous section universal in-
stantiation was restricted to variables. One could also consider a generalized
universal instantiation axiom scheme:

GUI ∀xφ→ φ (t/x) for any t ∈ L∗

The above axiom scheme is sound under the last two interpretations described
in the previous section. The reason is that, if φ is true of all individual concepts,
then it is also true of the individual concept determined by an individual concept,
namely a constant function from the domain to the possible worlds, and the
individual concept determined by a description term, namely the function that
assigns to all worlds the unique object that satisfies the descriptive condition at
that world if there is such an object at that world and d∗ to all other worlds.
There is no guarantee that the individual concept that is determined by an
individual constant or a description is included in the set of allowable individual
concepts, so GUI is not sound under the first interpretation.

Since two additional principles, Kι and GUI, have been introduced, it
might be a good idea to introduce some abbreviations. Let S+CIι abbreviate
S+CI+Kι, let S+ICt abbreviate S+CI+GUI+Kι, and let Ct abbreviate
C+GUI+Kι.

4 Self-predication principles

This section will be about a class of principles that I dub ‘self-predication prin-
ciples’, i.e. principles that stipulate that, if certain conditions are fulfilled,
then the (possibly complex) predicate that forms the descriptive condition of
a description term can be combined with the description term formed by that
predicate so as to express a true proposition. These principles will be discussed
for two reasons. First, as I will argue in this section, they can be used to level
an argument against Carnap’s theory of descriptions (independently of how one
formulates the uniqueness condition). Second, they may teach us something
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about Carnap’s restrictions. Third, they may illuminate Føllesdal argument for
Carnap’s first restriction.

Carnap’s theory of descriptions is inadequate in its treatment of sentences
that involve improper description terms that are self-predicated. The following
sentences express facts:

(a) There is no king of France.

(b) There is no president of England

(c) Everything is either bald or hairy, but not both.6

The following claim seems to express an intuitive truth:

(d) Either one accepts both (i) and (ii), or one rejects both (i) and (ii).

(i) The bald king of France is bald.

(ii) The hairy president of England is hairy.

Since (a) and (b) are true, ‘the bald king of France’ and ‘the hairy president
of England’ refer to d∗. Moreover, since (c) is true, d∗ is either bald or hairy,
but not both. If one accepts both (i) and (ii), then one deems (i) and (ii) to be
true, and hence one is committed to ascribing ‘bald’ and ‘hairy’ to d∗. If one
rejects both (i) and (ii), then one deems (i) and (ii) to be false, and hence one is
again committed to ascribing ‘non-bald’ and ‘non-hairy’ to d∗. The conclusion
is that someone who accepts Carnap’s theory of descriptions (independently
of how one formulates the uniqueness condition), has to reject (d) and, hence,
assign different truth-values to (i) and (ii). But (d) seems eminently plausible.
To conclude, Carnap’s theory of improper descriptions is fatally flawed.

Turning from Carnap’s theory of descriptions to his restrictions, it is worth
recalling that there are two of them: (i) no modal operators are allowed in a
descriptive condition; (ii) no predicates other than primitive predicates or the
identity predicate can be used to predicate something of the descriptum. Obvi-
ously, in the case of self-predication a restriction on the descriptive conditions of
description terms is at the same time a restriction on the predicates that can be
used to predicate something of the descriptum, and vice versa. When discussing
the instrumental value of self-predication principles for understanding Carnap’s
restrictions on his description principle (or Kremer’s), it is convenient to have
a look at self-predication principles that respect the restrictions and ones that
don’t:

AtomSelfPred ∃x!φ (x)→ φ (ιxφ (x)) for all atomic φ ∈ L∗

NonModSelfPred ∃x!φ (x)→ φ (ιxφ (x)) for all φ ∈ L∗\{�}

S-UnrestrSelfPred ∃x!φ (x)→ φ (ιxφ (x)) for all φ ∈ L∗

6I will ignore vagueness. It is not essential for the argument to work. Also, I will allow
some abuse of common language, since it is not really appropriate to call a knife bald. Again,
this is not essential for the argument to work.
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W-UnrestrSelfPred ` ∃x!φ (x)⇒` φ (ιxφ (x)) for all φ ∈ L∗

The first two principles are restricted self-predication principles, whereas the
last two principles are unrestricted self-predication principles.

