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Abstract

In this paper we show how the dynamics of the Schrödinger, Pauli
and Dirac particles can be described entirely within the hierarchy of
Clifford algebras, C1,3, C3,0, and C0,1. There is no need to introduce
vectors in Hilbert space, but that option is always available. The state
of the quantum process is characterised by algebraic bilinear invari-
ants of the first and second kind. We show the bilinears of the second
kind emerge from the energy-momentum tensor of standard quantum
field theory and are identical to the energy and momentum used in the
Bohm model. In our approach there is no need to appeal to classical
mechanics at any stage. Thus we are able to obtain a complete rel-
ativistic version of the Bohm model and derive an expression for the
quantum potential for the Dirac particle.

1 Introduction

In this paper I want to report some recent results of Hiley and Callaghan
[1] who have obtained a complete relativistic generalisation of the Bohm
interpretation [2], [3]. By complete I mean we have derived expressions
for the Bohm energy-momentum, the Dirac quantum potential energy, and
the evolution of the components of the spin of a Dirac particle. Since the
Dirac theory introduces a Clifford algebra in an essential way, we show how
not only the Dirac particle, but also the earlier work on the Pauli [4] and
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the Schrödinger particles [5] emerge from a nested series of Clifford algebras,
namely, C1,3, C3,0, and C0,1. This provides a mathematical hierarchy in which
to embed naturally the successive physical approximations, relativistic par-
ticle with spin, non-relativistic particle with spin, non-relativistic particle
without spin.

The use of Clifford algebras for the Dirac and Pauli particles will come
as no surprise as the mathematical significance of the γ-matrices and the σ
Pauli matrices are well know. That the Schrödinger particle can be included
within a Clifford algebra might come as a bit of a surprise. However once
one realises the isomorphism C0,1 ∼= C, the surprise vanishes.

Our use of Clifford algebras is different from but related to the work
of Hestenes [6], Gull et al [7] and Doran and Lasenby [8]. In all of these
approachs there is no need to use a Hilbert space, rather the information
normally encoded in the wave function is contained in an element of a min-
imum left ideal [10].

Although in this paper we apply our techniques to the Bohm approach,
they have a much wider implication, namely, that quantum phenomena per
se can be entirely described in terms of Clifford algebras taken over the re-
als without the need to appeal to a specific representation in terms of wave
functions in a Hilbert space. This removes the necessity of using Hilbert
space and all the physical imagery that goes with the use of the wave func-
tion. This could have important consequences for the interpretation of the
quantum formalism.

2 Use of the Clifford Algebra.

My original interest in Clifford algebras arose in a very different context.
In the 1960s at Birkbeck, I had many discussions with Roger Penrose as he
was pioneering his twistor theory [9] and David Bohm who was developing
his more general ideas of the implicate order and arguing that one should
be looking for a more algebraic approach in which to describe quantum
phenomena, an idea that has gained prominence, although from a different
perspective, in the work of Connes [11], Haag [12] and many others.

Frescura and Hiley [10] soon realised that if one focused attention on the
Clifford algebra, a common element in both these approaches, we could do
quantum mechanics completely within this algebraic structure. What we
showed in this earlier paper was that all the information contained in the
wave function, or the spinor in this case, is already contained within the
algebra itself and there was no need to introduce a representation through
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an external Hilbert space. In fact we showed that all this information was
encoded within an element, ΦL, of a minimum left ideal within the Clifford
algebra itself.

2.1 The Clifford Bundle.

Let us recall that a Clifford algebra, Ci,j is characterised by a distinguished
sub-space, V , together with a quadratic form Q. For physicists this vector
space is represented by a set of γµ and the quadratic form by a metric tensor
gµν with signature (i, j). We first construct a vector Clifford bundle E π−→M
where the fibres are isomorphic to Ci,j and the structure group is the Clifford
group. Here, of course, M is the base manifold with metric g. What we are
effectively using is a vector sub-bundle whose fibre is a minimal left ideal of
Ci,j together with a dual sub-bundle whose fibre is the dual minimal right
ideal [13].

The way to characterise the minimal ideals within the algebra is to focus
on a set of primitive idempotents, εi. This set has the properties∑

εi = 1

ε2i = εi εiεj = 0 i 6= j

The rank of εi is minimal 6= 0

The next question is to choose our primitive idempotent. The choice is
determined by the physics of the situation we wish to discuss. For example
if we are considering a relativistic situation, then we choose the idempotent 1

(1+γ0)/2. This chooses the Lorentz frame within which we wish to work. It
effectively defines the time axis in the rest frame [14]. If we are considering
a non-relativistic particle with spin, we choose (1+σ3)/2, using σ3 to define
a particular axis in space. Physically this direction is often defined by a
uniform magnetic field. The Schrödinger case is trivial in the sense that
there is only one idempotent, namely, 1.

In terms of the chosen primitive idempotent, we can write an element
of the minimal left ideal in the form ΦL(xµ) = φL(xµ)ε. Here the xµ are
the co-ordinates of the base manifold, M. It should be noted here that φL
is an element of the algebra and not a wave function. We will consider the
following elements in each case.

