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STRONGLY REPRESENTABLE ATOM STRUCTURES OF CYLINDRIC

ALGEBRAS

ROBIN HIRSCH AND IAN HODKINSON

Abstract. A cylindric algebra atom structure is said to be strongly representable if all atomic cylindric

algebras with that atom structure are representable. This is equivalent to saying that the full complex

algebra of the atom structure is a representable cylindric algebra. We show that for any finite n ≥ 3,

the class of all strongly representable n-dimensional cylindric algebra atom structures is not closed under

ultraproducts and is therefore not elementary.

Our proof is based on the following construction. From an arbitrary undirected, loop-free graph Γ,

we construct an n-dimensional atom structure E (Γ), and prove, for infinite Γ, that E (Γ) is a strongly

representable cylindric algebra atom structure if and only if the chromatic number of Γ is infinite. A

construction of Erdős shows that there are graphs Γk (k < ù) with infinite chromatic number, but having

a non-principal ultraproduct
Q

D Γk whose chromatic number is just two. It follows that E (Γk) is strongly

representable (each k < ù) but
Q

D E (Γk) is not.

§1. Introduction. This paper is broadly about algebras of α-ary relations, for an
ordinal α. An α-ary relation is a set of ordered α-tuples of elements of some
base set, and an algebra of α-ary relations will consist of a set of α-ary relations,
endowed with various operations. These operations include the boolean union
and complement and constants denoting the empty relation and the maximum or
‘unit’ relation, and the algebra will be a boolean algebra under these operations.
But there will also be additional operations that make use of the relational form
of the elements of the algebra. Various choices of these operations can be made.
The ‘cylindric’ approach, first taken by Alfred Tarski and his students Louise Chin
and Frederick Thompson in the late 1940s, gives us cylindric set algebras, which
have since been studied extensively, e.g., in [10, 8, 9]. These algebras include
constants called diagonal elements, which are like equality, and unary functions
called cylindrifications, which are like existential quantification. For finite α, the
algebras are closely related to first-order logic withα variables. But relation symbols
in first-order logic have finite arity, so for infinite α, the algebraic approach, which
can handle relations of any arity up to α, goes further.
Roughly speaking, the class RCAα of ‘representable α-dimensional cylindric alge-
bras’ is the closure under isomorphism of the class of all algebras of relations as just
described. Quite a lot of work has gone into characterising RCAα . Tarski proved
in [22] that it is a variety: it can be axiomatised by equations. Explicit finite sets of
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equations axiomatising RCA0,RCA1, and RCA2 are known—the finite set of equa-
tions definingRCA2 is due toHenkin [9, theorem 3.2.65]. But for finite n ≥ 3,Monk
showed in [17] that RCAn is not finitely axiomatisable, Andréka showed in [1] that
any equational axiomatisation of it uses infinitely many variables, and [14] showed
that RCAn is not closed under Monk completions [18] and so, by results of Venema
[24], is not axiomatisable by Sahlqvist equations. In general, characterising RCAn

for n ≥ 3 seems to be a hard problem.
In this paper, we are concerned with the special case of atomic algebras in RCAα .
The boolean reduct of eachA ∈ RCAα is a boolean algebra. We say thatA is atomic
if this reduct is atomic. IfA is atomic, then its non-boolean structure induces a dual
relational structure on its set of atoms. These ‘atom structures’ are the real focus of
our paper. The atom structure of A is written AtA ; it is analogous to a Kripke
frame in modal logic. This dual approach works well not just for atomicA ∈ RCAα

but for any algebra A whose boolean reduct is an atomic boolean algebra and in
which the non-boolean operations preserve all boolean sums. So we restrict our
attention to such A . It turns out that each element a of such an algebra A can be
identified with the subset of AtA consisting of the atoms beneath a. In this way,
the entire non-boolean structure of A can be recovered from AtA .
It is tempting then to work with AtA instead of A , because it is smaller, and
the boolean operations are absent. This does have its uses, but unfortunately, AtA
does not always determine whether A ∈ RCAα or not. For each finite n ≥ 3, there
are atomic algebras A ,B with AtA = AtB , A ∈ RCAn , and B /∈ RCAn [14].
What is going on is that B has more elements than A , and these elements are
incompatible with true algebras of relations.
An (abstract) atom structure is a relational structure of the similarity type of atom
structures of atomic algebras in RCAα . The example above suggests to define two
classes of atom structure:

1. At RCAα = {S : some atomic algebra A with atom structure S is in RCAα},
2. Str RCAα = {S : every atomic algebra A with atom structure S is in RCAα}.

An atom structure in AtRCAα will be called weakly representable, and one in
Str RCAα strongly representable.1 Every atom structure is the atom structure of
some atomic algebra, and it follows that Str RCAα ⊆ At RCAα . The example above
shows that the inclusion is proper, for finite α ≥ 3. By a general result of Venema
[23], AtRCAα is always elementary and effectively axiomatisable from equations
defining RCAα . For α ≤ 2, RCAα is axiomatisable by Sahlqvist equations, and
Str RCAα is then the same class as AtRCAα . It is elementary and finitely ax-
iomatisable. See remark 7.3 for more details. However, for α ≥ 3, RCAα is not
Sahlqvist-axiomatisable and Str RCAα is not so easily characterised.
In this paper, we will show (in theorem 6.1) that for finite n ≥ 3, Str RCAn is
not definable by any set of first-order sentences: it is not an elementary class. This
adds to the general body of evidence that RCAα is hard to characterise. It answers
[13, Problem 1] and [12, problem 14.20] for finite dimensions (admittedly, these
problems were set by the authors).
We remark that RCAα has a cousin: RRA, the class of representable relation
algebras. Its members are isomorphic to algebras of binary relations, using a

1But ‘Str’ stands for ‘structures for’. [7] studies these notions in a wider context.
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different choice of relational operators fromRCAα . RRA is also hard to characterise.
The analogous result forRRA, thatStr RRA is non-elementary, was proved in [13, 12]
by a similar method to the one here.
A few words about the method. Because RCAn is a variety, an atomic algebra A
will be in RCAn iff all the equations defining RCAn are valid in A . From the
point of view of AtA , each equation corresponds to a certain universal monadic
second-order statement, where the universal quantifiers are restricted to ranging
over the sets of atoms that are defined by (i.e., lie underneath) elements ofA . Such
a statement will fail inA iff AtA can be partitioned into finitely manyA -definable
sets with certain ‘bad’ properties. In order to give a very rough outline of our
argument, we call this a bad partition. This idea can be used to show that RCAn (for
n ≥ 3) is not finitely axiomatisable, by finding a sequence of atom structures, each
having some sets that form a bad partition, but with the minimal number of sets in
a bad partition increasing as we go along the sequence. This can yield algebras not
in RCAn but with an ultraproduct that is in RCAn, so reproving Monk’s result that
RCAn is not finitely axiomatisable. The reader should have no trouble in using the
methods of our paper to do exactly that.
Curiously, our problemhere is the reverse of this. An atomstructure is inStr RCAn

iff it has no bad partition using any sets at all. We want to find atom structures in
Str RCAn—so they have no bad partitions—with an ultraproduct that does have a
bad partition. This will show that Str RCAn is not closed under ultraproducts, and
so is non-elementary.
We find our source of bad partitions in graph theory. From our point of view,
a bad partition of a graph is a finite colouring: a partition of its set of nodes into
finitely many independent (edge-free) sets. Using some coding, from a graph we
can create an atom structure that is strongly representable iff the graph has no finite
colouring. Our problem now boils down to finding a sequence of graphs with no
finite colouring, but with an ultraproduct that does have a finite colouring. In
graph-theoretic language, we want graphs of infinite chromatic number, having an
ultraproduct with finite chromatic number. Graphs like this can be found using
a well-known theorem of Erdős [5], which shows that there exist finite graphs of
arbitrarily large chromatic number and girth (length of the shortest cycle). By
taking disjoint unions, we can obtain graphs of infinite chromatic number (no bad
partitions) and arbitrarily large girth. A non-principal ultraproduct of these graphs
has no cycles, so has chromatic number 2 (a bad partition into just two sets).
We thank Istvan Németi and Tarek Sayed Ahmed (and others) for suggesting
that we try to extend [13] to show that Str RCAn is non-elementary. We also thank
the referee for helpful comments. We assume some knowledge of basic boolean
notions such as atoms and ultrafilters. For those seeking more details of the topics
considered here, we suggest [8, 9, 19, 21, 2], or for some parts, [12].