Both AtomSelfPred, which obeys the first of Carnap’s restrictions, and
NonModSelfPred, which obeys the second (and, ipso facto, also the first)
of Carnap’s restrictions, are K+CIι-valid. The proof of AtomSelfPred is
easy, since if there is at least one individual concept i with i (w) = d such that
VM (!Pn (. . . , x, . . . ) , w, a[i/x]) = T , then V (ιxPn (. . . , x, . . . ) , w, a) = d and
〈. . . , V (ιxPn (. . . , x, . . . ) , w, a) , . . . 〉 ∈ V (Pn, ). I will only sketch the proof of
NonModSelfPred. Use the validity of CI to establish that, if VM (φ (x) ∧ ∀y (φ (y)→ y = x) , w, a[i/x]) =
T for some i, then

VM (∀y (y = x→ φ (y)) , w, a[i/x]) = T.

By stipulation, VM (ιxφ (x) , w, a) = i (w). Ergo, VM (φ (ιxφ (x)) , w, a) = T .
It should be clear that both unrestricted self-predication principles would

also have been provable if it were not for the second restriction imposed by
Carnap. Indeed, the antecedents of the each of those principles imply the
disjunctions of those antecedents and ¬∃x!φ (x) ∧ φ (c0), whence by the un-
restricted Carnap-Kremer description principle it follows that ψ (ιxφ (x)). For-
tunately, Carnap did impose his second restriction, for S-UnrestrSelfPred
and W-UnrestrSelfPred are respectively Ct-invalid and Ct-unsound. To
prove this, I will prove that W-UnrestrSelfPred is Ct-unsound, since W-
UnrestrSelfPred is the weakest of the both unrestricted self-predication prin-
ciples, because it follows from S-UnrestrSelfPred by MP, whereas S-UnrestrSelfPred
does not follow from W-UnrestrSelfPred.

Theorem 4.1. W-UnrestrSelfPred is Ct-unsound.

Proof. The proof breaks down into two parts. First, it needs to be established
that for a certain well-formed formula φ, |=C ∃x!φ (x). Second, it needs to be
proved that there is a Ct-model such that φ (ιxφ (x)) is not true at a certain
world in that Ct-model. As for the first part, note that (F (c3) ∧�c1 = c1) ∨
(¬F (c3) ∧�c2 = c2) is valid. Now either VM (F (c3) , w) = T , or it is not. Let
i (w′) = V (c1) = d for all w′ ∈ W , and i′ (w′) = V (c2) = d′ for all w′ ∈ W .
Then in the first case

VM (F (c3) ∧�x = c1, w, a[i/x]) = T,

and in the second case,

VM (¬F (c3) ∧�x = c2, w, a[i′/x]) = T.

Either way, there is an i′′ such that

VM (((F (c3) ∧�x = c1) ∨ (¬F (c3) ∧�x = c2)) , w, a[i′′/x]) = T.

Let us abbreviate the complex formula as F † (x). Moreover, for every i′′′ for
which VM

(
F † (x) , w, a[i′′′/x]

)
= T , it is the case that i′′′(w) = i′′(w). Again,

11



either VM (F (c3)) = T , or it is not. In the first case i′′(w) = d and so must i′′′,
because if i′′′ (w) 6= d, then VM (�x = c1, w, a[i′′′/x]) = F . The second case is
analogous. Nothing hinges on the choice of w. This concludes the first part of
the theorem.

Consider a C-model M that is such that d3 ∈ V (F,w1), it is not the case
that d3 ∈ V (F,w2), and V (ci) = di. As in every Ct-model, VM

(
∃x!F † (x) , w, a

)
=

T. Now suppose for a reductio ad absurdum that the rule is sound. So,

VM
(
F †

(
ιxF † (x)

)
, w1, a

)
= T.

By stipulation, VM (¬F (c3) , w1, a) = F . Consequently,

VM
(
¬F (c3) ∧�ιxF † (x) = c2, w1, a

)
= F.

Therefore, VM
(
�ιxF † (x) = c1, w1, a

)
= T . This implies that

VM
(
ιxF † (x) = c1, w2, a

)
= T.

If there is a unique F †, which is provably true, then the latter implies that
VM

(
∃x

(
F † (x) ∧ x = c1

)
, w2, a

)
= T . Unpacking F † gives us that:

VM (∃x (((F (c3) ∧ x = c1) ∨ (¬F (c3) ∧ x = c2)) ∧ x = c1) , w2, a) = T.

The second disjunct cannot be true, because no intension can satisfy both x = c1
and x = c2, since V (c1) 6= V (c2). But the first disjunct is also false, because
it is not the case that V (c3) ∈ V (F,w2). Contradiction. This concludes the
proof.

