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THE JOURNAL OF SYMBOLIC LOGIC 
Volume 60, Number 4, December 1995 

ANALYTIC EQUIVALENCE RELATIONS 
AND ULM-TYPE CLASSIFICATIONS 

GREG HJORTH AND ALEXANDER S. KECHRIS 

Our main goal in this paper is to establish a Glimm-Effros type dichotomy for 
arbitrary analytic equivalence relations. 

The original Glimm-Effros dichotomy, established by Effros [Efl, [Efl], who 
generalized work of Glimm [GI], asserts that if an F, equivalence relation on a 
Polish space X is induced by the continuous action of a Polish group G on X, 
then exactly one of the following alternatives holds: 

(I) Elements of X can be classified up to E-equivalence by "concrete invariants" 
computable in a reasonably definable way, i.e., there is a Borel function f: X Y. 
Y a Polish space, such that xEy X f (x) = f (y), 
or else 

(II) E contains a copy of a canonical equivalence relation which fails to have 
such a classification, namely the relation xEoy X 3nVm > n(x(n) = y(n)) on 
the Cantor space 2w (co = {0, 1, 2, }), i.e., there is a continuous embedding 
g: 2W -) X such that xEoy X g(x)Eg(y). 

Moreover, alternative (II) is equivalent to: 
(II)' There exists an E-ergodic, nonatomic probability Borel measure on X, 

where E-ergodic means that every E-invariant Borel set has measure 0 or 1 and 
E-nonatomic means that every E-equivalence class has measure 0. 

This basic classification/nonclassification dichotomy was recently shown to be 
true for an arbitrary Borel equivalence relation, not necessarily induced by any 
such group action, by Harrington, Kechris, and Louveau [HKL]. 

We study here the case of general analytic equivalence relations on Polish spaces. 
Simple examples (see ?6 below) show that the above dichotomy cannot possibly 
hold in this context, even if in (I) we appropriately relax the requirement that f 
is Borel (which is clearly too strong in this case) to anything that is "reasonably 
definable". The problem is that finding invariants which can be taken to be mem- 
bers of a Polish space is not always possible in this more general situation. The 
clue for the correct types of invariants needed comes from a standard classification 
result in algebra, i.e., the Ulm classification of countable abelian p-groups up to 
isomorphism (which in a standard way can be viewed as an example of an analytic 
equivalence relation, in fact induced by a continuous action of the Polish group 
of all permutations on co). Such groups are classified by their Ulm invariants 
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1274 GREG HJORTH AND ALEXANDER S. KECHRIS 

which are countable transfinite sequences (uj,)a<, where 4 < co1 (= the first 
uncountable ordinal) and uc, is a natural number or else the symbol 00. Moreover, 
one can compute in a reasonably definable way these invariants from the group 
in question. It turns out that allowing for this more general type of invariants, 
which are clearly necessary by this example, one can establish a Glimm-Effros 
dichotomy for arbitrary analytic equivalence relations. More precisely, we have, 
letting 2<w' denote the set of countable transfinite sequences (a),<, where < co, 
and a., E {0, 1}, 

THEOREM 1. Assume Vx E co" (x# exists). Then for any analytic equivalence 
relation E on a Polish space X, exactly one of the following holds: 

(I) There is a map f: X - 2<w1 which is Al (in any standard system of encoding 
2<w' by elements of cow), 
or else 

(II) There is a continuous embedding g: 2w -) X such that xEoy X g(x)Eg(y). 
Moreover, (II) is equivalent to (II)' as before. 
The hypothesis Vx E co" (x# exists) is one of the standard (and milder) large 

cardinal principles in set theory. It follows for example from the existence of a 
measurable cardinal. We do not know if one can establish in ZFC alone that either 
(I) or (II) above hold. (However, Sy Friedman has informed us recently that he 
can prove this assuming only that Vx E cow (there is a weakly compact cardinal 
in L[x]).) Making however one more assumption, often met in practice, namely 
that every E-equivalence class is Borel, allows us to prove the following: 

THEOREM 2. If E is an analytic equivalence relation on a Polish space X such 
that every E-equivalence class is Borel, then either one of (I) or (II) above holds. 
If, moreover, every L1 set is measurable, exactly one of (I), (II) holds and (II) is 
equivalent to (II)' as before. 

It should be pointed out that earlier Ditzen [Di] and Foreman and Magidor 
(unpublished) have established, under appropriate determinacy hypotheses much 
stronger than Vx (x# exists), a form of a dichotomy for V -equivalence relations in 
which in alternative (I) above the invariants are members of 2wi, i.e., co,-sequences 
of zeros and ones. 