Layout of paper. Section 2 lays out the basic formal definitions and facts about
them. In section 3 we introduce the atom structures, based on graphs, that will be
used to prove our main result. In section 4 we establish some preliminary results
about ‘networks’ and related machinery. Section 5 connects representability to
chromatic number, which allows us to prove our main result in section 6. Section 7
has some remarks and problems.
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§2. Representable cylindric algebras and atom structures. This section recalls the
standard definitions and facts that we will use, all well known, and some notation.
We will not need to use cylindric algebras at all. (These are abstract versions of
cylindric set algebras, defined by equations that can be found in [8].)

2.1. Representable algebras. First, we recall the formal definition of the class
RCAα . Let α be an ordinal. For a set U , αU denotes the set of maps from
α to U . We write such maps as x, y, and for i < α we write x(i) as xi . For
finite α, we identify αU with the cartesian product Uα , via x 7→ (x0, . . . , xα−1).
An α-ary relation on U is a subset of αU . For i, j < α, the i, jth diagonal DUij
denotes {x ∈ αU : xi = xj}. Given i < α and an α-ary relation X on U , the
ith cylindrification CUi X denotes the set of all elements of

αU that agree with
some element of X on each coordinate except, perhaps, on the ith coordinate:
CUi X = {y ∈ αU : ∃x ∈ X ∀j < α(j 6= i → yj = xj)}.
A cylindric set algebra of dimension α is an algebra A = (A,∪,−, ∅, αU,DUij ,

CUi )i,j<α consisting of a set A of α-ary relations on some non-empty base set U ,
equipped with the boolean constants ∅, αU and boolean operations∪ and− (where
−X = αU \X ), the diagonal elements DUij (i, j < α), and the cylindrifications C

U
i

(i < α). A must of course be closed under all these operations.
We wish to consider abstract algebras related to these. The signature of α-
dimensional cylindric set algebras consists of a binary function symbol +, a unary
function symbol−, constants 0, 1, and dij (i, j < α), and unary function symbols ci
(i < α). (Traditionally, slightly different symbols from the ‘concrete’ operations ∪,
etc., are used.) A cylindric-type algebra (of dimension α) is just a structure for this
signature.
Our central definition is as follows.

Definition 2.1. An α-dimensional cylindric-type algebra A is said to be repre-
sentable if it is isomorphic to a subalgebra of a direct product of cylindric set algebras
of dimension α; such an isomorphism is called a representation ofA . RCAα denotes
the class of representable α-dimensional cylindric-type algebras.

[22] proves thatRCAα is a variety (an elementary class axiomatised by equations).

2.2. Notation. Until section 7, we are interested only in finite dimensions, and
we fix such a dimension n, where 3 ≤ n < ù. Throughout, all cylindric-type algebras
and atom structures will be of dimension n. n is an ordinal, so it is {0, 1, . . . , n − 1}.
Usually, i, j, k, l , etc., denote elements of n. For a set X , ℘(X ) denotes the set of all
subsets of X , and for m < ù, [X ]m denotes {A ⊆ X : |A| = m}. Maps (including
partial ones) are regarded formally, as sets of ordered pairs; so we may write f ⊆ g,
etc. We write dom(f), rng(f) for the domain and range (respectively) of a map f.
We frequently identify (notationally) a structure with its domain.

2.3. Atom structures. It is well known that any algebra whose boolean reduct
is an atomic boolean algebra has an atom structure, which essentially records the
values of the non-boolean functions on atoms. The atom structure can be defined
whatever these functions are like, but it only really comes into its own when they
are completely additive, preserving all existing suprema. In that case, the atom
structure determines their values on all elements of the algebra.
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We would like to define a ‘cylindric-type’ atom structure S to be strongly rep-
resentable if every cylindric-type algebra with atom structure S is representable.
The problem with this is that we can always find pathological algebras with any
given atom structure S , but that cannot be representable. This can easily be done,
since even if the boolean reduct of the algebra is a boolean algebra, the ci need
not be completely additive—and in any representable algebra, the ci are completely
additive. So we will restrict our consideration to cylindric-type algebras based on
boolean algebras and in which the ci are completely additive. This will yield the
alternative characterisation of strong representability, in lemma 2.6 below, which is
what we actually use in the proofs later.

Definition 2.2. An (atomic) cylindric BAO is a cylindric-type algebra A whose
boolean reduct is an (atomic) boolean algebra, and in which ci

∑

S =
∑

{cia:
a ∈ S} for every set S of elements of A with a least upper bound

∑

S in A , and
every i < n.

We are misusing ‘BAO’ slightly. It stands for ‘boolean algebra with operators’,
and indeed every cylindric BAO is a boolean algebra with (normal additive) opera-
tors in the sense of [16]. But not all boolean algebra with operators are completely
additive.
It can easily be verified that every algebra in RCAn is a cylindric BAO.

Definition 2.3.

1. A cylindric atom structure is a structure of the form S = (H,Dij , Ei :
i, j < n), where H is a non-empty set, each Dij is a subset of H , and each Ei
is a binary relation onH .

2. Let A be an atomic cylindric BAO. The atom structure of A , in symbols
AtA , is the structure (H,Dij , Ei : i, j < n), whereH is the set of atoms of A ,
Dij = {x ∈ H : x ≤ dij} for each i, j < n, and x Ei y iff x ≤ ciy for each
i < n and x, y ∈ H .

3. The complex algebra S+ over a cylindric atom structure S = (H,Dij , Ei :
i, j < n) is the cylindric-type algebra (℘(H ),∪,−, ∅,H,Dij , ci : i, j < n),
where for X ⊆ H , we define −X = H \ X and ciX = {x ∈ H : ∃x′ ∈
X (x Ei x′)}.

The following lemma is well known and follows from results in a slightly different
setting in [16, §3]. A proof can be found in [12, proposition 2.66].

Lemma 2.4.

1. If A is an atomic cylindric BAO, then AtA is a cylindric atom structure.
Moreover, there is an embedding h : A → (AtA )+ defined by h(a) = {x ∈
AtA : x ≤ a}.

2. If S is a cylindric atom structure, then S+ is an atomic cylindric BAO. Moreover,
At(S+) ∼= S .

Definition 2.5.

1. A cylindric atom structure S is said to be strongly representable if for every
atomic cylindric BAO A with AtA = S , we have A ∈ RCAn.