Clearly, if a consequence, W-UnrestrSelfPred, of the description principle
without the second restriction, is C-unsound, then the unrestricted description
principle is C-invalid.

To sum up, AtomSelfPred and NonModSelfPred are K+ICι-valid,
whereas S-UnrestrSelfPred and W-UnrestrSelfPred are respectively Ct-
invalid and Ct-unsound. This teaches us that Carnap’s restrictions were a good
thing.

I have also claimed that self-predication principles can be useful in the dis-
cussion of the Føllesdal’s reason for Carnap’s first restriction: if one lifts the
restriction, one can prove that modal distinctions collapse. In fact, Føllesdal has
two collapse arguments [6, 69-72, 74]. Only the second one is directly relevant
here, but to understand it, one is well-advised to first study his first collapse
argument. That will be done in the next section.

5 Føllesdal’s first collapse argument

In this section I will discuss Føllesdal’s first collapse argument. In addition, I will
also discuss a collapse argument by Quine that inspired Føllesdal’s argument.

Føllesdal proved that, if one adds NI to classical Carnapian logic and makes
one extra assumption, then one gets a collapse of necessity into truth. I will
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reformulate Føllesdal’s theorem in L∗.7 Moreover, I will use S5+ICt as the
background theory.

As was said earlier, Føllesdal’s proof contains a derivation of an instance
of a self-predication principle, namely NonModSelfPred. Let us make use of
the general principle rather than deriving an instance of it. Here then is the
modified theorem and proof:

Theorem 5.1 (Føllesdal?). For all φ ∈ L∗\{�},

∀x∀y (x = y → �x = y) ,� (z 6= c0) `S5+ICt φ→ �φ

Proof. Suppose that φ ∈ L∗\{�} and that �z 6= c0. By the law of self-identity
and the introduction rule of conjunction one may infer that φ ∧ z = z. By
existential generalisation it follows that ∃xm+1 (φ ∧ xm+1 = z). The subscript
of the variable has to do with the fact that there are at most m free variables
in φ, viz. x1, . . . , xm. By taking xm+1 one ensures that no free variable in
φ is bound by the existential quantifier. Also, make sure here not to replace
any possible occurrences of z in φ! Transitivity of identity guarantees that
∃xm+1! (φ ∧ xm+1 = z) is then also inferable. Here NonModSelfPred can be
used to get ιxm+1 (φ ∧ xm+1 = z) = z, because φ was assumed to be a non-
modal formula. Indeed, xm+1 is by stipulation not in φ and xm+1 = z does not
contain any modal operators. By NI and universal instantiation, one can infer
that �ιxm+1 (φ ∧ xm+1 = z) = z. Let us abbreviate this as �ιxm+1φ

∗ (xm+1) =
z. Next, it follows by Kι that� (∃xm+1 (!φ∗ (xm+1) ∧ xm+1 = z) ∨ (¬∃xm+1!φ∗ (xm+1) ∧ c0 = z)).
It was assumed that �z 6= c0. It follows in the modal system K that

�∃xm+1 (!φ∗ (xm+1) ∧ xm+1 = z)

Simplification leads to �∃xm+1φ. It is an theorem of first-order logic that
∃xm+1φ → φ if xm+1 does not occur free in φ, which is by the choice of xm+1

indeed the case. One can then use necessitation and the K-axiom to derive �φ
from �∃xm+1φ.

Corollary 5.2. For all φ ∈ L∗,

∀x∀y (x = y → �x = y) ,� (z 6= c0) `S5+ICt φ→ �φ

Proof. The proof is by induction on the complexity of φ. One needs the S5-
principle for the case in which φ = ¬ψ.8

Corollary 5.3 (Føllesdal?). For all φ ∈ L ∪ {ι},

�∀x∀y (x = y → �x = y) , z 6= c0 `S5+ICt φ→ �φ
7Føllesdal used the contextual definition that corresponds to Cι, whereas I will treat de-

scription terms as primitive and I will make use of Kι. Moreover, Føllesdal made use of a
proposition letter p in his proof, whereas there are no proposition letters in L∗.

8Alternatively, one could have used a self-predication principle in which the descriptive
condition is allowed to contain box operators, as long as the variable bound by the iota
operator does not occur within the scope of any box operator.
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Proof. One needs the B-axiom to prove the necessity of difference from the
necessity of NI ([6, p. 72], [7, p. 314]).

