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Only humans possess the faculty of language that allows an infinite array of hierarchically

structured expressions (Hauser et al., 2002; Berwick and Chomsky, 2015). Similarly,

humans have a capacity for infinite natural numbers, while all other species seem to

lack such a capacity (Gelman and Gallistel, 1978; Dehaene, 1997). Thus, the origin of

this numerical capacity and its relation to language have been of much interdisciplinary

interest in developmental and behavioral psychology, cognitive neuroscience, and

linguistics (Dehaene, 1997; Hauser et al., 2002; Pica et al., 2004). Hauser et al. (2002) and

Chomsky (2008) hypothesize that a recursive generative operation that is central to the

computational system of language (calledMerge) can give rise to the successor function

in a set-theoretic fashion, from which capacities for discretely infinite natural numbers

may be derived. However, a careful look at two domains in language, grammatical

number and numerals, reveals no trace of the successor function. Following behavioral

and neuropsychological evidence that there are two core systems of number cognition

innately available, a core system of representation of large, approximate numerical

magnitudes and a core system of precise representation of distinct small numbers

(Feigenson et al., 2004), I argue that grammatical number reflects the core system of

precise representation of distinct small numbers alone. In contrast, numeral systems

arise from integrating the pre-existing two core systems of number and the human

language faculty. To the extent that my arguments are correct, linguistic representations

of number, grammatical number, and numerals do not incorporate anything like the

successor function.

Keywords: natural language, number, natural numbers, numerals, core systems of number, grammatical number,

syntax, linguistics

INTRODUCTION

Only humans possess the faculty of language that allows an infinite array of hierarchically
structured expressions (Chomsky, 1995; Miyagawa et al., 2013, 2014; Berwick and Chomsky,
2015). Similarly, humans have a capacity for infinite natural numbers, while all other species seem
to lack such a capacity (Hauser et al., 2002; Chomsky, 1982, 1986; for studies on the capacity
for number, see Gelman and Gallistel, 1978; Wynn, 1992a,b; Dehaene, 1993, 1997; Butterworth,
1999; Pica et al., 2004). This unique capacity is obviously what has made the development of
sophisticated mathematics possible (Hauser and Watumull, in press). Common to both faculties
is the use of finite means to achieve discrete infinity, that is, an open-ended array of discrete
expressions (von Humboldt, 1836; Chomsky, 1965, 2007a,b, 2008, 2010). Thus, the origin of this
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numerical capacity and its relation to language have been of
much interdisciplinary interest in developmental and behavioral
psychology, cognitive neuroscience, and linguistics (Dehaene,
1997; Hauser et al., 2002; Pica et al., 2004; Gelman and
Butterworth, 2005).

Some developmental psychologists have suggested that the
concepts of natural numbers are innate to humans (Gelman and
Gallistel, 1978; Wynn, 1992b; Dehaene, 1997). Chomsky (2008,
p. 139) hypothesizes that Merge can give rise to the successor
function (i.e., every numerosity N has a unique successor, N+ 1)
in a set-theoretic fashion (1= one, 2= {one}, 3={one, {one}}, ...)
and that the capacity for discretely infinite natural numbers may
be derived from this. Merge is central to the generative system
of language (Chomsky, 2008). It is a set-theoretic recursive
combinatorial operation that takes two objects X and Y and forms
{X, Y} (e.g., two items the and dog are combined to form a set
{the, dog}, which can then be further combined with another
item saw to form a set {saw, {the, dog}}). “Operating without
bounds,Merge yields a discrete infinity of structured expressions”
(Chomsky, 2007a, p. 5). Hauser et al. (2002, p. 15) also suggest
that “in parallel with the faculty of language, our capacities for
number rely on a recursive computation.”

In natural languages, number most clearly emerges in two
domains: grammatical number (Corbett, 2000 and references
therein) and numerals (Stampe, 1976; Corbett, 1977; Greenberg,
1978; Comrie, 2005a,b; Kayne, 2010). As I will show, however,
representations of number in natural languages do not reveal
any straightforward trace of the successor function. This leads
us to a central question of this article: how natural numbers
are linguistically represented and how such representations are
related to other cognitive systems, if any.