2. We write Str RCAn for the class of strongly representable cylindric atom struc-
tures.
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Rather than considering every possible atomic cylindric BAOwith atom structure
S , there is a more convenient way to tell whether S is strongly representable:

Lemma 2.6. A cylindric atom structure S is strongly representable iff S+ ∈ RCAn.

Proof. By lemma 2.4, S+ is an atomic cylindric BAO and At(S+) ∼= S , from
which⇒ follows. Conversely, if S+ ∈ RCAn, then there is an embedding g from S+

into a product of cylindric set algebras. Let A be any atomic cylindric BAO with
atom structure S . By lemma 2.4, there is also an embedding h : A → S+. Then
g ◦h is a representation ofA , soA ∈ RCAn. Hence, S is strongly representable. ⊣

§3. Atom structures from graphs. The cylindric atom structures that we will use
in our theorem are made from graphs.

3.1. Graphs. In this paper, by a graph we will mean a pair Γ = (G,E), where
G 6= ∅ and E ⊆ G × G is an irreflexive and symmetric binary relation on G . We
will often use the same notation for Γ and for its set of nodes (G above). A pair
(x, y) ∈ E will be called an edge of Γ. See [4] for basic information (and a lot more)
about graphs.

Definition 3.1. Let Γ = (G,E) be a graph.

1. A set X ⊆ G is said to be independent if E ∩ (X × X ) = ∅.
2. The chromatic number ÷(Γ) of Γ is the smallest k < ù such that G can be
partitioned into k independent sets, and∞ if there is no such k.

3. By a cycle of length k in Γ (for finite k ≥ 3) we will mean a sequence
(x0, . . . , xk−1) of distinct nodes of G such that (x0, x1), . . . , (xk−2, xk−1), and
(xk−1, x0) are all edges of Γ.

4. An ultrafilter on Γ is simply an ultrafilter of the boolean algebra (℘(G),∪,−,
∅, G), where −X (for X ⊆ G) is defined to be G \ X .

Lemma 3.2. A graph Γ has no cycles of odd length iff ÷(Γ) ≤ 2.

Proof. See, e.g., [4, proposition 1.6.1]. The result holds for both finite and infinite
graphs; the implicit assumption in [4, p. 2] that graphs are finite is not needed in the
proof in [4]. In [4], reflections and cyclic permutations of a cycle (x0, . . . , xk−1) are
regarded as the same cycle. Obviously this makes no difference to the lemma. ⊣

Lemma 3.3. A graph Γ has infinite chromatic number iff there is an ultrafilter on Γ
containing no independent sets.

Proof. ⇐: if Γ has a partition into finitely many independent sets, then any
ultrafilter on Γ contains one of them.
⇒: if ÷(Γ) = ∞, let ä0 be the set of all subsets X of (the set of nodes of) Γ
such that the complement of X is the union of finitely many independent sets. It is
easy to check that ä0 has the finite intersection property. So by the boolean prime
ideal theorem [3, proposition 4.1.3], it extends to an ultrafilter ä on Γ. If X ⊆ Γ is
independent, then Γ \ X ∈ ä0, so X /∈ ä. ⊣

3.2. A cylindric atom structure. Until section 6, we fix a graph Γ = (G,E). We
write Γ× n for the graph

(

G × n, {((x, i), (y, j)) : x, y ∈ G, i, j < n, (x, y) ∈ E or i 6= j}
)

.
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Γ × n can be thought of as n disjoint copies of Γ, with all possible edges between
distinct copies being added. Note that ÷(Γ × n) = ÷(Γ) · n, where∞ · n = ∞ of
course.

Definition 3.4. For an equivalence relation ∼ on a set X , and Y ⊆ X , we write
∼↾Y for∼∩(Y×Y ). Wewrite =X for the equality relation onX . For a partialmap
K : n → Γ × n and i, j < n, we write K(i) = K(j) to mean that either K(i), K(j)
are both undefined, or they are both defined and are equal.

The following definition is a little complicated because cylindric-type algebras
have diagonal elements. For diagonal-free algebras, the definition would be simpler.

Definition 3.5. We define a cylindric atom structure E (Γ) = (H,Dij ,≡i :
i, j < n) as follows.

1. H is the set of all pairs (K,∼), where K : n → Γ× n is a partial map and∼ is
an equivalence relation on n, satisfying the following conditions.
(a) If |n/∼| = n (in other words, if ∼ is =n), then dom(K) = n and rng(K)
is not independent.

(b) If |n/∼| = n− 1, thenK is defined only on the unique∼-class {i, j} (say)
of size 2, and K(i) = K(j).

(c) If |n/∼| ≤ n − 2, then K is nowhere-defined (i.e., K = ∅).
2. Dij = {(K,∼) ∈ H : i ∼ j}.
3. (K,∼) ≡i (K ′,∼′) iff K(i) = K ′(i) and ∼↾(n \ {i}) = ∼′↾(n \ {i}).

We will frequently write E (Γ) for H . It may help to think of K(i) as assigning
the node K(i) of Γ × n not to i but to the set n \ {i}, so long as its elements are
pairwise non-equivalent via ∼.

Definition 3.6. If ∼ is an equivalence relation on n, and i < n, we say that ∼
is i-distinguishing if ∼↾(n \ {i}) is just =n\{i}: that is, j 6∼ k for every distinct
j, k ∈ n \ {i}.

The next lemma follows from definition 3.5.

Lemma 3.7. Let (K,∼) ∈ E (Γ).

1. For each i < n, K(i) is defined iff ∼ is i-distinguishing.
2. If i ∼ j, then K(i) = K(j).
3. If ∼ is =n, then rng(K) is not an independent subset of Γ× n.

Definition 3.8. We write C (or explicitly, C (Γ)) for the cylindric BAO E (Γ)+.
We write C+ for the set of all ultrafilters of (the boolean reduct of) C . We define≡i
on C+ by ì ≡i í iff {ciS: S ∈ ì} ⊆ í.

Lemma 3.9. For any ì, í ∈ C+ and i < n, the following are equivalent:

1. ì ≡i í,
2. {ciS: S ∈ ì} = {ciT: T ∈ í},
3. whenever S ∈ ì and T ∈ í, there are (X,∼) ∈ S and (X ′,∼′) ∈ T such that
(X,∼) ≡i (X ′,∼′).

Consequently, ≡i is an equivalence relation on C+.
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Proof.

(1)⇒ (2): Assume (1). For any S ∈ ì we know that ciS = ci(ciS) ∈ í, hence
{ciS: S ∈ ì} ⊆ {ciT: T ∈ í}. Conversely, ifT ∈ í then−ciT = ci(−ciT ) /∈ í.
Hence, by (1), −ciT /∈ ì, so ciT ∈ ì and ciT ∈ {ciS: S ∈ ì}, proving
{ciT: T ∈ í} ⊆ {ciS: S ∈ ì}. This proves (2).

(2)⇒ (3): Assume (2) and pick any S ∈ ì and T ∈ í. By (2), ciT ∈ ì so
S ∩ ciT ∈ ì, hence S ∩ ciT 6= ∅. Let (X,∼) ∈ S ∩ ciT . Since (X,∼) ∈ ciT
there is (X ′,∼′) ∈ T with (X ′,∼′) ≡i (X,∼), establishing (3).

(3)⇒ (1): Assume that (1) is false, soì 6≡i í and there is S ∈ ìwith ciS /∈ í. Then
−ciS ∈ í. For any (X,∼) ∈ S and (X ′,∼′) ∈ −ciS we have (X,∼) 6≡i (X

′,∼′),
by definition of −ciS, proving that (3) is false.