A particularly interesting case of an analytic equivalence relation having Borel 
equivalence classes is the one induced by the orbits of a continuous (or more 
generally Borel) action of a Polish group on a Polish space. This includes in 
particular the isomorphism relation on the set of countably infinite models of an 
Lw)w sentence (viewed always as having universe co). In this case one can prove 
Theorem 1 in ZFC alone and obtain more accurate estimates for the descriptive 
complexity of the computation of the invariants, which if formulated in the lan- 
guage of effective descriptive set theory (see Theorem 2.1, below) is very close to 
that of the calculation of Ulm invariants for p-groups (see [BE]). In particular, 
in this case the function f in alternative (I) of Theorem 1 can be taken to be C- 
measurable, where C is the smallest u-algebra of sets in Polish spaces containing 
the Borel sets and closed under the Souslin operation W. 

This result in the case of Borel actions of Polish groups was also proved inde- 
pendently by Becker (unpublished). 

We also show that in the particular case where the Polish group is actually 
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ANALYTIC EQUIVALENCE RELATIONS 1275 

abelian one can improve the dichotomy by actually having in alternative (I) the 
invariants to be members of 2w (instead of 2<'w) as in the case of Borel equiva- 
lence relations (and with the function f C-measurable). (After this paper was 
completed, Solecki in fact extended this result to all Polish groups admitting 
an invariant compatible metric and with f Borel.) As pointed out earlier, the 
Ulm classification shows that such an improvement is impossible for arbitrary 
Polish groups, and thus one obtains an interesting distinction in the structure of 
continuous actions of abelian vs. general Polish groups. This dichotomy can be 
also viewed as a strengthening of an earlier result of Sami [Sal] according to which 
the equivalence relation induced by a Borel action of an abelian Polish group on 
a Polish space contains either countably many or else perfectly many orbits (i.e., 
the topological Vaught conjecture holds for abelian Polish groups). It should be 
mentioned here that, by results of Solecki [So], these equivalence relations are not 
necessarily Borel. 

It is finally interesting to consider specifically the case of the isomorphism 
relation on the countable models of an LCK)CK sentence. Call such a sentence a 
Ulm-classifiable if alternative (I) above holds for this isomorphism relation, and 
concretely classifiable if the isomorphism relation on the models of a is Borel and 
alternative (I) holds, which, by the above-stated theorem in [HKL], is the same 
thing as saying that one can classify countable models of a up to isomorphism 
by invariants which are members of some Polish space (as opposed to 2<'WI) and 
can be computed in a Borel way. Let ot be a sentence of LCK)CK whose countable 
models are exactly the countable structures (in the given language) of Scott height 
4 < co,. Then the countable models of a A an are the countable models of a of 
Scott height d. We now have the following characterization of Ulm-classifiability. 

THEOREM 3. Let a be an L,, sentence. Then the following are equivalent: 
(i) a is Ulm-classifiable. 
(ii) For each X, a A Ad is concretely classifiable. 
(iii) Every complete Lsl,,-theory T, containing a and some Ad, satisfies the fol- 

lowing cwi-compactness property: If every countable subset of T has a model, then 
T has a countable model. 

(iv) Same as (iii), but with "T has a countable model" replaced by "T has a 
model". 

(v) If a probability Borel measure on the space of structures of L (with universe 
co) satisfies the 0-1 law for LC,,Ca sentences (i.e., every such sentence is true a.e. or 
false a.e.) and a is true a.e., then there is a countable model Xf of a so that the 
measure concentrates on the isomorphism class of XW. 

Notice that the equivalence of (iii) and (iv) is a purely model theoretic result 
concerning LCK),,, which we do not know how to prove otherwise. Also, in many 
interesting cases a already implies logically some at. In these situations one can 
drop any reference to Ad in Theorem 3. (Examples of such a include the con- 
junction of the axioms for torsion free groups of finite rank, locally finite graphs, 
etc.) 

Examples of Ulm-classifiable sentences include the (conjunction of the) axioms 
for an equivalence relation or a unary injective function (both of these are actually 
concretely classifiable), torsion abelian groups, and abelian p-groups. Non Ulm- 
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1276 GREG HJORTH AND ALEXANDER S. KECHRIS 

classifiable sentences include, for example, the (conjunction of the) axioms for 
rank 1 torsion-free abelian groups, locally finite trees, fields, etc. 

?1. Preliminaries. (A) We will use standard terminology and notation from 
descriptive set theory; see, e.g., [Mo] and [Ke]. In particular, Xf denotes the Baire 
space cot, where co = {0, 1, 2, 3,.. }. By a standard Borel space we mean a Polish 
space with its associated u-algebra of Borel sets; see [Ke]. For any Polish space 
X, Y (X) denotes the Effros (standard) Borel space of the closed subsets of X 
with the u-algebra generated by the sets of the form {F E Y(X) : F n U it 0} 
for U C X open; see again [Ke]. 

