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Abstract

Famously, the Church-Fitch paradox of knowability is a deductive ar-
gument from the thesis that all truths are knowable to the conclusion that
all truths are known. In this argument, knowability is analyzed in terms
of having the possibility to know. Several philosophers have objected to
this analysis, because it turns knowability into a nonfactive notion. In ad-
dition, they claim that, if the knowability thesis is reformulated with the
help of factive concepts of knowability, then omniscience can be avoided.
In this article we will look closer at two proposals along these lines (Edging-
ton 1985; Fuhrmann 2014a), because there are formal models available for
each. It will be argued that, even though the problem of omniscience can
be averted, the problem of possible or potential omniscience cannot: there
is an accessible state at which all (actual) truths are known. Furthermore,
it will be argued that possible or potential omniscience is a price that is too
high to pay. Others who have proposed to solve the paradox with the help of
a factive concept of knowability should take note (Fara 2010; Spencer 2017).

Keywords Factive knowability; Actuality Potential knowledge; Knowa-
bility thesis; Church-Fitch paradox of knowability Possible omniscience Po-
tential omniscience

1 Introduction: factive knowability and the paradox of
knowability

How to conceptualise knowability? In the philosophical literature the most com-
mon conceptualisation of knowability is in terms of having the possibility to
know, i.e. there being an accessible possible world in which one knows. This
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concept does not entail truth or truth at the actual world: there are (actual) false-
hoods that nevertheless are known in an accessible possible world. For instance,
it does not (actually) rain but it could have been and, if someone had looked out of
the window, that person would have known that it rained. However, our primary
interest is in what (actual) truths are knowable. In other words, we need a factive
concept of knowability:

Everything that is knowable is true.

There are alternative conceptualisations of knowability that do entail truth or
truth at the actual world: having the possibility to know that something is actu-
ally true (Edgington, 1985); actually having the capacity to know that something
is actually true (Fara, 2010); having the potential to know (Fuhrmann, 2014a,b);
having the ability to know (Spencer, 2017). Note that, if knowability entails (ac-
tual) truth, then we cannot have the following:

If something is possibly known, then it is knowable

For otherwise we would also have the following:

If something is possibly known, then it is (actually) true.

The latter is not in general case, as we have seen.
One of the most important issues in theory of knowledge pertains to the limits

of knowledge: what is knowable? The knowability thesis is the following:

Every truth is knowable

The knowability thesis is a “is a weak consequence of veri�cationism and a weak
thesis of idealism” (Hart, 1979, p. 156) – see also (Hart and McGinn, 1976). The
kind of veri�cationism that we are talking about here is the one of “[p]hilosophers
like Bolzano or logical empiricists [who] took veri�cationism seriously but [. . . ]
still kept the law of excluded middle” (Rabinowicz and Segerberg, 1994, Section 1).
We are not talking here about intuitionistic veri�cationism – see (Dummett, 1977).
The Church-Fitch paradox of knowability (Fitch, 1963) starts from the knowability
thesis with knowability conceptualised as having the possibility to know:

Every truth is possibly known.

The conclusion of the paradox is the following:

Every truth is known.

This is an expression of omniscience. The deductive argument that leads from
the knowability thesis to the conclusion of omniscience builds on the following
independent result:

It is not possible to know an unknown truth.
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The deductive argument relies on classical logic. For a discussion of the Church-
Fitch paradox against the background of intuitionistic logic, see (Williamson, 1982,
1988, 1992, 1994) and (Percival, 1990). Because of the transition from a thesis that
is plausible to some to a conclusion that is implausible to all, the argument is seen
by some as paradoxical. Originally, the premise that all truths are knowable was
formulated with the help of the concept of having the possibility to know.

A prominent solution strategy consists in reformulating the knowability the-
sis with the help of factive concepts of knowability (Edgington, 1985; Fara, 2010;
Fuhrmann, 2014a; Spencer, 2017). A crucial success condition is that these fac-
tive concepts of knowability cannot entail the concept of having the possibility to
know. Otherwise one can argue that, even for this factive concept of knowability,
it holds that:

It is unknowable that a particular truth is unknown.

Furthermore, one can block the speci�c argument if the above is underivable.
Even if the speci�c Church-Fitch argument can be blocked, this does not pre-

clude that there could be other arguments from the knowability thesis to the om-
niscience scheme. What we would need to show then is that there is no valid
argument from the knowability thesis to omniscience. In other words, there is
no truth-preservation from the knowability thesis to the omniscience scheme, i.e.
that there are models in which a particular instance of the knowability thesis is
true but the relevant instance of the omniscience is false. In fact, one would need
to show something stronger. The knowability thesis functions not just as (hypo-
thetical) truth, but as an axiom – see (Fischer, 2013). Axioms are supposed to be
valid relative to a certain class of models, i.e. truth in all the models belonging
to that class. What we would need to show then is that the following admissi-
bility statement is false (Ma�ezioli et al, 2013, p. 2697): if the knowability thesis
is valid, then so is omniscience.1 In other words, there is no validity-preservation
from the knowability thesis to the omniscience scheme, i.e. that there is a class
of models in each of which the knowability thesis is true (valid with respect to
that class of models) but in at least one of which an instance of the omniscience
scheme is false (not valid with respect to that class of models). Clearly, a failure
of validity-preservation entails a failure of truth-preservation, but not vice versa.

Rabinowicz and Segerberg (1994) provide models for Edgington’s concept of
knowability and Fuhrmann (2014a) does the same for his own concept. Therefore,
we check the admissibility statements for those concepts.2 For that reason we
will focus on those two factive concepts of knowability: Section 2 is dedicated to
Edgington’s concept and Section 3 is dedicated to Fuhrmann’s concept.

Before we can discuss the above mentioned concepts of factive knowability, it
is important to introduce the concept of a relational frame and the related concept

1Ma�ezioli et al (2013) show the inadmissibility of omniscience in an intuitionistic knowability
logic.

2If we had analytic proof systems for factive notions of knowability, then we could also use
those. Ma�ezioli et al (2013) do this for intuitionistic knowability logic.
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of frame validity. The concept of a relational frame goes back to Kripke (1963) and
is the subject of many textbook expositions, e.g. (Hughes and Cresswell, 1996). A
relational frame is a tuple 〈W ,R〉, withW a non-empty set of worlds and R a two-
place relation onW . ModelsM based on relational frames are tuples containing
a relational frame and a function from sentence letters and worlds belonging to
W to truth-values. Truth at a world in a model (M,w |= ϕ) is de�ned inductively
as follows: if ϕ = p, thenM,w |= ϕ if and only if V (p,w) = 1; if ϕ = �ψ , then
M,w |= ϕ if and only if M,w ′ |= ψ for all w ′ ∈ W such that wRw ′; all other
clauses are as expected. A formula is valid on a frame if and only if it true at all
worlds in all the models based on the frame.

As will become clear, models for factive concepts of knowability are based on
kinds of frames that are di�erent from but related to relational frames. In par-
ticular, we will be looking into bi-relational frames and two-dimensional frames
(Section 2) and hyperrelational frames (Section 3). The bi-relational frames and
two-dimensional frames will be used to formalize Edgington’s concept of knowa-
bility, while the hyperrelational frames have been used by Fuhrmann to formal-
ize his concept of knowability. We will later see that the bi-relational frames and
two-dimensional frames are connected (Subsection 2.1) and the same for the bi-
relational frames and hyperrelational frames (Subsection 3.3).

