
A Finite Relation Algebra withUndecidable Network SatisfactionProblemROBIN HIRSCH, Department of Computer Science, University CollegeLondon, Gower Street, London WC1, UK.E-mail: R.Hirsch@cs.ucl.ac.uk.URL: http:www.cs.ucl.ac.uk/sta�/R.Hirsch/AbstractWe de�ne a �nite relation algebra and show that the network satisfaction problem is undecidable forthis algebra1.Keywords: Network satisfaction problem, relation algebra, undecidability, tiling1 Notation and De�nitionsLet A = (A;+;�; 0; 1; 10;�; ; ) be a relation algebra (see [JT52] for the original ax-iomatisation or [Mad91] for an introduction to relation algebra).� An atom a of A is a minimal, non-zero element. At(A) denotes the set of all atomsof A. A is atomic if for all non-zero a 2 A there exists � 2 At(A) with � � a. Inthe following we assume A is atomic.� The set of forbidden triples of the atomic relation algebra A is the set of all(�; �; 
) 2 3At(A) such that �
 : �; � = 0. Forb denotes the set of forbidden triplesof A.� The set of forbidden triples de�nes composition in an atomic relation algebra, bya; b = �f
 2 At(A) : 9�; � 2 At(A); � � a; � � b; &(�; �; �
) =2 Forbg� If (�; �; 
) is a forbidden triple then so are the six Peircean transforms:(�; �; 
); (�; 
; �); (
; �; �); (��; �
; ��); ( ��; ��; �
); (�
; ��; ��) (this follows from the ax-ioms for relation algebras).� A network2 N over A is a map from nodes(N ) � nodes(N ) into A, for some setnodes(N ).� A network N is 3-consistent or path-consistent if for all l;m; n 2 nodes(N ) wehave N (l; n) � N (l;m);N (m;n) and N (l; l) � 10. It is easy to show that path-consistency implies N (l;m) = N (m; l)^, for all l;m 2 nodes(N ).1Partially supported by UK EPSRC grant GR/L85961. Thanks to Ian Hodkinson, Sean Holden and RogerMaddux for their contributions to this result. Thanks especially to the anonymous referee for pointing out severalerrors and improving the paper in many ways.2Here we follow the temporal reasoning literature and impose no constraints on N . Elsewhere we include in thede�nition of N certain consistency requirements. 1L. J. of the IGPL, Vol. 0 No. 0, pp. 1{8 0000 c
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2 A Finite Relation Algebra with Undecidable Network Satisfaction Problem� If N (m;n) is an atom of A for all m;n 2 nodes(N ) then the network N is calledan atomic network.� A representation h of A maps each element of A to a binary relation over somedomain X such that h is a boolean isomorphism andh(10) = f(x; x) : x 2 Xgh(�a) = f(x; y) : (y; x) 2 h(a)gh(a; b) = f(x; y) : 9z 2 X; (x; z) 2 h(a) ^ (z; y) 2 h(b)g� Let h be a representation of A over the domain X and let N be a network. Amap 0 from nodes(N ) into X is called an embedding of N into h if(m0; n0) 2 h(N (m;n))for all m;n 2 nodes(N ).� The network satisfaction problem (NSP) over A is to determine for an arbitrarynetwork N over A whether there is a representation and an embedding of N intothat representation.2 BackgroundA number of relation algebras have been used for temporal reasoning. There arecases where the network satisfaction problem (NSP) is tractable, e.g. this is the casefor the three atom point algebra [DMP91] and the left-linear algebra [Com83, D91,AGN94]. But typically the NSP is NP-complete as, for example, with the Alleninterval algebra [All83, All84] (NP-completeness proved in [VK86, theorem 2]). Toshow that the NSP for the Allen interval algebra is inNP consider the following non-deterministic algorithm. For each edge of a given network, non-deterministically pickone atom below the element that labels that edge. If the resulting atomic network Mis 3-consistent (and this can be checked in cubic time) then the original network issatis�able (this follows from results in [LM94]). If each possible set of choices leads toan atomic