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Abstract

The laws of physics have an interesting internal explanatory structure.
Some principles explain others; some constraints fall out of the dynamic
equations, and others help determine them. This leads to interesting, and
non-trivial, questions for metaphysicians of laws. What sort of explanation
is this? Which principles are explananda, and which explanandum?

In a recent and insightful series of papers, Marc Lange (2007, 2009, 2011a,
2011b) has discussed these questions in detail, with a focus on the explana-
tory priority of symmetry principles and their associated conservation laws.
Lange argues that symmetry principles are meta-laws: laws governing the
laws. The symmetry principles explain the conservation laws by governing
them, just as first-order laws explain first-order facts by governing them.
He then claims that his metaphysical view of laws can neatly accommo-
date metalaws but his competitors, namely Humeans and dispositional
essentialists, cannot (2009, 2011b).

While I agree with Lange that symmetry principles explain conservation
laws, I hold that he is wrong on all other counts. Symmetry principles are
not meta-laws: they are first-order generalizations. The explanation of con-
servation laws from symmetry principles is not a covering-law explanation:
it has more in common with reductive explanations of higher-order laws
from more fundamental principles. And these facts put him at a loss rela-
tive to his primary competitor, the Humean view: this correct account of the
explanatory power of symmetry principles falls neatly out of Humeanism,
but must be added in post hoc to Lange’s view.

Introduction

Picture an equilateral triangle–a triangle with three sides of equal length. Now
imagine a line extending from one vertex of the triangle to the opposite side,
such that the line bisects the angle of the vertex and is perpendicular to the
opposite side. Then, mentally flip the triangle along this line, so that the side to
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the left of the line is now to the right, and vice versa. If you’ve done everything
right, the image you arrive at is indistinguishable from the one you started with.
Equilateral triangles have a bilateral symmetry along this axis: transforming
them by flipping them along this axis leaves all of their properties unchanged.
Their structure is invariant under this reflection.

Symmetries are easiest to picture in geometric shapes. But the notion is
much broader: a transformation of a mathematical object is a symmetry trans-
formation just in case it leaves the structure of that object unchanged. Physical
theories to have symmetries: transformations between solutions of the central
equations of the theory which leave form of the equations of motion unchanged.
So, for example, Newtonian gravitational dynamics is symmetric under spa-
tial and temporal shifts, kinematic boosts, and rotations. Just as the bilateral
symmetry of an equilateral triangle can expressed in terms of a transformation
which leaves the structure of the triangle unchanged, so these symmetries can
be expressed in terms of transformations which leave the system’s equations of
motion unchanged.

Take, for example, spatial shifts. The symmetry transformation of such a
shift takes the location of all the objects in the system and permutes them from
x→ x + ε. Now consider two objects in our system. How does this transforma-
tion affect the force between them, and so their motion? Well, the force between
them is determined by their distance, and given by Newton’s Law of Universal
Gravitation: FG,1,2 = Gm1m2

(x1−x2)2 . If we subject the system to the static shift transfor-

mation, the force between them becomes F′G,1,2 = Gm1m2
(x1+ε)−(x2+ε) = Gm1m2

[(x1−x2)+(ε−ε)]2 =
Gm1m2
(x1−x2)2 = FG,1,2. That is, the force is unaffected by the transformation. Similar
arguments show that the acceleration of the system is unaffected by the shift;
the change is, in some sense, dynamically irrelevant.

Symmetry principles are statements of the symmetries of a physical theory:
they tell us under which transformations the dynamics of theory is invariant.
But their presence raises questions for in the metaphysics of laws of nature: are
symmetry principles themselves laws of nature? Do the symmetry principles
constrain the laws? Or are they just a result of the dynamics we contingently
have right here in the actual world? Here, I’ll put forward a Humean view of
the metaphysical status of symmetries. On this view, the symmetries, like the
laws, give us useful information about the behaviour of physical systems. This
information tells us which differences matter to that behaviour: two systems
which differ only by a property which varies under symmetry transformations
(rather than one which is invariant) behave the same way. Humeans hold
that laws are true, informative generalizations; here, I argue that symmetry
principles are laws.

This view is directly opposed to the current leading–and only–view regard-
ing the metaphysical status of symmetry principles. In a series of recent papers,
Marc Lange (2007, 2009, 2011a, 2011b) has argued that symmetry principles are
metalaws: higher-order laws of nature, which govern other laws rather than first
order facts. Lange does not believe that Humeans can account for the higher-
order status or explanatory power of symmetry principles. In this paper, I argue
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that Lange is wrong to claim that symmetry principles are higher-order laws. So
Humeans are right to deny them higher-order status. But nonetheless, I argue
that Humeans can account for the explanatory force of symmetry principles at
least as well as Lange1.

The paper is structured as follows. In §1 I provide some background on
symmetry principles, their place in physical theories, and their relationship to
conserved quantities. I attempt there to clearly explain what a symmetry princi-
ple is, and in what way symmetry principles are taken–with some controversy–
to feature in explanations of the truth of other laws. In §2 I thoroughly review
Lange’s account and argue that its central claim, that symmetry principles are
law-governing laws, is a mischaracterization. Then, in §3, I provide a Humean
view that puts the symmetries in their proper place. Finally, I conclude by
drawing conclusions within metaphysics of laws. If I’m right about the status
of symmetry principles, then Humeans have a uniquely good explanation of
their counterfactual stability and explanatory force. Lange, I claim, is wrong
about the structure of symmetry principles and the type of explanation they
provide, but his account does have the resources to explain symmetries as
first-order principles. But other views in metaphysics of laws, including dispo-
sitional essentialists, necessitarians (like Armstrong (1997)), and proponents of
sui generis laws like Maudlin (2009) seem to incapable of providing an account
of the explanatory force of physical symmetries.

1 Physical Symmetries

In this section I’ll offer some introductory remarks on the place of symmetries
in physical theories, and their relationship to physical law. These remarks will
be regrettably brief: there are ongoing and important debates about the nature
and import of symmetries to physical laws. But here, I am focused on the
metaphysics of laws, so I will provide enough background for readers to follow
my arguments and point towards more thorough explorations by other authors.
I will attempt to first (§1.1) briefly explain what physical symmetries are and
how they related to physical laws (especially conservation laws), and then
second (§1.2) review the leading accounts of their philosophical significance.