1We use the physicists notation for the generators, γ and σ, of the algebras C1,3 and C3,0

respectively. These should be thought of as elements of the algebra that are independent
of any specific representation.
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Dirac: φDL = R(g0 + g1γ23 + g2γ13 + g3γ12 + g4γ01 + g5γ02 + g6γ03 + g7γ5)

Pauli: φPL = R(g0 + g1σ23 + g2σ13 + g3σ12)

Schrödinger: φSL = R(g0 + g1e)

Were the gi = gi(xµ) real functions with the restriction
∑
gi(xµ) = 1. We

have used the three primitive idempotents

εD = (1 + γ0)/2, εP = (1 + σ3)/2 and εS = 1 respectively.

There is an advantage of writing φL in the form we have. Firstly we see that
in the Dirac φDL , the first four terms and the final four terms are isomorphic
to the quaternions, explaining its biquaternion nature, first pointed out by
Eddington [15]. For a slow moving Dirac particle, the first four terms cor-
respond to what is normally called the large component, while the rest are
referred to as the small component. In the non-relativistic limit the small
component is neglected and we immediately see that we are left with an
expression that is isomorphic to φPL . If we further reduce φPL by deleting two
of the σij and writing the third as e, we arrive at φSL. Thus we see how the
φL are nested one inside the other, showing that the Schrödiner theory is an
integral part of the hierarchy of Clifford algebras. This, of course, matches
what we see in the standard Hilbert space approach using complex functions
expressed as column matrices, 1× 4, 1× 2 and 1× 1 respectively.

We have already indicated that the real functions gi contain all the infor-
mation that is normally contained in the wave function. In fact one can show
that the relation between these functions and the complex wave functions,
ψi, are

Dirac:

g0 = (ψ∗1 + ψ1)/2 g1 = i(ψ2 − ψ∗2)/2
g2 = −(ψ∗2 + ψ2)/2 g3 = i(ψ1 − ψ∗1)/2
g4 = (ψ∗4 + ψ4)/2 g5 = i(ψ∗4 − ψ2)/2
g6 = (ψ∗3 + ψ3)/2 g7 = i(ψ3 − ψ∗3)/2 (2.1)

Here the ψi are the four components of the Dirac spinor.

Pauli:

g0 = (ψ∗1 + ψ1)/2 g1 = i(ψ∗2 − ψ2)/2
g2 = (ψ∗2 + ψ2)/2 g3 = i(ψ∗1 − ψ1)/2 (2.2)
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Here the ψi are the two components of a Pauli spinor.

Schrödinger: 2g0 = ψ+ψ∗ and 2eg1 = ψ−ψ∗. (2.3)

Here ψ is the usual wave function.
In the approach we adopt here, we also need the Clifford conjugate 2 to

ΦL, namely, an element of the dual right ideal which we denote by ΦR = Φ̃L.
The dual elements to those defined above are

Dirac: φ̃DL = R(g0−g1γ12−g2γ23−g3γ13−g4γ01−g5γ02−g6γ03 +g7γ5)

Pauli: φ̃PL = R(g0 − g1e23 − g2e13 − g3e12)

Schrödinger: φ̃SL = R(g0 − g1e)

One can quickly check that this corresponds to the conjugate wave function
in each case.

To provide a complete description of the state of our quantum system.
we need to form the Clifford density element, ρc = ΦLΦ̃L = φLεφ̃L. This is
the algebraic equivalent of the density matrix.

3 Bilinear Invariants of the First Kind.

3.1 General Construction.

In order to find the physical properties of the system, we need to form the
bilinear invariants of the first kind. These are expression of the form

〈B〉 = tr(εφ̃LBφLε) = tr(Bρc) (3.1)

where B is an element of the algebra corresponding to a physical aspect of
the quantum process.

However every element can be written in the form

B = bs +
∑

biei +
∑

bijeij +
∑

bijkeijk + . . .

so that the mean value of any dynamical element in the algebra can be
expressed as

tr(Bρc) = bstr(ρc) +
∑

bitr(eiρc) +
∑

bijtr(eijρc)/2 . . .

2See Porteous [16] for formal definition.
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This shows that the state of our system is specified by a set of bilinear
invariants

tr(1ρc)→ scalar tr(ejρc)→ vector tr(eijρc)→ bivector tr(. . . )→ . . .

It is these bilinear invariants that characterise the physical properties of the
quantum process in the algebraic approach.

3.2 Example in Schrödinger case.

We start with the Clifford algebra, C0,1, taken over the reals. This algebra
is generated by the elements {1, e} where e2 = −1. As we have indicated
above φL = R(g0 + g1e), while φ̃L = R(g0 − g1e). Combining these results
we find that that the CDE is ρc = ΦLΦ̃L = φ̃LφL = R2.

In order to see what the CDE corresponds to in the standard approach
we use the relations

2g0 = ψ + ψ∗ and 2eg1 = ψ − ψ∗.

Here ψ is the ordinary wave function. This means that

ρc = ψ∗ψ = R2 = ρ

Thus in this case, the CDE is simply the probability. At first sight it seems
we have gained no advantage over the conventional approach. However in the
case for the Pauli and Dirac particles, we find an essential difference between
the CDE and the probability as we will show in the next two sections.

Notice we have replaced i by e. As we have remarked before it is this
replacement that enables us to embed the Schrödinger formalism in the
algebra C0,1 taken over the reals. Again the reason why this works is because
C0,1 ∼= C.