⊣

In fact, by defining the ijth diagonal to be {ì ∈ C+ : Dij ∈ ì}, we can obtain a
cylindric atom structure on C+.

§4. Networks and patch systems. We will use networks and related machinery
in the next section to study representability. Here, we lay out some necessary
definitions and facts.

4.1. Projections of ultrafilters.

Definition 4.1. For i < n, let Fi = {(K,∼) ∈ E (Γ): ∼ is i-distinguishing}
(∈ C ).

Clearly, Fi is the intersection of the sets−Djk , taken over all distinct j, k ∈ n\{i}.
If (K,∼) ∈ E (Γ), then K(i) is defined iff (K,∼) ∈ Fi .

Lemma 4.2. For each i, j < n, we have Fi ∩Dij ⊆ Fj .

Proof. If (K,∼) ∈ Fi ∩Dij , then∼ is i-distinguishing, and i ∼ j. It follows that
∼ is j-distinguishing, so that (K,∼) ∈ Fj . ⊣

Definition 4.3. Let ì be an ultrafilter of C , and let i < n. We say that ì is
i-distinguishing if Djk /∈ ì for all distinct j, k ∈ n \ {i}.

Clearly, an ultrafilter of C is i-distinguishing iff it contains Fi .

Definition 4.4. Let i < n.

1. For S ⊆ Fi , put S(i) = {K(i) : (K,∼) ∈ S}.
2. For X ⊆ Γ× n, put X (i) = {(K,∼) ∈ Fi : K(i) ∈ X}.
3. For an ultrafilter ì of C , put ì(i) = {S(i) : S ∈ ì, S ⊆ Fi}. (This is empty if
ì is not i-distinguishing.)

Lemma 4.5. For i, S,X as above, X (i)(i) = X and S(i)(i) ⊇ S.

Proof. Well, if (K,∼) ∈ S, then (K,∼) ∈ Fi and K(i) ∈ S(i), so (K,∼) ∈
S(i)(i). Also,

X (i)(i) = {K(i) : (K,∼) ∈ X (i)} = {K(i) : (K,∼) ∈ Fi , K(i) ∈ X} ⊆ X.

Now fix arbitrary x ∈ X . Pick any j 6= i , let ∼ be the unique i-distinguishing
equivalence relation on n with i ∼ j, and define K by K(i) = K(j) = x, while
K(k) is undefined for k 6= i, j. Then (K,∼) ∈ E (Γ). We have (K,∼) ∈ X (i) and
x = K(i) ∈ X (i)(i). As x was arbitrary, X ⊆ X (i)(i). ⊣
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Lemma 4.6. Let ì be an i-distinguishing ultrafilter of C . Then

1. ì(i) is an ultrafilter on Γ× n.
2. If j < n and Dij ∈ ì, then ì is also j-distinguishing and ì(j) = ì(i).
3. For any ultrafilter í ofC , we haveì ≡i í iff í is i-distinguishing andì(i) = í(i).

Proof. We will use lemma 4.5, and obvious facts such as X ⊆ Y ⊆ Γ × n ⇒
X (i) ⊆ Y (i) and S ⊆ T ⊆ Fi ⇒ S(i) ⊆ T (i), without explicit mention.

1. Take an arbitrary element of ì(i): it is of the form S(i), where S ∈ ì and
S ⊆ Fi . Suppose that S(i) ⊆ X ⊆ Γ × n. Then S ⊆ S(i)(i) ⊆ X (i) and so
X (i) ∈ ì. Also, X (i) ⊆ Fi . So X = X (i)(i) ∈ ì(i). Hence, ì(i) is closed
under supersets.
Take arbitrary elements S(i), T (i) ∈ ì(i), where S,T ∈ ì and S,T ⊆ Fi .
Then S ∩ T ∈ ì and S(i) ∩ T (i) ⊇ (S ∩ T )(i) ∈ ì(i). So by the first part,
ì(i) is closed under intersection.
Let X ⊆ Γ × n be arbitrary, and write −X for (Γ × n) \ X . Then X (i) ∪
(−X )(i) = Fi ∈ ì, so one of X (i), (−X )(i) is in ì, and one of X,−X is in ì(i).
Note that ì(i) is a proper filter, because there is no S ∈ ì with S ⊆ Fi and
S(i) = ∅. So it is an ultrafilter.

2. This is trivial if i = j, so suppose not. Suppose also that Dij ∈ ì. Then
Fi ∩Dij ∈ ì, so by lemma 4.2, Fj ∈ ì, and ì is j-distinguishing. Now take
an arbitrary element S(i) of ì(i), where S ∈ ì and S ⊆ Fi . Put T = S ∩Dij .
Then T ∈ ì too, T ⊆ Fj by lemma 4.2, and clearly S(i) ⊇ T (i) = T (j) ∈
ì(j). Hence, S(i) ∈ ì(j). So ì(i) ⊆ ì(j), and as they are both ultrafilters
on Γ× n, they are equal.

3. Assume that ì ≡i í. Then ciFi ∈ í. But ciFi = Fi , as is easy to check.
So Fi ∈ í, and it follows that í is i-distinguishing. Moreover, if S ∈ ì and
S ⊆ Fi , then ciS ∈ í and ciS ⊆ Fi , so S(i) = (ciS)(i) ∈ í(i). It follows that
ì(i) ⊆ í(i), and since both are ultrafilters on Γ× n, they must be equal.
Conversely, suppose that í is also i-distinguishing, and ì(i) = í(i). Take
arbitrary S ∈ ì and T ∈ í; by lemma 3.9, it is enough if we find (X,∼) ∈ S
and (X ′,∼′) ∈ T with (X,∼) ≡i (X ′,∼′). We can assume that S,T ⊆ Fi .
Then S(i) ∈ ì(i) = í(i) ∋ T (i), so S(i) ∩ T (i) 6= ∅. Hence, there are
(X,∼) ∈ S and (X ′,∼′) ∈ T with X (i) = X ′(i). But (X,∼), (X ′,∼′) ∈ Fi ,
so ∼↾(n \ {i}) and ∼′↾(n \ {i}) are both equality on n \ {i}, so are equal. So
(X,∼) ≡i (X

′,∼′) as required. ⊣

4.2. Ultrafilter networks. These are approximations of representations.

Definition 4.7. Let X be a set.

1. An n-tuple of elements ofX is an element ofX n. Wewrite ā, b̄, . . . for n-tuples,
and implicitly ā = (a0, . . . , an−1), etc.

2. For n-tuples ā, b̄ ∈ X n, and i < n, we write ā ≡i b̄ if aj = bj for all
j < n, j 6= i .

3. For a tuple ā and j < n, we let ā[i/j] denote the tuple b̄ defined by b̄ ≡i ā
and bi = aj .

4. We say that ā is i-distinguishing if aj 6= ak for all distinct j, k ∈ n \ {i}.
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Definition 4.8. A partial ultrafilter network over C is a pairN = (N1, N2), where
N1 is a set (of ‘nodes’), and N2 : N n1 → C+ is a partial map, such that the following

hold, for all ā, b̄ on which N2 is defined.

1. for i, j < n, we haveDij ∈ N2(ā) iff ai = aj ,

2. for i < n, if ā ≡i b̄ then N2(ā) ≡i N2(b̄).

For partial ultrafilter networksN = (N1, N2) andM = (M1,M2), we writeN ⊆M
if N1 ⊆ M1 and N2 ⊆ M2. We say that N is total if N2 : N n1 → C+ is a total map;
in this case, we call N an ultrafilter network over C .
In case of need, we write Nodes(N) for N1, but generally we write N for any
of N,N1, N2.