The main conclusion of the paper will be the following. First, by reformu-
lating the knowability thesis with the help of either Edgington’s or Fuhrmann’s
notion of knowability, one can avoid omniscience even if one assumes the valid-
ity of the reformulated knowability theses. Second, if one assumes the validity of
the reformulated knowability theses, one also has the accept what will be called
‘possible or potential omniscience’.

2 Edgington’s knowability thesis and the problem of
possible omniscience

Edgington (1985)’s key idea was to reformulate the knowability thesis as follows:

Every actual truth is possibly known to be actually true.

She proceeded with arguing that a Church-Fitch argument against the reformu-
lated knowability thesis is blocked. A major issue with her proposal is that it is
not clear how one can acquire non-trivial knowledge about the actual world in
a non-actual world (Williamson, 1987, 2000; Edgington, 2010). But here we will
assume for the sake of the argument that it is possible to do so, since in this arti-
cle we are more interested in problems common to di�erent kinds of models for
di�erent concepts of factive knowability, so we ignore problems that are speci�c
to models for Edgington’s conception of factive knowability. In Subsection 2.1 we
will look at models that have been developed to formally study Edgington’s idea.
In Subsection 2.2 we will look at the application of those models to (the relevant
variation on) the Church-Fitch paradox of knowability. Finally, in Subsection 2.3
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we will introduce a new problem, viz. the problem of possible omniscience. As
will be argued in Subsection 3.4, a very similar problem applies to a di�erent kind
of models for factive knowability.

2.1 The models

Let us use ^ for the possibility operator, K for the knowledge operator and A
for actuality operator. Then one can express Edgington’s knowability thesis as
follows:

Aϕ → ^KAϕ . (1)

The standard models for a formal language in which one can express Edgington’s
thesis are based on bi-relational frames.3

De�nition 1 (Bi-relational frames). A bi-relational frame is a tuple 〈W ,RM ,RE〉,
with

1. W a non-empty set of worlds;

2. RM a two-place relation onW ;

3. RE a two-place re�exive relation onW .

It is straightforward to de�ne the truth at world in the model of formulas of
the form �ϕ and Kϕ. The canonical semantical theory of actuality goes back to
(Kaplan, 1977, p. 545). Against the background of (bi-)relational frames, one can
formulate the key idea as follows: given a ‘reference world’ w0, Aϕ is true at a
world w if and only if ϕ is true at w0. The following de�nitions spell this out.

De�nition 2 (Simple Kaplan models). A simple Kaplan modelM based on a bi-
relational frame is a tuple 〈F ,V ,w0〉, with F a multi-modal frame, V a function
from proposition letters and elements of W to truth-values, and w0 an element
fromW .

De�nition 3 (Truth at a world in simple Kaplan models). The relation

M,w |= ϕ

(withM a simple Kaplan model based on a bi-relational frame andϕ a well-formed
formula) is de�ned inductively as follows:

1. if ϕ = p, thenM,w |= ϕ i� V (p,w) = 1;

2. if ϕ = �ψ , thenM,w |= ϕ i�M,w ′ |= ψ for all w ′ ∈W such that wRMw ′;

3. if ϕ = Kψ , thenM,w |= ϕ i�M,w ′ |= ψ for all w ′ ∈W such that wREw ′;
3See (Hughes and Cresswell, 1996, pp. 217–220) for more information on ‘multi-modal’ (incl.

‘bi-modal’) logics.
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4. if ϕ = Aψ , thenM,w |= ϕ i�M,w0 |= ψ ;

5. all other clauses are as expected.

There are two ways one could de�ne truth in a simple Kaplan model.

De�nition 4 (General truth in a simple Kaplan model). For every formula ϕ, ϕ
is generally true in a simple Kaplan model (M |= ϕ) i�, for every world w ∈ W ,
M,w |= ϕ.

De�nition 5 (Weak truth in a simple Kaplan model). For every formula ϕ, ϕ is
weakly true in a simple Kaplan model (M |=weak ϕ) i�M,w0 |= ϕ.

A formula is valid (|= ϕ) if and only if it is true in all models. Given the two
di�erent ways of de�ning truth in a model, there are two �avours of validity:
general and weak validity. All generally valid formulas are also weakly valid.

Rabinowicz and Segerberg (1994) quickly noted that the straightforward com-
bination will not do, because one can obtain the (relevant variation on the) con-
clusion of the Church-Fitch paradox. In particular, they showed that the following
is a theorem:

Aϕ → KAϕ . (2)

Indeed, ifM,w |= Aϕ, thenM,w0 |= ϕ and, hence,M,w ′ |= Aϕ for all w ′ ∈W ,
including all w ′ ∈ W such that wREw ′. Therefore, Aϕ → KAϕ is generally true
in the arbitrarily chosen modelM.

The problem is due to the fact that the reference world (w0), i.e. the world
at which sentences within the scope of the actuality operator are evaluated, re-
mains �xed. Rabinowicz and Segerberg (1994)’s solution to this problem was to
reconceptualise the epistemic accessibility relation as a relation between states,
i.e. pairs of worlds 〈w,w ′〉 that contain both evaluation worlds (w) and reference
worlds (w ′), which allows the reference worlds to shift. The following de�nitions
spell this out:4

De�nition 6 (Two-dimensional frames). A two-dimensional frame is a tuple

〈W ,RE,RM 〉,

with
4These de�nitions are epistemic variations on the de�nitions for belief and actuality models in

(Heylen, 2016, pp. 1654–1655), which are essentially the models in (Rabinowicz and Segerberg,
1994) with one exception. In (Rabinowicz and Segerberg, 1994, Section 3) each model contains a
set Π of propositions (i.e. subsets of W ×W ), which (i) contains the truth sets that correspond
to atomic formulas and (ii) is closed under complement, �nite intersection and operations that
correspond to the knowledge operator, the necessity operator and the actuality operator. Each
formula corresponds in their models to a proposition, but in principle there can be propositions
that do not correspond to a formula. Adding a set of propositions is for the purposes of this article
a needless complication, since we will be using schemes in the object language and quantify over
formulas in the meta-language rather than quantify over propositions in the object language.
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1. W a non-empty set of worlds;

2. RE a two-place re�exive relation on W ×W such that, if 〈w,w ′〉RE 〈v,v ′〉
and w = w ′, then v = v ′;

3. RM a two-place relation onW .

De�nition 7. A (Rabinowicz and Segerberg, 1994)-model based on a two-dimen-
sional frame is a tuple 〈F ,V 〉, with F a two-dimensional frame and with V a
function from proposition letters and worlds to truth-values.

De�nition 8. The relationM, 〈w,w ′〉 |= ϕ (withM a (Rabinowicz and Segerberg,
1994)-model based on a two-dimensional frame and ϕ a formula) is de�ned induc-
tively as follows:

1. if ϕ = p, thenM, 〈w,w ′〉 |= ϕ i� V (p,w) = 1;

2. if ϕ = Kψ , thenM, 〈w,w ′〉 |= ϕ i�M, 〈v,v ′〉 |= ψ for every v,v ′ such that

〈w,w ′〉RE 〈v,v
′〉;

3. if ϕ = �ψ , thenM, 〈w,w ′〉 |= ϕ i�M, 〈v,w ′〉 |= ψ for all v ∈W such that
wRMv ;

4. if ϕ = Aψ , thenM, 〈w,w ′〉 |= ϕ i�M, 〈w ′,w ′〉 |= ψ ;

5. all other clauses are as expected.