There has been much behavioral and neuropsychological
evidence that there are two core systems of number cognition that
are innately available (Xu and Spelke, 2000; Carey, 2001, 2009;
Xu, 2003; Feigenson et al., 2004; McCrink and Wynn, 2004).
The first is a system of approximate representation of numerical
magnitude, which allows one to compare and discriminate large,
approximate numerical magnitudes. The second is a system of
precise representation of distinct small numbers: 1, 2, 3, possibly
4. This system allows one to compare and discriminate small
numbers of individuals. The analog approximate-magnitude
system has a ratio limit of 1:2. Experiments show that 6-month-
old infants can discriminate numerosities of 8 and 16 and
numerosities of 16 and 32, where the ratio is 1:2, but they fail
to discriminate numerosities of 8 and 12 and of 16 and 24, where
the ratio is 2:3 (Xu and Spelke, 2000; Barth et al., 2003; Xu, 2003;
Feigenson, 2007). In contrast, the small-numbers system has a set
size limit of 3 or 4. Experiments show that 10- and 12-month-
old infants can identify the larger of 1 and 2 and the larger of
2 and 3, while they fail to discriminate between large numbers
(Starkey and Cooper, 1980; Feigenson et al., 2002a,b; Xu, 2003;
Carey, 2004; also Barner et al., 2008).

I propose that the grammatical-number system and the
numeral system constitute linguistic evidence for these two core
systems of number representation. The grammatical-number
system reflects the system of precise representation of distinct
small numbers alone. In contrast, the numeral system has

arisen by integrating the two pre-existing core systems with the
recursive combinatorial computation Merge, which is unique to
the human language faculty.

(1) a. Grammatical number reflects the core system of precise
representation of distinct small numbers alone.

b. Numeral systems reflect both of the core systems of
number and Merge.

Consequently, the concepts of natural numbers and its realization
in language are distinct and language interfaces with the two core
systems of number.

NUMERICAL NOTATIONS: A SIMPLE
EXAMPLE OF THE CORE SYSTEM OF
PRECISE REPRESENTATION OF SMALL
NUMBERS

Around the world, natural numbers have often been represented
by numerical-notation systems (Menninger, 1969; Ifrah, 1985,
2000). Dehaene (1997, p. 54) observes that many numerical
notation systems denote the first three or four numbers by a
specific analog number of identical marks, and the following
numbers by essentially arbitrary symbols (e.g., I, II, III, IV, V and
一,二,三,四,五 in Roman and Chinese/Japanese notations for
“1”–“5”). He argues that the limit to “3” or “4” follows from the
core system of precise representation of distinct small numbers.
It would not be expected if numerical notations reflected the
successor function.

GRAMMATICAL NUMBER ALSO
REFLECTS THE CORE SYSTEM OF
PRECISE REPRESENTATION OF SMALL
NUMBERS

If the two core systems of number are innate to humans, one
also expects to find some similar trace of these systems within
natural-language syntax.

Grammatical number is the grammatical coding of numerical
quantity. Some languages overtly mark number on nouns (e.g.,
I saw the dog (singular) vs. I saw the dog-s (plural) in English).
According to Corbett (2000), grammatical-number systems only
come in three varieties. English represents the most common,
a singular-plural system that distinguishes “1” and “more than
1.” The second most common system is a singular-dual-plural
system, which distinguishes “1,” “2,” and “more than 2” (as in
Hopi; see Hale, 1997). Finally, a trial system, although quite
rare cross-linguistically, involves a four-way distinction, singular-
dual-trial-plural, distinguishing “1,” “2,” “3,” and “more than 3”
(as in Larike; see Laidig and Laidig, 1990; Corbett, 2000).

A “quadral” system, in which the precise cardinalities
1 through 4 are all distinguished, is reported but quite
controversial: according to Corbett (2000, p. 30) and Dixon
(2010), the “quadral” number in such systems should actually
be analyzed as paucal (i.e., denoting an approximate, relatively
small cardinality), rather than literally quadral. Furthermore,
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there is no attested case of a “quintal” system or a “discretely
infinite” grammatical-number system. Grammatical-number
systems never go beyond the limit of 3 (Greenberg, 1978;
Hurford, 1987).

Such a limit in natural languages may pose a mystery, given
humans’ capacity for natural numbers and discrete infinity. What
explains this absence? The answer that I am proposing here is that
grammatical number is founded on the core system of precise
representation of small numbers rather than on the successor
function.

(2) Grammatical number reflects the core system of precise
representation of small numbers.

With (2), we can understand why grammatical-number systems
in natural language fall within the range of 1 (singular) to 3 (trial)
and do not go beyond.

NUMERAL SYSTEMS: THE TWO CORE
SYSTEMS OF NUMBER + MERGE

Humans are unique in having evolved to deal with discretely
infinite natural numbers, beyond the limits of the two core
systems of number (precise representation of small numbers
and approximate representation of numerical magnitudes). In
contrast with grammatical number, numeral systems in many
natural languages do in fact show the distinctive property of
discrete infinity.

