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Abstract

We define a finite relation algebra and show that the network satisfaction problem is undecidable for
this algebral.
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1 Notation and Definitions

Let A = (A, +,—,0,1,1",7,;) be a relation algebra (see [JT52] for the original ax-
iomatisation or [Mad91] for an introduction to relation algebra).

e An atom a of A is a minimal, non-zero element. A#(.A) denotes the set of all atoms
of A. A is atomic if for all non-zero a € A there exists o € At(A) with o < a. In
the following we assume A4 is atomic.

o The set of forbidden triples of the atomic relation algebra A is the set of all
(o, 3,7) € 3At(A) such that ¥ . a; 3 = 0. Forb denotes the set of forbidden triples
of A.

e The set of forbidden triples defines composition in an atomic relation algebra, by
a;b=%{y € At(A) : o, f € At(A), o < a, 8 < b, &(o, 5,%) & Forb}

o If (o, 3, 7) is a forbidden triple then so are the six Peircean transforms:

(, 8,7), (8,7, a), (v, @, 8), (&%, B), (B, &,%), (¥, 8, &) (this follows from the ax-

ioms for relation algebras).

e A network? N over A is a map from nodes(N) x nodes(N) into A, for some set
nodes(N).

e A network N is 3-consistent or path-consistent if for all [,m,n € nodes(N) we
have N(l,n) < N({,m); N(m,n) and N({,]) < 1'. Tt is easy to show that path-
consistency implies N ({,m) = N(m, ), for all [, m € nodes(N).

lPartially supported by UK EPSRC grant GR/L85961. Thanks to Ian Hodkinson, Sean Holden and Roger
Maddux for their contributions to this result. Thanks especially to the anonymous referee for pointing out several
errors and improving the paper in many ways.

2Here we follow the temporal reasoning literature and impose no constraints on N. Elsewhere we include in the
definition of N certain consistency requirements.
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2 A Finite Relation Algebra with Undecidable Network Satisfaction Problem

o If N(m,n) is an atom of A for all m,n € nodes(N) then the network N is called
an atomic network.

e A representation h of A maps each element of A to a binary relation over some
domain X such that A is a boolean isomorphism and

h(1") = {(z,z):z€ X}
h(a) = {(z,y): (y,z) € h(a)}
ha;b) = {(z,y):3Fz € X, (x,2) € h(a) A(z,y) € h(b)}

e Let h be a representation of A over the domain X and let N be a network. A
map !/ from nodes(N) into X is called an embedding of N into h if

(m’,n') € h(N(m,n))

for all m,n € nodes(N).

e The network satisfaction problem (NSP) over A is to determine for an arbitrary
network N over A whether there is a representation and an embedding of N into
that representation.

2 Background

A number of relation algebras have been used for temporal reasoning. There are
cases where the network satisfaction problem (NSP) is tractable, e.g. this is the case
for the three atom point algebra [DMP91] and the lefi-linear algebra [Com83, D91,
AGN94]. But typically the NSP is NP-complete as, for example, with the Allen
interval algebra [AlI83, All84] (NP-completeness proved in [VK86, theorem 2]). To
show that the NSP for the Allen interval algebra is in NP consider the following non-
deterministic algorithm. For each edge of a given network, non-deterministically pick
one atom below the element that labels that edge. If the resulting atomic network M
is 3-consistent (and this can be checked in cubic time) then the original network is
satisfiable (this follows from results in [LM94]). If each possible set of choices leads to
an atomic network that fails 3-consistency then the original network is unsatisfiable.
This non-deterministic algorithm runs in cubic time and solves the NSP for the Allen
interval algebra and works also for many other relation algebras.

However, it is not true for all relation algebras that a 3-consistent atomic network
1s necessarily satisfiable. An example where this can fail 1s the pentagonal algebra
[Mad91] with three self-converse atoms 1’, e, d. Composition is defined by listing the
forbidden triples of atoms (see above). The forbidden triples consist of all Peircean
transforms of (1',x,y) for # #y € {1',e,d}, (e,e,e) and (d,d,d). For this algebra
it 1s possible to construct a 3-consistent atomic network where the network in not
satisfiable in any representation of the algebra. See figure 1. For the pentagonal
algebra it turns out to be the case that the NSP is in NP, but the question is
posed: can the complexity of the NSP be worse than NP and, if so, how bad can the
complexity be?