1.1 The Structure of Physical Symmetries

Recall the triangle from the introduction. It’s symmetries are those transforma-
tion that leave its shape unchanged. The symmetries of physical models are sim-
ilarly those transformations that leave relevant structure unchanged. But how
should we think of these transformations–that is, what are they transformations
of, exactly? And what is the relevant structure that they leave unchanged?

1Yudell (2013) argues that Humeans can accommodate Lange-style metalaws. Here I present
a stronger case for the counterfactual resilience and explanatory power of symmetry principles
on Humeanism and argue that Yudell and Lange are wrong to conflate the explanatory power of
symmetries with their status as higher-order principles. I’ll discuss Yudell’s view in §??.
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Different answers to these questions allow us to come up with a catalogue of
symmetries. In answer to the first question, symmetries are transformations of
the variables of a physical model. Those symmetries which are mathematically
and physically interesting have an associated transformation function–some
specifiable mapping from one set of variable values to another. So a physical
law has some symmetry–say, a velocity boost symmetry–in virtue of a transfor-
mation of one of the variables mentioned in that law–in this case, the velocity
variable.

Realizing this, we can catalogue the symmetries of a physical law by features
of the transformation function and by features of the variables it transforms. For
global symmetries the transformation function is universal and constant. So for
example a global boost transformation changes the velocity of all components
of the system by the same amount. A global shift symmetry changes the location
of all components of the system by the same amount. Local symmetries can be
characterized by an arbitrary function, one which may vary across space. So
a local symmetry transformation of a field may change field values within
some region, but leave the values outside of that region unchanged. The global
symmetry is characterized by a function changing the variable in question–
again, velocity is a good example–but which is constant with respect to all
other variables, whereas a local symmetry is characterized by a function which
changes a target variable but is not constant with respect to other variables.

We also categorize symmetries with respect to the nature of the variable
that the characteristic transformation ranges over. External symmetries transform
those variables which describe the extrinsic or relational features of the system.
Typical such features are the locations, velocities, or spatial orientation of the
system. These features depend not only on the intrinsic qualities of the objects in
the system, but also on their relations to spacetime and to one another. Internal
symmetries transform those variables which characterize what are often taken to
be the intrinsic features of the components of the system. So charge permutation
is an internal symmetry: if the charges of all components of a system have their
sign reversed, the system behaves in other respects identically. Because this
involves a change in the intrinsic features of the system’s components, it is an
internal symmetry.

So, in answer to the first question, symmetry transformations transform the
variables that a physical law quantifies over. But in order for a transformation
to be a symmetry, it must leave some relevant structure unchanged. What
is that structure? In answer to this second question, we can again catalogue
symmetries by which relevant structure the transformation leaves unchanged.
Here, I will be principally concerned with dynamic symmetries: those which
leave the structure of the equations of motion of a system unchanged.

A lack of clarity in answering these questions has lead to considerable confu-
sion in philosophy of physics, especially as it relates to the epistemic relevance
of symmetries and their place in symmetry-based arguments against super-
fluous structure in physics and metaphysics. So Dasgupta (2013) says that we
should “think of a symmetry of a law as a transformation on physical systems
that (at a minimum) preserves the truth of the law” (p. 838). As Dasgupta notes,
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this obviously too loose a notion, as any transformation on the space of solu-
tions would then be a symmetry. By abstracting away from the fact that most
physically interesting symmetries are transformations of variables that leave the
equations of motion unchanged, Dasgupta’s first-blush explication of symme-
tries is open to trivial counterexamples. Nonetheless, there is still an interesting
question about which mathematical structures we should require to remain
constant.

1.2 The Physical Significance of Symmetries

The symmetries of a physical theory are a set of transformations on the space
of solutions to that theory. They are a function from solutions to solutions, such
that some relevant mathematical structure is the same in any two symmetry-
related models–in the cases I’ll focus on, these transformations can be described
by a function on the variables in which the theory is formulated, and take us
from one solution to another which has the same equations of motion. An
account of the physical significance of symmetries is an account of what these
two symmetry-related models have in common.

Because the equations of motion of determine the behavior of the system, we
can expect symmetry-related models to behave identically. If two physical situ-
ations are internally identical, but merely at different places or times, then they
can be described by the same equations of motion and their internal dynamics
are identical; similarly, if two physical situations are internally identical, but
one is rotated relative to the other, or moving at a different velocity to another,
they will behave identically.

This is the first thing to note about symmetry-related physical states. They
are empirically indistinguishable. No experiment can distinguish a world from
one related to it by a symmetry; no experiment within an isolated subsystem
of the world can distinguish it from a symmetry-related subsystem (although
external observers can tell the difference between, say, a system and its rotated
counterpart). The relationship between different sorts of symmetries, taken as
global tranformations of the state of the world, and the behavior of subsys-
tems is discussed in Brading and Brown (2004), Greaves and Wallace (2014),
Dasgupta (2016).

Many philosophers take symmetries to be a guide to connecting the struc-
ture of a physical theory to the structure of the world. On this view, two
symmetry-related solutions to physical equations are simply different descrip-
tions of the same situation. There are not two worlds, in one of which I am here,
and in the other I am three feet to the left, with everything else similarly shifted.
Instead, there is just this world, and two mathematical descriptions of it. The
fact that those descriptions put the origin at different places doesn’t indicate
any difference between the worlds as the origin in our mathematical descrip-
tion didn’t correspond to anything in the world anyway. The symmetries tell
us what structure the world does not have. Here’s Hilary Greaves and David
Wallace expressing this view:
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“...there is widespread consensus that ‘two states of affairs re-
lated by a symmetry transformation are just the same state of af-
fairs differently described’. That is, if two mathematical models of
a physical theory are related by a symmetry transformation, then
those models represent one and the same physical state of affairs.”
(Greaves and Wallace, 2014)

But this view is not universally held; other think that we should take the
mathematical structure of theories seriously, and hold that a distinct possible
world corresponds to each model of our theory. Nonetheless, on this view
symmetry-related models correspond to empirically indistinguishable worlds.
These authors think that these emprical consequences exhaust the significance
of symmetries–they have no further metaphysical implications. Here’s Gordon
Belot expressing this view:

“Objects related by a symmetry occupy identical roles in the pat-
tern of relations described by their structure [...] We can assume that
only appropriately qualitative relations are represented in our struc-
tures – so that objects related by symmetries will be qualitatively
indistinguishable.” (Belot, 2003: 394)

“ My view is that if one denies that the application of time
translation (or any other symmetry) generates distinct physical pos-
sibilities, then one ought to prefer to the standard formulations of
classical mechanics those in which the offending symmetry has been
factored out.”(Belot, 2003: 401)

Belot here defends a certain realism about the mathematical structure which
describes the physical state. The idea here is that, if we think that there are not
two distinct possibilities which differ by a symmetry transformation, we should
move to a mathematical representation which doesn’t have that redundant
representational structure. If we can’t find such a representation, we’re stuck
with the unfortunate consequence that there are distinct but indistinguishable
possibilities. He goes on to show that there are ways of ‘quotient out’ symmetry
related states, so that instead of having a statespace with multiple, distinct states
related by a symmetry transformation, one instead has a simpler statespace with
a more limited range of states.

Of course, if one takes Belot at his word, one needs to explain how two
worlds can differ without differing qualitatively. One view, associated with
Tim Maudlin (2013), holds that there are haecceitistic connections between
spacetime points at different worlds. On this view, worlds related by a spatial
shift are such that every object occupies a different spacetime point in each
world despite the fact that all of their relative spatial relations are the same.

I’m suspicious of spacetime haecceitism, so my sympathies lie with the view
that symmetry-related states are identical, and merely described differently. For
symmetry-related subsystems, this means that qualitative properties and rela-
tions within the subsystem are the same, although their relations to objects
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outside of the subsystem may differ. However, I don’t believe that this debate
has bearing on the arguments I present below: my arguments go through pro-
vided at least that symmetry-related worlds and subsystems are empirically
indistinguishable to those within them.

2 Langian Metalaws

How should metaphysicians of law regard symmetries? Symmetries constrain
our physical theories and the structure of our statespaces. Laws of nature, at
least in physics, are typically differential equations. Rather than a list of gener-
alizations in a first-order extensional logic, we get a single differential equation
and constraints on how its free parameters can be set. So in Lagrangian me-
chanics we get the Euler-Lagrange equation and a set of constraints on the
Lagrangian. Some of these constraints are requirements that the Lagrangian be
invariant under certain transformations (these are the symmetry principles),
while others specify the kinetic and potential energy of the system (these are
typically understood as force laws and boundary specification of, say, the num-
ber and masses of any particles in the system). Recognizing that some of these
constraints are correctly regarded as law-like while others seem to be boundary
or initial conditions requires metaphysicians of law to get into the weeds of
philosophy of physics. Which parameters are which? And where do we put the
symmetry constraints?

2.1 Lange on Symmetries

Lange (2007, 2009, 2011a, 2011b) follows Morrison (2005) in arguing that sym-
metry principles are laws of nature, and that, even more interestingly, they are
laws which govern not first-order facts but the laws themselves. Symmetries
are metalaws: laws of the laws.

Lange draws inspiration for this view from the writing of some physicists.
Here’s Einstein describing the meaning of the Lorentz transformation, which
gives us the central symmetry of special relativity:

“The content of the [special] relativity theory can . . . be sum-
marized in one sentence: all natural laws must be so conditioned
that they are covariant with respect to Lorentz transformations.”
(Einstein (1954), quoted in Lange (2011b))

Similarly, when providing a Lagrangian (or Hamiltonian) formulation of
classical mechanics, we specify the theory’s symmetry group–those symmetry
transformations under which the Lagrangian (or Hamiltonian) must be invari-
ant. Lange takes this ‘must’ seriously–for Lange, the symmetries constrain the
laws with a form of natural necessity: one stronger than that of the first-order
laws.

Here’s Lange:
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“A law is ‘symmetric’ in a certain respect exactly when it remains
unchanged under a certain transformation” [...] “Generalizing from
one symmetry exhibited by one law, a ‘symmetry principle’ ascribes
some symmetry to the laws as a whole.” (2009: 105-106)

Lange points out that some “regularities” of the laws, like some regularities
of fact, can be accidents rather than necessary. He thereby distinguishes between
consequences of the laws that merely happen to hold and those which must hold.
Lange calls the first ‘byproducts’ of the laws and the second ‘metalaws’. For
example, it is consequence of the laws that there is no inverse cubed force law:
there could have been, but there isn’t. This consequence is a mere byproduct.
He then argues that the symmetry principles are not mere byproducts. It’s not
that there could have been a law violating Lorentz invariance, or violating the
isometry of space, but there isn’t: there must not be such a law. Had we ended up
with different laws, they would have been Lorentz invariant, and they would
have been symmetric under rotations, shifts, and boosts.

Having established that symmetries are regularities of the laws, but are
not accidental regularities, Lange infers that they are metalaws2: “A given
symmetry principle may be a meta-law (that is, a ‘second-order law’) governing
the first-order laws–a requirement to which the laws that govern sub-nomic
facts must adhere.” (Lange, 2009: 107).

2.2 Lange on Laws

Having argued that symmetry principles are higher-order laws, Lange now
faces the burden of showing that his view of laws delivers the correct result.
This, I think, he does exceptionally well. Lange’s view of first-order laws is
based on their counterfactual resiliency; he’s easily able to extend this view to
higher order laws. According to Lange’s view, L is a law if and only if L would
be true if p were true, for any p logically compatible with L.