As usual, the Souslin operation d is defined by QsP,= uO,,x nnc ,PoIn for 
any family { P, }s,< of subsets of a set X. The smallest u-algebra of subsets of 
a standard Borel space X which contains the Borel sets and is closed under the 
operation v is called the class of C-sets in X. A function measurable with respect 
to this a-algebra is called C-measurable. 

(B) Let E, F be equivalence relations on sets X, Y, respectively. A reduction of 
E to F is a map f: X -) Y such that xEy X f (x)F f (y). It is an embedding 
if it is also one-to-one. If such a reduction exists which belongs to some class of 
functions F, then we write E <? F, and in case of an embedding E Lri F. We use 
the subscript "c" in the case when F consists of the class of continuous functions 
on Polish spaces. 

We will often use the following result from [HKL]: Denote by E0 the following 
equivalence relation on the Cantor space 2W: 

xEoy X 3nVm > n(x(m) = y(m)) 

Call a Borel equivalence relation E on a standard Borel space X smooth if it 
admits a countable separating family, i.e., a sequence (An) of Borel sets such that 
xEy X Vn(x E An A> y E An). Equivalently, this means that E <,A, A(2w), where 
A(S) denotes the equality relation on any set S. Finally, given a L equivalence 
relation E on a standard Borel space X, a probability Borel measure yu on X is 
E-ergodic if ju(A) = 0 or 1 for any Borel E-invariant set A and E-nonatomic if 
Yu([x]E) = 0 for any E-equivalence class [X]E, X E X. We now have 

THEOREM ([HKL]). Let E be a Borel equivalence relation on a Polish space X. 
Then exactly one of the following holds: 

(I) X is smooth. 
(II) E0 Zc X. 
Moreover, (II) is equivalent to 
(II)' There exists an E-ergodic, nonatomic probability Borel measure on X. 
Finally, this result holds effectively, i.e., if E is Al (x) say on the space X = A, then 

either (I) E admits a Al (x) separatingfamily (An) (or equivalently FEA(x) < A(2w)), 

or (II) Eo Ec X. 
(C) Now let G be a group, X a set and (g, x) X-* g * x an action of G on X. 

We denote by EG the corresponding orbit equivalence relation: xEGY X 3g E 
G (g * x = y). If G is a Polish group and X a standard Borel space, we say 
that the action is Borel if (g, x) E G x X 0-4 g * x E X is a Borel function. 
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ANALYTIC EQUIVALENCE RELATIONS 1277 

If X is a Polish space and this function is continuous, we say that the action is 
continuous. For Borel actions, EG is analytic but in general non-Borel, but each 
orbit G * x = {g * x: g E G} is Borel (see [Mi]). 

Given a countable language L = {Rj}jE1 U {ff}ijEJ U {Ck}kEK, where Ri is 
an ni-ary relation symbol, fj an mj-ary function symbol and each Ck a constant 
symbol, we can define the space XL of countably infinite models of L with universe 
co as follows: 

XL =fl 2(Oni) x flw(W") x Cn 

iGI jEJ 

Every x E XL corresponds canonically to an L-structure Wx with universe co, 
defined as follows: 

six = (o), {Ri }, f fx}, {c"x}), 

where 

Rix .(aO. ani-i) X?(ao,* *, ani-) = 1, 

fjx(ao, ... ,amj) = xJ(ao,. 
. 

,amj-j), C X (k), 

and x = (x0,xI,x2), with x? E HEI2(coli) x1 e H1 c)co(C"hj) X2E coK The 

infinite symmetric group SO of all permutations of co, which is a Polish group with 
the topology it inherits as a G6 subspace of XY, acts continuously on XL in the 
obvious way. This action is called the logic action. The associated equivalence 
relation is isomorphism - of structures. 

The invariant Borel sets under this action (or the corresponding equivalence 
relation -) are exactly those of the form 

Mod(u) = {x E XL : 5@X F U 

for an Lc,,c,-sentence a (Lopez-Escobar; see, for example, [Va]). 
We will often use standard results about the Scott analysis of a structure, Scott 

sentences, and Scott heights, for which the reader can consult for example [Ba]. 
We summarize the basic concepts and facts below. 

Let Af = (M, ... ) be a structure for a language L. For n E co and s E Mn, 
s = (ao,... , an-), let p? be the infinitary formula A{V(xo, , xnl) - is atomic 
or the negation of an atomic formula, and Af t V[ao, , anq]}. For ae E ORD, 
n E cw, s E Mn, define 9p by induction as follows: 

-+ =caA A AAVxn V (P'sa 
aEM a M 

and for A limit 

wK= A ?. 
We call p the as-type of s. The Scott height of AW is the least y such that for all 
a > y, n E w, s e Mn 

For oa E ORD, {5 : s E Mn,n E co} is said to be the collection of oa-types 
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1278 GREG HJORTH AND ALEXANDER S. KECHRIS 

realized by XW. The (canonical) Scott sentence of XW, uA, is the conjunction of 
the sentences 90, VxO... xnq[' > f+] for all s E Mn, n E co and y = Scott 
height of XW. 