4.3. Patch systems. These help us to examine the way projections of ultrafilters
in a network interact. To give a very rough idea of how they arise, imagine that
ā = (a0, . . . , an−1) is a tuple of distinct nodes of an ultrafilter network N . For
each i < n, it turns out that the projection N(ā)(i) depends only on the set
{aj : j < n, j 6= i}, and not on the order of entries in ā or the omitted element ai .
Thus,N yields an assignment, which we call a patch system, of ultrafilters on Γ× n
to subsets of N of size n − 1. This represents much of the information in N in a
simpler way. The ultrafilters N(ā)(i) (i < n) will be mutually ‘coherent’, and any
coherent allotment of ultrafilters to the sets in [N ]n−1 is induced by an ultrafilter
network. So we can build ultrafilter networks by building patch systems, which is
easier.
We now formalise this in a sharper way.

Definition 4.9.

1. A patch system (for Γ) is a pair P = (P1, P2), where P1 is a set, and P2 assigns
an ultrafilter P2(A) on Γ× n to every subset A of P1 of size n − 1. (We think
of the As as ‘patches’. If |P1| < n − 1 then P2 = ∅.)

2. Let P = (P1, P2) be a patch system. A set A = {a0, . . . , an−1} ⊆ P1 of size n
is said to be P-coherent if whenever Xi ∈ P2(A \ {ai}) (for each i < n), there
are xi ∈ Xi (i < n) such that {x0, . . . , xn−1} is not an independent subset
of Γ× n.

3. A patch system P = (P1, P2) is said to be coherent if every A ⊆ P1 of size n is
P-coherent.

As with ultrafilter networks, we will often write P for any of P,P1, P2. We write
simply ‘coherent’ when P is clear from the context.

Lemma 4.10. Let P = (P1, P2) be a patch system and let A = {a0, . . . , an−1} ∈
[P1]n . For each i < n, let Ai = A \ {ai}. Then A is P-coherent iff there exists an
ultrafilter ì of C that is i-distinguishing for all i < n and with ì(i) = P2(Ai ) for
every i < n.

Proof. Write ā for the tuple (a0, . . . , an−1). Suppose first that ì exists as stated.
Let sets Xi ∈ P2(Ai) = ì(i) be given, for each i < n. For each i , choose Si ∈ ì
with Si ⊆ Fi and Si (i) = Xi . Put S =

⋂

i<n Si . Then S ∈ ì and S ⊆ Fi for all i .
Take any (K,∼) ∈ S. Then K(i) is defined for all i , and K(i) ∈ Xi . By definition
of E (Γ), rng(K) is not independent. This shows that A is coherent.
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For the converse, assume that A is coherent. Write fi = P2(Ai ), for each i < n.
This is an ultrafilter on Γ× n. Consider

Θ =
{

X (i)i : i < n, Xi ∈ fi
}

.

(recall from definition 4.4 that X (i) = {(K,∼) ∈ Fi : K(i) ∈ X}). Θ has the finite
intersection property. To see this, it is enough to show that for any Xi ∈ fi (for
each i < n), there is (K,∼) ∈

⋂

i<n Fi with K(i) ∈ Xi for each i . But by coherence,
there are xi ∈ Xi (i < n) such that {xi : i < n} is not independent. Define K by
K(i) = xi (each i). Then (K,=n) ∈ E (Γ) is as required.
We define ì to be any ultrafilter of C extending Θ. (Existence uses the boolean
prime ideal theorem.) Clearly, for each i , Fi = (Γ × n)(i) ∈ Θ, so ì is i-distin-
guishing. Let X ∈ fi be arbitrary. Then X (i) ∈ Θ ⊆ ì, so X = X (i)(i) ∈ ì(i). As
X was arbitrary, fi ⊆ ì(i). As both are ultrafilters, ì(i) = fi . ⊣

Definition 4.11. For any ultrafilter network N = (N1, N2), define ∂N to be the
patch system (N1, P2), where P2 is a function from subsets of N1 of size n − 1 to
ultrafilters on Γ× n, defined by

P2({a0, . . . , ai−1, ai+1, . . . , an−1}) = N2(ā)(i), (1)

for each i < n and each i-distinguishing ā ∈ N n1 .

The following lemma shows that ∂N is well defined.

Lemma 4.12. Let N = (N1, N2) be a partial ultrafilter network.

1. For each ā ∈ dom(N2) and i < n, N2(ā) is i-distinguishing iff ā is i-
distinguishing.

2. If N is total, then ∂N is a well defined and coherent patch system.
3. Suppose that P = (N1, P2) is a coherent patch system and that the above
condition (1) holds for any i-distinguishing ā ∈ dom(N2). Then there is a
(total ) ultrafilter network N+ = (N1, N

+
2 ) with N

+ ⊇ N and ∂N+ = P.

Proof. 1. Easy; left to the reader.
2. If ā ∈ N n1 is i-distinguishing, then by the first part, N2(ā) is also i-distin-
guishing, so by lemma 4.6, N2(ā)(i) is a well-defined ultrafilter on Γ× n. We
have to show that it depends only on {ak : k < n, k 6= i}.

Claim. Let ā be i-distinguishing and b̄ be j-distinguishing tuples in N n1 ,
and suppose that {ak : k < n, k 6= i} = {bk : k < n, k 6= j}. Then
N2(ā)(i) = N2(b̄)(j).

Proof of claim. We first establish a useful fact. Take any i-distinguishing
ā and j < n, and let b̄ = ā[i/j]; it is also i-distinguishing. Now ā ≡i b̄,
so as N is a network, N2(ā) ≡i N2(b̄). By lemma 4.6, N2(ā)(i) = N2(b̄)(i).
Also, Dij ∈ N2(b̄). So by the lemma again, N2(b̄) is j-distinguishing, and

N2(b̄)(i) = N2(b̄)(j). We conclude that if ā ∈ N n2 is i-distinguishing, then
ā[i/j] is j-distinguishing and N2(ā)(i) = N2(ā[i/j])(j).
Now take ā, i, b̄, j as in the claim. By replacing ā by ā[i/0] and b̄ by b̄[j/0],
we can assume that i = j = 0. We now prove the claim by induction on
d (ā, b̄) = max{k < n : ak 6= bk}. If this is 0 or undefined, then ā ≡0 b̄,
so N2(ā) ≡0 N2(b̄); by lemma 4.6(3), N2(ā)(0) = N2(b̄)(0) as required.
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Otherwise, let i > 0 be greatest such that ai 6= bi . Then {ak : k 6= 0} =
{bk : k 6= 0}, so bi = aj for some j 6= i , j > 0. If j > i , then bi = aj = bj ,

contradicting that b̄ is 0-distinguishing. So j < i . Put c̄ = ā[0/i ][i/j][j/0].
That is,

c̄ = (ai , a1, . . . , aj−1, ai , aj+1, . . . , ai−1, aj , ai+1, . . . , an−1).

By the above, N2(ā)(0) = N2(c̄)(0). Also, ci = aj = bi , and ck = ak = bk
for all k > i . Hence, c̄ is 0-distinguishing, {ck : k 6= 0} = {bk : k 6= 0}, and
d (c̄, b̄) < d (ā, b̄). So inductively,N2(c̄)(0) = N2(b̄)(0). The claim follows.