Numerals (or number words) are what we often use to count
in natural language: they are the linguistic representation of
discrete numbers (e.g., one, two, three, in English). A numeral
usually takes the form of a word or a phrase. It is surprising
that all the natural languages, across genetic families and across
geographical areas, have come to have numerals: “Every language
has a numeral system of finite scope” (Greenberg, 1978, p.
273, Universal #1) (see Nevins et al., 2009 for a rebuttal
of the claim in Everett, 2005 that Pirahã lacks numerals).
It is even more impressive that the internal composition of
numerals (and the abstract arithmetic computations behind this
composition) shows distinctive shared structural properties in
different languages (Greenberg, 1978; Ionin and Matushansky,
2006; Kayne, 2010; Watanabe, 2010).

I propose that the numeral system emerges when the recursive
combinatorial operation Merge integrates the two pre-existing
core systems of number. This hypothesis needs to clarify the role
played by each of the two core systems and the Merge operation.
Let us take them one by one in this section and the next.

Lower Numerals As a Reflex of the Core
System of Precise Representation of Small
Numbers
While numeral systems in English and Japanese show discrete
infinity, it is known that some languages only have a highly
restricted set of numerals. Botocudo, a Macro-Ge language in
Brazil, only has one numeral, namely “1” (Greenberg, 1978).
Aiom, one of the languages spoken in Papua New Guinea, and
Walbiri, an indigenous language spoken in Central Australia,

only have two numerals, “1” and “2” (Aufenanger, 1960; Hale,
1975).

Significantly, Greenberg (1978, p. 276, Universal #6) makes
the following observation: “The largest value for L with systems
with only simple lexical representation is 5 and the smallest is
2,” where L is the next largest natural number after the largest
expressible in the system. Thus, in natural languages whose
numeral system lacks an additive operation, numerals can only
go up to “4” (i.e., the numeral system can only distinguish “1,”
“2,” “3,” “4,” and “many”).

This limit naturally follows from the core system of precise
representation of small numbers.

(3) Lower numerals reflect the core system of precise
representation of small numbers.

Neither One Word Nor an Infinite Number
of Words
A number of natural languages have developed numeral systems
that go well beyond the limits of a few small numerals. English
and Japanese, for example, have potentially infinite numerals.
But when we say so, it does not mean that these languages
have a potentially infinite number of arbitrary lexical items
corresponding to each natural number. It would be extremely
inefficient to use as many different numeral words as there are
natural numbers, in which case counting up to “1,000” would
require one thousand different arbitrary numeral words. Such a
system would also be impossible for children to acquire.

It is even more important to note, however, that no numeral
system in any natural language shows any formal (syntactic or
morphological) trace of the successor function, even though the
natural numbers are generally defined in terms of the successor
function (Hauser et al., 2002; Chomsky, 2008; Izard et al., 2008,
and references therein). For example, there is no language that
has a numeral “15” that is composed by repeating a single
numeral “1” 15 times.

(4) A hypothetical numeral “15”
{1, {1, {1, {1, {1, {1, {1, {1, {1, {1, {1, {1, {1, {1, {1}}}}}}}}}}}}}}}
(pronounced one-one-one-one-one-one-one-one-one-one-
one-one-one-one-one)

Such a numeral system would not be usable for natural language.

Numerical Bases As a Reflex of the Core
System of Approximate Representation of
Numerical Magnitudes
Natural language finds an ingenious solution. Let us consider, for
example, natural languages that have a decimal numeral system
(e.g., English and Japanese). In such languages, the numerals
“1” through “10” are simplex numeral words. But they never
continue with a new numeral word for each number beyond
10: instead, they combine (multiples of) numerical bases (e.g.,
digit numbers “10,” “100,” “1,000,” and so on) and small numerals
(from “1” up to the smallest numerical base) (Hurford, 1975;
Ionin and Matushansky, 2006; Kayne, 2010).