It is easy to prove that NI is invalid in the aptly named contingent identity
systems.9

Føllesdal’s collapse argument was targeting Carnap’s system of modal logic.
It is related to a collapse argument given by Quine, who tried to argue for the
claim that there are general difficulties with systems of modal logic. Quine’s
collapse argument goes as follows:

Schematically we can put the postulate as follows, using ‘Fx’ and ‘Gx’
(now) for arbitrary open sentences and using ‘Fx and x only’ as short for
‘(w) (Fw if and only if w = x)’:

(4) If Fx and x only and Gx and x only then (necessarily (w) (Fw if and
only if Gw))

But this postulate annihilates modal distinctions; for we can deduce from
it that ‘Necessarily p’ holds no matter what true sentence we put for ‘p’.
The argument is as follows. Let ‘p’ stand for any true sentence, let y be
any object, and let x = y. Obiously then

(5) (p and x = y) and x only and

(6) x = y and x only.

By (4), next, with its ‘Fx’ taken as (p and x = y) and its ‘Gx’ as ‘x = y’,
we can conclude from (5) and (6) that

(7) Necessarily (w)((p and w = y) if and only if w = y).

But the quantification in (7) implies in particular ‘((p and y = y) if and
only if y = y)’, which in turn implies ‘p’; so from (7) we conclude that
necessarily p. [16, p. 197-198]

Perhaps the reader wonders where NI and the description principles come in
here. The answer is that Quine’s line (4) is related to those principles. To make
this more clear, I will make use of Mart́ı’s partial reconstruction of Quine’s
collapse argument, but I will also expand it.10 Suppose that φ is a true sentence
and that c is a singular term denoting an object. (Quine used y but this is

9In [8, p. 249-250] it is proved that, if one enriches contingent identity systems with
the Peano Arithmetic axioms, then NI is a theorem. Compare to [10, p. 249-250].
There are four main differences between the proof in [8] and the proof in [10]. First, in
[10] the quantifiers are restricted to “Standard Numerals”, viz. ∀x ∈ SN , ∃z ∈ SN ,
whereas in [8] they are not. Second, in [10] SN is defined as a second-order condition,
viz. SN (x) =df ∀X∀z{[(� (z = 0) → Xz) ∧ (�Xz → �X (Sz))] → Xx}, whereas in [8] only
first-order languages are considered. Third, in [10] the proof is carried out in second-order
Peano Arithmetic and it involves class theoretical considerations (e.g., the minimal closure
condition), whereas in in [8] the proof is carried out in first-order Peano Arithmetic. Fourth,
in [10] the proof of ∀x (�x = 0 ∨ ∃y� (x = s (y))), which is needed in the proof of the main
result, the induction principle is used on top of the particular restriction of the quantifiers,
whereas in [8] it is shown that the induction principle is sufficient. More about this result,
induction principles and intensional mathematics can be found in [8].

10See [14, p. 280-281].
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an insignificant difference.) Then ιx (φ ∧ x = c) = c is true. Now assume that
the classical substitution principle is correct. Then one can get by universal
instantiation the following:

ιx (φ ∧ x = c) = c→ (�c = c→ �ιx (φ ∧ x = c) = c)

Since �c = c is true, so must �ιx (φ ∧ x = c) = c. This mimics the crucial step
in the proof of NI from the classical substitution principle. Mart́ı says that
�ιx (φ ∧ x = c) = c implies that �φ. Although she does not explicitly say so,
it is clear that Quine is relying here and in the first step on the necessity of the
following description principle:

Qι ιx (φ ∧ x = c) = c↔ φ

To conclude, Quine used the principle of substitutivity of identity and a descrip-
tion principle to derive φ→ �φ. Quine’s (4) in the cited argument is the same
as

ιx (φ ∧ x = c) = c→ �ιx (φ ∧ x = c) = c,

except for the fact that Quine uses the ‘expansions’ of the descriptions rather
than the descriptions themselves (and for the insignificant difference that he uses
the expansion of the description ιx (x = c) rather than the term c). As noted,
Quine’s collapse argument was not intended to be tied to one particular system
of modal logic. But one can of course investigate in which systems of modal
logic it is a sound argument. In particular, one could look at the argument from
a Carnapian perspective. Mart́ı correctly noted that Quine’s collapse argument
starts from an assumption, namely the classical substitution principle, that is
alien to Carnap’s modal logic. Of course, one need not ascribe the belief that
the classical substitution principle is sound under a Carnapian interpretation to
Quine. The argument can be seen as detailing the consequences of adding that
principle to Carnapian modal logic. But even then Quine’s argument is flawed.