Notice we only have one parameter to specify the state of the system,
whereas we actually need two. (The wave function is complex number.) It
is not difficult to see what is missing. We have no information about the
phase. We need one more invariant and this leads us to invariants of the
second kind. A full discussion of these invariants in the standard approach
has already been presented by Takabayasi [17]. Before going on to discuss
these additional invariants let us show that an additional invariant is also
needed in both the Pauli and Dirac cases.
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3.3 Bilinear Invariants of the First Kind for Pauli Case.

In the Pauli case, we use the Clifford algebra generated by the elements
{1, σ1, σ2, σ3} with the usual multiplication rule σiσj + σjσi = 2δij . This
forms the Pauli Clifford, C3,0. As we have seen, an element of the minimal
left ideal is φPL = R(g0 + g1σ23 + g2σ13 + g3σ12) = RU . We can immediately
write down CDE

ρc = ΦLΦ̃L = ψLεφ̃L = ρUεŨ .

where ρ = R2 is the probability density. We now choose a z-direction in
space and choose the idempotent ε = (1 + σ3)/2. The CDE now becomes

ρc = ρ(1 + Uσ3Ũ)/2

Here Ue3Ũ/2 = s is the spin vector which can also be written in the form
s = (a1σ1 + a2σ2 + a3σ3)/2. It is not difficult to show that the ai are given
by

a1 = 2(g1g3 − g0g2) a2 = 2(g0g1 + g2g3) a3 = g2
0 − g2

1 − g2
2 + g2

3.

Using the relations between the gs and the components of the wave function
ψi given above in equation (2.2), we find these coefficients to be

a1 = ψ1ψ
∗
2 + ψ2ψ

∗
1 a2 = i(ψ1ψ

∗
2 − ψ2ψ

∗
1) a3 = |ψ1|2 − |ψ2|2

This is just the usual well known expressions for the spin vector when written
in standard form. Now we can write the CDE in the form

ρc = ρ(1 + s.σ)/2

When normalised with ρ = 1, and the {σi} replaced by the Pauli matrices,
this operator becomes the standard expression for the density matrix [19].

In the case of the Pauli particle there are four bilinear invariants. They
are

ρ = φLφ̃L = R2.

V = φLσ3φ̃L = 2s

ρ is clearly the probability, while V gives the three components of spin
{s1, s2, s3}. It appears that we have our four real parameters to completely
specify the state of the Pauli particle, but they are not linearly independent
since s2 = 1/4. Thus we, in fact, only have three independent real parame-
ters, so once again one parameter is missing. Again we have no information
about the phase so we need an other kind of bilinear invariant.
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3.4 Bilinear Invariants of the First Kind for the Dirac par-
ticle.

To construct the bilinear invariants of the Dirac particle in a form that can
be compared with the standard approach, we need to chose a different, but
equivalent, idempotent given by

ε = (1 + γ0 + iγ12 + iγ012)/2

Here we have introduced i2 = −1 to compare with the standard Dirac matrix
approach. The bilinear invariants are then

ρ = φLφ̃L = R2.

V = φLγ0φ̃L

S = iφLγ12φ̃L

A = iφLγ012φ̃L

Here V is the velocity of the particle, S its spin, while A is the axial
vector related to the Proca current. Takabayasi [17] has shown that these
invariants provide only seven linearly independent parameters and we need
eight so once again an additional parameter is needed.

4 Bilinear Invariants of the Second kind.

4.1 The Appearance of Energy and Momentum.

If we want the get information about the phase in the conventional approach
we would need to introduce a differential operator into the expression for a
bilinear invariant. In fact that is exactly what Takabayasi [17] has done. We
do the same in the algebra. Of course when we use derivatives like ∂/∂t and
∂/∂x we might expect some connection with the energy and the momentum
and this is exactly what happens.

As we show in [20], we can introduce a momentum defined by

ρP j(t) = −iαΦL
←→
∂ jΦ̃L = −iα

[
(∂jΦL)Φ̃L − ΦL(∂jΦ̃L)

]
(4.1)

and an energy defined by

ρE(t) = iαΦL
←→
∂ 0Φ̃L = iα[(∂0ΦL)Φ̃L − ΦL(∂0Φ̃L)] (4.2)
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Here α = 1/2 for the Schrödinger case, while α = 1 for the Pauli and
the Dirac cases3. Our choice of notation should already give a clue as to
the identity of these formulae. They are the algebraic equivalents of the
the components, Tµ0, of the energy-momentum tensor used in standard
quantum field theory.

What we also showed in [20] was the P j and E were identical to the
Bohm momentum and the Bohm energy used in the Bohm interpretation
[3] [18]. I personally found this a somewhat surprising result since one is
led to believe that the Bohm model was an attempt to return to classical
determinism. Clearly it is not the case and it actually lies at the heart of
low energy quantum field theory.

4.2 The Bohm Energy and Momentum for the Schrödinger
Particle.

Let us start by applying equation (4.1) to the Schrödinger case. Here ε = 1,
so that

2ρP j(t) = −e[
(
∂j(RU)

)
RŨ −RU∂j(RŨ)]

and U = g0 + eg1. This equation becomes

P j = −e[(∂jU)Ũ − U∂jŨ ].