The invention of numerical bases plays a crucial role in going
beyond small numbers. But how did numerical bases come to be
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a part of natural languages? They are known to show syntactic
properties distinct from simplex numerals (e.g., hundreds vs.
∗sevens, two hundred vs. ∗two seven; Corbett, 1977; Kayne, 2010).
A crucial fact is that numerical bases and multiples/powers
of numerical bases (so-called round numbers), in contrast
with simplex numerals, can refer not only to exact numbers
like “10,” “100,” and “1,000,” but also to vague/approximate
magnitudes (e.g., a hundred/thousand/million thanks, a hundred/
thousand/million things to do; similarly, in Japanese, numerical
bases, such as hyaku “100,” sen “1,000,” man “10,000,” can mean
“numerous/many”) (see also Dehaene, 1997; Krifka, 2002; but see
also Musolino, 2004 and references therein for discussions on a
different kind of “non-exact” interpretation of numerals “at least
n” and “at most n”). Thus, a natural candidate for the origin of
such “analog” numerical bases in natural language is the core
system of representation of approximate magnitudes.

(5) Numerical bases in numeral systems reflect the core system
of approximate representation of numerical magnitude.

Thus, the core system of precise representation of small
numbers is the basis for the simplex numerals in natural
language, while the core system of approximate representation
of numerical magnitudes is the basis for numerical
bases.

There are two remaining questions here. First, a set of small
simplex numerals and a set of numerical bases are not sufficient
to give rise to discrete infinity (Feigenson et al., 2004; Izard et al.,
2008). Second, we have to answer why other species apparently
cannot go beyond the limits of these two core systems and
humans can.

1, 2, 3,... INFINITY!

Feigenson et al. (2004, p. 313) speculate that having the two
core systems of number enabled humans to go beyond the
limits of these two systems’ representations with each other.
However, these two core systems are shared by other, non-
human species (Dehaene, 1997; Brannon and Terrace, 1998;
Carey et al., 2000; Carey and Hauser, 2003; Hauser et al., 2003;
Feigenson et al., 2004). Somehow, quite a few natural languages
have come to employ the finite means supplied by these two
systems (lower numerals and numerical bases) to obtain higher
numerals, virtually with discrete infinity. Then, there must be
something uniquely human that integrates these two systems,
allowing discretely infinite higher numerals to be generated.

This is where the third factor—the recursive and
combinatorial operation Merge—comes into play. In addition to
lower numerals and numerical bases, higher numerals in natural
language make a crucial use of the additive operation, in the
form of conjunction (and in English; ne in Dagaare, a language
spoken in Ghana; and a covert conjunction in Japanese) (see also
Hauser, 2009).

(6) four hundred and forty-two (people) (4×100 & 4× 10 (&) 2
(people)) (English)
(noba) kOOre anaare ne lezaε ayi ne bayi (100×4 & 20 × 2 &
2 (people)) (Dagaare)

yon-hyaku yon-zyuu ni (nin) (4 × 100 (&) 4 × 10 (&) 2
(people)) (Japanese)

But numerals are acquired by children long before they learn
basic arithmetic, including addition and subtraction. In other
words, the additive operation in natural language syntax comes
free. But how? I concur with Hauser et al. (2002) that the
recursive combinatorial computation Merge plays a crucial role
in discrete infinity in natural language (see also Watumull
et al., 2014). With Merge available only to humans, the additive
operation “A & B” uniquely comes free in the form of
conjunction. Thus, it is Merge that integrates the two pre-existing
core systems of number (simplex numerals and numerical bases,
respectively) and generates an open-ended list of hierarchically
structured complex numerals by combining simplex numerals
and numerical bases (Figure 1).

(7) The numeral system = the two core systems of number +
Merge

This is a feature shared by all natural languages with higher
numeral systems. It explains why non-human species can
deal with distinct small numbers and approximate numerical
magnitudes, but cannot go beyond the limits set by these systems
to attain discrete infinity. Humans overcome this problem with
the faculty of language, specifically, Merge. By conjoining distinct
small numerals with large numerical bases recursively (e.g., forty
thousand, four hundred and forty-two), natural language can
represent a potentially infinite number of numerals. (The same
goes for the numerical notations discussed earlier, which use a
similar compositional principle.)

From this point of view, we can also understand why there are
such languages asMundurucú and Pirahã that have a very limited
number of numerals (Gordon, 2004; Pica et al., 2004). It is likely
that such a restricted numeral system resulted from deploying the
core system of precise representation of small numbers alone,
instead of deploying Merge to integrate both core systems of
number. Therefore, it ends up with the first few numerals (1–3 or
1–4) and anything beyond is represented as “many”—much like
in grammatical-number systems. Consequently, Mundurucú,

FIGURE 1 | Integration of the two core systems of number and the

faculty of language.
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and Pirahã lack a principled numeral system (or a counting
list) that composes numerals combinatorially, recursively, and
systematically, which is crucial for understanding the notion of
a successor function (Pica et al., 2004; Izard et al., 2008; Pica and
Lecomte, 2008; see also Gelman and Gallistel, 1978; Carey, 2001,
2004; Le Corre and Carey, 2007; Condry and Spelke, 2008).