Qι is unsound under a Carnapian interpretation. For consider a world in
which φ is false. Let c refer to d∗. In that world ιx (φ ∧ x = c) = c is true
but φ is not. The invalidity of Qι was noted by [19] in connection with a so-
called ‘slingshot argument’ given by Quine [17]. The argument goes as follows.
Suppose that �φ and ψ are true. By the T-axiom φ is also true. Moreover,
by Quine’s description principle Qι ιx (φ ∧ x = c) = c and ιx (ψ ∧ x = c) = c
must be true. Hence, ιx (φ ∧ x = c) = ιx (ψ ∧ x = c) is true by the transi-
tivity of identity. Assuming that Quine’s description principle is a necessary
truth, it follows from �φ that �ιx (φ ∧ x = c) = c is true. By the substitu-
tivity of identicals, �ιx (ψ ∧ x = c) = c is then also true. The latter implies
�ψ. To conclude, (�φ ∧ ψ) → �ψ, or formulated in a slightly redundant way:
(φ ∧ ψ)→ (�φ→ �ψ).

There are three strong similarities between Quine’s collapse argument (as
reconstructed by Mart́ı) and his slingshot argument. First, although the con-
clusions of Quine’s collapse argument and his slingshot argument are different,
this is only a superficial difference. The conclusion of Quine’s collapse argu-
ment was that φ→ �φ. But if one substitutes the tautology θ∨¬θ for φ in the
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conclusion of the slingshot argument, then the collapse statement follows. And
the conclusion of the slingshot argument readily follows from the conclusion of
the collapse argument. Second, in both arguments the classical substitution
principle (or NI) is used. Third, in both arguments the description principle
Qι is used. Notwithstanding these obvious similarities Mart́ı says the following:

[. . . ] the specific collapse argument discussed here is not an instance of the
slingshot, for it relies only on the assumption of the intersubstitution of
codesignative terms,[footnote 14 : This point is stressed in [Stephen Neale,
1995, On the philosophical significance of Gödel’s slingshot, Mind.]. See
especially §14.] [. . . ] [14, p. 282]

So she denies my third point and she resists my conclusion that these arguments
are very similar.

As said above, Taylor noted that Quine’s slingshot argument relied on a
description elimination principle that is unsound under a Carnapian interpre-
tation. He did not stop there. His solution was to add the assumption that
c 6= ιx (x 6= x). Since everything is identical to itself, ιx (x 6= x) refers to d∗.
Now one can use a description elimination principle that is valid under a Car-
napian interpretation:

(ιx (φ ∧ x = c) = c ∧ c 6= ιx (x 6= x))→ φ (1)

Except for the extra assumption and the different description elimination princi-
ple, Taylor’s slingshot argument is exactly like Quine’s. It is interesting to note
that Taylor’s slingshot argument is analogous to Føllesdal’s collapse argument.
Indeed, the latter worked with the assumption that c 6= c0 which is equivalent
to the assumption that c 6= ιx (x 6= x). Moreover, Føllesdal derived in fact an
instance of (1) (with c0 replacing ιx (x 6= x)). Taylor did not refer to Føllesdal,
who constructed his collapse argument roughly twenty-four years earlier, so I
assume that Taylor’s work is independent.

In this section I have discussed Føllesdal theorem and its relation to collapse
and slingshot arguments by Quine, Mart́ı and Taylor. Føllesdal obtained a
collapse result by assuming NI, but he knew only too well that the law of
the substitutivity of identity did not hold in all systems of modal logic. In
particular, it did not hold in the modal logic of Carnap. The latter replaced the
classical law of substitutivity of identity by a principle stipulating substitutivity
of necessary identity (≡ in Carnap’s symbolism). Føllesdal noted that, if one
systematically replaced identity in his proof of by necessary identity, then one
gets a collapse result even for Carnap’s system. So Føllesdal in fact obtained two
collapse results for modal theories containing individual definite descriptions.
Føllesdal’s second collapse argument will be discussed in the next section.

6 Føllesdal’s second collapse argument

Føllesdal’s second collapse argument relies essentially on an instantiation of S-
UnrestrSelfPred.
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Theorem 6.1 (Føllesdal?). For all φ ∈ L∗,

S-UnrestrSelfPred,� (z 6= c0) `T+CIι φ→ �φ

Proof. Assume φ. By the law of self-identity, necessitation and the introduc-
tion rule of conjunction, one can infer φ ∧ �z = z. By existential general-
isation, it follows that ∃x (φ ∧�xm+1 = z). Transitivity of identity and the
T-axiom warrant the derivability of ∃x! (φ ∧�xm+1 = z). The application of
S-UnrestrSelfPred results in �ιx (φ ∧�xm+1 = z) = z. The remainder of
the proof is as in the proof of theorem 5.1.