If we write U = exp(eS), where S is the phase of the wave function, then
g0 = cosS and g1 = sinS, from which we find

P j(t) = ∂jS or P(t) = ∇S.

Similarly it is not difficult to show, using equation (4.2), that

E(t) = −∂tS. (4.3)

Thus we see that we can get the expressions for the Bohm momentum and
energy directly from the energy-momentum tensor of quantum field theory.
There is no need to appeal to an analogy with classical Hamilton-Jacobi
as was done in Bohm’s original work [5]. Furthermore we find that these
expressions are necessary to complete the description of the Schrödinger
particle.

3 The reason for this difference is because the primitive idempotent for the Schrödinger
case is 1, whereas the Pauli and Dirac primitive idempotents are of the form (1 + γ)/2
where γ is an element of their respective algebras.
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4.3 The Bohm Energy and Momentum for the Pauli Particle.

In the usual discussion of the Pauli theory, we generally assume the parti-
cle is charged and coupled to the electromagnetic field through the vector
potential. In order to keep the formalism as simple as possible so that we
can bring out clearly the quantum aspects of our approach, we examine the
behaviour of the particle in the absence of an electromagnetic field. Once
the principles involved in our approach have been brought out clearly, it is
easy then to introduce the electromagnetic coupling through the minimal
coupling ∇ → ∇− eA.

We start by considering the momentum, P j , defined by equation (4.1)
with α = 1. Thus substituting ρc = φLεφ̃L into this equation, we find

P j(t) = − i
2

[ΩjΣ + ΣΩj ] = −iΩj · Σ (4.4)

We are using a more succinct notation with Σ = UεŨ , and Ωj = 2(∂jU)Ũ .
We now choose ε = (1 + σ3)/2 and substitute this into equation (4.4). This
gives

P j(t) = −Ωj · S − iΩj/2 (4.5)

where S = i(Uσ3Ũ)/2 is the spin bivector. In the Pauli case, we write
i = σ123 since it commutes with all the elements of the real Pauli algebra
and (σ123)2 = −1. The Bohm momentum is the scalar part of this expression
so that we can write

PB(t) = −Ω · S (4.6)

where Ω =
∑

Ωj .
We can now turn to the energy equation (4.2) and find in this case

E(t) =
i

2
[ΩtΣ + ΣΩt] = iΩt · Σ. (4.7)

The corresponding scalar part of the energy becomes

EB(t) = Ωt · S (4.8)

It should be noted that equations (4.4) and (4.7) are in a sufficiently general
form to be applied in all three cases, Schrödinger, Pauli and Dirac. The
only difference lies in the choice of ε.

If we now use the conversion equation (2.2) in (4.6) we can show that

2ρPB(t) = i[(∇ψ1)ψ∗1 − (∇ψ∗1)ψ1 + (∇ψ2)ψ∗2 − (∇ψ∗2)ψ2] (4.9)
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If we write ψ1 = R1e
iS1 and ψ2 = R2e

iS2 , then we find

ρPB(t) = (∇S1)ρ1 + (∇S2)ρ2 (4.10)

where ρi = R2
i . The meaning becomes more transparent if we write Pi = ∇Si

when the expression for the momentum becomes

ρPB(t) = P1ρ1 + P2ρ2 (4.11)

Thus we see that in terms of the usual approach PB(t) is the weighted mean
of the momentum that can be attributed to each component of the spinor
acting by itself. This result was already noted in Bohm and Hiley [3].

Similarly the energy becomes

ρEB(t) = −[(∂tS1)ρ1 + (∂tS2)ρ2] (4.12)

This can also be written in the form

ρEB = E1ρ1 + E2ρ2 (4.13)

which is just the weighted mean of the energy associated with each compo-
nent of the spinor.

We have remaining the vector part for both P and E defined by equa-
tions (4.1) and (4.2). We see from the earlier work that Ωj = 2(∂jU)Ũ =
−2U(∂jŨ) and Ωt = 2(∂tU)Ũ = −2U(∂tŨ) which implies that Ω appears to
be a form of angular velocity. Indeed if we express the components ψ1 and
ψ2 in terms of Euler angles as explained in the next section, we find Ω is
exactly the expression for the angular velocity of a rotating frame. This re-
sult suggests that we can describe the spinning electron in terms of Cartan’s
moving frames [21], a feature that Hestenes [22] exploits.

4.4 The Bohm Energy-Momentum for the Dirac Particle.

We have seen in the previous sections that the Bohm energy-momentum
can be calculated from the energy-momentum tensor, Tµν . For the Dirac
particle, this tensor when written in algebraic form becomes

2iTµν = tr
{
γµ[(∂νφL)εφ̃L − φLε(∂ν φ̃L)]

}
= tr[γµ(φLε

←→
∂ν φ̃L)]

Still to be chosen is the primitive idempotent ε. Again in order to make
contact with the standard results used in the Dirac representation, we again
choose the idempotent

ε = (1 + γ0 + iγ12 + iγ012)/4.
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Since the only non-vanishing trace is a Clifford scalar, and since γµ is a
Clifford vector, we must find the Clifford vector part of φLε

←→
∂ν φ̃L. We find

the only term in ε that gives a Clifford vector is γ012, so that we need only
consider

2Tµν = tr[γµ(φL
←→
∂ν γ012φ̃L)]. (4.14)