In this paper we show that the NSP is undecidable for a certain finite relation alge-
bra. This is done by reducing an undecidable tiling problem to it. The construction
of the relation algebra is the same construction as we gave in [HH99] to show that
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Fic. 1: A 3-consistent but unsatisfiable atomic network over the pentagonal algebra

[Mad91, page 389]

the problem of determining whether a finite relation algebra is representable or not is
an undecidable one3. In this paper we give the construction again and prove the easy
half of the main theorem. We hope this gives some insight as to why the construction
works. We omit the harder half of the proof but refer to the corresponding proof in
[HH99].

No worse complexity is possible because for any fixed, finite relation algebra A the
unsatisfiable finite networks over A are recursively enumerable. This follows from
results in [HH97, section 9.1].

3 Tilings

Let T be a fixed, finite set of tiles with horizontal adjacency H C 7 x 7 and vertical ad-
jacency ¥V C 7 x 7. In the following, we may sometimes simply write 7 for a set of tiles
and take the adjacencies to be given, provided this is unambiguous. An instance of the
decision problem P(7) is a non-empty, finite sequence S(0,0),5(1,0),...,5(n,0) € T
such that (S(¢,0),S(i +1,0)) € H, for each ¢ < n. Such an instance is a yes-instance
if 1t 1s possible to extend this finite, one-row fragment into a tiling of the whole plane
S(i,7) : i, € Z where (S(4,5),S( + 1,7)) € H and (S(¢,5),5({,5 + 1)) € V for

t,j € Z, and 1t 1s a no-instance if it is impossible to extend to such a tiling.

LEmMmA 3.1
There exists a finite set of tiles 7 such that P(r) is undecidable.

PROOF. Let U be any determinisitc Turing machine (with a two-way infinite tape)
that recognizes a recursively enumerable but not recursive language: such machines
are known to exist. So the problem of deciding whether U halts or not, starting on an
arbitrary string w in the input alphabet of U, 1s undecidable. There are a number of
ways of coding up U as a finite set of tiles and adjacencies 7 so that successive rows
of any tiling that might exist represent the configurations of U at successive times.
Let 6 : @ x X = @ x (BU{L,R}) be the transition function of U, where @ is the set
of states, X i1s the alphabet of U and £ and R represent an instruction to move left
or right respectively. For an example of such a coding, let & € ¥ be the blank symbol
and let X' = X U {b;,b,} (we’ll use these extra symbols for blanks on the left and

3Indeed the same construction can be used to show for any n > 5 that the problem of deciding whether a finite
relation algebra is a subalgebra of some relation algebras derived from any cylindric algebra of dimension n is
undecidable.
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right, respectively, of an input string). We extend the transition function § to ¢’ by
letting 8’(q, &) = 8'(¢,b,) = d(q,b) for each ¢ € Q. Let 7 include a tile T'(g, s, z) for
each ¢ € Q, s € ¥, 2 € {L,C, R, O} plus one additional tile Y. # = C' is intended
to denote that the tape head is in the position of that tile, # = L (or R) is used to
denote that the tape head is about to move left (or right) onto that tile and z = O is
used otherwise. Y will be used to extend any tiling of the upper half-plane to a tiling
of the whole plane. Next we define horizontal and vertical adjacencies H,V C 7 x 7.

Let H =

{(T(Qa5a$)aT(QaS/a$/)) : Qaq/ S Qa Sasl S E/a $a$/ S {L,C, R,O},
A if 2’ = R then x = C and §’(q,s) = R
A if x = L then 2/ = C and &§'(q,5") = L
A if s’ = b then s = b
A il s = b, then s = b,}
U{(Y,Y)}
and V =
{(T(q,5,2),T(¢,s ")) : ifx+#C thens=5s

A if & = C then either §'(q,s) = (¢/,s") and ' = C
or 6'(¢,2) = (¢’, L) or (¢, R) and s = &
A &' =Ciff either x = C and &'(q,s) = (¢',5)

orx=Lorx=R

}
U {(Y’Y)’ (Y,T(q,s,x)) g€, seX, re{l,C,R0}}

We say that 7" can go on the right of 7"if (T, T") € H and that 7" can go above T' if
(T,T") € V.