Note that the above proof is given against the background of T+CIι,
whereas the proof of Føllesdal’s first collapse argument was given against the
background of the much less general theory S5 + ICt. One reason for this is
that this time it was not necessary to use GUI.11

Although Følllesdal this time did not assume the invalid NI, he noted that
Carnap restricted his description principle in such a way that the argument was
still illegitimate:

Nevertheless the disastrous result in [theorem 5.1] is avoided in S2 when
we use ‘≡’ for the ‘=’. For in the proof of [theorem 5.1], the description
[ιx (x≡z ∧ φ)] occurs in several of the lines. And since ‘x≡y’ is short
for [‘� (x = z)’] (Meaning and Necessity, 39-6), descriptions of this type
are not permitted by Carnap, who on p. 184 of Meaning and Necessity
states that, “in order to avoid certain complications, which cannot be
explained here, it seems advisable to admit in S2 only descriptions which
do not contain ‘�’.” Since in any proof of [theorem 5.1] we must be
able to prove that [‘phi’] is true if and only if the entity described in the
description is necessarily distinct from [c0], it seems inevitable that at
least one description in the proof contains the sign ‘≡’, i.e., an �. [6,
p.74]

Finally, one can understand why Føllesdal thought that Carnap imposed his first
restriction (no box operators in the descriptive conditions). Pace Føllesdal,
Mart́ı claims that Føllesdal’s second collapse argument fails, not because it
violates Carnap’s first restriction, but because it violates his second restriction
[13, p. 580-583]. The step from ∃x! (φ ∧�xm+1 = z) to �ιx (φ ∧�xm+1 = z) =
z is where the argument breaks down. This step is based on Carnap’s / Kremer’s
description principle as follows: if the first has been derived, then one can
also derive ∃x (! (φ ∧�xm+1 = z) ∧�xm+1 = z) From there one can derive the
Carnap/Kremer disjunctive expansion, and then one can use the description
principle to get �ιx (φ ∧�xm+1 = z) = z. But the description principle was
restricted so as to allow only primitive predicates or the identity predicate to
be used to predicate something of the descriptum, and a necessary identity is a
complex predicate. So Carnap’s second restriction is violated. The effect of this

11Another reason is that the self-predication principle is unrestricted and, hence, that there
is no need to start from a non-modal truth, so that there is no need to invoke the S4-axiom
to generalize the result.
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violation is that one can infer �∃x! (φ ∧ xm+1 = z) from ∃x! (φ ∧�xm+1 = z).
And that is surely an invalid inference.

Sofar I have only argued that Føllesdal’s second collapse argument violates
Carnap’s second restriction and that the violation yields an invalid inference.
But the argument also vioaltes Carnap’s first restriction, since the descriptive
condition contains a box operator. Mart́ı shows that the latter is really inessen-
tial. She does so by showing that one can construct a variation on Føllesdal’s
collapse argument that respects Carnap’s first restriction but still violates his
second restriction [13, app. II]. The idea is to prove �ιxm+1 (xm+1 = z ∧ φ) = z
from

∃xm+1 (! (xm+1 = z ∧ φ) ∧�xm+1 = z) ,

with φ being non-modal. I will not provide the details, because it is easy enough
to reconstruct her argument on the basis of my presentation of Føllesdal’s col-
lapse argument. The only difference consists in the fact that one will need not
the unrestricted self-predication principle as such, but a principle that is very
close to one (and also follows from the unrestricted Kι principle).

In my presentation of Føllesdal’s second collapse argument I used an applica-
tion of S-UnrestrSelfPred. It was already shown that this principle is invalid.
NonModSelfPred is valid however. According to this presentation, what is
going wrong in the collapse argument is not that a complex predicate is being
used, but that the complex predicate contains a box operator. This point can
be strengthened by noting that, if ψ is non-modal, then one can validly infer
ψ (ιxφ (x)) from ∃x (!φ (x) ∧ ψ (x)). (This is so for basically the same reason
that the self-predication principle restricted to non-modal formulas is valid.)