network that fails 3-consistency then the original network is unsatis�able.This non-deterministic algorithm runs in cubic time and solves the NSP for the Alleninterval algebra and works also for many other relation algebras.However, it is not true for all relation algebras that a 3-consistent atomic networkis necessarily satis�able. An example where this can fail is the pentagonal algebra[Mad91] with three self-converse atoms 10; e; d. Composition is de�ned by listing theforbidden triples of atoms (see above). The forbidden triples consist of all Peirceantransforms of (10; x; y) for x 6= y 2 f10; e; dg, (e; e; e) and (d; d; d). For this algebrait is possible to construct a 3-consistent atomic network where the network in notsatis�able in any representation of the algebra. See �gure 1. For the pentagonalalgebra it turns out to be the case that the NSP is in NP, but the question isposed: can the complexity of the NSP be worse than NP and, if so, how bad can thecomplexity be?In this paper we show that the NSP is undecidable for a certain �nite relation alge-bra. This is done by reducing an undecidable tiling problem to it. The constructionof the relation algebra is the same construction as we gave in [HH99] to show that



A Finite Relation Algebra with Undecidable Network Satisfaction Problem 3uu uu������@@@@@@eee eddFig. 1: A 3-consistent but unsatis�able atomic network over the pentagonal algebra[Mad91, page 389]the problem of determining whether a �nite relation algebra is representable or not isan undecidable one3. In this paper we give the construction again and prove the easyhalf of the main theorem. We hope this gives some insight as to why the constructionworks. We omit the harder half of the proof but refer to the corresponding proof in[HH99].No worse complexity is possible because for any �xed, �nite relation algebra A theunsatis�able �nite networks over A are recursively enumerable. This follows fromresults in [HH97, section 9.1].3 TilingsLet � be a �xed, �nite set of tiles with horizontal adjacency H � ��� and vertical ad-jacency V � ��� . In the following, we may sometimes simply write � for a set of tilesand take the adjacencies to be given, provided this is unambiguous. An instance of thedecision problem P (� ) is a non-empty, �nite sequence S(0; 0); S(1; 0); : : : ; S(n; 0) 2 �such that (S(i; 0); S(i + 1; 0)) 2 H, for each i < n. Such an instance is a yes-instanceif it is possible to extend this �nite, one-row fragment into a tiling of the whole planeS(i; j) : i; j 2 Zwhere (S(i; j); S(i + 1; j)) 2 H and (S(i; j); S(i; j + 1)) 2 V fori; j 2Z, and it is a no-instance if it is impossible to extend to such a tiling.Lemma 3.1There exists a �nite set of tiles � such that P (� ) is undecidable.Proof. Let U be any determinisitc Turing machine (with a two-way in�nite tape)that recognizes a recursively enumerable but not recursive language: such machinesare known to exist. So the problem of deciding whether U halts or not, starting on anarbitrary string w in the input alphabet of U , is undecidable. There are a number ofways of coding up U as a �nite set of tiles and adjacencies � so that successive rowsof any tiling that might exist represent the con�gurations of U at successive times.Let � : Q��! Q� (�[ fL;Rg) be the transition function of U , where Q is the setof states, � is the alphabet of U and L and R represent an instruction to move leftor right respectively. For an example of such a coding, let b 2 � be the blank symboland let �0 = � [ fbl; brg (we'll use these extra symbols for blanks on the left and3Indeed the same construction can be used to show for any n � 5 that the problem of deciding whether a �niterelation algebra is a subalgebra of some relation algebras derived from any cylindric algebra of dimension n isundecidable.