A quick glance at De�nition 8 reveals that the �rst world in a world pair is
the evaluation world, while the second world in the world pair is the reference
world.

States of the form 〈w,w〉, i.e. states where the evaluation world is the same
as the reference world are self-centered states. One can evaluate formulas at all
states or only at self-centered states. Correspondingly, there are two ways one
can de�ne validity and satis�ability.

De�nition 9 (General validity and satis�ability). For every formula ϕ, ϕ is gen-
erally valid (|= ϕ) i� for every modelM and for all w,w ′ ∈ W ,M, 〈w,w ′〉 |= ϕ,
and ϕ is generally satis�able i� 6 |= ¬ϕ.

De�nition 10 (Weak validity and satis�ability). For every formula ϕ, ϕ is weakly
valid (|=weak ϕ) i� |= Aϕ, and ϕ is weakly satis�able i� 6 |=weak ¬ϕ.

In order to ensure that the results to be proved are the strongest it is best to use
general validity for theorems about what is valid and weak validity for theorems
about what is invalid, because general validity entails weak validity and weak
invalidity entails general invalidity.

It is easy to show that (2) is not weakly valid according to De�nitions 7-8 and
De�nition 10. Here is a model:
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• W = {w1,w2};

• 〈w1,w1〉RE 〈w2,w2〉, and for all v,v ′ ∈W , 〈v,v ′〉RE 〈v,v ′〉;

• RM =W ×W ;

• V (p,w1) = 1, V (p,w2) = 0.

ThenM, 〈w1,w1〉 |= p and, hence,M, 〈w1,w1〉 |= Ap. ButM, 〈w2,w2〉 6|= p, be-
cause V (p,w2) = 0. Therefore,M, 〈w2,w2〉 6|= Ap. Consequently,M, 〈w1,w1〉 6|=

KAp, since 〈w1,w1〉RE 〈w2,w2〉.
The relation between simple Kaplan models based on relational models on the

one hand and (Rabinowicz and Segerberg, 1994)-models based on two-dimensional
frames on the other hand is straightforward: for every formula ϕ that does not
contain the actuality operator (but may contain the knowledge or necessity op-
erator), if there is a simple Kaplan modelM and a world w such thatM,w |= ϕ,
then there is a (Rabinowicz and Segerberg, 1994)-modelM ′ and a pair of worlds
〈v,v ′〉 such thatM ′, 〈v,v ′〉 |= ϕ, and vice versa.5

2.2 The application to the Church-Fitch paradox of knowability

It is a good thing that (2) is not a theorem, given De�nitions 7-8. However, what
still needs to be checked is whether scheme (2) can be inferred from scheme (1). To
do this, it is convenient to know under which conditions (1) is true. The following
lemma gives us that information.6

Lemma 1. Edgington’s knowability thesis

Aϕ → ^KAϕ

corresponds to the following condition on two-dimensional frames:

∀w,w ′∃v (wRMv ∧ ∀u,u
′ (〈v,w ′〉RE 〈u,u

′〉 → u ′ = w ′)) .

Proof. Left-to-right: Suppose thatAϕ → ^KAϕ is valid on a class of two-dimensional
frames. Assume for a reductio ad absurdum that

∃w,w ′∀v (wRMv → ∃u,u
′ (〈v,w ′〉RE 〈u,u

′〉 ∧ u ′ , w ′)) .

5See (Heylen, 2016, p. 1655, Theorem 3.7).
6In (Rabinowicz and Segerberg, 1994, Section 3) the following condition for the weak validity

of ϕ → ^KAϕ is put forward: for every w ∈W and every proposition π ∈ Π (see 4), if 〈w,w〉 ∈ π ,
then there exists some v ∈ W , such that wRMv and, for every w ′,v ′ ∈ W , if 〈v,w〉E〈v ′,w ′〉,
then 〈w ′,w ′〉 ∈ π . This condition is more general than is needed for the (weak) validity of the
scheme ϕ → ^KAϕ, since there can be propositions that are not expressed by formulas, although
every formula expresses a proposition (see footnote 4). It is easy to transform the model used in
the left-to-right direction of the proof of Lemma 1 into a full-�edged (Rabinowicz and Segerberg,
1994)-model. The proposition π is the singleton {〈w ′,w ′〉} and it has to be included in the set of
propositions Π, because the latter by stipulation includes the truth set of atomic formula p.
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Now consider a modelM based on the above condition and such thatV (p,w ′, ) =
1 and V (p,u ′, ) = 0 for all u ′ , w ′. It is easily veri�ed thatM, 〈w,w ′〉 |= Ap. Yet,
M, 〈w,w ′〉 6|= ^KAp, since for every modally accessible world v there is an epis-
temically accessible state 〈u,u ′〉 such thatV (p,u ′) = 0 and, hence,M, 〈u ′,u ′〉 6|= p
and, consequently,M, 〈u,u ′〉 6|= Ap, which in turn implies thatM, 〈v,w ′〉 6|= KAp.
This contradicts the assumption.

Right-to-left: Suppose that the following condition applies to a class of two-
dimensional frames:

∀w,w ′∃v (wRMv ∧ ∀u,u
′ (〈v,w ′〉RE 〈u,u

′〉 → u ′ = w ′)) .

Consider any modelM and any worlds w , w ′ such thatM, 〈w,w ′〉 |= Aϕ and,
hence,M, 〈w ′,w ′〉 |= ϕ. The condition implies that there is a v ∈ W such that
wRMv . For any state 〈u,u ′〉 that is epistemically accessible from 〈v,w ′〉, it is the
case that u ′ = w ′. But thenM, 〈u ′,u ′〉 |= ϕ, which implies thatM, 〈u,u ′〉 |= Aϕ.
Therefore,M, 〈v,w ′〉 |= KAϕ, which entails thatM, 〈w,w ′〉 |= ^KAϕ. �

Returning to the model given above (see p. 7), it is easy to see that it is a
model based on the frame condition that corresponds to (1). Consider the four
states 〈w1,w1〉, 〈w1,w2〉, 〈w2,w1〉 and 〈w2,w2〉. The last three cases are straight-
forward: each world is modally accessible from itself and the only states that are
epistemically accessible from 〈w1,w2〉, 〈w2,w1〉 and 〈w2,w2〉 are 〈w1,w2〉, 〈w2,w1〉

and 〈w2,w2〉 respectively, and the reference world remains the same in each case.
For the �rst state it is important that w2 is modally accessible from w1 and the
only state that is epistemically accessible from 〈w2,w1〉 is 〈w2,w1〉, so the refer-
ence world remains the same. Then Lemma 1 tells us that the model makes all
instances of (1) true. Yet, as we have seen, (2) is false in the model. So, the (relevant
variation on) the conclusion of the Church-Fitch paradox is not admissible.

2.3 The problem of possible omniscience

To appraise the philosophical signi�cance of what is to come, it is important to
pay attention to two things. First, there is the di�erence between scheme (2) on
the one hand and the following scheme on the other hand:

^ (Aϕ → KAϕ) . (3)

The �rst expresses that something is true, whereas the second expresses that it is
possibly true. Assuming the validity of (1), one cannot derive the validity of (2),
as we have seen in Subsection 2.2. In contrast, assuming (1), one can derive (3).
First, given De�nition 8, �Aϕ → Aϕ is valid, whence it follows from (1) that

�Aϕ → ^KAϕ . (4)

Second, �ψ → ^θ entails ^ (ψ → θ ) in any normal modal logic (i.e., extension
of system K) – see (Hughes and Cresswell, 1996, p. 35). Therefore, it follows from
(4) that (3).