To proceed, we must first evaluate (φL
←→
∂ν γ012φ̃L) in terms of the func-

tions {gi(xρ)}. After some straight forward but tedious calculations we find

φL
←→
∂ν γ012φ̃L = Aνi (xµ)γi (4.15)

where the Aνi are given by

Aν0 = −(g0
←→
∂ν g3 + g1

←→
∂ν g2 + g4

←→
∂ν g5 + g6

←→
∂ν g7)

Aν1 = −(g0
←→
∂ν g5 + g3

←→
∂ν g4 + g1

←→
∂ν g6 + g2

←→
∂ν g7)

Aν2 = (g0
←→
∂ν g4 − g3

←→
∂ν g5 − g1

←→
∂ν g7 + g2

←→
∂ν g6)

Aν3 = (g0
←→
∂ν g7 − g3

←→
∂ν g6 + g1

←→
∂ν g4 − g2

←→
∂ν g5)

Now let us first consider the energy density T 00 and calculate it in terms of
the relations defined in equation (2.1) so that we can see what it looks like
in terms of wave functions. After some work we find

T 00 = i

4∑
j=1

(ψ∗j∂
0ψj − ψj∂0ψ∗j ) = −

∑
R2
j∂tSj = ρEB,

giving us an expression for the Bohm energy for the Dirac particle. In the
final stages of the calculation we have written ψj = Rj exp iSj with Rj and
Sj real functions.

We then see that this result reduces to the non-relativistic EB for the
Pauli particle since

∑j=4
j=1R

2
j∂tSj →

∑j=2
j=1(R2

j∂tSj). Furthermore this, in
turn, reduces to the well known expression for the Bohm energy for the
Schrödinger particle, namely, EB = −∂tS.

Similarly we can also show that the momentum density can be written
in the form

T k0 = −i
3∑
j=1

(ψ∗j∂kψj − ψj∂kψ∗j ) =
∑

R2
j∇Sj = ρP kB.

which is obviously the relativistic extension of the Pauli Bohm momentum.
Thus in more general terms we find

2ρPµB = 2Tµ0 = tr[γ0(φL
←→
∂µγ012φ̃L)]. (4.16)
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5 The Time Evolution Equations.

5.1 Basic Equations.

Let us now turn to consider how time evolution can be described in the
algebraic theory. We have constructed a Clifford bundle and on this bundle
we can define two derivatives, one acting from the left and the other acting
from the right. They are the so called generalised Dirac derivatives [23],
defined by

−→
D =

∑
ei∂xi and

←−
D =

∑
∂xiei. (5.1)

Here ei are the generators of the Clifford algebra, while xi are are the co-
ordinates of the base manifold.

Since we are interested in the time evolution of ρc = ΦLΦ̃L, we must
consider derivatives of the form (

−→
DΦL)Φ̃L and ΦL(Φ̃L

←−
D), where the Ds, are

defined in equation (5.1). Rather than treat these two derivatives separately,
we will consider expressions like

(
−→
DΦL)Φ̃L ± ΦL(Φ̃L

←−
D)

Thus in the case of the time derivatives, we have

(∂tΦL)Φ̃L + ΦL(∂tΦ̃L) = ∂tρc, and (∂tΦL)Φ̃L − ΦL(∂tΦ̃L) = ΦL
←→
∂ tΦ̃L

To discuss the dynamics we need to introduce the Hamiltonian which will
include the Dirac derivatives, the external potentials and the mass of the
particle. Thus we introduce two forms of the Hamiltonian,

−→
H =

−→
H (
−→
D,V,m)

and
←−
H =

←−
H (
←−
D,V,m). Our defining dynamical equations will now read

i[(∂tΦL)Φ̃L + ΦL(∂tΦ̃L)] = i∂tρc = (
−→
HΦL)Φ̃L − ΦL(Φ̃L

←−
H ) (5.2)

and

i[(∂tΦL)Φ̃L −ΨL(∂tΦ̃L)] = ΦL
←→
∂ tΦ̃L = (

−→
HΦL)Φ̃L + ΦL(Φ̃L

←−
H ) (5.3)

The equations (5.2) and (5.3) can be written in the more compact form by
writing the RHS as

[H, ρc]± = (
−→
HΦL)Φ̃L ± ΦL(Φ̃L

←−
H )

Then equation (5.2) becomes

i∂tρc = [H, ρc]− (5.4)
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While equation (5.3) can be written in the form

iΦL
←→
∂ tΦ̃L = [H, ρc]+ (5.5)

Using equation (4.2), we find

ρE(t) = α[H, ρc]+ (5.6)

We find that a complete specification of the dynamics is contained in the
two equations, (5.4) and (5.6). We will now show that (5.4) is a generalized
Liouville equation giving rise to the conservation of probability and, in the
case of a particle with spin, conservation of the components of spin. Equa-
tion (5.6) gives rise to what we have called the quantum Hamilton-Jacobi
equation [3], which now generalises to the relativistic domain.