For countable /do, AW, we have that /do -_ A, iff Ad t age. We will also make 
use of the following standard fact: 

If /do, X1, are countable, have Scott height < y and realize the same y-types, 
then A/ -X1. If moreover a E MO, b E M1 and py = (py, then there is an 
isomorphism j : /d0 X 1W, with j(a) = b. 

(D) Our notation and terminology from set theory is mostly standard, as for 
example in [Je]. We denote by oa) '.X1E the oath admissible in Xl,.. , xn ordinal, 
for Xl,.. , xn E X, and by cofCK the first admissible ordinal. We often identify 
subsets of co or co, with their characteristic functions, so that, for example, 2<w' 
denotes interchangeably the set of bounded subsets of co, or the set of oa-sequences 
from {0, 1} for any o < col. 

?2. The case of group actions. We first consider the case of an equivalence 
relation induced by a Polish group action. The main result is the following, proved 
also independently by Becker: 

THEOREM 2.1. Let G be a Polish group, (g,x) I-* g * x a Borel action of G on 
the Baire space X, and EG the associated equivalence relation. Then exactly one 
of the following holds: 

(I) There is a map U: X -) 2<W1 such that xEGY X U(x) = u(y), a parameter 
z E X such that U(x) C cox4' and a formula p of the language of set theory such 
that 

EE U (x) X " L,[x, z] t=~ (p( E, xz). 

(II) E0 EC EG. 

Moreover, (II) is equivalent to: 
(II)' There exists an EG-ergodic, nonatomic probability Borel measure. 
Let WO be the set of codes of infinite countable ordinals, i.e., WO C 2) consists 

of all x E 2W such that <x = {(m,n) : x((m,n)) = 1} is a wellordering of co, 
where (m, n) is a fixed recursive bijection of cw2 with co. If x E WO, let IxI = the 
ordinal isomorphic to <x, and fx: co x the unique isomorphism. Any subset 
a C co can be viewed as coding the subset [(x, a)] = fx[a] C Ix1. Thus the map 
(x, a) X-* [(x, a)], where x E WO and a C co, can be viewed as coding the elements 
of 2<W11. The following is then an immediate corollary of 2.1. 

COROLLARY 2.2. Let G be a Polish group, X a standard Borel space and (g, x) I-* 

g * x a Borel action of G on X with associated equivalence relation EG. Then exactly 
one of the following holds: 

(I) There is a map U: X -) 2<W1 such that xEGY X U(x)- = U(y) and U is 
C-measurable in the codes, i.e., there is a C-measurable map U*: X -) 2t x 2W 
such that U* (x) E WO x 2W, Vx, and [ U* (x)] = U(x). 

(II) E0 EC EG. 
Again, as in 2.1, (II) can be replaced by (II)'. 
We will now prove 2.1. 
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PROOF. First we show that (I) or (II) holds. We will use the following effective 
version of a result in [BK, 7.3.1]. 

LEMMA. There is a transfinite sequence (Ad), co < 4 < co, of pairwise disjoint 
Borel sets with the following two properties: 

(i) AX C Xr, each AX is EG-invariant, and Us AX = X. 
(ii) There is a parameter z EE X such that: 

(a) AX and EGJAX are uniformly AlI(z,w) for any w E WO, w =I 
(b) There is a I`I (z)-recursive partialfunction c: X x 2W - 2w such that, for 

each x, c (x, &',z) is defined and in WO, where AX z is the complete fl-l (x, z) 
subset of co, and ifa = c(x, xz)1, then x E Al. 

(The use of infinite 4 only is just a matter of technical convenience for some 
calculations below.) 

We will assume this lemma and give its proof later. To simplify notation, we 
will also drop the parameter z for the rest of the proof. 