One might wonder why Carnap imposed his second restriction. One could
ask why he did not use lambda terms λ and then lay down the following rule:

(λyψ (y)) (ιxφ (x))↔ ∃x (!φ (x) ∧ ψ (x)) ∨ (¬∃x!φ (x) ∧ ψ (c0))

However, Mart́ı notes that:

There is nothing wrong with the (apparently de re) sentence [λz�Qz]ιxPx;
it so happens though that in S2 that sentence is equivalent to the obvi-
ously de dicto �[λzQz]ιxPx: “For lambda-expressions we do not impose
the restriction stated for descriptions; they may also contain [‘�’]. Any
lambda operator can be eliminated in S2 by conversion ...” and Carnap
proceeds then to mention as the rule of lambda conversion for S2 the same
unrestricted rule that he had introduced for S1, the extensional predeces-
sor of S2. So, the apparently de re [λz�Qz]ιxPx is not ruled out of S2
by some unjustified restriction. It is a perfectly well formed sentence, but
it is not significantly different from its de dicto counterpart.

[13, p. 582]

The claim made in the first part of Mart́ı’s quote does not seem to be warranted,
because the lambda conversion rule of S1 (Carnap’s non-modal logic with iota
and lambda terms) is the following:
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If a sentence consists of an abstract expression followed by an individual
constant, it says that the individual has the property in question. There-
fore, [‘(λx) (. . . x . . . ) c’] means the same as [‘. . . c . . . ]’, that is, the sentence
formed from ‘. . . x . . . ’ by substituting [‘c’] for ‘x’. The rules of our system
will permit the transformation of [‘(λx) (. . . x . . . ) c’] into [‘. . . c . . . ’] and
vice versa; these transformations are called conversions. [3, p. 3]

It is clear that, on the basis of the λ-conversion rule given by Carnap, (λy�ψ (y)) c
and � (λyψ (y)) c are equivalent. But Carnap’s conversion rule is for combina-
tions of lambda terms with individual constants (and probably also for individ-
ual variables), but the rule does not say anything about combinations of lambda
terms with iota terms. If the conversion rule for (λyψ (y)) t were analogous to
the conversion rule for (λyψ (y)) c, then Mart́ı would be right. Perhaps she still
is right, but not for the reason cited. Moreover, if one had the conversion rule for
combinations of lambda and iota terms, then one can understand the rationale
behind Carnap’s second restriction. Mart́ı gives an interesting reason for the
claim that Carnap ought to have had the expanded conversion rule, namely his
anti-essentialism should prohibit him attributing de re properties to individuals.
This is an interesting point that is worth exploring further, but that will not be
done in this paper.

To conclude this section, I present a collapse argument that also involves the
unrestricted self-predication principle. First I need to prove a lemma. Then I
will prove the main theorem.

Lemma 6.2. For all φ ∈ L∗, if

φ? =df ((φ↔ �x = z1) ∧ (¬φ↔ �x = z2)) ∧ (��x = z1 ∨��x = z2) ,

then ♦z1 6= z2 `T+CI ∃x!φ?? (x)

Proof. I will first prove the existence claim and then the uniqueness claim.
Existence. Assume that ♦z1 6= z2. The following is a tautological conse-

quence of the assumption, the law of self-identity and the rule of necessitation:

((φ↔ �z1 = z1) ∧ (¬φ↔ �z1 = z2)) ∧ (��z1 = z1 ∨��z1 = z2) (2)

∨ ((φ↔ �z2 = z1) ∧ (¬φ↔ �z2 = z2)) ∧ (��z2 = z1 ∨��z2 = z2)

Existential generalisation on the first disjunct with x systematically replacing z1,
existential generalisation on the second disjunct with x systematically replacing
z2, and distributing the existential quantifiers over the whole disjunction results
in ∃xφ? (x).

Uniqueness. Suppose that ∀x (¬φ? (x) ∨ ∃y (φ? (y) ∧ y 6= x)). We had al-
ready established that ∃xφ? (x). Suppose that φ? (t) for some term t. By uni-
versal instantiation, one also has ¬φ? (t)∨∃y (φ? (y) ∧ y 6= t). The first disjunct
can be eliminated, since it conflicts with the assumption. Suppose then that
φ? (t′)∧ t 6= t′ for some term t′. Assume that φ. It is a tautological consequence
of the previous and the T-axiom that t = z1 ∧ t′ = z1 ∧ t 6= t′. The latter con-
tradicts the principle of the transitivity of identity. One can run an analogous
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argument starting from the assumption that ¬φ. Ergo, by constructive dilemma
and existential instantiation, contradiction.