By the claim, P2 is well defined. By lemma 4.10, everyA ∈ [N1]
n is coherent,

and hence so is P.
3. We must putN+2 (ā) = N2(ā) for ā ∈ dom(N2). We need to define N

+
2 (ā) for

every ā ∈ N n1 \ dom(N2). Fix such an ā.
• If | rng(ā)| ≤ n − 2, define N+2 (ā) to be the principal ultrafilter of C
generated by {(∅,∼ā)}, where ∼ā is defined by i ∼ā j iff ai = aj .

• If | rng(ā)| = n− 1, there are unique i < j < n with ai = aj . Write f for
P2(rng(ā))—an ultrafilter on Γ× n. Let ∆ = Fi ∩ Fj ∩Dij , and define

N+2 (ā) = {S ∈ C : (S ∩ ∆)(i) ∈ f}.

As can be verified, this is an ultrafilter of C . Clearly, ∆(i) = Γ × n ∈ f.
So ∆ ∈ N+2 (ā), and hence Dkl ∈ N

+
2 (ā) iff ak = al , for all k, l < n.

Also, if S ∈ N+2 (ā) and S ⊆ Fi , then S(i) ⊇ (S ∩ ∆)(i) ∈ f. Hence,
N+2 (ā)(i) ⊆ f, so as both are ultrafilters, N

+
2 (ā)(i) = f. By lemma 4.6,

N+2 (ā)(j) = f as well.
• If | rng(ā)| = n, then by lemma 4.10, there is an ultrafilter ì that is i-
distinguishing for all i , and with ì(i) = P({aj : j < n, j 6= i}) for every
i < n. We define N+2 (ā) = ì.
We now check that N+ = (N1, N

+
2 ) is an ultrafilter network. By construc-

tion and because N = (N1, N2) is already a partial ultrafilter network,

Dij ∈ N
+
2 (ā) ⇐⇒ ai = aj , for any ā ∈ N n1 and i, j < n. (2)

It follows that for each i < n, ā is i-distinguishing iffN+2 (ā) is i-distinguishing,
and

N+2 (ā)(i) = P2({aj : j < n, j 6= i}) for any i-distinguishing ā ∈ N n1 . (3)

This was assumed to hold already for any i-distinguishing ā ∈ dom(N2), and
by construction it holds for all remaining tuples in N n1 .

Suppose that ā ≡i b̄. We check that N
+
2 (ā) ≡i N

+
2 (b̄). Assume first that

ā is i-distinguishing. Then by (3), N+2 (ā)(i) = P2({aj : j 6= i}). Also, b̄ is

clearly i-distinguishing too, so N+2 (b̄)(i) = P2({bj : j 6= i}). These sets are

the same, so N+2 (ā)(i) = N
+
2 (b̄)(i). By lemma 4.6(3), N

+
2 (ā) ≡i N

+
2 (b̄).

Now assume that ā is not i-distinguishing. Let ∆ =
⋂

{Djk : j, k 6=
i, aj = ak} ∩

⋂

{−Djk : j, k 6= i, aj 6= ak}. By (2), ∆ ∈ N+2 (ā) and (since

b̄ ≡i ā) ∆ ∈ N+2 (b̄). Take any S ∈ N+2 (ā) and S
′ ∈ N+2 (b̄). By lemma 3.9,

it suffices to find some (X,∼) ∈ S and (X ′,∼′) ∈ S′ with (X,∼) ≡i (X
′,∼′).

We simply take any (X,∼) ∈ S ∩ ∆ and (X ′,∼′) ∈ S′ ∩ ∆. There are distinct
j, k 6= i with aj = ak , so (X,∼), (X

′,∼′) ∈ Djk and hence X (i), X
′(i) are
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undefined. Clearly, ∼↾(n \ {i}) = ∼′↾(n \ {i}). Hence, (X,∼) ≡i (X ′,∼′) as
required.
So N+ is an ultrafilter network. Certainly, N ⊆ N+, and it is immediate
from (3) that ∂N+ = P. ⊣

§5. Representations. Recall that Γ is a fixed graph, and C = C (Γ). We are going
to show that if Γ is infinite, C is representable iff ÷(Γ) = ∞. We will need the
following lemma. Recall that an algebra A is simple if for any algebra B of the
same signature, any homomorphism h : A → B is either trivial (i.e., h(x) = h(y)
for all x, y ∈ A ) or one-one.2

Lemma 5.1. C is simple, as is any subalgebra of C .

Proof. Let (K,∼) ∈ E (Γ), and let i with 1 ≤ i < n be arbitrary. Define Ki
to be the partial function from n to Γ × n given by Ki(0) = Ki(i) = K(i) (this
may be undefined), Ki(j) being undefined for j ∈ n \ {0, i}. Also define ∼i to
be the unique equivalence relation on n satisfying ∼i↾(n \ {i}) = ∼↾(n \ {i}) and
i ∼i 0 (∼i is the reflexive transitive closure of the binary relation just defined).
Then (Ki ,∼i) ∈ E (Γ) and (K,∼) ≡i (Ki ,∼i). So, writing Kij for (Ki)j , etc., we
have

(K,∼) ≡1 (K1,∼1) ≡2 (K12,∼12) · · · ≡n−1 (K12...n−1,∼12...n−1) = (L,≈), say.

So (L,≈) ∈ cn−1 . . . c1{(K,∼)}, and (K,∼) ∈ c1 . . . cn−1{(L,≈)}.
Recall that n ≥ 3. Now 2 is not in the domain of K1. Therefore, K12 has empty
domain, and hence K12 = · · · = K12...n−1 = L = ∅. Also, it is clear that≈ = n × n.
We conclude that (L,≈) has a fixed value, independent of (K,∼). So for any
(K,∼) ∈ E (Γ),

(K ′,∼′) ∈ c1 . . . cn−1cn−1 . . . c1{(K,∼)} (4)

for every (K ′,∼′) ∈ E (Γ). Thus, the right-hand side of (4) is 1. Since every
non-zero element of C lies above some (K,∼), and the ci are additive,

c1 . . . cn−1cn−1 . . . c1S = 1 for every S ∈ C \ {0}. (5)

Now let h be a homomorphism defined on some subalgebraD of C . Notice that
if S ∈ D and h(S) = 0, then

h(ciS) = cih(S) = ci0 = cih(0) = h(ci0) = h(0) = 0 for every i < n. (6)

Assume that h is not one-one. We need to show that h(0) = h(1). As h preserves the
boolean operations, there is non-zero S ∈ D such that h(S) = 0. Now, by (5) and
repeated application of (6) we obtain h(1) = h(c1 . . . cn−1cn−1 . . . c1S) = 0 = h(0)
as required. ⊣

Proposition 5.2. Suppose that ÷(Γ) =∞. Then C is representable.

Proof. We use the following game played by players ∀, ∃. The game constructs
a chain N0 ⊆ N1 ⊆ · · · of (total) ultrafilter networks over C . The game starts with
the unique one-point network N0. There are ù rounds, numbered 0, 1, . . . . In each
round t, where the current network is Nt , ∀ chooses an n-tuple ā ∈ N nt , an i < n,
and an element S ∈ C such that ciS ∈ Nt(ā). ∃ must respond with an ultrafilter

2Some definitions require also that |A | > 1. This does not affect the next lemma.
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network Nt+1 ⊇ Nt such that there is b̄ ∈ N nt+1 with b̄ ≡i ā and S ∈ Nt+1(b̄).
∃ wins if she succeeds in moving according to the rules in each round.

Lemma 5.3. If ∃ has a winning strategy in the game, then C is repre-
sentable.