CONCLUSION

The grammatical-number system in natural language deploys the
core system of precise representation of distinct small numbers
alone. The full numeral system in natural language deploys
both of the core systems of number, but it is only made
possible by integrating the two core systems of number with the
central combinatorial operation Merge of the faculty of language.
While the idea that language is closely connected to children’s
understanding of number words is not new (Carey, 2001, 2004;
Condry and Spelke, 2008), the present study explicates what
specific function language plays in deriving discretely infinite
numerals.

To the extent that my arguments are correct, representations
of number systems in natural language do not incorporate
anything like the successor function, although abstract
computation for the concepts of natural numbers perhaps
does (Hale, 1975, p. 296; Hauser et al., 2002; Chomsky, 2008;
Izard et al., 2008; Watanabe, in press). This gap between the
concepts of natural numbers (in the sense of the successor
function) and the linguistic representation of number suggests

that they are not in direct correspondence (Gelman and
Butterworth, 2005).

My claim that the faculty of language integrates the two
core systems of number explains three things. First, numeral
systems are not innate, nor do they come free. They are
subject to learning (Fuson, 1988; Wynn, 1992b) and allow for
variation. Second, no number systems manifest the successor
function linguistically. Finally, all natural languages with a full
numeral system compose hierarchically structured numerals by
conjoining simplex numerals and numerical bases. The picture
that emerges from this study is one in which the faculty of
language interfaces with the language-external core systems of
number.

AUTHOR CONTRIBUTIONS

This article is single-authored by KH.

ACKNOWLEDGMENTS

I would like to thank the two reviewers for helpful suggestions.
I am grateful to Noam Chomsky, Tomohiro Fujii, Shigeru
Miyagawa, Seiya Negami, Pierre Pica, and Akira Watanabe.
I would also like to thank David Hill for his copy editorial
assistance. This project has been funded by the JSPSGrant-in-Aid
for Young Scientists (B) (No. 25770159), the JSPS Grant-in-Aid
for Scientific Research (C) (No. 16K02645), and the Fulbright
Research Grant 2015.

REFERENCES

Aufenanger, H. (1960). The Ayom pygmies’ myth of origin and their method of

counting. Anthropos 55, 247–249.

Barner, D.,Wood, J., Hauser,M., and Carey, S. (2008). Evidence for a non-linguistic

distinction between singular and plural sets in rhesus monkeys. Cognition 107,

603–622. doi: 10.1016/j.cognition.2007.11.010

Barth, H., Kanwisher, N., and Spelke, E. S. (2003). The construction

of large number representations in adults. Cognition 86, 201–221.

doi: 10.1016/S0010-0277(02)00178-6

Berwick, R. C., and Chomsky, N. (2015). Why Only Us: Language and Evolution.

Cambridge: MIT Press.

Brannon, E. M., and Terrace, H. S. (1998). Ordering of the numerosities 1-9 by

monkeys. Science 282, 746–749. doi: 10.1126/science.282.5389.746

Butterworth, B. (1999). The Mathematical Brain. London: MacMillan.

Carey, S. (2001). Cognitive foundations of arithmetic: evolution and ontogenesis.

Mind Lang. 16, 37–55. doi: 10.1111/1468-0017.00155

Carey, S. (2004). Bootstrapping and the origin of concepts. Daedalus 133, 59–68.

doi: 10.1162/001152604772746701

Carey, S. (2009). The Origin of Concepts. Oxford: Oxford University Press.

Carey, S., andHauser,M. D. (2003). Spontaneous representations of small numbers

of objects by rhesus macaques: examinations of content and format. Cogn.

Psychol. 47, 367–401. doi: 10.1016/S0010-0285(03)00050-1

Carey, S., Hauser, M. D., and Hauser, L. B. (2000). Spontaneous number

representation in semi-free-ranging rhesus monkeys. Proc. Biol. Sci. 1445,

829–833. doi: 10.1098/rspb.2000.1078

Chomsky, N. (1965). Aspects of the Theory of Syntax. Cambridge: MIT

Press.

Chomsky, N. (1982). Noam Chomsky on the Generative Enterprise, a

Discussion with Riny Huybregts and Henk van Riemsdijk. Dordrecht: Foris

Publications.

Chomsky, N. (1986). Knowledge of Language: Its Nature, Origin, and Use. New

York, NY: Praeger.