“m is a law if and only if in any context, p� m holds for any p
that is logically consistent with all of the n’s (taken together) where
it is a law that n (that is to say, for any p that is logically consistent
with the first-order laws).” (Lange, 2009: 20)

This is the first blush version of Lange’s view; astute readers will note that
it is circular, in that it assumes that there is some set of laws n in its definition

2Lange sometimes hedges about whether the symmetry principles are in fact metalaws in his
sense; he seems instead interested in showing what would be required of a metaphysical view of
laws in order for the symmetry principles to be explanatorily prior to the laws: ‘I am not trying to
argue that there actually are meta-laws; that is for science to investigate. My aim is to understand
what difference it would make whether a symmetry principle is a meta-law or a byproduct of the
laws–especially what difference it would make to the symmetry principle’s explanatory power.
The difference between a regularity among the laws that merely obtains and one that obtains as
a meta-law is a difference for which any metaphysical analysis of natural law should account’
(Lange, 2007: 460). Contra Lange, I hold that symmetry principles are not metalaws, but are not
byproducts either and can be be explanatory.
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of law. Lange later gives a longer, noncircular version of this principle. The
differences matter only a bit: in the longer version, a crucial distinction is
between ‘nomic’ and ‘sub-nomic’ facts, where the sub-nomic facts are all those
which are not about which generalizations are laws or nomically necessary.
Laws, on Lange’s developed view, form the largest non-maximal set of ‘sub-
nomically stable’ facts, where a fact is subnomically stable just in case it would
still have held even if any sub-nomic fact were different3.

What, then, are metalaws? According to Lange, meta-laws are those state-
ments which are nomically stable: they would have held even if any facts,
sub-nomic or not had been different. That is, they are truths that would have
held even had the laws been different. According to Lange:

[A] closed set of truths that are nomic or sub-nomic qualifies
as “nomically stable” exactly when (whatever the conversational
context) the set’s members would all still have held (indeed, none of
their negations might have held) under every nomic or sub-nomic
supposition logically consistent with the set–however many such
suppositions are nested. (Lange, 2009:114)

Lange argues that the symmetry principles would have held even had the
other laws not held, including the conservation laws. The general derivation of
conservation laws from symmetry principles through Noether’s theorem de-
pends on the fact that the laws have a Lagrangian formulation. Lange argues
that had the laws not been Lagrangian, they still would have been invariant
under the Galilean symmetry group (the converse Noether theorem also re-
quires a Lagrangian formulation of the laws. One wonders whether a context
emphasizing the converse Noether’s theorem would lead us to different coun-
terfactual intuitions). He concludes from this that “The symmetry principle has
greater modal force than the conservation law and so can explain it, but the
conservation law lacks the symmetry principle’s modal force and so cannot
explain it.”

So Lange’s view is as follows: (a) the symmetry principles are nomically
stable. (b) The symmetry principles explain the conservation laws by governing
them, that is, the explanation of the conservation laws from the symmetry
principles is an example of a covering law explanation. (c) The modal force, or
counterfactual robustness, of these generalizations tells us which is the metalaw.

2.3 Contra Lange

Here I aim to present arguments against (b): I will argue that symmetry princi-
ples are not properly thought of as higher-order. Instead, they are generaliza-
tions about the first-order facts.

3Here is the longer definition: “Consider a nonempty set G of sub-nomic truths containing
every sub-nomic logical consequence of its members. G possesses sub-nomic stability if and only
if for each member m of G (and in every conversational context), ¬(p � ¬m),¬(q � (p �
¬m)),¬(r � (q � (p � ¬m)), ... for any sub-nomic claims p, q, r, . . . where Γp is logically
consistent, Γq is logically consistent, Γr is logically consistent,. . . .”
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Lange claims that symmetry principles are laws governing other laws. They
explain features of the first order laws by necessitating or determining them in
the way laws necessitate or determine first-order facts. This requires them to
have nomic content–in order to govern or determine the first-order facts they
must be about laws rather than first-order facts. Discussions of symmetry prin-
ciples by physicists (like the Einstein quote in §2.1) and textbook presentations
of symmetry principles as constraints on the mathematical formulation of La-
grangian theories can give us the impression that the symmetry principles are
primarily constraints on the laws or their formulation. But this is misleading.
The symmetry principles are not primarily about laws, but instead are about
the first-order facts themselves; they do not explain features of law by govern-
ing them but instead by providing information about and constraints on the
first-order facts that the laws govern.

Recall from §1.2 that explaining the significance of symmetries involves say-
ing what symmetry-related models have in common. There are two principal
views here: on one view, the two symmetry-related models are distinct, but
empirically or qualitatively indistinguishable, possibilities. On this view, the
symmetries tell us the limits of our empirical discernment. On the second view,
symmetry-related states are qualitatively identical. They represent the same
situation or possibility. On this view, the symmetries tell us what structure–
present in our mathematically formulated theory–is lacking in the world.

On either view, symmetry principles provide a constraint on first-order facts.
They either tell us what systems are empirically indistinguishable, or what sys-
tems are qualitatively identical. These constraints are not nomic constraints ne-
cessitated by natural law, but instead are epistemic or metaphysical depending
on the account of symmetries we favor. On the first view, the symmetries relate
empirically indistinguishable states, and so are an epistemic constraint on the
law: we often know that we are unable to distinguish symmetry-related situa-
tions before we know more specifically what the laws are–for example, Galileo’s
Ship and Einstein’s Elevator were employed assumptions about indistinguish-
able states to identify symmetry-related situations before the formulation of
laws bearing those symmetries. On the second view, symmetries relate qualita-
tively identical states, and so metaphyically constrain the laws provided that–as
most philosophers hold–the first-order laws depend on qualitative properties
and external relations. These first-order facts about what structure the world
has leads to constraints on the laws: our dynamics cannot make distinctions
without a difference. By focussing on these constraints, we can make the mistake
of thinking the symmetries are primarily about the laws. They are not.

Lange’s view may also be inspired by the fact that we should have confi-
dence that the symmetries will hold of future theories because they have held
of past theories. This at first brush makes them appear to be inductively dis-
covered higher-order laws, generalizations governing a succession of observed
first-order theories4. How else could we discover these generalizations about

4Importantly, Lange does not explicitly endorse this claim about our empirical access to the
symmetries; rather, it’s motivated by his connection between the idea that symmetry principles are
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the laws? But this too is a mistake. If this is what the symmetries are, and this is
how we learn them, our knowledge of them should be taken to be quite suspect.
Sure, all of the theories we’ve looked at obey these principles. But unfortunately,
we’re also quite confident that they’re false theories. So we cannot count them
as instances in an inductive argument. Recognizing this makes it hard to see
our access to they symmetries as an example of induction by enumeration of
instances.