Second, there is the di�erence between the following two claims:
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1. for all formulas ϕ, there is a state in which Aϕ → KAϕ is true;

2. there is a state in which, for all formulas ϕ, Aϕ → KAϕ is true.

The di�erence between the two claims is in the order of the quanti�ers. The �rst
claim is nothing but scheme (3). I will now show that the second claim is also
derivable.

Theorem 1. If Aϕ → ^KAϕ is valid on a two-dimensional frame, then for every
modelM based on the frame, for all worldsw ,w ′, there is a worldv such thatwRMv
and, for every formula ϕ,M, 〈v,w ′〉 |= Aϕ → KAϕ.

Proof. Suppose that Aϕ → ^KAϕ is valid on a two-dimensional frame. Then by
Lemma 1:

∀w,w ′∃v (wRMv ∧ ∀u,u
′ (〈v,w ′〉RE 〈u,u

′〉 → u ′ = w ′)) .

Consider v and any formula ϕ such thatM, 〈v,w ′〉 |= Aϕ. Then it follows that

M, 〈w ′,w ′〉 |= ϕ .

Since w ′ = u ′ for any u,u ′ ∈W such that 〈v,w ′〉RE 〈u,u ′〉, it follows that

M, 〈u ′,u ′〉 |= ϕ .

Therefore,M, 〈u,u ′〉 |= Aϕ for any u,u ′ ∈ W such that 〈v,w ′〉RE 〈u,u ′〉. Conse-
quently,M, 〈v,w ′〉 |= KAϕ. �

To sum up, whereas omniscience of actual truths can be avoided, possible om-
niscience of actual truths cannot.

The philosophical signi�cance of this may become clear with the help of ex-
amples. The �rst example will make use of an open question that has not been
de�nitely answered by science yet. The second example will make use of a com-
mon presupposition of our best scienti�c theories. The third example will make
use of theorems. Throughout the examples we will only be concerned with �-
nite knowers such as humans. In particular, I will assume that knowers that can
have only �nitely many observations (at any given point in time). After all, the
paradox of knowability is supposed to target veri�cationism, and ver�cationists
such as Carnap (1931) were only considering veri�cation by �nitely many obser-
vation statements (or �nite conjunctions thereof). In addition, we will assume
that knowers can only have �nitely many proofs or can only carry out �nitely
many steps of a decision procedure (at any given point in time).7

For a �rst example, let pn stand for: there is liquid water on planet n. Now
consider the following two claims:

7 It might be objected that in these models one has logical omniscience and, since there are
in�nitely many logical truths, an in�nite numbers of truths is known. In response one could, for
instance, change De�nition 1 by adding a set W ∗ of sets of formulas of the language (‘impossible
worlds’), with RM a two-place relation on W and with RE a two-place re�exive relation on W ∪
W ∗ ×W ∪W ∗ such that, if 〈w,w ′〉RE 〈v,v ′〉 andw = w ′, then v = v ′. The relation of truth relative
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1′. for all pn , there is a state in which Apn → KApn is true;

2′. there is a state in which, for all pn , Apn → KApn is true.

The possibility of acquiring knowledge about actual truths about a particular
planet may involve serious technological and scienti�c advances and it may also
involve a lot of resources. For instance, the particular planet may be very far away
and the liquid water on the planet may be under the surface. But let us assume
that it is indeed possible to acquire knowledge about the actual presence of liq-
uid water on a particular planet. The possibility of omniscience with regard to
all the actual truths about liquid water on all of the planets is incredibly much
more demanding. The larger the number of planets is, the more demanding it
is. According to some estimates there are billions or even trillions of planets in
our galaxy alone, and there is evidence for the existence of hundreds of galax-
ies in the part of the universe that is visible from Earth. It is currently an open
question whether the universe is in�nitely large or not. If there happen to be in-
�nitely many planets, then it is metaphysically impossible for �nite knowers or
�nite groups of �nite knowers to acquire all the actual truths about the presence
of liquid water on planets.

For a second example, assume that space is continuous, as is presupposed in
relativity theory, which is our best theory about space. Let the distance between
two points a and b be a non-computable non-negative irrational number r , with
r = z0.z1z2 . . . with z0 a non-negative integer and 0 ≤ zi ≤ 9 for 1 ≤ i . (Because
of cardinality considerations we know that most real numbers are irrational and
most real numbers are non-computable, so this is a typical situation.) Let pn stand
for: the distance between a and b is at least z0.z1 . . . zn . For each pn at least up
to some very large decimal expansion, it is conceivable that its actual truth can
be known. But there are in�nitely many pn that are actually true, so they cannot
collectively be known to be actually true, as long as we are talking about �nite
knowers. Moreover, r is by assumption not computable. Finally, it is not clear
how an inde�nite empirical investigation would proceed, if we restrict ourselves
to agents with �nite powers of perceptual discrimination (De Clercq and Horsten,
2004).

For a third and �nal example consider arithmetical statements. There are in-
�nitely many true arithmetical statements. For instance, let pn express that n is a
prime number. Euclid proved that there are in�nitely many prime numbers. For
each pn , we can come to know that pn is true, if pn is true. E.g., we can use the
sieve of Eratosthenes, an algorithm to �nd all prime numbers smaller than an ar-

to a model and a state with an evaluation world belonging to W remains the same. The relation
of truth relative to a model and a state with an evaluation world belonging to W ∗ is determined
by membership of the elements of W ∗. Logical truth is de�ned relative to states where both the
evaluation and the reference world are from W . It is easy to check that logical omniscience no
longer holds. Moreover, Lemma 1 still holds, although at one point in the proof of the left-to-right
direction a slight generalisation, viz. V (p,u ′) = 0 or p < u ′, is needed. I leave it to the reader to
check this.
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bitrarily chosen natural number. However, there are in�nitely many pn , so they
cannot collectively be known to be true, as long as we restrict ourselves to �nite
knowers. Moreover, there is not even a general decision procedure for arithmeti-
cal truth. Indeed, arithmetic is essentially undecidable (Boolos et al, 2003, p. 223).
Williamson (2016) argues that, for every arithmetical truth, there is a �nite mind
that can know it. He bases this on the claim that, for every arithmetical truth,
there can be a �nite mind that �nds it ‘primitively compelling’. One may share
Williamson’s optimism, but even Williamson (2016, p. 249) describes the scenario
in which some �nite mind knows every mathematical truth by having some ‘non-
recursive pattern recognition capacity’ as ‘wild speculation’.

The conclusion is that, even if omniscience of actual truths does not follow,
it may still be the case that one still ends up with possible omniscience of actual
truths, which is a price that is too high to pay, at least if one wants to have a
notion of knowability for �nite knowers. The latter condition is not only in spirit
with the veri�cationism of Carnap (1931), it is a condition that �ts knowers such
as humans. Of course, as Yap (2014) points out, models of epistemic logic may
contain all kinds of idealizing features. Possible omniscience may be one those,
just as logical omniscience is one such feature of standard Kripke models for epis-
temic logic (i.e. if ϕ is a logical truth, then it is known). If one is only interested
in one particular aspect, i.c. (non-)omniscience, then one may make simplifying
assumptions with respect to another aspect, e.g. whether the knowers are �nite or
not.8 Yap (2014, p. 3365) stresses that one can take a programmatic stance towards
unrealistic features of epistemic logic, viz. one can develop a research programme
in which one progressively drops those unrealistic features. For those who want
to take this stance, let this be an invitation to develop models for factive notions
of knowability that avoid the problem of possible omniscience.