So let us assume (II) fails and proceed to prove (I). 
Since E0 SC EG, clearly E0 SC EG AY; thus EG Ax is smooth. In fact, because 

of (ii) (a) and Theorem 1.4 in [HKL], we have the following: There is a El set A 
andaIIl setB, A B Cw x 2, suchthatforw EWO, Iw =, 

A (n, x, w ) X~ B (n, x, w ) 

and if we let Snw = {x A(n, x, w)}, then (Sw) is a separating family for EG A4. 
Consider now the space (4)o of all injections of co into 4. It is Polish, being 

a closed subspace of Aw with the product topology. (Here > > co.) The basic 
neighborhoods of (4)w are of the form: 

.( /-1) {f e (4)W (40, . ,-k-1) C f }I 

where 0,... , Xk-I < 4 are distinct. Put 

= {x : V*f E N(4O ,k-l) (X E Sn 

where for f E (E)w, f onto, Wf E WO is given by wf ((m, n)) =1 X (m) < f (n), 
and "V* means "for comeager many". Note that V*f E (4)'O(f is onto). We 

claim that {S4'? UO -l } is a separating family for EGYAP. 

First, each S4'? "0k-1 is EG-invariant: If xEGY and x E SUO? '-k-lI 
then for 

comeager many f E N(40_ X, _) we have x E Sn , and since Sn, is EG-invariant, 

the same holds for y. Next, let x,y E Ax and -'xEGY. Then for any Jw I 
there is n with x E Sn[ and y ? Snw. So 

V*f E (4)C`3n(x E Snw & y Snw) 

Since the map f -* Wf is Borel, the set {f is onto : x E Sn f, & y f Sn f } is 

analytic, so by a standard category argument there are distinct o, ... , <- 
and n E co such that 

V*f E N(O, Xk1l)(x E st & y Sn 

so that x E S4o. U0 
-1 and y f S 
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Put 

V(x) = ... 4 , k ,k-In) X < distinct and x E S0' 

where 4 is such that x E A,. Then 

xEGY X V(x) = V(y). 

Also by (ii)(b) it is clear that 4 < Co4 and V(x) is uniformly definable from x 
in Lo,, [x]. For each 4 < co1 let 4 be the cardinality of 4 in L,+, where 4+ is the 
least admissible ordinal > 4. We can clearly encode V(x) as a subset U(x) of X, 
where x E Ax, so that again U(x) is uniformly definable from x in L,2 [x], i.e., 
there is a formula p of the language of set theory such that 

E U(x) LX Ljx- [xI Bt (Gx) . 

So it only remains to check that < co. To see this it is enough to show that if 
w E WO is such that w =ox, then 4 < cow. (Because this implies that if cox = a, 
then 4 < a+, so Z < oa.) 

Sofixw eWOwith Iwl =co. LetA={c(y,&Y): coy < Iw}. ThenACWO, 
A E SI(w) (since coy < Iww X Y E AI(y,w)) and c(x,&X) E A. By boundedness 

c= C(x,&x) <?supv :v EA} <c4d, and we are done. 
So it only remains to give the 
Proof of the lemma. Let Y(G) be the standard Borel space of closed subsets 

of G with the Effros Borel structure. Denote by S(G) the Borel subset of Y (G) 
consisting of the closed subgroups of G. This is also a standard Borel space. The 
group G acts in a Borel way on S (G) by conjugation: 

(g, F) ? * gFg -1 . 

Note that if Gx denotes the stabilizer of x in the G-action on X, then Gx E S (G) 
and 

Gg.x = gGxg-. 

Let 

P ={(x, Gx) : x E X} C X x S(G). 

Then P is a HI subset of X x S(G). Consider the product action of G on X x 
S (G), 

g * (x,F) = (g * x,gFg-1). 

Clearly P is invariant under this action. So by a result of Solovay (see, e.g., 34.6 
in [Ke]) there is a HI -rank A: P - co, which is also invariant under this action and, 
moreover, (i) there is a H1 -measurable function g : AY x S (G) -> 2W with domain 
P such that for (x, Gx) E P we have g(x, Gx) E WO and g(x, Gx) = (x, Gx), 
and (ii) the set Pi = {(x, Gx) E P : p(x, G,) < 4} is uniformly Al in any code 
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of X, i.e., there are K,L C Af x S(G) x 2a jn L , in H respectively, so that, for 

(x, Gx) EPX X~ K (x, Gx, w) X~ L (x, Gx, w) . 

Now, let Px = {(x, Gx) E P: p(x, Gx) =}. Then Px is Borel and, in fact, by 
(i) and (ii) above it is uniformly Al in any code of 4. 

Put Ax = projx(P~) = {x: (x, Gx) E Pi}. Since Px is the graph of a function, 
Ax is also Borel and clearly invariant under the G-action on X. Also x -* Gx 
is Borel on Ax, so by a standard fact (see, e.g., [Ke]) EG Ax is Borel as well. 
Moreover Ax and EG IAX are uniformly Al in any code of d. 

Now fix a basis { V,} for G, and for x eE X let 

ax= {n: Vn n Gx 0} E 2W. 

Clearly 
A = {(n,x): n E ax} C co x X 

is L1. Moreover there is a Borel function f: XF x 2" -) S(G), with f (x, ax) =Gx, 
namely 

f (x, y) = F X~ ln (F n Vn iA 0 X~ y (n) = 1) . 