Chomsky, N. (1995). The Minimalist Program. Cambridge: MIT Press.

Chomsky, N. (2007a). “Approaching UG from below,” in Interfaces+ Recursion=

Language?, eds U. Sauerland and H.-M. Gärtner (Berlin: Mouton de Gruyter),

1–29.

Chomsky, N. (2007b). Of minds and language. Biolinguistics 1, 9–27.

Chomsky, N. (2008). “On phases,” in Foundational Issues in Linguistic Theory, eds

R. Freidin, C. P. Otero, and M. L. Zubizarreta (Cambridge, MA: MIT Press),

133–166.

Chomsky, N. (2010). “Some simple evo devo theses: how true might they be for

language?,” in The Evolution of Human Language: Biolinguistic Perspectives, eds

R. K. Larson, V. Déprez, and H. Yamakido (Cambridge: Cambridge University

Press), 45–62.

Comrie, B. (2005a). “Chapter 131: Numeral bases,” in TheWorld Atlas of Language

Structures, eds M. Haspelmath, M. S. Dryer, D. Gil, and B. Comrie (Oxford:

Oxford University Press).

Comrie, B. (2005b). “Endangered numeral systems,” in Bedrohte Vielfalt: Aspekte

des sprach(en)tods, eds J. Wohlgemuth and T. Dirksmeyer (Berlin: Weißensee

Verlag), 203–230.

Condry, K. F., and Spelke, E. S. (2008). The development of language and

abstract concepts: the case of natural number. J. Exp. Psychol. 137, 22–38.

doi: 10.1037/0096-3445.137.1.22

Corbett, G. G. (1977). Universals in the syntax of cardinal numerals. Lingua 46,

355–368. doi: 10.1016/0024-3841(78)90042-6

Corbett, G. G. (2000). Number. Cambridge: Cambridge University Press.

Dehaene, S. (ed.). (1993). Numerical Cognition. Cambridge: Blackwell Publishers.

Dehaene, S. (1997). The Number Sense: How the Mind Creates Mathematics. New

York, NY: Oxford University Press.

Dixon, R. M. W. (2010). Basic Linguistic Theory, Vol. 3. New York, NY: Oxford

University Press.

Frontiers in Psychology | www.frontiersin.org 5 March 2017 | Volume 8 | Article 351

https://doi.org/10.1016/j.cognition.2007.11.010
https://doi.org/10.1016/S0010-0277(02)00178-6
https://doi.org/10.1126/science.282.5389.746
https://doi.org/10.1111/1468-0017.00155
https://doi.org/10.1162/001152604772746701
https://doi.org/10.1016/S0010-0285(03)00050-1
https://doi.org/10.1098/rspb.2000.1078
https://doi.org/10.1037/0096-3445.137.1.22
https://doi.org/10.1016/0024-3841(78)90042-6
http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Hiraiwa The Faculty of Language and Number

Everett, D. L. (2005). Cultural constraints on grammar and cognition in Pirahã.

Curr. Anthropol. 46, 621–646. doi: 10.1086/431525

Feigenson, L. (2007). The equality of quantity. Trends Cogn. Sci. 11, 185–187.

doi: 10.1016/j.tics.2007.01.006

Feigenson, L., Carey, S., andHauser,M. D. (2002a). The representations underlying

infants’ choice of more: object-files versus analog magnitudes. Psychol. Sci. 13,

150–156. doi: 10.1111/1467-9280.00427

Feigenson, L., Carey, S., and Spelke, E. S. (2002b). Infants’ discrimination

of number vs. continuous extent. Cogn. Psychol. 44, 33–66.

doi: 10.1006/cogp.2001.0760

Feigenson, L., Dehaene, S., and Spelke, E. S. (2004). Core systems of number.

Trends Cogn. Sci. 8, 307–314. doi: 10.1016/j.tics.2004.05.002

Fuson, K. C. (1988). Children’s Counting and Concepts of Number. New York, NY:

Springer-Verlag.

Gelman, R., and Butterworth, B. (2005). Number and language: how are they

related? Trends Cogn. Sci. 9, 6–10. doi: 10.1016/j.tics.2004.11.004

Gelman, R., and Gallistel, C. R. (1978). The Child’s Understanding of Number.

Cambridge: Harvard University Press.

Gordon, P. (2004). Numerical cognition without words: evidence from Amazonia.