3 Fuhrmann’s thesis and the problem of potential om-
niscience

Fuhrmann (2014a,b) introduces and develops the notion of potential knowledge.
According to Fuhrmann (2014a, p. 1630, 1635) there are at least four desiderata
with respect to the di�erent concepts of knowability:

D1 Knowability entails truth.

D2 Knowability does not follow from possible knowledge, and

D3 Knowability does not entail possible knowledge.
8One the one hand, for the purpose of checking that the validity of the knowability thesis does

not entail omniscience, it is actually an advantage that the models have logical omniscience built
into them, for it makes the inadmissibility claim stronger. On the other hand, the admissibility of
possible omniscience is stronger, if one does not assume logical omniscience. See footnote 7 for
more on this.
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D4 What is knowable about a world a must be determined in a itself.

The �rst three desiderata have already been discussed in Section 1. Desideratum
D4 is based on the worry about non-trivial knowledge about the actual world
in non-actual worlds. Fuhrmann claims that the concept of potential knowledge
meets the above desiderata. The intuitive idea is that, when confronted with ev-
idence that a subject is prepared to accept, the subject will update its knowledge
states in accordance with its epistemic preferences. Any epistemic state that can
be reached in a preferred response to evidence one is prepared to accept is a po-
tential knowledge state. With the help of this notion the knowability thesis can
be reformulated as follows:

Every truth is potentially known to be true.

The above version of the knowability thesis is not under threat by the (relevant
variation on) the Church-Fitch argument:

Take a Fitch-sentence, F = (P and X does not know that P ). It is
not possible that X knows that F (by the Fitch-argument). But F is
knowable toX : The course of evidence in the actual world may plau-
sibly run such that under improved evidential conditions X knows
that P while recognising, i.e. knowing, that under the less favourable
conditions X cannot count as knowing that P . Under the potential,
favourable conditions F would be known to X and thus under the
given, less favourable conditions F is knowable for X . (Fuhrmann,
2014a, p. 1638)

In Subsection 3.1 we will look at models for the concept of potential knowledge.
In Subsection 3.2 we will look at the application of those models to (the relevant
variation on) the Church-Fitch paradox of knowability. Next, in Subsection 3.3
we are going to have a closer look at the relation between bi-relational frames
and models on the one hand and hyperrelational frames and models on the other
hand. This will be connected to the knowability paradox. Finally, in Subsection
3.4 we will introduce a problem, viz. the problem of potential omniscience, which
is very similar to the problem introduced in Subsection 2.3.

3.1 The models

Let us use 〈K〉ϕ for the potential knowledge operator. With it one can express the
knowability thesis as follows:

ϕ → 〈K〉ϕ . (5)

Fuhrmann (2014b,a) has developed models for the formal language of (5). The
basis for those models are a new type of frames. The following de�nitions spell
this out:
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De�nition 11 (Hyperrelational frames). A hyperrelational frame F is a tuple

〈W , S, ≤〉,

withW a non-empty set, S a binary relation inW ×W and ≤ a binary relation in
W 2 ×W 2.

De�nition 12. A modelM based on a hyperrelational frame is a tuple 〈F ,V 〉,
with F a hyperrelational frame and V a function mapping atomic formulas at
worlds to truth-values.

De�nition 13. The relation M,w |= ϕ (with M a model based on a hyperre-
lational frame, w ∈ W and ϕ a well-formed formula) is de�ned inductively as
follows:

1. M,w |= Kψ i� ∀v ∈W , if wSv , thenM,v |= ψ ;

2. M,w |= 〈K〉ψ i� ∃S ′ : S ≤ S ′ and ∀v ∈W , if wS ′v , thenM,v |= ψ ;

3. the clauses for atomic formulas, negated formulas and conjoined formulas
are as usual.

It is convenient to use the following notation in what follows: for any S ′ such
that S ≤ S ′, let S ′w be {v | wS ′v}.

The logic that corresponds to the class of models based on hyperrelational
frames is not very interesting. It consists of the following principles:

RN If ` ϕ, then ` Kϕ.

K K (ϕ → ψ ) → (Kϕ → Kψ ).

RMp If ` ϕ → ψ , then ` 〈K〉ϕ → 〈K〉ψ .

The �rst two principles tell us that the K-operator behaves as a normal modal
operator, which is not a surprise since the truth of Kϕ depends on a Kripke-style
accessibility relation on possible worlds. The third principle is a rule of mono-
tonicity, which does not entail the closure of potential knowledge under theo-
remhood and material implication. The 〈K〉-operator does not behave as normal
modal operator.

The ensuing logic is inadequate in that it does not represent K as a knowl-
edge operator, because K is not factive. Morevoer, it does not represent 〈K〉 as a
knowability operator, since Kϕ does not entail 〈K〉ϕ. Finally, it does not represent
〈K〉 as a factive knowability operator, since Kϕ does not entail ϕ. Fuhrmann �xes
this by adding the following frame conditions:

S-re�exivity ∀w (wSw).

Preservation ∀X∀w
(
Sw ⊆ X → ∃S ′

(
S ≤ S ′ ∧ S ′w ⊆ X

) )
.9

9In (Fuhrmann, 2014a, p. 1644) the w-index is missing, but X is supposed to be a subset of W ,
whereas S ′ is a subset inW ×W .
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p-re�exivity ∀S ′∀w (S ≤ S ′→ wS ′w).

The above conditions correspond to:

T Kϕ → ϕ.

C Kϕ → 〈K〉ϕ.

Tp 〈K〉ϕ → ϕ.

Fuhrmann (2014a, pp. 1643–1644) thinks it important to turn the potential knowl-
edge operator into a normal modal operator, so that it is closed under theorem-
hood and material implication. To that end he adds the following frame condi-
tions:

Continuation ∃S ′ (S ≤ S ′).

Combination

∀S ′∀S ′′∀X∀Y
( (
S ≤ S ′ ∧ S ′w ⊆ X ∧ S ≤ S ′′ ∧ S ′′w ⊆ Y

)
→ ∃R (S ≤ R ∧ Rw ⊆ X ∩ Y )).

The above conditions correspond to:

RNp If ` ϕ, then ` 〈K〉ϕ.

Mp (〈K〉ϕ ∧ 〈K〉ψ ) → 〈K〉 (ϕ ∧ψ ).

Whether it is a good idea to add the frame conditions guaranteeing ‘normal’ clo-
sure properties will be discussed in Subsection 3.3.

Finally, Fuhrmann (2014a, p. 1643) also adds the following frame condition:

S-transitivity ∀w∀w ′∀w ′′ ((wSw ′ ∧w ′Sw ′′) → wSw ′′).

The above condition corresponds to:

4 Kϕ → KKϕ.

This may give some pause, because principle 4 has been the subject of much dis-
cussion in epistemology – see e.g. (Williamson, 2000). However, it makes perfect
sense to add principle 4 in the dialectical context of an investigation into whether
the knowability thesis (5) entails omniscience, since principle 4 is a direct con-
sequence of omniscience. If the knowability thesis does not entail omniscience,
even if omniscience with respect to knowledge itself is assumed, then that is a
stronger result than if the knowability thesis does not entail omniscience, with no
assumption of omniscience with respect to knowledge. Fuhrmann (2014a, p. 1645)
refrains from adding a frame condition that corresponds to 〈K〉ϕ → 〈K〉〈K〉ϕ.
This makes again sense in the dialectical context of an investigation into the con-
sequences of the knowability thesis (5), because it is a consequence of the knowa-
bility thesis (5), so there is no need to add it.
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Hyperrelational frames that satisfy S-re�exivity, S-transitivity, Preservation,
p-re�exivity, Continuation and Combination are called potential knowledge struc-
tures (or, alternatively, potential knowledge frames). In the next subsection we
will look at the application of potential knowledge models to the knowability
thesis (5).