Of course, it’s a mistake to think of our older theories, like Newtonian
gravitation or Maxwellian electrodynamics, as strictly speaking false. Instead,
these theories are good approximations in certain scale and energy regimes.
Recognizing this also allows us to see how the presence of symmetries in past
theories leads us to require them of future theories. As I’ll discuss in §??, the
presence of symmetries in these successful but false past theories shows that
we have quite a lot of empirical evidence that the true laws are invariant under
these symmetry transformation. So, when we construct future theories, we need
to capture the successes of those false theories of the past; doing so requires
us to find the same symmetries in our future theory, or show how they arise
from that theory in the energy and scale regime of the earlier theory. Hence,
these symmetries act as a constraint on theory construction. This is the sense in
which the symmetry principles are an epistemic constraint.

The view that symmetry principles are primarily about first-order facts,
and thereby give rise to constraints on the laws, also finds support amongst
physicists; here’s physicist Eugene Wigner agreeing with this sentiment:

“The geometric principles of invariance, though they give a
structure to the laws of nature, are formulated in terms of the events
themselves.” (Wigner, 1967)

So, rather than being higher-order principles to which the laws must adhere,
the symmetry principles are generalizations about the first-order facts of the
world. They are justified because they encode information about the structure of
spacetime (in the case of global external symmetries, those we’ve been focussing
on thus far) or the property structure of the world (as, for example, the charge
conjugation symmetry of classical electrodynamics does). This information pro-
vides us with some important empirical information: in addition to giving us
quite general information about what properties and relations are (and aren’t)
instantiated in the world, symmetry principles tell us when two isolated sub-
systems will behave in the same way, despite having different connections to
the rest of the world (there’s some debate on the connection between different
sorts of symmetries and empirically indistinguishable worlds and subsystems.
See Brading and Brown (2004) and Greaves and Wallace (2014)).

meta-laws rather than byproducts to the distinction between laws and accidental regularities. In
the latter case, we learn the laws by generalizing from the the first order facts; analogously, if the
symmetries were meta-laws, we should expect to learn them by generalizing from first-order laws.
However, the claim that if meta-laws bear the relation to first-order laws that first-order laws bear
to sub-nomic facts then meta-laws should be discovered through induction on laws is defended in
Yudell (2013).
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If symmetry principles are first-order generalizations, then they are not
about the laws at all. Rather, physical theories are required to obey symmetry
constraints because symmetry constraints are first-order facts which are known
to be true. When we look beyond our current physics and consider possible
new theories, we expect them to obey the symmetries of our old theory (and,
plausibly, new symmetries we’ve discovered experimentally, as was the case
with Lorentz invariance and special relativity) not because we’ve inductively
discovered these symmetry principles by looking at old, false theories, but be-
cause these symmetries encode some of the most general empirical information
we have about the world. We hold onto the symmetries because, though we
take our old theories to be false in some detail, we conservatively retain our
credence in these broader principles and because, due to their success in the
experiments supporting the old theory, they have strong empirical support.

If the symmetry principles are first-order generalizations, then they cannot
explain the conservation laws as part of a covering-law explanation. So Lange’s
view about the relationship between conservation laws and symmetry prin-
ciples fails. Note that this does not mean that the symmetry principles can’t
explain the conservation laws in some other way. I haven’t here argued against
Lange’s claim that the symmetry principles have a “greater modal force” than
other laws, I’ve only shown that that force doesn’t come from their governing
those laws from a higher level. So it’s plausible that Lange’s view still delivers
an explanation of conservation laws from symmetry principles in terms of their
modal forcefulness, and that his view also finds the symmetry principles to be
more counterfactually robust than other laws.

But I am suspicious that Lange can provide a satisfying explanation of this
“greater modal force” if symmetry principles aren’t taken to be higher or-
der laws: while Lange is able to show that any set of statements which is
“nomically robust” (i.e. a candidate for meta-lawhood) will be a subset of the
(sub-nomically robust) laws, he doesn’t provide any reason for believing the
symmetry principles occupy this space. Rather, he simply presents the rele-
vant counterfactuals and claims that they are intuitively true. This may just be
my Humean sympathies at work, but I find an explanation which appeals to
counterfactuals with antecedents so far removed from our experience without
giving us any understanding of how we come to know them highly suspicious,
whether or not I share the intuitive verdicts Lange provides. This argument
may seem unfair–Lange isn’t aiming to show conclusively that symmetry prin-
ciples are metalaws; rather, he argues that if they are explanatory they must be
metalaws. My worry, though, is that Lange’s view doesn’t provide us with the
tools to tell whether they are explanatory metalaws or mere byproducts. On
his view this question shakes down to the question of which counterfactuals
hold, but as these are metaphysically bedrock we have nothing to go on when
evaluating them other than our intuitions. I’ll attempt to show that the Humean
can do better in §??.

Moreover, if Lange is wrong about the place of symmetry principles, then
his arguments against other views of laws also fail. Lange’s arguments (2009,
2011b) rest on the claim that symmetries are meta-laws, something he doesn’t
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believe that dispositional essentials or Humeans can countenance. I am not con-
vinced that Humeans cannot accommodate metalaws: for a meta-law friendly
response to Lange (2011b) that I find convincing, see Friend (MS) or Yudell
(2013). But though it is not incumbent on Humeans or dispositional essential-
ists to accommodate higher-order laws, all views of laws should recognize the
fact that there is an explanatory structure within the laws of physics. In the
next section I’ll argue that Humeans have available to them a clean explanation
of the counterfactual stability of symmetry principles and their explanatory
status amongst the laws without ascribing some higher-order status to them.
If I succeed, then together with the arguments of this section, the shoe will
be moved to the other foot: rather than having an explanatory advantage over
Humeanism, Lange’s view seems to provide the wrong result, and does so with
more unexplained metaphysical danglers. Meanwhile, the Humean view starts
with fewer metaphysical posits and naturally results in a view better motivated
by received views in the philosophy of physics.

3 Humean Maxilaws

I’ve argued that symmetry principles are not metalaws. But I think Lange is
correct to think that some physical principles–some of our laws–may be more
counterfactually robust than others, and that some physical principles may
explain others. I think that there’s a strong case to be made that symmetry
principles are among these, and that views of metaphysics of law should ex-
plain these facts. Here I’ll show how I think Humeans secure the counter-nomic
counterfactual robustness of the symmetries (§3.1) and an explanatory asym-
metry within the laws (§3.2), without claiming that the symmetry principles
are metalaws, or that this explanation is a covering-law explanation.