4 A Finite Relation Algebra with Undecidable Network Satisfaction Problemright, respectively, of an input string). We extend the transition function � to �0 byletting �0(q; bl) = �0(q; br) = �(q; b) for each q 2 Q. Let � include a tile T (q; s; x) foreach q 2 Q; s 2 �0; x 2 fL;C;R;Og plus one additional tile Y . x = C is intendedto denote that the tape head is in the position of that tile, x = L (or R) is used todenote that the tape head is about to move left (or right) onto that tile and x = O isused otherwise. Y will be used to extend any tiling of the upper half-plane to a tilingof the whole plane. Next we de�ne horizontal and vertical adjacencies H;V � � � � .Let H =f(T (q; s; x); T (q; s0; x0)) : q; q0 2 Q; s; s0 2 �0; x; x0 2 fL;C;R;Og;^ if x0 = R then x = C and �0(q; s) = R^ if x = L then x0 = C and �0(q; s0) = L^ if s0 = bl then s = bl^ if s = br then s0 = brg[f(Y; Y )gand V =f(T (q; s; x); T (q0; s0; x0)) : if x 6= C then s = s0^ if x = C then either �0(q; s) = (q0; s0) and x0 = Cor �0(q; x) = (q0; L) or (q0; R) and s = s0^ x0 = C i� either x = C and �0(q; s) = (q0; s0)or x = L or x = Rg[ f(Y; Y ); (Y; T (q; s; x)) : q 2 Q; s 2 �; x 2 fL;C;R;OggWe say that T 0 can go on the right of T if (T; T 0) 2 H and that T 0 can go above T if(T; T 0) 2 V.Now we reduce the undecidable word recognition problem for U to P (� ). Letw = (w1; : : : ; wn) (some n) be a string in the alphabet � and let U 's start state be q0.Construct an instance S = S(w) of P (� ) by letting S(0; 0) = (q0; bl; x0); S(0; n+1) =(q0; br; xn+1) and S(0; i) = T (q0; wi; xi) for each i with 1 � i � n where� x1 = C� xi = O for 3 � i � n + 1� x2 = R if �0(q0; w1) = (q;R) (any q 2 Q) and x2 = O otherwise� x0 = L if �0(q0; w1) = (q; L) (any q) and x0 = O otherwise.This gives an instance of P (� ). To show that this is a correct reduction, suppose �rstthat S(w) is a yes-instance of P (� ), i.e. it extends to a tiling S(i; j) : i; j 2Zof theplane. Since S(0; 0) = (q0; bl; x0) the de�nition of horizontal adjacency shows thatS(i; 0) = (q0; bl; xi) (some xi) for each i < 0 and similarly S(i; 0) = (q0; br; xi) foreach i > n + 1. Thus row 0 represents the initial con�guration of U at time 0 withthe tape head at position 1. Using the vertical adjacency we see that for j � 0, thej'th row S(i; j) : i 2 Zrepresents the con�guration of U at time j. Since the tilinggoes on forever, this means that U will run forever on input w, so w is a no-instance



A Finite Relation Algebra with Undecidable Network Satisfaction Problem 5of U . (It is slightly irritating that a yes-instance of the tiling problem corresponds toa no-instance of the recognition problem for U , but this can't be helped.) Conversely,if U runs forever on input w then for j � 0 let the tape contents at time j bev(i; j) : i 2 Zand let the state be qj. We construct a tiling of the plane by lettingS(i; j) = T (qj; v(i; j); xij) for j � 0, where xij = C if the tape head is in position iat time j; xij = R if the tape head is in position i� 1 at time j and in position i attime j + 1; xij = L if the tape head is in position i+1 at time j and in position i attime j + 1; and xij = O otherwise. For j < 0 we let S(i; j) = Y . This gives a tilingof the plane and shows that S(w) is a yes-instance.We now modify the tiles � for technical reasons involved in the proof of the second partof theorem 4.1. These modi�cations are needed in order to apply [HH99, theorem 4].Let � be a set of tiles with adjacencies H;V, as above. De�ne a modi�ed set of tiles� 0 from � by� 0 = fT 2 � : there is a (� ) tiling of the plane with T at (0; 0)g [ fZgfor some new tile Z =2 � . For the adjacencies, H0;V 0, if S; T 2 � \ � 0 we let (S; T ) 2H0 () (S; T ) 2 H and (S; T ) 2 V 0 () (S; T ) 2 V and for the extra tile we let(Z;Z) 2 H0 \ V 0 but no other tiles are adjacent to Z. Observe that the new tile Zcan tile the plane on its own but not in combination with any other tile.Lemma 3.2Let � be a set of tiles such that P (� ) is undecidable. Let � 0 be de�ned from � asabove. Then1. P (� 0) is undecidable2. for each tile T 2 � 0 