3.2 The application to the Church-Fitch paradox of knowability

The starting point is the knowability thesis (5) and the background consists of
potential knowledge models. We will consider two issues. First, can the (relevant
variation on the standard) Church-Fitch argument be blocked? Second, is the
conclusion, i.e.

ϕ → Kϕ, (6)

inadmissible given the assumption that (5) is valid on certain hyperrelational
frames?

The �rst question can be answered a�rmatively. In a Church-Fitch-style ar-
gument one considers the following instantiation of (5):

(ϕ ∧ ¬Kϕ) → 〈K〉 (ϕ ∧ ¬Kϕ) . (7)

But 〈K〉 (ϕ ∧ ¬Kϕ) is satis�able. Consider a model with two worlds, w1 and w2,
such that p is true at w1 but false at w2. Let the extension of the epistemic acces-
sibility relation S be the following:

{〈w1,w1〉, 〈w2,w2〉, 〈w1,w2〉}.

Furthermore, let there be one and only one alternative epistemic accessibility re-
lation S ′ with S ≤ S ′, namely the relation with the following extension:

{〈w1,w1〉, 〈w2,w2〉}.

Then at w1 〈K〉 (p ∧ ¬Kp) is satis�ed, since p is true at w1, while p is false at the
epistemically accessible w2. We still need to check whether the model is a poten-
tial knowledge model, i.e. whether it is based on a frame that satis�es S-re�exivity
and -transitivity, Preservation, p-re�exivity, Continuation and Combination. This
can easily be done by the reader, but let us brie�y discuss Preservation and Com-
bination. Preservation is satis�ed, because Sw2 = S ′w2 and S ′w1 ⊂ Sw1 , so S ′w ⊆ Sw
and, hence, for every w , if Sw ⊆ X , then S ′w ⊆ X . Combination is satis�ed, be-
cause there is only one S ′ such that S ≤ S ′. Consequently, Combination reduces
to:

∀S ′∀X∀Y
( (
S ≤ S ′ ∧ S ′w ⊆ X ∧ S ′w ⊆ Y

)
→ ∃R (S ≤ R ∧ Rw ⊆ X ∩ Y )

)
,

which is trivial.
The second question can also be answered a�rmatively. For this it is pro�table

to consider the frame conditions for knowability and omniscience.
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Theorem 2. Fuhrmann’s knowability thesis, i.e.

ϕ → 〈K〉ϕ,

corresponds to the following condition on hyperrelational frames:

∀X∀w
(
w ∈ X → ∃S ′

(
S ≤ S ′ ∧ S ′w ⊆ X

) )
. (8)

Proof. This has been claimed by Fuhrmann (2014a, p. 1646, fn. 17). �

One can verify that the model described above is based on a frame that satis�es
the condition of Theorem 2. Indeed, S ′w = {w}, for all w ∈ W . So, whenever
w ∈ X , {w} ⊆ X or, equivalently, S ′w ⊆ X . Yet, p → Kp is false atw1, sincew1Sw2
and V (p,w2) = 0. So, we have proved inadmissibility.

3.3 Hyperrelational frames, bi-relational frames, and the knowa-
bility paradox

The main formal innovation in (Fuhrmann, 2014a) consists in the introduction of
hyperrelational frames, which di�er from relational or bi-relational frames. As we
have seen in Subsection 3.1, Fuhrmann focused on those hyperrelational frames
that satisfy Continuation and Combination. Those frame conditions correspond
to closure properties of the potential knowledge operator that turn the latter into
a normal modal operator. In this subsection I will argue that hyperrelational
frames that satisfy the Combination condition are much closer to bi-relational
frames than they at �rst sight appear to be, unless the former are in�nitary in
the following sense: there are in�nitely many alternative epistemic accessibility
relations and, for every world, there are no alternative epistemic accessibility re-
lations such that the intersection of worlds accessible from the given world via
those alternative epistemic accessibility relations is �nite. Note that the foregoing
implies that there are in�nitely many epistemic possibilities.

Lemma 2. For any hyperrelational frame that satis�es Combination and at least
one of the following conditions:

1. there are �nitely many S ′ such that S ≤ S ′, or

2. for any w ∈W , there are S ′, S ′′ such that S ≤ S ′ and S ≤ S ′′ and S ′w ∩ S
′′
w is

�nite,

it is the case that

∀w∃R
(
S ≤ R ∧ ∀S ′

(
S ≤ S ′→ Rw ⊆ S ′w

) )
.

Proof. First, suppose that there are �nitely many S ′ such that S ≤ S ′. Enumerate
them: S†, S††, . . . . By Combination and by the fact that S†w ⊆ S†w and S††w ⊆ S††w , it
is the case that

∃R
(
S ≤ R ∧ Rw ⊆ S†w ∩ S

††
w

)
.

17



Note that Rw ⊆ S†w and Rw ⊆ S††w . By Combination and by the fact that Rw ⊆ Rw
and S†††w ⊆ S†††w , it is the case that

∃R′
(
S ≤ R′ ∧ R′w ⊆ Rw ∩ S

†††
w

)
.

Note that R′w ⊆ S†w and R′w ⊆ S††w and R′w ⊆ S†††w . Continue move until you
used every one of the �nitely many S ′ such that S ≤ S ′. In the end you will have
established that

∃R∗
(
S ≤ R∗ ∧ ∀S ′

(
S ≤ S ′→ R∗w ⊆ S ′w

) )
.

Second, suppose that, for any w ∈ W , there are S ′, S ′′ such that S ≤ S ′ and
S ≤ S ′′ and S ′w ∩ S

′′
w is �nite. By Combination and by the fact that S ′w ⊆ S ′w and

S ′′w ⊆ S ′′w , it is the case that

∃R
(
S ≤ R ∧ Rw ⊆ S ′w ∩ S

′′
w
)
.

Since Rw is a subset of a �nite set, Rw is itself also �nite. Next, assume for a
reductio ad absurdum that

∃w∀R
(
S ≤ R → ∃S ′

(
S ≤ S ′ ∧ Rw * S ′w

) )
.

Given the above reasoning, there is an R with S ≤ R and Rw is �nite. Let us say
that there are n elements in Rw . By the reductio assumption, there is an S ′ with
S ≤ S ′ ∧ Rw * S ′w . By Combination and by the fact that Rw ⊆ Rw and S ′w ⊆ S ′w ,

∃R′
(
S ≤ R′ ∧ R′w ⊆ Rw ∩ S

′
w
)
.

Note that R′w ⊆ Rw , because R′w ⊆ Rw ∩ S
′
w . We will now prove that R′w ⊂ Rw .

Assume that R′w = Rw . But then Rw ⊆ Rw ∩ S ′w , which can only be the case if
Rw ⊆ S ′w , which contradicts the reductio assumption. Therefore, R′w , Rw , which
in combination with R′w ⊆ Rw entails that R′w ⊂ Rw . This means that there is at
least one element in R′w that is not in Rw . By the reductio assumption, there is an
S ′′ with S ≤ S ′′ ∧ R′w * S ′′w . By Combination and by the fact that R′w ⊆ R′w and
S ′′w ⊆ S ′′w ,

∃R′′
(
S ≤ R′′ ∧ R′′w ⊆ R′w ∩ S

′′
w
)
.