Science 306, 496–499. doi: 10.1126/science.1094492

Greenberg, J. (1978). “Generalizations about numeral systems,” in Universals of

Human Language: Word Structure, Vol. 3, eds J. Greenberg, C. A. Ferguson,

and E. Moravcsik (Stanford, CA: Stanford University Press), 249–295.

Hale, K. (1975). “Gaps in grammar and culture,” in Linguistics and Anthropology.

In Honor of C. F. Voegelin, eds K. Hale, D. Kinkade, and O. Werner (Lisse: The

Peter de Ridder Press), 295–315.

Hale, K. (1997). Some observations on the contributions of local languages to

linguistic science. Lingua 100, 71–89. doi: 10.1016/S0024-3841(96)00029-0

Hauser, M. D. (2009). The possibility of impossible cultures. Nature 460, 190–196.

doi: 10.1038/460190a

Hauser, M. D., Chomsky, N., and Fitch, W. T. (2002). The faculty of language:

what is it, who has it, and how did it evolve? Science 298, 1569–1579.

doi: 10.1126/science.298.5598.1569

Hauser, M. D., Tsao, F., Garcia, P., and Spelke, E. S. (2003). Evolutionary

foundations of number: spontaneous representation of numerical magnitudes

by cotton-top tamarins. Proc. R. Soc. B Biol. Sci. 270, 1441–1446.

doi: 10.1098/rspb.2003.2414

Hauser, M. D., and Watumull, J. (in press). The Universal Generative Faculty: the

source of our expressive power in language, mathematics, morality, and music.

J. Neurolinguist. doi: 10.1016/j.jneuroling.2016.10.005

Hurford, J. R. (1975). The Linguistic Theory of Numerals. Cambridge: Cambridge

University Press.

Hurford, J. R. (1987). Language and Number. Oxford: Basil Blackwell.

Ifrah, G. (1985). From One to Zero: A Universal History of Numbers. New York,

NY: Viking Press.

Ifrah, G. (2000).TheUniversal History of Numbers: From Prehistory to the Invention

of the Computer. New York, NY: Wiley.

Ionin, T., and Matushansky, O. (2006). The composition of complex numerals. J.

Semant. 23, 315–360. doi: 10.1093/jos/ffl006

Izard, V., Pica, P., Selkirk, E. S., and Dehaene, S. (2008). Exact equality and

successor function: two key concepts on the path towards understanding exact

numbers. Philos. Psychol. 21, 491–505. doi: 10.1080/09515080802285354

Kayne, R. (2010). “A note on the syntax of numerical bases,” in Comparisons and

Contrasts, ed R. Kayne (Oxford, NY: Oxford University Press), 57–72.

Krifka, M. (2002). “Be brief and vague! And how bidirectional optimality theory

allows for verbosity and precision,” in Sounds and Systems: Studies in Structure

and Change, eds D. Restle and D. Zaefferer (Berlin: Mouton de Gruyter),

439–458.

Laidig, W. D., and Laidig, C. J. (1990). Larike pronounsd: duals and trials in a

CentralMoluccan language.Oceanic Linguist. 29, 87–109. doi: 10.2307/3623187

Le Corre, M., and Carey, S. (2007). One, two, three, four, nothing more: an

investigation of the conceptual sources of the verbal counting principles.

Cognition 105, 395–438. doi: 10.1016/j.cognition.2006.10.005

McCrink, K., and Wynn, K. (2004). Large-number addition and

subtraction by 9-month-old infants. Psychol. Sci. 15, 776–781.

doi: 10.1111/j.0956-7976.2004.00755.x

Menninger, K. (1969). Number Words and Number Symbols. Cambridge: MIT

Press.

Miyagawa, S., Berwick, R. C., and Okanoya, K. (2013). The emergence

of hierarchical structure in human language. Front. Psychol. 4:71.

doi: 10.3389/fpsyg.2013.00071

Miyagawa, S., Ojima, S., Berwick, R. C., and Okanoya, K. (2014). The

integration hypothesis of human language evolution and the nature of

contemporary languages. Front. Psychol. 5:564. doi: 10.3389/fpsyg.2014.

00564

Musolino, J. (2004). The semantics and acquisition of number words:

integrating linguistic and developmental perspectives. Cognition 93, 1–41.

doi: 10.1016/j.cognition.2003.10.002

Nevins, A., Pesetsky, D., and Rodrigues, C. (2009). Pirahã exceptionality: a

reassessment. Language 85, 355–404. doi: 10.1353/lan.0.0107

Pica, P., and Lecomte, A. (2008). Theoretical implications of the study

of numbers and numerals in Mundurucu. Philos. Psychol. 21, 507–522.

doi: 10.1080/09515080802285461

Pica, P., Lemer, C., Izard, V., and Dehaene, S. (2004). Exact and approximate

arithmetic in an Amazonian indigene group. Science 306, 449–503.

doi: 10.1126/science.1102085

Stampe, D. (1976). “Cardinal number systems,” in The Proceedings of CLS 12, eds

S. S. Mufwene, C. A. Walker, and S. B. Steever (Chicago, IL: Chicago Linguistic

Society), 594–609.