3.1 Humean Laws and Counterfactuals

The modern received Humean view of laws is the Best System Account (BSA),
which has its roots in the writing of David Lewis:

I take a suitable system to be one that has the virtues we aspire
to in our own theory-building, and that has them to the greatest
extent possible given the way the world is. It must be entirely true;
it must be closed under strict implication; it must be as simple in
axiomatisation as it can be without sacrificing too much information
content; and it must have as much information content as it can have
without sacrificing too much simplicity. A law is any regularity that
earns inclusion in the ideal system. (Or, in case of ties, in every ideal
system.) (Lewis, 1983: 367).

The orthodox understanding of the BSA holds that laws are those general-
izations which best combine simplicity and informativeness, where these are
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taken to weigh against one another. Of course, not every follower of Lewis is or-
thodox: Loewer (2007), Hicks (2017), and Jaag and Loew (MS) think that rather
than focussing on simplicity we should flesh out “the virtues we aspire to in our
own theory-building;” Callendar and Cohen (2009, 2010) develop a version of
the BSA without Lewis’s notion of perfectly natural properties (unmentioned
in this quote, but the focus of the paper it derives from). But, I think, these
distinctions–while important additions to the Humean corpus–aren’t required
to help us understand the relationship between symmetry principles and other
laws of physics. And, I believe, what I have to say about the Humean view
will work even if something else is plugged in to Lewis’s simplicity slot. So
without, I hope, losing any Humean support, I’ll focus on the BSA as the view
that the laws are axioms of that system which best combines simplicity and
informativeness.

Before discussing the place of counterfactuals for a proponent of the BSA,
let’s briefly look at the advantages of the view. The BSA comes equipped with a
ready explanation of our interest in laws. We are interested in believing truths;
the laws are statements which (A) we can learn (because they’re simple) and
(B) are such that, if we use them as axioms of our reasoning, we will infer
lots of truths. This understanding of our interest in laws isn’t restricted to
philosophers. Physicists, too, see this as a good explication of our reason for
seeking laws. Here’s Eugene Wigner:

The world is very complicated and it is clearly impossible for
the human mind to understand it completely. Man has therefore
devised an artifice which permits the complicated nature of the
world to be blamed on something which is called accidental and
thus permits him to abstract a domain in which simple laws can be
found. The complications are called initial conditions; the domain
of regularities, laws of nature. (Wigner 1967)

Laws are widely taken to play a variety of roles in scientific reasoning
and human practice, including, but not limited to, grounding counterfactuals,
underwriting predictions, explaining the behavior of physical systems, and
providing a basis for causation. On the orthodox Lewisian view, the laws are
counterfactually robust almost by stipulation: Lewis’s semantics for counter-
factuals builds the laws into the ‘closeness’ relation, where a counterfactual is
defined to be true if its consequent is true in all of the closest worlds where
its antecedent is true. Since worlds which obey the same laws (nearly enough)
are defined to be closer than worlds which don’t, the laws are counterfactually
robust by stipulation (Lewis 1981, XXXX).

Philosophical explanations should aspire to more than stipulation, and the
Humean can do more to connect laws to counterfactuals than merely stipulate.
So the question here is, why do we hold any facts fixed while evaluating counter-
factuals? Nonhumeans have an easy, if unsatisfying answer to this question: we
hold those facts fixed where are, because of their nature, necessary. Humeans,
on the other hand, start by giving pragmatic arguments that we should use the
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laws when reasoning: doing so allows us to believe many more truths than we
otherwise would. Then, we argue that this practice leads us to treat the laws
as necessary or counterfactually robust, so that, as Hume says, ‘’twil appear in
the end, that the necessary connexion depends on the inference, instead of the
inference’s depending on the necessary connexion’ (Hume, Treatise, I. III, §VI).

We primarily use counterfactuals in practical reasoning, both in deciding
what we will do and in deciding how to assign praise and blame with respect
to the actions of others. When considering what we will do, we are required
to suspend judgement about which action we will perform. We then attempt
to determine what will occur as an outcome of each of our available actions.
Although the structure of deliberation requires us to suspend judgement about
which action we will perform, it does not require us to suspend judgement about
anything else; so in determining what will happen, we use our best inferential
principles to determine what will happen on each of our action alternatives. If
the Humean is correct, these are the laws–not because they are backed by any
metaphysical relation, but because they are useful in allowing us to infer truths.

If we do this–take these laws as axioms of inference–we’ll have quite a
number of beliefs purely in virtue of reasoning on the basis of the laws. Some
of these beliefs will be consciously endorsed; others (possibly infinitely many
others) will be purely dispositional beliefs–things we believe not because we
are actively thinking about them, but because we would endorse them if we
were asked or if they were relevant to a decision situation.

Now consider the Ramsey test for counterfactuals (Ramsey 1929): according
to the Ramsey test, we should endorse a counterfactual just in case, were we
to add the antecedent to our stock of beliefs, and change our belief set as
little as possible, we would come to believe the consequent. I don’t think that
the Ramsey test is an adequate philosophical account of counterfactuals, or
even all there is to say concerning our knowledge of counterfactual truth.
But I do think that any successful account of counterfactuals needs to show
that the Ramsey test is truth-conducive: that is, it’s at least a reliable way of
evaluating counterfactuals, and by employing it we can come to know which
counterfactuals are true (at least in most situations, and provided we start with
mostly true beliefs).