Let also B, C C At x 2W and R, S C At2 x 2W be such that B,R E L1 and 
C, S E H1, and, for w E WO, 

x E Amw X~ B(x ,w) X~ C(x, w), 

x, y E Alwl & xEGy X R(x, y, w) X S(x, y, w). 

Now choose the parameter z so that A, B, R E El (z), C, S E Ill (z), f E Al (z) 
and the partial function h(x, y) = g(x, f (x, y)) is H 1 (z)-recursive. 

Then (ii) (a) is clearly satisfied. For (ii) (b), note that ax is uniformly recursive in 
'X,Z so there is a HI (z)-recursive function c: X x 2' - 2W such that c(x, fX,-) 

h (x, ax) = g (x, f (x, ax)) = g (x, Gx), and this clearly works. 
Next, we show that we cannot have both (I) and (II). It is easy to check that 

the assertion: "For every Polish group G and every Borel action of G on X, (I) 
and (II) cannot both hold" is a HI1 sentence. So it is enough to prove it assuming 
MA + --CH; so, in particular, all El sets are universally measurable. 

So assume (I) and (II) hold and f: 2W -A X is an embedding verifying (II). Let 
,u be the usual measure on 2W and v f u. Then v is EG-ergodic and nonatomic. 
Put 

Xx = {x E XA: E U(x)}. 

Then X, is EG-invariant and in the class C. Moreover, 

xEGY X VA < 0I (X E Xx y E X4). 

Let 
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Then (Y) = 0, V8, and U. Y. is the complement of an EG-equivalence class, 
so has measure 1. On the other hand, consider the prewellordering (on UK Y.) 

X <y H 4(x e Yr & Vq < y )). 

It is easy to check that it is El, so v-measurable. By the usual Fubini argument 
(see, e.g., 17.14 in [Ke]) it follows that U. Y. has v-measure 0, a contradiction. 

The same argument shows that one cannot have both (I) and (II)', so this shows 
the equivalence of (II) and (II)', and the proof is complete. -A 

Let us point out that the preceding proof also shows the following fact, which 
provides another equivalent of (I) in Theorem 2.1. In order to state it in a succinct 
form, we will introduce the following terminology: 

Let G be a Polish group, X a standard Borel spae, and (g, x) E-> g * x a Borel 
action of G on X with associated equivalence relation EG. A transfinite sequence 
(Ar),<6, of pairwise disjoint sets A, C X is called acceptable if 

(i) A< is EG-invariant, with U. A, = X. 
(ii) Ax and EG A, are Borel, and 
(iii) the prewellordering 

x < y X 34(x E Ar & Vq < &(y V Al)) 

is in the class C. 
The preceding lemma implies the existence of such acceptable sequences. We 

then have the following. 
COROLLARY 2.3. Let G be a Polish group, X a Polish space, and (g, x) I-> g x a 

Borel action of G on X. Then for any acceptable sequence (A;)><ol, the following 
are equivalent: (I) of 2.2, and 

(I)* For any 4 < a)1, EGJA> is smooth. 
PROOF. If (I) holds, then --EO LCC EG; thus -Eo LCC EGJA: for all X, so EGJA, is 

smooth. Conversely, if (I) fails, then E0 CC EG. Let f: 2W - X be an embedding 
witnessing this, y the usual measure on 2W, and v = fi. Then v is EG-ergodic 
and nonatomic. We claim that v(A,) = 1 for some 4. Otherwise v(A,) = 0 for 
all 4, so, by the usual Fubini argument, v (U. A, ) = v (X) = 0, a contradiction. 
Thus v is EGJA,-ergodic and nonatomic, so EG A, is not smooth. -A 

Consider now the special case of the logic action. Let L be a countable language 
and a an L,,1 , sentence. We call a Ulm-classifiable if alternative (I) of 2.1 (or 2.2) 
holds for - JMod(a), i.e., the countable infinite models of a can be classified up 
to isomorphism by Ulm-type invariants, i.e., to each x E Mod(a) we can assign 
in a reasonably definable way an invariant which is essentially a countable length 
transfinite sequence of zeros and ones. Call a concretely classifiable if - Mod(a) 
is Borel and smooth, i.e., models of a can be classified up to isomorphism by 
invariants, computed again in a reasonably definable way, which are essentially 
infinite sequences of zeros and ones (or equivalently members of some Polish 
space). 

For convenience, for each < <a) let C, be an LC!,C! sentence whose countable 
models are exactly the countable L-structures of Scott height 4. Then we have the 
following equivalences, of which (iii) and (iv) give a purely model-theoretic way 
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of expressing Ulm-classifiability. Note also that the equivalence of (iii) and (iv) 
expresses a purely model-theoretic result about LC!),, for which we do not know 
an independent proof. 