Note that R′′w ⊆ R′w . Moreover, one can by analogous reasoning as before prove
that R′′w ⊂ R′w . That implies that there are at least two elements in R′′w that are
not in Rw . Continue this reasoning entail you have established that there is some
R∗ with S ≤ R∗ and there are at least n elements in R∗w that are not in Rw , which
contains n elements. In other words, R∗w is the empty set. By the reductio assump-
tion, there is then as S∗ with S ≤ S∗ and R∗w * S∗w . But the empty set is a subset
of any set. We have reached a contradiction. �

Theorem 3. For every model 〈W , S, ≤,V 〉 that is based on a hyperrelational frame
that satis�es Combination and at least one of the following conditions:
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1. there are �nitely many S ′ such that S ≤ S ′, or

2. for any w ∈W , there are S ′, S ′′ such that S ≤ S ′ and S ≤ S ′′ and S ′w ∩ S
′′
w is

�nite,

there is a Kripke-style knowledge model 〈W , S,R,V 〉 based on a bi-relational frame,
withW , S and V the same as in the given model and with R a relation inW ×W ,
such that for everyw ∈W :

1. ∃S ′
(
S ≤ S ′ ∧ S ′w = Rw

)
;

2. and for every well-formed formula ϕ,

〈W , S, ≤,V 〉,w |= ϕ ⇔ 〈W , S,R,V 〉,w |= ϕ .

Proof. By Lemma 2 and the assumption of the two frame conditions, the model
〈W , S, ≤,V 〉 is based on a hyperrelational frame that satis�es the following con-
dition:

∀w∃R
(
S ≤ R ∧ ∀S ′

(
S ≤ S ′→ Rw ⊆ S ′w

) )
.

Note that, if
S ≤ R ∧ ∀S ′

(
S ≤ S ′→ Rw ⊆ S ′w

)
,

and
S ≤ R′ ∧ ∀S ′

(
S ≤ S ′→ R′w ⊆ S ′w

)
,

then Rw = R′w . For each w ∈W , let R∗w be the unique Rw such that

S ≤ R ∧ ∀S ′
(
S ≤ S ′→ Rw ⊆ S ′w

)
.

We will now prove that: 〈W , S, ≤,V 〉,w |= 〈K〉ψ if and only if 〈W , S, ≤,V 〉,w ′ |= ψ
for all w ′ such that wR∗w ′. Since there is an R such that S ≤ R and Rw = R∗w , the
right-to-left direction is trivial. The other direction follows from the fact that
R∗w ⊆ S ′w for any S ′ such that S ≤ S ′, because if ψ is true everywhere in S ′w , then
it is also true everywhere in R∗w .

Consider the Kripke-style knowledge model 〈W , S,R◦,V 〉, with W , S and V
the same as in the model based on a hyperrelational frame. Let R◦ be the relation
onW such that R◦w = R∗w . The truth of a formula ϕ at a worldw in 〈W , S,R◦,V 〉 is
de�ned inductively as follows: if ϕ = 〈K〉ψ , then 〈W , S,R◦,V 〉,w |= ϕ if and only
if 〈W , S,R◦,V 〉,w ′ |= ψ for all w ′ ∈ W such that wR◦w ′; all other clauses are as
expected.

One can prove that, for every w ∈W and for every well-formed formula ϕ,

〈W , S, ≤,V 〉,w |= ϕ ⇔ 〈W , S,R◦,V 〉,w |= ϕ .

The proof is by induction on the complexity of formulas. The only non-trivial
case is the case of 〈K〉ψ , which can be proved on the basis of the de�nition of R◦
and the fact that 〈W , S, ≤,V 〉,w |= 〈K〉ψ if and only if 〈W , S, ≤,V 〉,w ′ |= ψ for all
w ′ such that wR∗w ′. �
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So, if hyperrelational frames satisfy Combination and if they are not in�nitary
in the sense explained earlier, then models based on those frames are elementarily
equivalent to models based on bi-relational frames that are based on the same set
of worlds, the same epistemic accessibility relation and the same valuation func-
tion. The only di�erence between the models consists in the fact that the hyper-
relational frames contain alternative epistemic accessibility relations S ′, whereas
the bi-relational frame contains just a second epistemic accessibility relation, R,
which has been constructed out of the alternative epistemic accessibility relations.
The second epistemic accessibility relation of the bi-relational frame can in a sense
be seen as that what determines what a second agent knows, although that sec-
ond agent may be ideal or hypothetical in a way.10 To put it more colourfully,
for every model based on a hyperrelational frame there is a standard Kripke-style
knowledge model based on a bi-relational frame ‘hidden’ in the former such that
something is potentially known by some agent at a world according to the �rst
model if and only if it is simply known by some hypothetical agent at that world
in the second model. Even more colourfully, the ‘hidden’ Kripke-style models are
the engines that do all the work.

If hyperrelational frames have to be workhorses in their own right, then the
solution is to drop Combination or to provide good reasons for why in�nitary hy-
perrelational frames are needed for modelling purposes. However, in the present
dialectical context the �rst option is a non-starter, since Mp is valid if (5) and Tp
are. Suppose that 〈K〉ϕ and 〈K〉ψ are true. Then by Tp it is also true that ϕ ∧ψ .
Hence, by (5) it is true that 〈K〉 (ϕ ∧ψ ). Let us put aside the second option for a
moment.

Note that in the model based on a relational frame 〈K〉 is an ordinary knowl-
edge operator, because its truth clause is based on the epistemic accessibility rela-
tion, R. One might as well replace K by KS and 〈K〉 by KR to re�ect this fact
in the object language. This mere notational change may help to realize two
facts about models based on relational frames that are elementarily equivalent
to models based on hyperrelational frames that make (5) valid. First, we obtain
omniscience with respect to KR : ϕ → KRϕ. Second, the reason one can block the
(relevant variation on) the Church-Fitch argument for omniscience with respect
to KS boils down to the satis�ability of KR (ϕ ∧ ¬KS ), which is fairly trivial. The
solution to the paradox is then not a whi� more mysterious than the following:

Annie knows that something is true but unknown to Peter.

Similarly, Moore (1942) noted that, while an assertion of ‘I went to the movies,
but I don’t believe it’ is paradoxical, whereas an assertion of ‘I went to the movies,
but he doesn’t believe it’ is not. So, Lemma 2 and Theorem 3 have also a bearing
on Fuhrmann’s solution to the knowability paradox (Subsection 3.2). That being

10Here both accessibility relations are interpreted as epistemic accessibility relations, whereas in
Subsection 2.1 one of the accessibility relations is glossed as a modal one and the other accessibility
relation is glossed as an epistemic one.
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said, there are two quali�cations. First, we still have as an assumption that the
hyperrelational frames are not in�nitary in the sense explained above. Second, the
omniscience with respect to KR and the satis�ability of KR (ϕ ∧ ¬KS ) are to some
extent visible only from an outside perspective, even though the models based on
relational frames are in some way ‘hidden’ in the models based on hyperrelational
frames. In the next subsection we will make improvements on both fronts.

3.4 The problem of potential omniscience

Fuhrmann (2014a, p. 1646) provides the following frame condition, which is in-
tended to be a su�cient but unneccessary condition for (5):

Perfectibility ∀w∀v∃S ′ (S ≤ S ′ ∧ (wS ′v → w = v)) .

