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Abstract 

Despite what we know about children’s ability to 
categorize, it is not clear to what extent information in the 
environment is capable of facilitating higher-order category 
knowledge, nor to what extent different kinds of object 
features play different kinds of roles. As a start we built a 
network of 130 early-learned nouns with 1394 perceptual and 
functional features as given by adult judgments. Then we 
analyzed the basic structural properties of the network. These 
revealed a small world structure and a high degree of feature 
overlap in local clusters. To identify the local clusters, we 
used a clique percolation algorithm to parse the network in 
terms of the statistical properties of feature overlap.  This 
enabled us to identify clusters of items with a strong 
resemblance to common categories, such as animals, foods, 
and vehicles.  Perceptual and functional features were found 
to play different roles in the categorization, with functional 
information being less redundant but more specific than 
perceptual information.  

Keywords: early semantic network, clusters, perceptual and 
functional features, percolation algorithm, feature 
correlations. 

 
    Theories of human category structure are often based on 
feature-category correlations. Traditional theories of 
categorization posited necessary and sufficient defining 
features that determine category membership (reviewed in 
Murphy, 2002), but other important theories posit 
probabilistic feature correlations with category members 
typically being similar across clusters of correlated 
properties (Rosch et al., 1976). It is generally accepted that 
people learn category-feature correlations (McRae, Cree, 
Seidenberg & McNorman, 2005; Younger & Cohen, 1990) 
and there is supporting evidence both from developmental 
(Rakison & Poulin-Dubois, 2002) and category-specific 
deficit studies (for example, Caramazza & Shelton, 1998; 
Tyler, Moss, Durrant-Peatfield & Levy, 2002, but see 
Warrington & Shallice, 1984).   

Computational studies suggest further that the latent 
structure available in a system of many categories  with 
many feature-category correlations may be sufficient to 

define different superordinate kinds. In particular, Rogers 
and McClelland (2004) demonstrated how patterns of 
coherent co-variation across features could create 
superordinate categories. The idea of co-variation—of 
systems of correlations in overlapping feature patterns—
provides one possible way to address the criticism  that 
feature correlations are too-unconstrained to explain human 
category structure (e.g. Ahn, Kalish, Medin & Gelman, 
1995).  

Although previous studies have explored how feature- 
correlations structure specific categories, no prior studies 
have focused on how this structures the system of noun 
categories children learn.  The purpose of the present study 
is to provide such a description.  A descriptive study seems 
pre-requisite to the examination of any claims about what 
feature correlations—of themselves or in concert with other 
processes—can do by way of creating children's category 
knowledge.  The present study specifically examined 130 
nouns that are among the first nouns children learn and the 
structure of the features (derived from adult feature 
generation studies) associated with those categories.  The 
analyses concentrate on perceptual and functional features--
features of things that should be evident in even young 
children's experiences. 

Perceptual and functional features are also of interest 
because of several disputes of the possibly different roles 
that the two kinds of features might play in category 
organization.   Perceptual features are typically defined as 
static visual features such as color, shape, and part structure 
(e.g., having legs or not); functional features typically 
encompass roles (e.g., used to drink from), behaviors 
(breathes or flies), and transient properties (e.g., can be 
opened).  There have been suggestions that different kinds 
of categories differ in the relative importance of these two 
kinds of features with perceptual features perhaps more 
important for animals and functional features more 
important for artifacts, although there is considerable 
dispute (see De Renzi & Lucchelli, 1994; Komatsu 1992). 
In the literature on cognitive development, the debate 
centers around the relative importance of the two classes of 
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features, with some suggesting a developmental trend from 
more perceptual to more functional features in category 
organization and others suggesting that functional features 
trump perceptual features even early in category 
development. (see, e.g., Mandler, 1992; Quinn and Eimas, 
1996; Sheya and Smith, 2007).  

In summary, the goal of this study is a description of the 
coherence of the co-variation of the feature category 
correlations that characterize the noun categories children 
typically learn early, prior to the age of 3 years.  Such a 
description should enable fine-grained behavioral 
predictions about, for example, children’s generalizations 
from one category to another and about the early 
organization of nascent superordinate categories.  Such a 
description should also be relevant to understanding the 
kinds of learning mechanisms that might exploit the 
available structure.  To these ends, we examine the graph 
theoretic properties of the system of pair-wise relations 
among nouns as indicated by the numbers of shared features 
that connect them.  The choice of this approach is meant to 
be atheoretic; that is, we seek simply to describe the 
structure potentially available to some learning mechanism, 
not to show that any such structure or generalization from 
that structure can be learned.  In the analyses, we will 
compare the graph theoretic structure in the feature network 
of these early-learned nouns to randomly connected 
networks, to better understand how much and what kind of 
structure is available to young learners.   