5.2 The Time Evolution of the Schrödinger Particle.

Let us now apply equation (5.6) to the Schrödinger particle, remembering
to put α = 1/2. Then using equation (4.3), we find immediately

− 2∂tS = [H, ρc]+ (5.7)

If we use the Hamiltonian H = p2/2m+ V and use p = ∇S, we find

∂tS + (∇S)2/2m+Q+ V = 0 (5.8)

where Q = −∇2R/2mR which is immediately recognised as the quantum
potential. This equation is what we have previously called the quantum
Hamilton-Jacobi equation [3]. Thus we see there is no need to appeal to
classical mechanics and then identify the classical action with the phase to
obtain the so-called ‘guidance’ equation p = ∇S. This result immediately
follows from the standard energy-momentum tensor of quantum field theory.

Now let us turn to equation (5.4), using the same Hamiltonian, we find

e∂tρc + [ρc, H]− = 0 (5.9)

This is immediately recognised as the Liouville equation which shows that
the probability is conserved as required.
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5.3 The Time Evolution of the Pauli Particle.

To obtain an expression for the Pauli quantum Hamilton-Jacobi equation, we
need to examine equation (5.6) with ρc = φLεφ̃L where now ε = (1 + σ3)/2.
In this case ΦL

←→
∂ tΦ̃L splits into two parts, a scalar part and a vector part. A

detailed examination shows that these two parts produce identical equations
(see [20]) so we need only consider the scalar part which is

2〈ΦL
←→
∂ tΦ̃L〉s = (∂tφL)σ12φ̃L − φLσ12(∂tφ̃L) (5.10)

Similarly we can split the RHS of equation (5.6) into two parts, the scalar
part is

2〈[H, ρc]〉s = (HφL)φ̃L + φL(Hφ̃L) (5.11)

Combining the scalar equations (5.10) and (5.11) we obtain

(∂tφL)σ12φ̃L − ψLσ12(∂tφ̃L) = (HφL)φ̃L + φL(Hφ̃L) (5.12)

However we have already evaluated the LHS of this equation in working out
the Bohm energy, namely

ρEB(t) = (∂tφL)σ12φ̃L − φLσ12(∂tφ̃L) = ρΩt · S. (5.13)

To evaluate the RHS we assume a free particle Hamiltonian4 H = −∇2/2m.
We find

2m[(HφL)φ̃L + φL(Hφ̃L)] = ρ[S ∧∇P + S · ∇W + P · P +W ·W ] (5.14)

where we have introduced the shorthand A ∧ B = (AB − BA)/2. Here
W = ρ−1∇(ρS). It is not difficult to show that S ∧ ∇ = 0 so that we end
up with the equation

2mE(t) = P 2 + [2(∇W · S) +W 2] (5.15)

This is the Pauli quantum Hamilton-Jacobi equation where the quantum
potential is

Q = (∇W · S)/m+W 2/2m (5.16)
4The inclusion of an interaction with the electromagnetic field is straight forward.

However we again omit the details in this presentation to keep the everything as short
and simple as possible.

15



Now let us express equation (5.16) purely in terms of P, ρ and the spin
bivector S. After some straight forward but tedious work, we find

Q = {S2[2∇2 ln ρ+ (∇ ln ρ)2] + S · ∇2S}/2m = Q1 +Q2 (5.17)

To compare this expression with the quantum potential of the Schrödinger
particle we must use the relations (2.2) in their polar form, we then find

Q1 = − 1
2m
∇2R

R
(5.18)

which is immediately recognised the quantum potential contribution to the
Schrödinger particle. This leaves the spin dependent part

Q2 =
1

2m
S · ∇2S (5.19)

This expression was derived in a different method using the wave function
expressed in Caley-Klein parameters [4], [24]. If we use the Caley-Klien
representation in (5.17) we find

Q2 = [(∇θ)2 + sin2 θ(∇φ)2]/8m (5.20)

Finally, in the same representation, we can write the Pauli quantum Hamilton-
Jacobi equation in the form

(∂tψ + cos θ∂tφ)/2 + P 2
B/2m+Q1 +Q2 = 0 (5.21)

which agrees exactly with the expression given in Dewdney et al. [24].
The method we have used here is thus a general approach in which the

previous model fits once one chooses a specific representation. Our approach
also removes the necessity of identifying the phase of the wave function with
a particular Euler angle, an identification that can not be justified by the
physics. Our method completely removes this difficulty.

5.4 The Conservation Equations for the Pauli Particle.

Now we turn to equation (5.4) which we have called the generalised Liouville
equation. This equation (5.4) also contains a scalar part and a bivector
part. We will now show that the scalar equation gives us a conservation of
probability equation, a genuine Liouville equation. The other gives us an
equation involving the spin of the particle.

We find the LHS of equation (5.6) becomes

i∂tρc = i∂t[ρ+ φLσ3φ̃L] = i∂tρ+ 2∂t(ρS) (5.22)
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where ρ is the usual probability. In this expression, the term i∂tρ corre-
sponds to the scalar part, while ∂t(ρS) is the bivector part.

The RHS of equation (5.4), [H, ρc]− also splits into a scalar and a bivector
part, the scalar part being

〈[H, ρc]−〉s = (HφL)σ3φ̃L − φLσ3(Hφ̃L) (5.23)

We will again, for simplicity, use the free particle Hamiltonian and after
some manipulation we find

2m〈[H, ρc]−〉s = −iρ{2∇P − [S(P ·W ) + (P ·W )S]} (5.24)

Using the expression for W = ρ−1∇(ρS) given above and after some work,
we find

∂tρ+∇(ρP/m) = 0 (5.25)

This will immediately be recognised as the Liouville equation for the con-
servation of probability.