THEOREM 2.4. Let a be an LC!,, sentence. Then the following are equivalent: 
(i) a is Ulm-classifiable. 
(ii) For each a, a A au is concretely classifiable. 
(iii) Every complete Ll,-theory T containing a and some a, satisfies the fol- 

lowing compactness property: If every countable subset of T has a model, then T 
has a countable model. 

(iv) Same as (iii), but with "T has a countable model" replaced by "T has a 
model". 

(v) If a probability Borel measure on the space of structures of L (with universe 
co) satisfies the 0-1 law for L,,Iw sentences (i.e., every such sentence is true a.e. or 
false a.e.) and a is true a.e., then there is a countable model Id of a so that the 
measure concentrates on the isomorphism class of Id. 

PROOF. If A< denotes the set of (countably infinite) models of a of Scott height 
X, then (A<) is acceptable (for the logic action of SO, on the models of a). Noticing 
that Mod(c A v;) = Aq, we immediately obtain the equivalence of (i), (ii), and 
(v) (by the argument in 2.3). Now assume that (ii) holds; we prove (iii). Fix such 
a T D {fua} 

Let A = Mod(c A at) and, for any Borel subset B C A invariant under 
isomorphism, let CB be an LC,,CZ sentence with Mod(^B) = B. This CIB is uniquely 
determined up to logical equivalence. So put 

B E v X CB E T. 

Assuming every countable subset of T has a model, v is a countably complete 
ultra-filter on the isomorphism-invariant Borel subsets of A. Since A JA is smooth, 
it follows easily that W contains a single isomorphism class, i.e., for some W, l= 
a A v; if B {y : Qx - 

sly} then B E X, i.e., the Scott sentence U.R E T, so 
Wx l= T. 

Conversely, assume (ii) fails and let y be an E-ergodic, nonatomic probability 
measure on A = Mod(c A at) for some 4, where E =-- IA. For -c E LC!)C! put 

-c E T X (Mod(-c)) = 1. 

Then {u, a, } D T, T is complete (by ergodicity), and every countable subset of 
T has a model. On the other hand, if I= T, then the Scott sentence a.v E T, 
so ({y : x- Wy }) = 1, contradicting nonatomicity. Thus T has no countable 
model. So (iii) fails. 

Finally we show that (ii) implies -'(iv). This is immediate from the following 
lemma that seems interesting in its own right. 

LEMMA. Let a be an L,1,, sentence. Let y be an ergodic nonatomic probability 
Borel measure for- Mod(a). Put 

T., = {T E L10. : ,u(Mod(-c)) = 1}. 

Then T., is a complete theory in L,1,, containing a such that every countable subset 
of T7, has a model but T., has no model. 
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PROOF. As before there is do < a1 such that u(Mod(a A a:)) = 1. 
For any L-structure X and ai E ORD, let 

tp,(4) = {T : S E M',n E co} 

be the set of a-types realized in X4. By Lopez-Escobar's result, for each ai < oi 
and L,,,,, formula o we can construct an Lojoj sentence Oc, such that 

{xE Mod(a): o E tp,(x)} = {x E Mod(a): -x l= 0c'} 

and moreover this equality also holds in any generic extension of the universe. It 
follows that for any (even uncountable) model , of a we have o E tpa,(Jo X 

Id I= Ot. (Just make Xf countable in a generic extension of the universe.) 
Now put, for a < (0, 

tp,(Tu) {= EE Lo,,o : 1u({x E Mod(a) : o E tpa()}) 1}. 

Claim. tp,(T,,) is countable for all a < coli. 
Proof. Otherwise let oy E tp,(T,), y < wi, be such that 2 # y. 

Let V[G] be a ccc forcing extension of V such that V[G] I MA(ti). Since 

,u({x E Mod(a): oy E tp(.'x)}) = 1 also holds in V[G] by absoluteness, it 
follows by MA(N1i) that 1ny,<y {x E Mod(a): oy E tp(.'v)}) = 1 holds in V[G], 

so there is x E Mod(a)V[G] such that, in V[G], sKx realizes oy for all y < col, a 
contradiction as s' is countable. 

Now fix an enumeration {j(0) i E Ao} of tpa(T), for any a < oi. We claim 
that, for some oa < coi, 

(fx E Mod(a): tpa(x) ={(7) i E 0}}) 0. 

Indeed, if oa = o and u({x E Mod(a): tpa(x) = {j(i) i E cO}}) = 1, then 
since u(Mod(u A oa)) = 1 it follows that for 1u-almost all x E Mod(c A A) we 
have tpaGj ) = {f~(): i E co}, so that, for some x E Mod(o A oA) and u-almost 
all y E Mod(c A oa), Ad and W, realize the same r-types and have Scott height 
ar; thus they are isomorphic, i.e., u({y A - s}) 1, a contradiction. 