 
The Categories and Their Features 

 
Noun categories.  The nouns were selected from the Bates-
MacArthur Communicative Developmental Inventory 
(Fenson, Dale, Reznick & Bates, 1994), Toddler version.  
This inventory contains at least 50% of children’s 
productive vocabulary by 30 months.  Our study used the 
130 common nouns from this inventory for which there 
were available feature norms from McRae et al., (2005). 
These 130 nouns over-represent (with respect to the 
inventory as a whole) animals (33 nouns, 25% of the subset 
versus 15% of whole inventory) and under-represent food 
(17 nouns, 13% of the subset versus 23% of the whole 
inventory). Nonetheless, the sample includes a broad array 
of nouns across several different superordinate categories. 
 
The features.   The features were taken from the feature 
norms reported by MacRae et al. (2005).  That study 
collected feature norm for 541 concepts from a total of 725 
adult participants with 30 participants providing features for 
each concept.  The participants in that study were given 
each noun and 14 blank spaces to fill with features and were 
prompted to provide physical properties (how it looks, 
smells, sounds etc), functional properties or uses, internal 
properties, and other pertinent facts.  Cree and McRae 
(2003) classified the generated features as perceptual (e.g., 
is red, has wheels), functional (e.g., used to eat food, gives 
rides), encyclopedic (e.g., was imported to Europe from the 

New World) and taxonomic (e.g., is an animal). We used 
only the perceptual and functional features because only 
these types of features are likely to be directly experienced 
by young children.  Note that superordinate names, the 
likely real-world correlates of the taxonomic features, are 
not typically known by children younger than age three 
years. One limitation of this approach (well-recognized in 
the feature generation literature) is that the features 
generated by adults exclude any pervasive and/or not easily 
labeled properties (e.g. kinds of shapes or ubiquitous 
behaviors such as “breathes”). However, adults do 
consistently list features that are characteristic of things. 
Thus, although the features generated by adults are likely to 
be incomplete with respect to those available to learners, the 
structure discernible from such imperfect data is nonetheless 
likely to be informative about the coherent co-variations of 
features among early noun categories.  
  

 
The Structure of Early Noun-feature Correlations 

 
The Full Network. A graph is a collection of nodes and a 
collection of edges that connect pairs of nodes. In the 
following analyses, the edges may be defined in terms of 
differing numbers of shared features: for example, when w 
(the feature threshold to define an edge) is 1, nouns are 
connected by an edge if they share at least one feature and 
when w is 3, nouns are connected by an edge if they share at 
least 3 features. In all the analyses, the threshold w was 
varied between 1 and 4.  These different criteria for defining 
edges (and the connectedness of any two nouns) yield a 
series of networks.  

  
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: The noun graph.  Edges represent (w = 2) two or 
more shared features.  Isolated nodes are not shown. 
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Small-world structure.  Our first question was whether or 
not our feature-based noun network contained sufficient 
local structure to warrant further investigation. A common 
method used to categorize the presence of local network 
structure is small-world analyses. Watts and Strogatz (1998) 
showed that many real world networks contain small-world 
structure. Additionally Steyvers and Tenenbaum (2005) 
showed that several representations for adult semantic 
networks contain small-world structure as well. Watts and 
Strogatz (1998) found that the small-world structure in the 
real world networks had a mean clustering coefficient much 
larger than the one found in a random network of the same 
number of nodes, edges, and average shortest path length. 
The clustering coefficient of a node was calculated by 
determining what proportion of a node’s closest neighbors 
(nodes connected by an edge) were also connected to each 
other by an edge.  To get the clustering coefficient of the 
whole network, the coefficient was averaged across all 
nodes.  Consequently, when the average shortest path length 
of a network is low and the mean coefficient cluster is high 
relative to the appropriate random network, the network is 
said to contain small-world structure.  

The feature-based network we present here has small-
world structure, which increases with increasing w.  As w 
increases from 1 to 4, the clustering coefficient increases 
from 0.55 to 0.6, while the mean clustering coefficient of 
500 random networks of the same size and density goes 
from 0.29 to 0.02. The mean shortest path length varies 
from 0 to 5 in both the observed and random networks, but 
does so in a non-systematic way. In fact the mean shortest 
path length decreases faster as a function of the feature 
threshold w for the random network as compared to the 
feature-based network. What this means is that the feature-
based network has a more robust small world structure than 
the random network or that it becomes more locally 
structured as the feature requirement for edges increases. 
Thus, comparing the mean coefficient cluster and the mean 
shortest path length of both random networks and the 
feature-based network helped us determine that there was 
sufficient local structure to warrant an investigation into the 
identity of the underlying clusters.  
 