Theorem 6.3. For all φ ∈ L∗,

�S-UnrestrSelfPred,�♦z1 6= z2 `T+CI φ→ �φ

Proof. By lemma 6.2, necessitation, the K-axiom and the assumption that
�♦z1 6= z2, it follows that �∃x!φ? (x), with φ? (x) being defined as in the
proof of lemma 6.2. By the necessitation of S-UnrestrSelfPred, the K-
axiom and the T-axiom, it follows that (�φ↔ ��ιxφ? (x) = z1) is true, that
(�¬φ↔ ��ιxφ? (x) = z2) is true, and that ��ιxφ? (x) = z1∨��ιxφ? (x) = z2
is true. It is a tautological consequence that �φ ∨ �¬φ. By the T-axiom, it
follows that φ→ �φ.

The above collapse result is interesting for two reasons.12 First, unlike the
other collapse and slingshot arguments discussed in this paper, it does not make
use of a description elimination principle, e.g. the left-to-right direction of
Cι, Kι, or Qι. This is another reason for focussing on self-predication prin-
ciples: they are a special kind of description introduction principles and, in
order to prove a collapse result, one does not need any description elimination
principle. Second, although the above collapse argument uses one stronger as-
sumptions (�S-UnrestrSelfPred) than Føllesdal’s second collapse argument
(S-UnrestrSelfPred), it also uses a weaker assumption (�♦z1 6= z2) than
Føllesdal’s collapse argument (�z 6= c0), and it uses no other assumptions than
Føllesdal’s.

Føllesdal’s second collapse argument was a variation on his first collapse
argument, which used NI. Clearly, there is a variation on the above collapse
argument, which uses S-UnrestrSelfPred, that starts from the assumption of
NI and the necessity of NonModSelfPred. Of course, in that case one would
also need GUI, which one does not need in the above collapse argument. In fact,
one does not need any kind of universal instantiation principle for description
terms.

To conclude, Føllesdal has a second collapse argument that involves an in-
stantiation of an unrestricted self-predication principle, that is invalid. Mart́ı
claims rightly that his argument violates Carnap’s second restriction, but it
is still not entirely clear why Carnap did impose that restriction in the first
place. But is clear that, even when one drops Carnap’s restriction and adopts a
more relaxed restriction, that Føllesdal’s second collapse argument goes wrong.
Finally, I have shown there is a collapse argument that also involves an instan-
tiation of an unrestricted self-predication principle and that is weaker in some
respects than Føllesdal’s.

12A variation on this argument has also a philosophical application: see [9]. There the
background theory was some form of intensional mathematics, in which �s (0) 6= 0 is a theo-
rem. Also, another self-predication principle has been used. Instead of allowing unrestricted
self-predication on the condition of the satisfaction of the existence and uniqueness clause,
the other principle allows unrestricted self-predication on the condition of the necessary sat-
isfaction of the existence and uniqueness condition.
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7 Conclusion

In this paper I have discussed Carnapian modal logic with descriptions. Car-
nap imposed two restrictions on his description principle: first, the descriptive
conditions of the description terms should be non-modal; second, only primitive
predicates or the identity predicate can be used to predicate something of the
descriptum. Mart́ı argued that, if one formulates the existence and uniqueness
conditions as did Carnap, then for a broad class of modal descriptions the exis-
tence and uniqueness conditions are never satisfied. I argued that this problem
is limited to C and that it only partially justifies Carnap’s first restriction. She
then proposed a solution, which was shown to be inadequate. Kremer pro-
posed another solution, which does the job it was designed for. Carnap’s first
restriction becomes obsolete and the problem disappears.

Føllesdal had a different theory about the reason for Carnap’s first restric-
tion. He thought that, if one lifts the restriction, then one gets a collapse of nec-
essary truth into plain truth. He gave two collapse arguments. The first collapse
argument starts from the principle of the necessity of identity, which is invalid
in a Carnapian interpretation. It was argued that there is an argument to be
found in the literature on slingshot arguments that is very similar to Føllesdal’s
first collapse argument. To remedy his first collapse argument, Føllesdal gave
a second collapse argument. Mart́ı claimed, rightly, that Føllesdal’s second col-
lapse argument violated Carnap’s second restriction, and essentially only that
restriction. She also gave a reason Carnap might have had for imposing this
restriction, namely his lambda-conversion rules, but it was pointed out that the
text does not support that claim. She also presented a second rationale, but
that one has not been critically discussed.

Throughout the paper I have made use of self-predication principles. They
were used to argue that Carnapian theories of description deal inadequately with
improper descriptions. They were also used to make the structure of Føllesdal’s
arguments more transparant and to pinpoint where exactly his second collapse
argument goes wrong. Finally, I have given a collapse argument that starts from
assumptions that are in some respects weaker than Føllesdal’s.
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