If the Ramsey test is truth-conducive, then the best system laws are counter-
factually robust. For suppose we took some generalization to be a law. Then–
because the laws are those generalizations which are particularly useful for
inferring truths–we would take it as an axiom in our reasoning, and have many
beliefs on its basis. So removing it from our belief set would result in a large
change in our beliefs, as we would also lose those beliefs (including disposi-
tional beliefs, possibly infinitely many) that we have on its basis. Hence, remov-
ing the laws from our belief set would result in a less-than-minimal change.
Recall that the Ramsey test asks us to add the antecedent of a counterfactual
to our beliefs and change our beliefs as little as possible, and then see if the re-
sult includes the consequent. Since removing the laws will never be a minimal
change, we will only do so if the antecedent of the counterfactual contradicts
them. So, if the Ramsey test is truth-conducive, the members of the best system
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will be remain true under any counterfactual supposition with which they are
logically compatible.5

The Humean then has a story to tell about why the laws are counterfactu-
ally robust: they’re excellent principles for inference for truth-interested agents.
Humeans give different justifications for using laws as tools of inference: Lewis
(1983) follows Ramsey (1929) in holding that laws are axiomatizations of all
truths, while Loew and Jaag (MS), and Dorst (forthcoming) argue that laws
are useful because of their applicability to subsystems and Hicks (2017) holds
that laws are principles which can be discovered empirically and evidentially
supported. But what unifies these views is that they account for our reasoning
about nonactual possibilities by extending a view about our reasoning con-
cerning what we’re really interested in, namely truth and action in the actual
world.

To see whether the symmetry principles are more counterfactually robust
than other laws, then, we just need to see whether they are suited to similarly
occupy a privileged role in reasoning. Do we have beliefs because we reason
using the symmetry principles? Are they the sorts of principles we can use to
infer truths and discover empirically? The answer to all three questions clearly
is yes.

I argued in §2.3 that the symmetry principles provide information about
which actual situations behave the same way, and on what the property and
relational structure of the world is. Because they have strong empirical support,
and because we have dispositional beliefs on the basis of them, the symmetry
principles are positioned to hold even in counterfactual situations where other
laws do not. Their empirical support, and their function as a basis of reasoning,
is plausibly prior to our empirical support for specific theories. Thought ex-
periments illustrating symmetry principles, including Einstein’s elevator and
Galileo’s ship, identify situations that our laws should treat the same way, and
are used in the formulation of new systems of law. For the same reason we
hold laws fixed when reasoning about non-actual situations, we should hold
symmetry principles fixed when reasoning about non-actual situations with
different laws–doing so is epistemically conservative and a natural extension
of good epistemic practice for a truth-interested agent in the actual world.

5It’s worth noting here that the Ramsey test provides no reason to expect “tiny miracles” of the
sort Lewis advocated in Lewis (1981). So much the worse for tiny miracles, I say. Lewis introduced
them in part to rule out certain backtracking counterfactuals, and allow for counterfactual future
developments that wildly depart from actual future developments–a hard needle to thread if our
measure of counterfactual “closeness” is similarity in matters of particular fact. But this way of
getting to that goal is a cheap trick. The fact that we can affect the future and not the past should not
be settled by the semantics of counterfactuals but by temporal asymmetries in the physical world–
most probably, those of thermodynamics (see Albert (2001) and Loewer (2007) for this perspective).
The basic idea is this: in many cases, the changes to the past will be hidden in the world’s precise
microstate, about which we have few or no beliefs, while changes to the future will manifest in the
worlds macrostate. One of Lange’s (2011b) arguments against Humean metalaws goes by way of
these miracles–not a bad argument against an orthodox Humean, but I think we should dispense
with the miracles and keep the Humeanism.
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3.2 Symmetries and Conservation Laws

So we should take symmetry principles to be more counterfactually robust than
the laws as a whole, and counternomically counterfactually stable. Should we
also hold that symmetry principles explain some or all features of our laws?
Here I’ll of the best cases for symmetry-based explanation in contemporary
physics: the connection between variational symmetries and conservation laws.

Emma Noether famously showed that for every variational symmetry of a
Lagrangian, there is a corresponding conserved quantity. Many authors have
taken this to show that the conservation law is explained by the conserved
quantity, despite the fact that there is a converse Noether theorem, showing
that for every conserved quantity there is a corresponding symmetry.

The question, then, is: given that they are interderivable, why do the sym-
metries explain the conservation laws, but not vice versa? The answer, I think,
lies not in the general relationship between symmetry principles and conserved
quantities, but instead in the metaphysics. What makes the symmetry princi-
ples true? What makes the conservation laws true? As Brading and Brown put
this point: “[t]he imposition of a symmetry on a theory places a restriction on
the possible form of the theory, and insofar as this restriction has empirical
significance then so too does the symmetry itself. This is the proper place to
look when analysing the empirical significance of a given Noether symmetry”
(Brading and Brown (2003: 99), emphasis in original).

Let’s consider a specific case: time translation symmetry. Time translation
symmetry holds because there is not a preferred temporal origin: two states
which differ only with respect to when they occur are qualitatively identical
in all internal respects. Neither of them has a property the other doesn’t. And
this is made true by the structure of spacetime6. The Noether current associ-
ated with time translation symmetry is Q = δL

δq̇ q̇ − L(q, q̇). This is the Legendre
transform of = T + U, the total energy of the system. How do we get from time
translation symmetry to the conservation of energy? We add to the symmetry,
which describes the structure of spacetime, substantive assumptions about the
dynamical formulation of the theory: that the theory has a Lagrangian, that its
Lagrangian is related to the total energy of the system, and that its action obeys
Hamilton’s principle.

I’ve argued elsewhere (Hicks and Schaffer 2017) that the energy of the sys-
tem is a nonfundamental property of the system: it’s grounded in more funda-
mental properties, namely, the trajectory of the system through configuration
space (giving its kinetic energy) and the connection between the fundamental
quantitative properties in the system and forces between objects in it (giving
its potential energy).

This means that the derivation of conservation laws from symmetries starts
from something quite metaphysically fundamental–facts about spacetime–and
adds a combination of defined quantities and contingent (from the perspec-
tive of the MSS) dynamic laws. This combination of boundary conditions and

6Or, for relationalists, by the structure of spatiotemporal relations.
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less-fundamental quantities makes the derivation of conservation laws from
symmetry principles look like a typical case of a less fundamental law being
derived from a more fundamental law. So, from the perspective of the MSS, the
conservation laws reduce to spacetime symmetries together with a specific set
of dynamic laws.

It’s worth taking a moment to draw out the comparison with an accepted
case of inter-theoretic explanation. Thermodynamics is taken to be explained
by statistical mechanics by (a) positing some more fundamental structure–
collections of point particles and a dynamics over those particles, and (b)
putting constraints on the possible states of that structure, both in the form
of dynamic laws and apparently contingent restrictions on their initial state
(the Past Hypothesis). Here, the more fundamental structure is the structure
of spacetime and facts about the properties that reside on it, and the added
constraints are the quite broad-but not necessary–restriction that the trajecto-
ries of particles through spacetime must have a Lagrangian description. These
together provide an explanation of the conservation laws.