Cluster Analyses.  Because we are interested in how the  
coherent co-variations of features structure early noun  
categories, we needed to employ a clustering technique 
which did not force strict partition of noun clusters. In fact 
this might be a more principled way to explore the semantic 
knowledge that structures the flexible system of early noun 
categories. For example, CHICKEN may belong in a 
category with birds or other animals, but it may also share 
certain features with members of the food category. Given 
that particular goal, we used the clique percolation method 
introduced by Palla, Derenyi, Farkas, and Vicsek (2005) that 
does precisely that.  
  The clique percolation method identifies groups of 
nodes of size k that are well-connected with one another. It 
does this by identifying the presence of k-cliques, which are 

sets of k nodes that are all connected with one another 
(maximal complete subgraphs).  Two k-cliques are adjacent 
if they share k–1 vertices  and two k-cliques are k-clique-
connected if they are connected by a sequence of adjacent k-
cliques. A k-clique percolation cluster is the union of all k-
cliques that are k-clique-connected to a particular k-clique.  
For a given value of k, this method identifies all k-clique 
percolation clusters, which are groups of objects that are 
sufficiently well connected to create clusters of local 
structure in the network.   
    Besides allowing for overlapping categories and using 
local edge densities to identify communities of nouns, the 
clique percolation method also allows for a principled 
approach to identifying the cut-off threshold for a given 
network that yields the most structural information (see 
Palla, Barabasi, & Vicsek, 2007).  We accomplish this by 
increasing the value of k for each cut-off threshold, w, until 
the second largest component is larger than half the size of 
the largest component.  This is because, for low values of k, 
most nodes tend to be connected in one large clique 
percolation cluster.  However, as k is increased, the clique 
percolation clusters separate as the method focuses in on 
narrow regions of high connectivity.  After adjusting k 
upwards for each cut-off threshold, we then identify the 
corresponding w and k that have the largest number of 
percolation clusters.  For the noun-feature network, the k 
and w values that yield the most clusters are 3 and 3, 
respectively.  This yields a conservative estimate for 
category membership, because only nouns with enough 
local information to be included in a clique of size k = 3 will 
be included in the output.  Nouns lacking this connectedness 
are not assigned to any cluster. 
    The largest number of clusters identified was 10 for k = 3 
and w = 3 (see Appendix for clusters). These clusters 
represent potential category structure and are somewhat 
consistent with our adult expectations, at least in terms of 
what they include.  For example, there are categories 
approximating what adults may define as food, vehicles, 
non-flying animals, birds, clothing, furniture, and several 
categories for artifacts. Comparing the adult-reported 
taxonomic membership (see superscripts in the Appendix) 
with the percolation clusters finds significant parallels.  
Categories that are most clearly consistent with adult 
taxonomic categories are those of animals, fruits, birds, 
clothing, furniture, and vehicles.  In all cases, some 
members lie outside the taxonomic assignment of McRae et 
al. (2005), some of which would likely be classified as 
category members by most adults, while some of which 
would not.  For example, AIRPLANE, BIKE, and 
TRACTOR do not have ‘vehicle’ assignment according to 
McRae et al. (2005), but few adults would probably argue 
that they are not vehicles. Of perhaps equal interest is that 
the feature clusters pick up ad hoc categories (Barsalou, 
1983) such as a category of things for cutting, a soft-white 
things category, and a category of things you might need to 
rest and relax. The categories—defined only by the 
connectedness of the nouns through shared features— 
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constitute hypotheses about young children’s category 
knowledge that can be tested in future behavioral studies. 

In sum, the results suggest two main results. 1) Common 
categories known by young children present highly 
organized local structure in terms of shared features. This 
local structure may constitute children’s early higher order 
knowledge about different categorical kinds. 2) It also 
shows that things belong to different partitions and that 
these partitions are organized along coherent co-variations 
of overlapping and co-occurring features. 

 
The Functional and Perceptual Networks 

 
To address the structural roles of perceptual and 

functional features in the noun-feature network, we used the 
perceptual and functional classifications assigned by McRae 
et al. (2005).  The noun-feature network contains 403 
functional features (3.1 per noun) and 991 perceptual 
features (7.6 per noun). The most common functional 
features (in terms of the number of nouns with which they 
are associated) are: is edible (20), used for transportation 
(11), worn for warmth (8), hunted by people (6), used by 
children (6), used for holding things (6).  The most common 
perceptual features are: made of metal (24), can be different 
colors (22), has 4 legs (22), is large (21), is small (21)).   