Proof. Using the downward Löwenheim–Skolem–Tarski theorem [3,
theorem 3.1.6], choose a countable elementary subalgebra C0 of C . Let
N0 ⊆ N1 ⊆ · · · be a play of the game inwhich ∀ plays every possiblemove
(ā, i, S) for S ∈ C0 at some stage, and ∃ uses her winning strategy. We
can define an ultrafilter networkN =

⋃

t<ù Nt overC in the obvious way.
N can be checked to induce a homomorphism h of C0 into a cylindric
set algebra as follows:

h : C0 →
(

℘(N n),∪,−, ∅, N n , DNij , C
N
i

)

i,j<n

h : S 7→ {ā ∈ N n : S ∈ N(ā)}.

Clearly, h(1) = N n 6= h(0) = ∅. By lemma 5.1, C0 is simple, so h is an
embedding and C0 is representable. As RCAn is an elementary class, C is
representable too. ⊣

The converse of the lemma also holds, but we will not need it.

So it is enough to show that ∃ has a winning strategy in this game. To this end,
suppose that we are in round t, and the current network is Nt . Let ∀ choose ā, i, S
as per the rules: so ciS ∈ Nt(ā). If there is c̄ ∈ N nt with c̄ ≡i ā and S ∈ Nt(c̄),
then ∃ may playNt+1 = Nt . So assume not.
∃ needs to defineNt+1 ⊇ Nt . She first definesNodes(Nt+1) to beNodes(Nt)∪{z},
where z /∈ Nt is a new node. Now she has to assign ultrafilters to n-tuples from
Nt+1. For n-tuples from Nt , this is done already by Nt itself. Let b̄ denote the
n-tuple given by b̄ ≡i ā, bi = z. ∃’s next task is to choose an ultrafilter for b̄.

Claim. ci(S ∩
⋂

j 6=i −Dij) ∈ Nt(ā).

Proof of claim. Write ∆ for
⋂

j 6=i −Dij . Plainly, ∆ ∪
⋃

j 6=i Dij = E (Γ). So it is

easily seen that ciS = ci(S ∩ ∆) ∪
⋃

j 6=i ci(S ∩Dij). Assume for contradiction that

the claim fails. So ci(S ∩Dij) ∈ Nt(ā) for some j 6= i . Let c̄ = ā[i/j] ∈ N
n
t . Then

ā ≡i c̄. BecauseNt is a network,Nt(ā) ≡i Nt(c̄). By lemma3.9, ci(S∩Dij ) ∈ Nt(c̄)
as well. Now Dij ∈ Nt(c̄). So Dij ∩ ci(S ∩Dij) ∈ Nt(c̄). But it is easily checked
that Dij ∩ ci(S ∩ Dij) = Dij ∩ S. So S ∈ Nt(c̄), contradicting our assumption
above. This proves the claim.

It is now easily seen that

Σ = {S} ∪ {−Dij : j < n, j 6= i} ∪ {−ci−T: T ∈ Nt(ā)}

has the finite intersection property. ∃ chooses an ultrafilter ì of C containing Σ,
and defines Nt+1(b̄) = ì. By construction, ì ≡i Nt(ā). Moreover, for all j, k 6= i ,
we have

bi 6= bj and −Dij ∈ Σ,
bj = bk ⇒ aj = ak ⇒ Djk ∈ Nt(ā) ⇒ Djk = −ci−Djk ∈ Σ,
bj 6= bk ⇒ aj 6= ak ⇒ −Djk ∈ Nt(ā) ⇒ −Djk = −ciDjk ∈ Σ.
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So

Djk ∈ ì ⇐⇒ bj = bk , for every j, k < n. (7)

Therefore, we can define a partial ultrafilter network N ′ ⊇ Nt , whose set of nodes
is Nodes(Nt+1), and with N

′(b̄) = ì. N ′(c̄) is defined iff c̄ ∈ N nt or c̄ = b̄.
To help her assign ultrafilters to the remaining tuples, ∃ now defines a patch
system P = (Nodes(Nt+1), P2) as follows.

1. For any A ∈ [Nodes(Nt)]n−1, she defines P2(A) = ∂Nt(A).
2. For each j < n put Bj = {bk : k < n, k 6= j}. ∃ has to define P2(Bj) for
each j such that |Bj | = n− 1. If |Bi | = n− 1, then P2(Bi ) was defined above,
since Bi ⊆ Nodes(Nt). (Note that P2(Bi ) = ì(i) in this case.) Consider each
j 6= i with |Bj | = n− 1. As b̄ is j-distinguishing, ì is j-distinguishing by (7),
so ì(j) is well defined. ∃ defines P2(Bj) = ì(j). This is well defined. For
suppose that j, k < n, j, k 6= i , |Bj | = |Bk | = n − 1, and Bj = Bk . Then
bj = bk , so by (7), Djk ∈ ì. By lemma 4.6, ì(j) = ì(k).

3. Now Γ × n is partitioned by the sets Γ × {l} for l < n. Each ì(j) (for each
j 6= i such that ì is j-distinguishing) contains exactly one set Γ× {l}. There
are n ls and atmost n−1 js. So there is l < n such thatΓ×{l} /∈ ì(j) for each
such j. Since ÷(Γ) = ∞, it can easily be seen by lemma 3.3 that there is an
ultrafilter ä on Γ× n containing Γ× {l} and not containing any independent
sets. ∃ defines P2(A) = ä for all remaining A ∈ [Nodes(Nt+1)]n−1. (These are
the A that contain z and are not contained in rng(b̄).)

It is plain that P satisfies condition (1) of definition 4.11 for the partial ultrafilter
networkN ′ introduced above: that is,N ′(c̄)(j) = P2({ck : k < n, k 6= j}) for each
j < n and each j-distinguishing c̄ ∈ N nt ∪ {b̄}.
We now show that P is coherent. Let C = {c0, . . . , cn−1} ∈ [Nodes(Nt+1)]n be
given. We check that C is P-coherent. Write Cj for C \ {cj}, for each j < n.

• If z /∈ C , then C ⊆ Nt and C is P-coherent because (by lemma 4.12) ∂Nt is
coherent.

• If C = rng(b̄), coherence follows from lemma 4.10.
• If z ∈ C and |C ∩ rng(b̄)| = n− 1,3 let j, k < n be such thatCj = C ∩ rng(b̄)

and Ck * Nt , Ck * rng(b̄). Then Γ × {l} ∈ P2(Ck) (l as above). Note that
z ∈ Cj . So by choice of l , there is m 6= l with Γ × {m} ∈ P2(Cj). Now, if
Xs ∈ P2(Cs) are given, for each s < n, we choose xs ∈ Xs for each s , with
xj ∈ Xj ∩ (Γ × {m}) and xk ∈ Xk ∩ (Γ × {l}). Since l 6= m, (xj , xk) is an
edge of Γ× n. So {x0, . . . , xn−1} is not independent.

• If z ∈ C and |C ∩ rng(b̄)| < n − 1, there are distinct j, k < n − 1 such that
neither Cj nor Ck are contained inNt or in rng(b̄). So P2(Cj) = P2(Ck) = ä.
Suppose that we are given Xs ∈ P2(Cs ) for each s . Then Xj , Xk ∈ ä, so
Xj ∩Xk ∈ ä and hence this set is not independent. Choose an edge (xj , xk) of
Γ × n, with xj , xk ∈ Xj ∩ Xk . For each s 6= j, k, choose any xs ∈ Xs . Then
xs ∈ Xs for all s , and {x0, . . . , xn−1} is not independent.