Now we reduce the undecidable word recognition problem for U to P(7). Let
w = (wy, ..., wy) (some n) be a string in the alphabet ¥ and let U’s start state be ¢o.
Construct an instance S = S(w) of P(7) by letting S(0,0) = (g0, b1, z0), S(0,n+1) =
(qo,br, 2ny1) and S(0,4) = T(qo, ws, ;) for each ¢ with 1 < ¢ < n where

e =C

e, =0for3<i<n+1

e xo = Rif ¢ (qo,w1) = (¢, R) (any ¢ € Q) and 2 = O otherwise
o xg = L if &’ (qo,w1) = (¢, L) (any ¢) and zp = O otherwise.

This gives an instance of P(7). To show that this is a correct reduction, suppose first
that S(w) is a yes-instance of P(7), i.e. it extends to a tiling S(7,j) : ¢, € Z of the
plane. Since S(0,0) = (qo, b1, o) the definition of horizontal adjacency shows that
S(2,0) = (qo, b, ;) (some ;) for each ¢ < 0 and similarly S(¢,0) = (qo, b, ;) for
each 7 > n + 1. Thus row 0 represents the initial configuration of U at time 0 with
the tape head at position 1. Using the vertical adjacency we see that for 7 > 0, the
J'th row S(i,4) : ¢ € Z represents the configuration of U at time j. Since the tiling
goes on forever, this means that U will run forever on input w, so w is a no-instance
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of U. (It is slightly irritating that a yes-instance of the tiling problem corresponds to
a no-instance of the recognition problem for U, but this can’t be helped.) Conversely,
if U runs forever on input w then for j > 0 let the tape contents at time j be
v(4,§) : i € Z and let the state be ¢;. We construct a tiling of the plane by letting
S(i,j) = T(q5,v(i,5), ;) for j > 0, where ;; = C if the tape head is in position 4
at time j; x;; = R if the tape head is in position ¢ — 1 at time j and in position ¢ at
time j +1; x;; = L if the tape head is in position ¢ 41 at time j and in position ¢ at
time j + 1; and «;; = O otherwise. For j < 0 we let S(4,j) =Y. This gives a tiling
of the plane and shows that S(w) is a yes-instance. [ |

We now modify the tiles 7 for technical reasons involved in the proof of the second part
of theorem 4.1. These modifications are needed in order to apply [HH99, theorem 4].
Let 7 be a set of tiles with adjacencies H,V, as above. Define a modified set of tiles
7/ from 7 by

7 = {T € 7 : there is a (7) tiling of the plane with T at (0,0)} U {7}

for some new tile 7 ¢ r. For the adjacencies, H' ) V', if ST € TN 7" we let (S,T) €
H <— (S,T) € H and (S,T) € V' <= (5,7) € V and for the extra tile we let
(Z,Z) € H' NV’ but no other tiles are adjacent to 7. Observe that the new tile 7
can tile the plane on its own but not in combination with any other tile.

LEMMA 3.2
Let 7 be a set of tiles such that P(r) is undecidable. Let 7' be defined from r as
above. Then

1. P(r') is undecidable
2. for each tile T' € 7/ there is a tiling of the plane with 7" placed at (0,0) and

3. there is a tile Z € 7/ which can tile the plane on its own but cannot be adjacent
to any other tile.

These are the exact conditions required for the application of [HH99, theorem 4].

ProoF. The last two parts follow straight from the definition of 7/. For the first part,
suppose for contradiction that P(7') were decidable. Then a decision algorithm for
P(7) can be obtained, contrary to the condition of the lemma. For the algorithm,
take any instance S of P(7). If S contains any tile 7' not in 7/ then there is no tiling
of the plane with T at (0, 0) hence no tiling of the plane containing 7" at all. So Sis a
no-instance. Otherwise, if every tile in S belongs to 7/, then use the assumed decision
algorithm for P(7') to decide if S is a yes-instance or a no-instance of P (7). | |

4 A relation algebra with an undecidable NSP

THEOREM 4.1
There is a finite relation algebra A such that the NSP over A is undecidable.