Now let us turn to the bivector part of the equation (5.6). We need to
combine ∂t(ρS) with the bivector part of [H, ρc]−. We find

4m∂t(ρS) = 2m〈[H, ρc]−〉B = 4ρ[(∇P · S) + (S ∧∇W ) + (P ·W )] (5.26)

Since

2P ·W = (∇ ln ρ)P · S + 2(P · ∇)S (5.27)

we find [
∂t +

P · ∇
m

]
S = 2(∇∧ S) (5.28)

However simplifying the RHS of equation (5.28) we find

∇W ∧ S = (∇ ln ρ)(∇S ∧ S) +∇2S ∧ S (5.29)

so that finally we get[
∂t +

P · ∇
m

]
S =

dS

dt
=

1
m

[
∇2S + (∇ ln ρ)∇S

]
∧ S (5.30)

The LHS of this equation shows that the spin experiences an internal ‘torque’
which was exploited by Dewdney et al. [24]. To connect up with their work,
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we now write this equation in terms of the spin vector s rather than the spin
bivector S. We can do this because S = is so that equation (5.30) becomes

ds
dt

=
s
m
× [∇2s + (∇ ln ρ)∇s]. (5.31)

where we have used the identity A ∧ B = i(A × B). This shows that a
quantum torque acting on the components of the spin. Equation (5.31)
then ensures the total spin is conserved during the time development. This
equation was exploited numerically by Dewdney et al [24] to show how the
spin turned as it passed through an inhomogenious magnetic field.

5.5 The Time Evolution of the Dirac Particle.

In order to produce time evolution equations for the Dirac particle, we have
to modify our approach to the two key equations (5.4) and (5.5). The reason
for this lies in the fact that the energy constraint insists that we must have
(∂µ∂µ + m2)ψ = 0 satisfied for both ΦL and Φ̃L. Thus two second order
derivatives are involved, namely, (∂µ∂µΦL)Φ̃L and ΦL(∂µ∂µΦ̃L). These are
used to produce two equations by taking their sum and their difference as
before. The sum gives the energy conservation equation

(∂µ∂µΦL)Φ̃L + ΦL(∂µ∂µΦ̃L) + 2m2ΦLΦ̃L = 0. (5.32)

While the difference produces the following equation

ΦL(∂µ∂µΦ̃L)− (∂µ∂µΦL)Φ̃L = 0 (5.33)

which, as we will show below, describes the time evolution of the spin and
its components, the relativistic generalisation of the corresponding Pauli
equation (5.30).

5.6 The Dirac Quantum Hamilton-Jacobi Equation.

Now we will use equation (5.32) to investigate energy conservation. To anal-
yse this equation further we need to see where the Bohm energy-momentum
as defined in equation (4.16) fits in as was done for the Pauli particle. To
proceed let us first introduce a more general variable Pµ defined by

2ρPµ =
[
(∂µφL)γ012φ̃L − φLγ012(∂µφ̃L)

]
(5.34)

Let us also introduce a quantity

2ρWµ = −∂µ(φLγ012φ̃L)
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Combining these two equations, we obtain

(∂µφL)γ012φ̃L = ρ[Pµ −Wµ]
and − φLγ012(∂µφ̃L) = ρ[Pµ +Wµ]

which can then be written as

− ∂µφL = [Pµ −Wµ]φLγ012 (5.35)

and

∂µφ̃L = γ012φ̃L[Pµ +Wµ] (5.36)

Since we are going to use equation (5.32), we can use equation (5.35), to
form

−∂µ∂µφL = [∂µPµ − ∂µWµ]φLγ012 + [Pµ −Wµ] ∂µφLγ012

After some algebra and finally multiplying from the right by φ̃L, this equa-
tion can be written in the form

− (∂µ∂µφL)φ̃L = ρ [PµPµ +WµW
µ − (PµWµ +WµP

µ)]

+ [∂µPµ − ∂µWµ] (φLγ012φ̃L) (5.37)

This gives us the first term in equation (5.32). Now we must consider the
second term in this equation. Repeating an analogous set of steps but now
using equation (5.36), we find

φL(∂µ∂µφ̃L) = ρ [PµPµ +WµW
µ + (PµWµ +WµP

µ)]

+(φLγ012φ̃L)[∂µPµ + ∂µW
µ] (5.38)

Substituting both these equations in equation (5.32), we finally find

P 2 +W 2 + [J∂µPµ − ∂µPµJ ] + [J∂µWµ + ∂µW
µJ ]−m2 = 0 (5.39)

Here we have used the relation 2ρJ = φLγ012φ̃L, where J is essentially the
axial current. This term reduces to the spin of the Pauli particle in the
non-relativistic limit. Equation (5.39) can be further simplified by splitting
it into its Clifford scalar and pseudoscalar parts. The scalar part is