Functional and perceptual networks were generated by 
creating networks that only used functional or only used 
perceptual features. These networks therefore represent 
different kinds of semantic information that could structure 
the system of early noun categories in different ways. 
Figures 2 and 3 present the functional and perceptual 
networks, with w = 1 for the functional network and w = 2 
for the perceptual network. At w = 1 the perceptual network 
is one large component with no visible local structure. 

As is apparent from Figures 2 and 3 (and the associated 
threshold w), the perceptual network is far denser than the 
functional network.  On average, a node in the perceptual 
network at the lowest cut-off threshold is connected to 27% 
of the other nodes; the average node at the same cut-off 
threshold in the functional network is only connected to 5% 
of the other nodes.  Perceptual information is therefore more 
noisy and, in a category defining sense, less discriminating 
than functional information.   

The number of isolates is much higher for the functional 
network than for the perceptual network.  At a cut-off 
threshold of w = 2, more than half of the nodes in the 
functional network are unconnected to any other node.  At 
the same cut-off threshold, only 10 nodes in the perceptual 
network are isolates.  This indicates that perceptual noun 
relationships tend to be more redundant than functional 
relationships.  Edge relationships in the functional network 
are predominantly based on a single shared feature. 

Both networks have small-world structure.  With w 
ranging from 1 to 4, the functional network clustering 
coefficients go from 0.88 to 1.  For the same w range, the 
perceptual network clustering coefficients go from 0.54 to 
0.62. However, at w = 2, the number of isolated nodes in the 

functional network is 81, but only 10 for the perceptual 
network. The difference between the observed clustering 
coefficients and that for a random network of similar density 
is higher for the functional network than for the perceptual 
network, which is consistent with what we can visually 
observe in Figures 2 and 3: the functional network has more 
local structure than the perceptual network.  However, even 
the slightest increase in the cut-off threshold reduces the 
functional network to a large number of isolates.  
Meanwhile, the perceptual network maintains small-world 
structure and involves the majority of the nodes in this 
structure even if the requirement for noun-pair relatedness is 
three or more perceptual features.  There is a very clear 
trade-off here.  Perceptual information, partially because of 
its abundance, is more redundant and can provide more 
robust information about category inclusion, but this 
information is not as discriminating of different categories 
as is functional information.  A single functional 
relationship is sufficient to define all category members that 
are, for example,  USED FOR TRANSPORTION; no single 
perceptual feature contains that information. 
 
 

 
 
Figure 2: The functional feature network (w = 1).  Isolated 

nodes are not shown. 
 
Cluster Analyses. What local structure is present in the 
perceptual and functional networks? The functional network 
provides the most number of clusters (11) when k = 3 and w 
= 1; for the perceptual network, the most clusters (9) are 
separated out when k = 5 and w = 2.  This is consistent with 
the graph theoretic data showing that the functional network 
has fewer isolates and greater local structure at its lowest 
cut-off threshold, while the perceptual network loses only a 
few nodes to isolates but gains substantial local structure—
compared with a random network of the same density—by 
increasing w to 2.  
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Figure 3: The perceptual feature network (w = 2).  Isolated 

nodes are not shown. 
 

For the sake of brevity, we do not present the clique 
percolation clusters here, but instead describe their relevant 
properties.  A close look at the different kinds of clusters 
present in the two networks reveals some interesting 
comparisons.  First, the clusters in the functional category 
are generally smaller, more conservative—there are fewer 
odd members in any category—and tend to represent what 
adults might call traditional categories (e.g., food, clothes, 
vehicles).  The perceptual based clusters are less 
conservative—containing numerous odd members—and are 
more representative of ad hoc categories.  For example, to 
our best approximation, two of the perceptual clusters might 
represent LONG THIN THINGS and THINGS THAT CAN 
FLY. As above, comparing the clique percolation clusters 
with the taxonomic information reported by adults in the 
McRae study is not particularly helpful.  For example, 
TUNA is not labeled as food in the McRae study, but it is 
clearly recognized as such in the functional clique 
percolation clusters.  As well, the functional clusters 
recognize categories of THINGS TO RIDE IN OR ON, for 
which there is no taxonomic category in McRae.  
Nonetheless, the functional categories contain only food 
items in food clusters, whereas the perceptual clusters 
contain PEN and HOSE in with other fruits and vegetables, 
and a larger mostly animal category, contains furniture 
(having 4 legs) and BOX (is brown and can be large or 
small, like MOOSE and SQUIRREL).  Overall, functional 
categories tend to be smaller (underestimating category 
membership) and less sullied by near-members, whereas 
perceptual categories are larger and over-estimate category 
membership.  Again, these data provide category specific 
hypotheses through which to test different feature roles in 
category membership.  