Why doesn’t the derivation go in the other direction? Because spacetime,
and location in spacetime, is more metaphysically fundamental than trajectories
through spacetime and quantities defined over the configuration of particles in
spacetime. The reason the conservation laws are explained by the symmetries
is that the former describe things that are grounded in things described by the
latter.

Of course, not everyone accepts this. For example, Brown (2005) argues that
the structure of spacetime arises from the dynamics of our world, rather than
vice versa. Not, I think, coincidentally, Brown and Holland see no explana-
tory asymmetry between symmetry principles and conservation laws: “We
have now established a correlation between certain dynamical symmetries and
certain conservation principles. Neither of these two kinds of thing is concep-
tually more fundamental than, or used to explain, the other. [...] After all, the
real physics is in the Euler-Lagrange equations of motion for the fields, from
which the existence of dynamical symmetries and conservation principles, if
any, jointly spring.” (Brown and Holland 2004: 10). On the view I defend here,
if Brown is right about the relative fundamentality of dynamic principles and
spacetime symmetries, Brown and Holland are also right about the explana-
tory relationship between symmetry principles and conservation laws. I take
this to be an advantage to my view: what explains what, even amongst the
laws of physics, turns on how the world is actually structured rather than on
ungrounded counterfactuals (or inaccessible essences).

4 Conclusion

I conclude that the Humean view has an advantage in explaining the explana-
tory structure within the laws of physics. To recap: symmetry principles de-
scribe quite abstract features of the spatial, temporal, and quantitative structure
of our world. These abstract features provide us with information about which
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parts of the world are qualitatively alike, and which are different. Because our
laws only respond to qualitative features, symmetry principles provide quite
strong constraints on the structure that the laws can take. But they provide
these constraints because they are true, informative generalizations that we
know when we are formulating our physical theories, not because they have a
mysterious power to make the theories or laws develop one way rather than
another.

The Humean view, if it succeeds for first-order laws, provides a link be-
tween the informativeness and simplicity of a set of generalizations and their
modal resilience and explanatory power. This link arises because of the prag-
matic utility of holding such generalizations fixed when reasoning and acting,
and it naturally extends to symmetry principles, which are counterfactually
robust and explanatory even amongst the laws7. So the Humean view is quite
powerful: it not only gets right the nature of symmetry principles and their
explanatory status within the laws, but it connects naturally to a philosophical
explanation of why we, as agents mostly interested in finding out about the
actual world, would be interested in this counterfactual stability.

Can other views of laws reap this success? I am not sure. But I do think they
will face challenges. As Lange (2009) and French (2014: 251) note, dispositional
essentialists are in quite a pickle: whether or not the symmetry principles are
meta-laws, they do seem to be robust under counterfactual changes in the actual
laws. But for the dispositional essentialist, the laws are metaphysically neces-
sary. So it’s not clear how these counterfactuals should be evaluated. Of course,
things are not yet hopeless: perhaps a dispositional essentialist of the stripe of
Demarest (2015), who holds that the essences pick out the objective property
structure of the world but the laws are determined by a best systematization of
these properties, can use a strategy like that defended here to show that there is
an explanatory structure within the laws. Such a dispositional essentialist could
appeal to the grounding-based explication in §3.2 to explain how some of these
laws explain others, even if she could not easily show that some principles are
more counterfactually robust than others.

Proponents of sui generis laws, like Maudlin (2007) are similarly out on a
limb. If the laws are part of the ontological structure of the world, what should
we make of their internal explanatory structure? And if the laws are really just
one sui generis posit, it’s hard to see how some of that entity’s features could
be more counterfactually robust than others. Plausibly, such a structure can be
built in by hand. But it is more satisfying if it we are able to explain it from the
scruples of our view.

Similarly, I think there is hope for Lange. For while I have argued that he is
wrong to take the symmetries to be meta-laws, he still has the resources to make
them more counterfactually robust, and so (on his view) more explanatory, than
conservation principles and other dynamic laws. My chief complaint with this

7It’s worth repeating here that I don’t take this to be part of the semantics of counterfactuals.
Rather, I think that, whatever the true semantics of counterfactuals, it must get this connection;
otherwise we would not have good reason to employ them when making decisions about what to
do in the actual world.
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strategy is that it seems to build the explanatory structure in by hand: by
stipulating that these counterfactuals are true and fundamental, we lose any
ability to explain why these facts, rather than others, are the counterfactually
robust ones. We thereby have a less satisfying philosophical explanation of the
explanatory power of symmetries relative to the other laws. Perhaps, at the end
of inquiry, the Humean view will not succeed and we will have to accept this
shallower explanation. But I am not yet ready to give up.

Other parts of the internal structure of laws should also interest metaphysi-
cians. Which features of the laws are stipulated or definition, and which describe
the world? What is the status of idealizations? Given that our laws often come
with a variety of free parameters, how do we tell which of these are nomi-
cally necessary and which boundary conditions? What is the metaphysics of
physical quantities, or fibre bundles? Many of these questions have generated
considerable interest within the philosophy of physics but too little amongst
metaphysicians of law. Humeans, and other metaphysicians, are just begin-
ning to discuss them–recently Humeans have tackled the metaphysics of the
wavefunction (Miller (2014), Bhogal and Perry (2017)), the status of idealisation
laws (Friend, MS), the metaphysics of fibre bundles (McKenzie 2014) and the
distinction between constants of nature and boundary conditions (Hicks 2017,
Jaag and Loew MS). I believe–and I am certainly biased–that Humeans have
a leg-up here, as Hume’s principle (no necessary connections between distinct
existences) gives us a principled way to find concepts, notions, and kinds which
are not fully distinct, but have some sort of internal structure. This means that
as a more refined understanding of questions in philosophy of physics perco-
lates through metaphysics, Humeans are able to provide an explanatory theory
of the nuances of physical theories, while other views must be tailor-made to
yield the right result. But my guess is also that there are more questions to ask,
and that the more contact metaphysicians have with philosophy of physics, the
more tools they will have to develop their views about laws.8
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