PrROOF. The proof works by reducing the problem P(7’) of lemma 3.2 to the NSP for
a certain finite relation algebra A(7'), defined in [HH99]. If 7 has k tiles then A(7")
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has 2k + 28 atoms. They are:

€0, Wo

6iawia+1ia_1i Z:1a2
905, Ui, Vo, Wo; 1=1,2
wiz, T2 Ter

plus the converses of all atoms with two distinct suffices, viz.

Joi = Gio, Yo; = Ui0, Vo = Vo, Wos = Wi ¢ = 1,2
v _ ’
Wiz = war, T12 = T Ter

The identity is given by 1’ = eg + €1 + e2. Converse is defined on atoms with two
distinct suffices by reversing the order of the suffices. All other atoms are self-converse
except +1; = —1; and —1; = +1; (i = 1,2). Composition is defined by listing the
forbidden triples of atoms. Any triple of atoms where the subscripts do not match
is forbidden, so (x; ;,y;/ 17, ziri) is forbidden unless ¢ = ¢/, j = j* and | = . Here
x; 4, Y0, 20, stand for any atoms with the appropriate subscripts: we handle the
case of atoms with a single subscript by treating it as a repeated subscript, e.g.
ep = egp. Secondly, any of the six Peircean transforms of the triple (e;, b, ¢) is forbidden
if b # ¢. Finally, all Peircean transforms of

(910,902, wzl) (4~1)
(Th2,S21,+11) any ¢, < k,if (S,T) ¢ H' (4.2)
(w10, go2, To1) any T'e 7'\ {Z} (4.3)
(v10, 901, +11), (v10, 901, —11) (4.4)

are forbidden. There are three dual rules for forbidden triples, obtained from rules (4.2),
(4.3) and (4.4) by swapping the subscripts 1 and 2 throughout and replacing H’ by
V'. All other triples of atoms are allowed.

Now take an arbitrary instance S = (5(0,0), 5(1,0),...5(n,0)) of P(r"). We con-
struct an atomic network N = N(S) over A(r') with n + 3 nodes z, yo, %o, . .., T, in
such a way that S is a yes-instance of P(7') if and only if N is a satisfiable atomic
network. The labelling of N is given by N(z,2) = ey, N(yo,%0) = €2, N(zi,2;) =
e1, N(z,%0) = go2, N(z,2;) = g1 (each ¢ < n), N(z;,z41) = +11 (each ¢ < n),
N, zj) = wy (all 4,7 <n with [{ — j| > 1) and N(z;,y0) = S(¢,0)12 (each ¢ < n).
See figure 2.

Claim 1 If N is satisfiable then S is a yes-instance of P(7).

Proof of claim 1. Let h : A(7') = p(X x X) be a representation of A(7') over
some domain X such that 7 : nodes(N) — X is an embedding of the network N into
the representation. So, for m,n € nodes(N) we have (m/,n’) € h(N(m,n)). We have
N(z,90) = goz < goz; —1a, 80 (', 4}) € h(go2; (—12)). Hence there is a point y; € X
such that (2',41) € h(go2) and (¥}, y5) € h(—12), or equivalently (v, v)) € h(+12).
Similarly we can find points ¥4, y5,... € X and 2], 1,2}, 40,... € X such that (2/,y) €
h(go2), (¥, ¥iy1) € h(+12) fori =0,1,2,...and (', 2}) € h(go1), (x},2}y,) € h(+11)
for 2 = 0,1,2,.... Extending the sequences downward z_1,z_9,..., Yy—_1,Y—2,...18
entirely similar. See figure 3.

For each i,j € Z consider the triangle (z,x},y;). Since (z7,2') € h(g10) and
(2',9;) € h(go2) it follows that (x},y;) € h(g10;g02). Since A(7') is a finite algebra,
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FiG. 3. Extending N(S5)

there must be an atom a(¢, j) < g10; go2 such that (z}, ;) € h(a(, j)). By the rule of
matching subscripts, a(?, j) must have subscripts (12). a(é, j) = wy2 is impossible by
rule (4.1), hence a(i, j) = S(i, j)12 for some tile S(i,j) € 7. Thus the network N(S)
can be extended as in figure 3.