there is a tiling of the plane with T placed at (0; 0) and3. there is a tile Z 2 � 0 which can tile the plane on its own but cannot be adjacentto any other tile.These are the exact conditions required for the application of [HH99, theorem 4].Proof. The last two parts follow straight from the de�nition of � 0. For the �rst part,suppose for contradiction that P (� 0) were decidable. Then a decision algorithm forP (� ) can be obtained, contrary to the condition of the lemma. For the algorithm,take any instance �S of P (� ). If �S contains any tile T not in � 0 then there is no tilingof the plane with T at (0; 0) hence no tiling of the plane containing T at all. So �S is ano-instance. Otherwise, if every tile in �S belongs to � 0, then use the assumed decisionalgorithm for P (� 0) to decide if �S is a yes-instance or a no-instance of P (� ).4 A relation algebra with an undecidable NSPTheorem 4.1There is a �nite relation algebra A such that the NSP over A is undecidable.Proof. The proof works by reducing the problem P (� 0) of lemma 3.2 to the NSP fora certain �nite relation algebra A(� 0), de�ned in [HH99]. If � 0 has k tiles then A(� 0)



6 A Finite Relation Algebra with Undecidable Network Satisfaction Problemhas 2k + 28 atoms. They are:e0; w0ei; wi;+1i;�1i i = 1; 2g0i; u0i; v0i; w0i i = 1; 2w12; T12 T 2 � 0plus the converses of all atoms with two distinct su�ces, viz.�g0i = gi0; �u0i = ui0; �v0i = vi0; �w0i = wi0 i = 1; 2�w12 = w21; �T12 = T21 T 2 � 0The identity is given by 10 = e0 + e1 + e2. Converse is de�ned on atoms with twodistinct su�ces by reversing the order of the su�ces. All other atoms are self-converseexcept �+1i = �1i and ��1i = +1i (i = 1; 2). Composition is de�ned by listing theforbidden triples of atoms. Any triple of atoms where the subscripts do not matchis forbidden, so (xi;j; yj0;l0 ; zl0;i0) is forbidden unless i = i0; j = j0 and l = l0. Herexi;j; yj0;l0 ; zl0 ;i0 stand for any atoms with the appropriate subscripts: we handle thecase of atoms with a single subscript by treating it as a repeated subscript, e.g.e0 = e00. Secondly, any of the six Peircean transforms of the triple (ei; b; c) is forbiddenif b 6= �c. Finally, all Peircean transforms of(g10; g02; w21) (4.1)(T12; S21;+11) any i; j < k, if (S; T ) =2 H0 (4.2)(u10; g02; T21) any T 2 � 0 n fZg (4.3)(v10; g01;+11); (v10; g01;�11) (4.4)are forbidden. There are three dual rules for forbidden triples, obtained from rules (4.2),(4.3) and (4.4) by swapping the subscripts 1 and 2 throughout and replacing H0 byV 0. All other triples of atoms are allowed.Now take an arbitrary instance �S = (S(0; 0); S(1; 0); : : :S(n; 0)) of P (� 0). We con-struct an atomic network N = N ( �S) over A(� 0) with n + 3 nodes z; y0; x0; : : : ; xn insuch a way that �S is a yes-instance of P (� 0) if and only if N is a satis�able atomicnetwork. The labelling of N is given by N (z; z) = e0; N (y0; y0) = e2; N (xi; xi) =e1; N (z; y0) = g02; N (z; xi) = g01 (each i � n), N (xi; xi+1) = +11 (each i < n),N (xi; xj) = w1 (all i; j � n with ji� jj > 1) and N (xi; y0) = S(i; 0)12 (each i � n).See �gure 2.Claim 1 If N is satis�able then �S is a yes-instance of P (� 0).Proof of claim 1. Let h : A(� 0) ! }(X � X) be a representation of A(� 0) oversome domain X such that 0 : nodes(N ) 7! X is an embedding of the network N intothe representation. So, for m;n 2 nodes(N ) we have (m0; n0) 2 h(N (m;n)). We haveN (z; y0) = g02 � g02;�12, so (z0; y00) 2 h(g02; (�12)). Hence there is a point y01 2 Xsuch that (z0; y01) 2 h(g02) and (y01; y00) 2 h(�12), or equivalently (y00; y01) 2 h(+12).Similarlywe can �nd points y02; y03; : : : 2 X and x0n+1; x0n+2; : : : 2 X such that (z0; y0i) 2h(g02); (y0i; y0i+1) 2 h(+12) for i = 0; 1; 2; : : : and (z0; x0i) 2 h(g01); (x0i; x0i+1) 2 h(+11)for i = 0; 1; 2; : : :. Extending the sequences downward x�1; x�2; : : :, y�1; y�2; : : : isentirely similar. See �gure 3.For each i; j 2 Zconsider the triangle (z0; x0i; y0j). Since (x0i; z0) 2 h(g10) and(z0; y0j) 2 h(g02) it follows that (x0i; y0j) 2 h(g10; g02). Since A(� 0) is a �nite algebra,