Starkey, P., and Cooper, R. G. Jr. (1980). Perception of numbers by human infants.

Science 220, 1033–1035. doi: 10.1126/science.7434014

von Humboldt, W. (1836). On Language: On the Diversity of Human Language

Construction and its Influence on theMental Development of the Human Species.

ed M. Losonsky. Cambridge: Cambridge University Press.

Watanabe, A. (2010). Vague quantity, numerals, and natural numbers. Syntax 13,

37–77. doi: 10.1111/j.1467-9612.2009.00131.x

Watanabe, A. (in press). Natural language and set-theoretic conception of natural

numbers. Acta Linguist. Acad.

Watumull, J., Hauser,M. D., Roberts, I. G., andHornstein, N. (2014). On recursion.

Front. Psychol. 4:1017. doi: 10.3389/fpsyg.2013.01017

Wynn, K. (1992a). Addition and subtraction by human infants. Nature 358,

749–750. doi: 10.1038/358749a0

Wynn, K. (1992b). Children’s acquisition of the number words and the counting

system. Cogn. Psychol. 24, 220–251. doi: 10.1016/0010-0285(92)90008-P

Xu, F. (2003). Numerosity discrimination in infants: evidence for two systems of

representations. Cognition 89, B15–B25. doi: 10.1016/S0010-0277(03)00050-7

Xu, F., and Spelke, E. S. (2000). Large number discrimination in 6-

month-old infants. Cognition 74, B1–B11. doi: 10.1016/S0010-0277(99)

00066-9

Conflict of Interest Statement: The author declares that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2017 Hiraiwa. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) or licensor

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Psychology | www.frontiersin.org 6 March 2017 | Volume 8 | Article 351

https://doi.org/10.1086/431525
https://doi.org/10.1016/j.tics.2007.01.006
https://doi.org/10.1111/1467-9280.00427
https://doi.org/10.1006/cogp.2001.0760
https://doi.org/10.1016/j.tics.2004.05.002
https://doi.org/10.1016/j.tics.2004.11.004
https://doi.org/10.1126/science.1094492
https://doi.org/10.1016/S0024-3841(96)00029-0
https://doi.org/10.1038/460190a
https://doi.org/10.1126/science.298.5598.1569
https://doi.org/10.1098/rspb.2003.2414
https://doi.org/10.1016/j.jneuroling.2016.10.005
https://doi.org/10.1093/jos/ffl006
https://doi.org/10.1080/09515080802285354
https://doi.org/10.2307/3623187
https://doi.org/10.1016/j.cognition.2006.10.005
https://doi.org/10.1111/j.0956-7976.2004.00755.x
https://doi.org/10.3389/fpsyg.2013.00071
https://doi.org/10.3389/fpsyg.2014.00564
https://doi.org/10.1016/j.cognition.2003.10.002
https://doi.org/10.1353/lan.0.0107
https://doi.org/10.1080/09515080802285461
https://doi.org/10.1126/science.1102085
https://doi.org/10.1126/science.7434014
https://doi.org/10.1111/j.1467-9612.2009.00131.x
https://doi.org/10.3389/fpsyg.2013.01017
https://doi.org/10.1038/358749a0
https://doi.org/10.1016/0010-0285(92)90008-P
https://doi.org/10.1016/S0010-0277(03)00050-7
https://doi.org/10.1016/S0010-0277(99)00066-9
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive

	The Faculty of Language Integrates the Two Core Systems of Number
	Introduction
	Numerical Notations: A Simple Example of the Core System of Precise Representation of Small Numbers
	Grammatical Number Also Reflects The Core System of Precise Representation Of Small Numbers
	Numeral Systems: The two Core Systems Of Number + Merge
	Lower Numerals As a Reflex of the Core System of Precise Representation of Small Numbers
	Neither One Word Nor an Infinite Number of Words
	Numerical Bases As a Reflex of the Core System of Approximate Representation of Numerical Magnitudes

	1, 2, 3,... Infinity!
	Conclusion
	Author Contributions
	Acknowledgments
	References