3This case is only needed if n = 3. For n ≥ 4, it is subsumed by the next one. Moreover, for n ≥ 4,
Γ× n can be replaced by Γ throughout the proof.
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So P is coherent. By lemma 4.12(3) applied to P and N ′, there is a (total)
ultrafilter network Nt+1 ⊇ N ′ with ∂(Nt+1) = P. Hence, Nt+1 ⊇ Nt , Nt+1(b̄) = ì,
and S ∈ Nt+1(b̄). ∃ plays such an Nt+1 as her response to ∀’s move. We have
described a winning strategy for ∃. This proves proposition 5.2. ⊣

We now show that when Γ is infinite, the converse of proposition 5.2 holds.

Proposition 5.4. Suppose that Γ is infinite and ÷(Γ) < ∞. Then C is not repre-
sentable.

Proof. Suppose otherwise. Then there is an embedding h : C →
∏

q∈Q Aq , where

for each q ∈ Q, Aq = (Aq ,∪,−, ∅, U
n
q , D

Uq
ij , C

Uq
i )ij<n is a cylindric set algebra with

non-empty base set Uq . Because h is one-one and |C | > 1, Q 6= ∅. Choose any
q ∈ Q, and let ð denote the projection of

∏

q∈Q Aq onto Aq . Then g = ð ◦ h is a

homomorphism defined on C . Since Uq 6= ∅, we have g(1) = U nq 6= ∅ = g(0). By
lemma 5.1, g is one-one.
We can view Aq as an ultrafilter networkM , viaM (ā) = {S ∈ C : ā ∈ g(S)},
for each ā ∈ U nq . This can be checked to be a bona fide ultrafilter network. By
lemma 4.12, ∂M is well defined and is a coherent patch system.
As ÷(Γ) <∞, also ÷(Γ× n) <∞, and we can choose a finite partition of Γ× n
into independent sets I0, . . . , Ik−1. Now Γ is infinite, and hence so is C . Because g is
one-one,Uq must be infinite as well. Choose distinct elements a0, a1, . . . ofUq , and
define f : [ù]n−1 → k by letting f({i1, . . . , in−1}) be the unique j < k such that
Ij ∈ ∂M ({ai1 , . . . , ain−1}). By Ramsey’s theorem [20], wemay assume that the value
of f is constant—say, c. Let A = {a0, . . . , an−1}. Then Ic ∈ ∂M (A\ {ai}) for each
i < n. By coherence, there arexi ∈ Ic (for each i < n) such that {x0, . . . , xn−1} is not
independent. This is impossible, as {x0, . . . , xn−1} ⊆ Ic which is independent. ⊣

§6. The main result.

Theorem 6.1. For each finite n ≥ 3 the class Str RCAn of strongly representable
n-dimensional cylindric atom structures is not closed under ultraproducts, and so is
non-elementary.

Proof. ByErdős’s famous 1959 theorem [5], for each finitek there is a finite graph
Gk with ÷(Gk) > k and with no cycles of length < k. Let Γk be the disjoint union
of the Gl for l > k. Clearly, ÷(Γk) = ∞. So by proposition 5.2, C (Γk) = E (Γk)

+

is representable. By lemma 2.6, E (Γk) ∈ Str RCAn for each finite k.
Now let Γ be a non-principal ultraproduct

∏

D Γk for the Γk . It is certainly
infinite. For k < ù, let ók be a first-order sentence of the signature of graphs,
stating that there are no cycles of length less than k. Then Γl |= ók for all l ≥ k.
By Łoś’s theorem [3, theorem 4.1.9], Γ |= ók for all k. So Γ has no cycles, and
hence by lemma 3.2, ÷(Γ) ≤ 2. By proposition 5.4, C (Γ) is not representable. So
E (Γ) /∈ Str RCAn.
Now it is easily seen (e.g., because E (Γ) is first-order interpretable in Γ, for anyΓ)
that

∏

D

E (Γk) ∼= E (
∏

D

Γk).

So Str RCAn is not closed under ultraproducts, and, by [3, theorem 4.1.12], is non-
elementary. ⊣
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§7. Conclusion. We end with some remarks and problems.

Remark 7.1. By [6, theorem 3.8.4], Str RCAn is elementary iff it is closed under
elementary equivalence, iff it is closed under ultrapowers, iff it is closed under
ultraproducts. Hence, for finiten ≥ 3,Str RCAn has noneof these closure properties.
However, its complement is closed under ultrapowers and so Str RCAn is closed
under ultraroots [6, theorem 3.8.1(1)].

Problem 7.2. For finite n ≥ 3, is Str RCAn closed under L∞ù-equivalence?

Remark 7.3. For n ≤ 2, RCAn is known to be axiomatisable by a finite set of
Sahlqvist equations (see, e.g., [9, 3.2.56, 3.2.65], or [12, §5.3]). Hence (e.g., by
[23, page 2 and theorem 1.3] or [12, proposition 2.91]), Str RCAn is the same as
At RCAα . It is elementary and finitely axiomatisable by an explicit set of first-order
sentences: the ‘Sahlqvist correspondents’ of the Sahlqvist equations defining RCAn.

Problem 7.4. For infinite α, is Str RCAα elementary?

Remark 7.5. Strongly representable atom structures are connected to ‘comple-
tions’. Let 3 ≤ n < ù. As we mentioned in the introduction, it follows from a gen-
eral result in [23] thatAtRCAn is elementary. Since clearly, Str RCAn ⊆ AtRCAn, by
theorem 6.1 the inclusion is strict. Now take any S ∈ AtRCAn \ Str RCAn (e.g., the
E (Γ) of theorem 6.1). Then C = S+ is a non-representable atomic n-dimensional
cylindric BAO that has a representable subalgebra, say A , with the same atoms as
C . It is well known that the completion of A (in the sense of [18]) is C . Hence,
RCAn is not closed under completions. (This is known and was proved in [14].)
Strongly representable atom structures are also connected to ‘complete represen-
tations’. A complete representation of a cylindric-type algebraA is a representation
that respects all existing (possibly infinitary) sums and products in A . If A has
a complete representation then A is atomic, and every atomic cylindric BAO with
atom structure AtA has a complete representation ([12, corollary 2.22] can be used
to prove both statements). By lemma 2.6, which holds for any dimension, AtA is
strongly representable.
So for any ordinal α, we may define the class ‘CRASα ’ of atom structures of α-
dimensional cylindric-type algebras with a complete representation. By the above,
CRASα ⊆ Str RCAα . For 3 ≤ α < ù, the inclusion is strict because CRASα is
pseudo-elementary and so closed under ultraproducts (see [3, exercise 4.1.17]),
while by theorem 6.1, Str RCAα is not.
We should mention that for α ≥ 3, the class of α-dimensional cylindric-type
algebras that have a complete representation is not closed under elementary equiv-
alence, and so is non-elementary [11, theorem 34]. Since the atom structure of
an atomic cylindric BAO is first-order interpretable in the algebra, it follows that
CRASα is also non-elementary.
[2] uses these and related notions to show that the omitting types theorem fails
for n-variable first-order logic.

Remark 7.6. Although (for finite n ≥ 3) RCAn is a canonical variety, we believe
that the ideas of the current paper and [15] can be combined to show that RCAn

is only barely canonical, meaning that every first-order axiomatisation of it has
infinitely many non-canonical formulas. We hope to do this in a future publication.
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