It remains to show that the tiles S(¢,7) : i,j € Z form a tiling of the plane. By
considering the triangle (z}, 2}, y;) and rule (4.2) we see that S((i,7), S(i +1,j)) €
H' and similarly (S(¢,4),S(¢,j + 1)) € V' for i,j € Z. Hence we have a tiling of the
plane extending S, so S is a yes-instance.

Claim 2. If S is a yes-instance of P(7/) then N = N (S) is satisfiable.
The proof of claim 2 is much more complicated and makes use of the new tile 7,
the atoms wup;,vo; (¢ = 1,2) and rules (4.3) and (4.4). The reader is referred to

[HH99, theorem 4]. If S is a yes-instance of P(7') then it is possible to extend the
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finite fragment S to a tiling of the whole plane Z x Z. Now (by definition of 7'} if
T € 1/ there is a tiling of the plane with T at (0,0) and there is a special tile 7 € 7/
which can tile the plane on its own, but not in combination with any of the other
tiles. These are the conditions required in [HH99, theorem 4]. The theorem tells us
that the second player (3) has a winning strategy in a certain game G, (A(7')) which
suffices to prove that A(7') is representable, but we can prove more than this.

Here we consider instead the game G, (N, A(7')) which is identical to G, (A(7"))
except that the play starts from the initial network N. Using the terminology of
[HH99], we let the edge (2o, yo) and all the edges labelled by go1, g2, +11 belong to V
along with the converses of all these edges (see figure 2). All other edges of N belong
to 3. Then the definition of I’s strategy and the proof that this is a winning one
go through unaltered. This suffices to provide a representation of A(7') in which N
embeds. Thus N is satisfiable.

Hence the undecidable tiling problem P(7') reduces to the network satisfaction
problem over A(7'). We conclude that the latter is also undecidable.
||

References

[AGN94] H Andréka, S Givant, and I Németi. Decision problems for equational theories of relation
algebras. Bulletin of Section of Logic, (1), 1994.

[All83] J F Allen. Maintaining knowledge about temporal intervals. Communications of the ACM,
26(11):832-843, November 1983.

[All84] J F Allen. Towards a general theory of action and time. Artificial Intelligence, 23(2):123-154,
1984.

[AMNO91] H Andréka, J D Monk, and I Németi. Algebraic Logic. Colloq. Math. Soc. J. Bolyai.
North-Holland, Amsterdam, 1991. Conference Proceedings, Budapest, 1988.

[Com83] S Comer. A remark on chromatic polygroups. Congr. Numer., pages 85-95, 19383.

[D91] I Diintsch. Small integral relation algebras generated by a partial order. Period. Math. Hungar.,
pages 129-138, 1991.

[DMP91] R Dechter, I Meiri, and J Pearl. Temporal constraint networks. Artificial Intelligence,
49:61-95, 1991.

[HH97] R Hirsch and I Hodkinson. Step by step — building representations in algebraic logic. Journal
of Symbolic Logic, 62(1):225-279, March 1997.

[HH99] R Hirsch and I Hodkinson. Representability is not decidable for finite relation algebras.
Transactions of the American Mathematical Society, 1999. To appear.

[JT52] B Jénsson and A Tarski. Boolean algebras with operators ii. American Journal of Mathe-
matics, 74:127 — 162, 1952.

[LM94] P Ladkin and R Maddux. On binary constraint problems. Journal of the Association of
Computing Machinery, 41:435 — 469, 1994.

[Mad91] R Maddux. Introductory course on relation algebras, finite-dimensional cylindric algebras,
and their interconnections. In Andréka et. al., [AMNO1], pages 361-392. Conference Proceedings,
Budapest, 1988.

[VK86] M Villain and H Kautz. Constraint propagation algorithms for temporal reasoning. In
Proceedings of the fifth AAAI pages 377-382, 1986.

Received 28 /May /1999