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HHHHHHHHHHHHHHj6 @@@@@@@I AAAAAAAAAAAAAAK Fig. 3. Extending N ( �S)there must be an atom a(i; j) � g10; g02 such that (x0i; y0j) 2 h(a(i; j)). By the rule ofmatching subscripts, a(i; j) must have subscripts (12). a(i; j) = w12 is impossible byrule (4.1), hence a(i; j) = S(i; j)12 for some tile S(i; j) 2 � 0. Thus the network N ( �S)can be extended as in �gure 3.It remains to show that the tiles S(i; j) : i; j 2 Zform a tiling of the plane. Byconsidering the triangle (x0i; x0i+1; y0j) and rule (4.2) we see that S((i; j); S(i + 1; j)) 2H0 and similarly (S(i; j); S(i; j + 1)) 2 V 0 for i; j 2Z. Hence we have a tiling of theplane extending �S, so �S is a yes-instance.Claim 2. If �S is a yes-instance of P (� 0) then N = N ( �S) is satis�able.The proof of claim 2 is much more complicated and makes use of the new tile Z,the atoms u0i; v0i (i = 1; 2) and rules (4.3) and (4.4). The reader is referred to[HH99, theorem 4]. If �S is a yes-instance of P (� 0) then it is possible to extend the



8 A Finite Relation Algebra with Undecidable Network Satisfaction Problem�nite fragment �S to a tiling of the whole plane Z�Z. Now (by de�nition of � 0) ifT 2 � 0 there is a tiling of the plane with T at (0; 0) and there is a special tile Z 2 � 0which can tile the plane on its own, but not in combination with any of the othertiles. These are the conditions required in [HH99, theorem 4]. The theorem tells usthat the second player (9) has a winning strategy in a certain game G!(A(� 0)) whichsu�ces to prove that A(� 0) is representable, but we can prove more than this.Here we consider instead the game G!(N;A(� 0)) which is identical to G!(A(� 0))except that the play starts from the initial network N . Using the terminology of[HH99], we let the edge (x0; y0) and all the edges labelled by g01; g02;+11 belong to 8along with the converses of all these edges (see �gure 2). All other edges of N belongto 9. Then the de�nition of 9's strategy and the proof that this is a winning onego through unaltered. This su�ces to provide a representation of A(� 0) in which Nembeds. Thus N is satis�able.Hence the undecidable tiling problem P (� 0) reduces to the network satisfactionproblem over A(� 0). We conclude that the latter is also undecidable.References[AGN94] H Andr�eka, S Givant, and I N�emeti. Decision problems for equational theories of relationalgebras. Bulletin of Section of Logic, (1), 1994.[All83] J F Allen. Maintaining knowledge about temporal intervals. Communications of the ACM,26(11):832{843, November 1983.[All84] J F Allen. Towards a general theory of action and time. Arti�cial Intelligence, 23(2):123{154,1984.[AMN91] H Andr�eka, J D Monk, and I N�emeti. Algebraic Logic. Colloq. Math. Soc. J. Bolyai.North-Holland, Amsterdam, 1991. Conference Proceedings, Budapest, 1988.[Com83] S Comer. A remark on chromatic polygroups. Congr. Numer., pages 85{95, 1983.[D91] I D�untsch. Small integral relationalgebras generatedby a partial order. Period. Math. Hungar.,pages 129{138, 1991.[DMP91] R Dechter, I Meiri, and J Pearl. Temporal constraint networks. Arti�cial Intelligence,49:61{95, 1991.[HH97] R Hirsch and I Hodkinson. Step by step| building representations in algebraic logic. Journalof Symbolic Logic, 62(1):225{279, March 1997.[HH99] R Hirsch and I Hodkinson. Representability is not decidable for �nite relation algebras.Transactions of the American Mathematical Society, 1999. To appear.[JT52] B J�onsson and A Tarski. Boolean algebras with operators ii. American Journal of Mathe-matics, 74:127 { 162, 1952.[LM94] P Ladkin and R Maddux. On binary constraint problems. Journal of the Association ofComputing Machinery, 41:435 { 469, 1994.[Mad91] R Maddux. Introductory course on relation algebras, �nite-dimensional cylindric algebras,and their interconnections. In Andr�eka et. al., [AMN91], pages 361{392. ConferenceProceedings,Budapest, 1988.[VK86] M Villain and H Kautz. Constraint propagation algorithms for temporal reasoning. InProceedings of the �fth AAAI, pages 377{382, 1986.Received 28/May/1999