Fuhrmann (2014a, pp. 1645–1646, incl. fn. 17) writes the following about Per-
fectibility:

The schema [(5)] is valid in potential knowledge structures satisfying,
for example, the condition that knowledge in a world can be perfected
to an omniscient state. This is to assume that among the potential
knowledge states accessible from what is known about a world [w] is
one in which everything is known about [w] [i.e. Perfectibility] The
condition of perfectibility is stronger than what is needed for the va-
lidity of [(5)]. We adopt it here for the sake of simplicity. For a suf-
�cient and necessary condition we need to switch the order of the
quanti�ers: Instead of there being a single state in which every truth
is known, it su�ces (and is also necessary for [(5)]) that for every
truth there is a state in which it is known, i.e. [(8)].

Since Fuhrmann explicitly connects Perfectibility with a state of omniscience, it
is worth a closer look. For that purpose let us introduce a related but di�erent
frame condition:

Perfectibility∗

∀w∃S ′ (S ≤ S ′ ∧ ∀v (wS ′v → w = v)) .

Fuhrmann’s Perfectibility condition is a logical consequence of Perfectibility∗, be-
cause the only di�erence between the two is that in Perfectibility∗ the existential
quanti�cation over S ′ comes before the universal quanti�cation over v , whereas
in Perfectibility it is the other way around, whence one can choose the same S ′ for
any v . It will now be shown that Perfectibility∗ is a necessary and su�cient con-
dition for (5), which by the above argument shows that Perfectibility is necessary
after all.

Theorem 4. Fuhrmann’s knowability thesis

ϕ → 〈K〉ϕ
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corresponds to the Perfectibility∗ condition on hyperrelational frames, i.e.

∀w∃S ′ (S ≤ S ′ ∧ ∀v (wS ′v → w = v)) .

Proof. Left-to-right: Suppose that Aϕ → ^KAϕ is valid on a hyperrelational
frame. Assume for a reductio ad absurdum that

∃w∀S ′ (S ≤ S ′→ ∃v (wS ′v ∧w , v)) .

Now consider a modelM based on the above condition and such thatV (p,w) = 1
andV (p,v) = 0 for allv , w . The �rst valuation guarantees thatM,w |= p. Next,
take any S ′ such that S ≤ S ′. Then there is a v such that wS ′v and w , v , which
entails thatV (p,v) = 0 and, therefore,M,v 6 |= p. By generalisation on S ′ and the
truth clause for 〈K〉-formulas, one can deduce thatM,w 6 |= 〈K〉p. This contradicts
the assumption.

Right-to-left: Suppose that the following condition applies to a class of bi-
relational frames:

∀w∃S ′ (S ≤ S ′ ∧ ∀v (wS ′v → w = v)) .

Consider any modelM and any worldw such thatM,w |= ϕ. For this worldw it
is the case that ∃S ′ (S ≤ S ′ ∧ ∀v (wS ′v → w = v)). Suppose that there are v such
that wS ′v . For any of those v , w = v and, consequently,M,v |= ϕ. Therefore,
M,w |= 〈K〉ϕ. If there are no v such that wS ′v , then the conclusion follows
trivially. �

As is clear from the opening quote of this subsection, Fuhrmann connects
Perfectibility with potential omniscience. It is clear that Perfectibility∗ does yield
potential omniscience. It is not just that, for every truth at a world w , there is a
potential knowledge state in which it is known. It is also the case that there is a
potential knowledge state in which every truth at w is known. What is conspic-
uously absent from the opening quote is any insight in how very implausible the
perfection of knowledge to omniscience is. The examples at the end of Subsection
2.3 can help to drive this point home. This is the problem of potential omniscience.

Compare the problem of potential omniscience with the fact that the bi-re-
lational frame 〈W , S,R〉 built from a hyperrelational frame 〈W , S, ≤〉 that makes
(5) valid makes ϕ → KRϕ valid (Subsection 3.3). First, to prove the existence of
a state of potential omniscience in hyperrelational frames that make the knowa-
bility thesis valid one does not have to make a detour via other kinds of frames,
unlike the fact mentioned above. Second, the problem of potential omniscience
shows up even without the assumption that the hyperrelational frames are not
in�nitary in a particular way, whereas the fact mentioned above is conditional on
that assumption.

Theorem 4 can also be used to strengthen the criticism from the ‘external’
point of view of the ‘hidden’ Kripke-style models.
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Corollary 1. For every model 〈W , S, ≤,V 〉 that is based on a hyperrelational frame
that makes ϕ → 〈K〉ϕ valid and that satis�es p-re�exivity, there is a Kripke-style
model 〈W , S,R,V 〉, withW , S,V the same as in the model based on a hyperrelational
frame and with R a relation inW ×W such that for everyw ∈W :

1. ∃S ′
(
S ≤ S ′ ∧ S ′w = Rw

)
;

2. for every well-formed formula ϕ,

〈W , S, ≤,V 〉,w |= ϕ ⇔ 〈W , S,R,V 〉,w |= ϕ .

Proof. For any hyperrelational frame 〈W , S, ≤〉 that makes ϕ → 〈K〉ϕ valid and
that satis�es p-re�exivity and for any w ∈ W , there is a S ′ such that S ≤ S ′ and
S ′w is �nite, namely {w}. That follows from Theorem 4 and p-re�exivity:

∀w∃S ′ (S ≤ S ′ ∧wS ′w ∧ ∀v (wS ′v → v = w)) .

Moreover, any hyperrelational frame that makes ϕ → 〈K〉ϕ valid is a frame that
satis�es Combination. Take any S ′, S ′′, X , Y such that S ≤ S ′, S ≤ S ′′, S ′ ⊆ X ,
S ′′ ⊆ Y . Note that, given p-re�exivity, {w} ⊆ S ′ and {w} ⊆ S ′′. Consequently,
{w} ⊆ S ′w ∩ S ′′w . As we have seen, it follows from Theorem 4 and p-re�exivity
that there is a R with S ≤ R and Rw = {w}, whence it follows that Rw ⊆ S ′w ∩ S

′′
w .

Therefore, Rw ⊆ X ∩ Y .
Then Lemma 2 and Theorem 3 kick in. �

Again, if one replaces K by KS and 〈K〉 by KR , then we obtain omniscience
with respect to KR and the Church-Fitch argument for omniscience with respect
to KS is blocked in an uninteresting way. But this time no ‘anti-in�nitary’ as-
sumptions have to be made.

4 Conclusion

We have looked at factive concepts of knowability, in particular the notion of
having the possiblity to know that something is actually the case (Edgington) and
having the potential to know (Fuhrmann). Both notions have been used to cir-
cumvent the Church-Fitch paradox of knowability. But even if one can block the
possibility of deriving omniscience, it does not mean one can block the derivation
of possible or potential omniscience. Edgington’s and Furhmann’s knowability the-
ses have this unwanted consequence.

Others who have sought to solve the paradox of knowability by reformulat-
ing the knowability thesis with the help of other factive concepts of knowability
should take note. This applies to Fara (2010), who advances the concept of actually
having the capacity to know that something is actually true, and Spencer (2017),
who puts forward the concept of being able to know. Neither of them provides
models for their concepts, which is understandable because their primary task
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was to carve out a new niche in conceptual space. But at some point they need
models to show that, even when the particular Church-Fitch argument is blocked,
there are no alternative arguments from the knowability thesis to the conclusion
of omniscience. And if those models are provided, we now know that there is
another task on the list: to check whether the problem of possible or potential
omniscience shows up.
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