Remembering that our most discriminating perceptual 
clustering requires two features to create a relationship, 
while the functional clusters require only one, one cognitive 
interpretation is that categories based on perceptual features 
should require more information to make comparisons 

(including possibly more feature overlap and more 
exemplars), whereas functional categories can use very 
limited information, but are constrained by the limited 
availability of that information. Perhaps the right conclusion 
will be that perceptual and functional features play 
important but different roles in developing category 
knowledge. 
 

General Discussion 

The capacity to create flexible categories from feature 
correlations and overlap is a powerful tool for predicting 
properties about the world.  By taking a subset of nouns that 
many children know at 30 months and combining these with 
features reported to be characteristic of these things, we 
were able to construct a network that represents a cognitive 
hypothesis about how information is structured in early 
semantic networks.  Analyses of this network revealed that 
it had small-world structure and that the local structure was 
consistent with categories that are largely familiar as ad hoc 
categories of practical utility.   

Further analyses revealed that the functional and 
perceptual features that made up the network played 
different kinds of roles in structuring the network.  
Functional features tended to play a more conservative role, 
in most cases only including more traditional members of 
standard adult categories.  Perceptual features were more 
redundant, with multiple features defining inclusions in a 
specific cluster, but were also less discriminating, and 
capable of producing clusters that adults do not typically 
identify as categories (e.g., long-thin-things) but which 
young children might.  

This is a first encouraging step in understanding how 
systems of category-feature correlations and overlap might 
constitute category knowledge and a step that leads to 
specific testable hypotheses. However the description given 
here might well be distorted by the very limits of the tools 
we used. There are a number of limitations in the use of the 
adult-generated features.  First, as McRae et al. (2005) point 
out, they are linguistically based. Thus, potentially highly 
relevant properties that are hard to describe in words (the 
shape of cows versus horses, or the relative sizes of things) 
may be missed.  Second, generated features are likely to be 
distorted by cognitive biases and for example, emphasize 
distinguishing features at the basic level (e.g., has webbed 
feet) over common features at the superordinate level (e.g., 
breathes). However, given that the feature norms do 
represent an under-estimate of available features and are 
unlikely to focus on shared categorical features, the 
presence of categorical structure in the data is strong 
evidence that feature-correlations in the environment are 
sufficient to produce categorical inferences in children.  
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 Appendix 

 
Complete Noun-Feature Network Clique Percolation 

Clusters 
 
Superscripts provide the taxonomic category (if present) in 
the McRae et al. (2005) norms.  When the superscript is a 
single letter (or letters), it is defined at its first appearance as 
the most recent superscripted word starting with the same 
letter (or letters).  For example, f is FOOD. 
 
0: breadfood cheesef lambanimal  
1: balloon bench bowl broom brush bucket comb 

cupdish dish forkutensil hosetube pen platedish sled 
spoonutensil tray  

2: door hammertool shovelt spoonu  
3: forku knifeu scissorst  
4: bearmammal,a catm,a,pet couchfurniture cowm,a deerm,a 

dogm,a,p,carnivore donkeym,a elephantm,a froga, amphibian 
horsea lamba lionm,a,carnivore,cat,predator moosem,a,herbivore 
mousea,rodent pigm,a ponya,horse sheepm,a squirrelm,a 
tigera,predator,cat,carnivore turtlea,pet,reptile,amphibian zebram,a,horse 

5: bootsclothing coatcl dresscl jacketcl jeanscl pantscl scarfcl 
shirtcl shoescl slipperscl sockscl sweatercl  

6: applefruit bananafr beansvegetable cakedessert cheesefood 
grapefr orangefr peasvegetable picklevegetable, food raisinfr 
strawberryfr tunafish  

7: bearmammal,a blackbirdbird,a chickenb,a duck b,a goose b,a 
owl b,a penguin b,a rooster b,a turkey b,a  

8: bedfurniture chairfu couchfu pillow slippercl sofafu  
9: airplane bike busvehicle carv horsea motorcyclev 

tractormachine train tricyclev,bike truckv 
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