P 2 +W 2 + [J∂µWµ + ∂µW
µJ ]−m2 = 0 (5.40)
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This is to be compared with the energy equation

pµp
µ −m2 = 0

Thus we see that the extra two terms must be related to the quantum
potential in some way. Before we arrive at an exact expression for the
quantum potential, we must first note that the momentum, Pµ, as defined
in equation (5.34) is not yet the Bohm momentum defined in equation (4.16).
This equation tells us that PµB is the γ0 coefficient in the expression for Pµ.
However it is not difficult to extract the Bohm momentum from the P 2

term in equation (5.40). To do this we need to recall equation (5.34) and
use equation (4.16) to find

4ρ2P 2 =
3∑
i=0

AiνA
ν
i

Using the definition of PµB given in equation (4.16), we find

4ρ2P 2 = 4ρ2P 2
B +

3∑
i=1

AiνA
ν
i

If we write
3∑
i=1

AiνA
ν
i = 4ρ2Π2

we then find equation (5.40) can be written in the form

P 2
B + Π2 +W 2 + [J∂µWµ + ∂µW

µJ ]−m2 = 0

Then we see that the quantum potential for the Dirac particle is

QD = Π2 +W 2 + [J∂µWµ + ∂µW
µJ ] (5.41)

In the non-relativistic limit, Π = 0, and equation (5.41) reduces to the
quantum potential for the Pauli particle, [20],

QP = W 2 + [S(∇W ) + (∇W )S] (5.42)

where 2ρS = φLe12φ̃L is the non-relativistic spin limit of J . W is the non-
relativistic limit of Wµ.

The pseudoscalar part of equation (5.39) is simply [J∂µPµ−∂µPµJ ] = 0.
This puts a constraint on the relation between the spin and the momentum
of the particle. In the non-relativistic limit this term vanishes.
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5.7 The Time Development of the Dirac Spin.

Finally let us turn our attention to equation (5.33) and show that it leads
to an equation for the time development of the spin of the Dirac particle.
By substituting equations (5.37) and (5.38) into equation (5.33) we find

J · ∂µPµ − P ·W + J ∧ ∂µWµ = 0

where we have written

2J · ∂µPµ = J∂µP
µ + ∂µP

µJ

2P ·W = PW +WP

2J ∧ ∂µWµ = J∂µW
µ − ∂µWµJ.

All of these terms are Clifford bivectors so that equation (5.33) gives just
one equation. We can now simplify this equation since

ρ(P ·W ) = −∂µρ(Pµ · J)− ρ(Pµ · ∂µJ)

so that

∂µ(ρPµ) · J + ρ(Pµ · ∂µJ) + ρ(J ∧ ∂µWµ) = 0

However since 2ρPµ = Tµ0, the conservation of the energy-momentum ten-
sor implies

∂µ(Tµ0) = 2∂µ(ρPµ) = 0

so that we have finally

Pµ · ∂µJ + J ∧ ∂µWµ = 0 (5.43)

This equation describes the quantum torque experienced by the spin of the
particle in the absence of any external field. Coupling to an external field is
achieved in the usual manner by replacing ∂µ by ∂µ − ieAµ. The equation
(5.43) reduces to the quantum torque equation for the Pauli particle [20]

(∂t +
P · ∇
m

)S =
2
m

(∇W ∧ S)

Here P is the three-momentum and S and W have the same meanings as in
equation (5.42).
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6 Conclusion.

In this paper we have shown that we can describe the behaviour of quan-
tum particles entirely within the hierarchy of Clifford algebras, C0,1, C3,0
and C1,3, corresponding to the Schrödinger, Pauli and Dirac particle. Thus
we have a natural mathematical hierarchy for the successive generalisations
non-relativistic particle without spin, non-relativistic particle with spin and
a relativistic particle with spin. Furthermore there is no need to appeal
to wave functions as one can use algebraic elements abstracted from an
appropriately chosen minimal left ideal. However one can always use a rep-
resentation in terms of wave functions should one wish.

The state of a particle is described by bilinear invariants constructed in
the algebra. As Takabayasi [17] has shown, we need to consider two kinds
of bilinear invariants to obtain a complete description of the state of the
particle. The first kind involve terms like 〈B〉 = tr(BφLεφ̃L) = tr(Bρc)
where ρc is the Clifford density element. However there are not enough
of these invariants to completely define the system. We must therefore
introduce invariants of the second kind viz, ΦL

←→
∂ µΦ̃L. These invariants are

essentially part of the standard energy-momentum tensor used in quantum
field theory. Indeed the four momentum is given by ρPµ(t) = −iΦL

←→
∂ µΦ̃L.

Thus we can use these bilinears to complete the specification of the state of
the particle.

However these Pµ turn out to be the Bohm energy-momentum. Thus
rather than the Bohm approach being some ad hoc addition to a misguided
attempt to return to a classical determinism, they are essential parameters
to completely specify the quantum state of the system.

We then show how the time evolution of the states of a particle is dis-
cussed in this theory. We have two evolution equations.The first, iΦL

←→
∂ tΦ̃L =

[H, ρc]+, is an energy conservation equation which we have previously called
the quantum Hamilton-Jacobi equation. The other is a generalised conser-
vation equation, i∂tρc = [H, ρc]−, conserving probability and spin.

We have shown how these equations can be applied to the Schrödinger,
Pauli and the Dirac particles. In all three case we find that the first equation
always produces an additional energy term that has traditionally been called
the ‘quantum potential’. Thus rather than being something arbitrary, it is
an essential feature of a quantum process, ensuring that energy is conserved.
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