So let ao be the least oa such that 

(x (E Mod(a): tp (a'x) { () iE (}}) 0. 

Suppose now X 1= T,, towards a contradiction. Using the preceding observa- 
tions about Oc, and a simple simultaneous induction on ar, we can easily get the 
following facts: 

(i) If ar < ago, s E M", n E (0, then o e {Efj) i E (}. 

(ii) If ar < ao, s E M", n E (0, then poc E L,,1,,. 
By the choice of ago now it follows that there is s E M", n E (0, with f v? 

{(pi) :1 i E(c}. So if 0 = .ov, then 

,u x E Mod(a) : o E tpo (ax)}) 1= ({x E Mod(a) : a, 1= 0 o})= 0 

Thus --,0o E T,, and so Id 1= --,0, i.e., o V tpa0(Jd), a contradiction. A A 
There are many examples of sentences a of L,,,,, which have the property that 

a 1= ao: for some 4 < oal. In fact, by a result in [BK] this happens exactly when 
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- Mod(a) is Borel. So, for example, it holds for any a implying the axioms for 
torsion free groups of finite rank or the axioms for locally finite graphs, etc. For 
such sentences a, in (ii) and (iii) above one can drop any reference to a>. 

Finally we will prove a stronger version of 2.2 in the case when G is abelian. 
(An effective version, as in 2.1, can be also formulated, but we will leave it to the 
reader.) 

THEOREM 2.5. Let G be an abelian Polish group and (g, x) I g x a Borel action 
of G on a standard Borel space X with associated equivalence relation EG. Then 
exactly one of the following holds: 

(I) There is a C-measurable map U: X -* 2W such that XEGY X U(X) = U(Y). 
(II) E0 CC EG 

PROOF. By the results in [BK] we can assume that X is Polish and the action 
is continuous. 

For x E X let G. = {g : g x = x} be the stabilizer of x. We will describe 
an "inductive analysis" of the stabilizer of x which can be viewed as a (somewhat 
loose) analog of the Scott analysis of a countable structure. This analysis works 
even if G is nonabelian, but commutativity is needed to establish a key invariance 
property. 

DEFINITION 2.6. Suppose G is a Polish group acting continuously on a Polish 
space X: (g, x) I 4 g * x. Fix a countable basis 2 for G and a compatible complete 
metric d for G. For x E X, put 

Go = {W E a: 3(gi)iE c W(g, .x converges to x)}, 

G+1 = {W E S: VE > 03V E 2(V C W & diam(V) < e & V E GXe)}, 

GA = n G, if A is limit. 
a<A 

It is easy to check, using the definitions, that ca < /3 X G` D Gfl so for some 
least countable ordinal c (x) we have Gx (x) = Gc Vce > ca (x). A simple argument 
also shows the basic fact that, for W E S, 

wnGx $0 We G c(x). 

Thus, if we identify the closed subgroup Gx with { W E A: W n Gx # 0}, this 
shows that { Ga }a<a(x) provides an "inductive analysis" of G,. 

We now have the following crucial invariance property: 
LEMMA 2.7. Let G, X be as in Definition 2.6, but assume now that moreover G 

is abelian. Then 
xEGy ?Vo(Ga = G a). 

PROOF. It is clearly enough to show that xEGY * G' = G'. So fix W E GO in 
order to show that W E GO. Let {gf} g W, and g E G be such that g, x x 
and g * x = y. By continuity, we have 

g (gi X) -+g x. 

But g* (gi O x) = ggi x = gig x =gi (g x) by commutativity, so gi, y y 
thus W E G0. - 
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We can use this now to establish the following key decomposition. 
LEMMA 2.8. Let G be abelian Polish, X a Polish space, and (g, x) I-4 g - x a 

continuous action of G on X. Then there is a C-measurable EG-invariant function 
D: X -> 2W such that D-1({y}) and EGID-1({y}) are Borel for each y E 2W, 

and moreover there is a Al -measurable function C with domain D [X] such that, for 
y E D[X], C(y) is a Borel code of EGJD-1({y}). 

PROOF. In the notation of 2.6, let _ = { Wi}iEc, be an enumeration of the basis 
R, and let D (x) be a member of 2W that encodes the following prewellordering in 

some straightforward fashion: i <x j X Vc( Wi EE G Wj E G ). Note that in 
particular D(x) encodes G&(x) - {i: Wi n Gx 0}. Clearly D is EG-invariant by 
2.7. To see that it is C-measurable, note that, fixing a Borel injection g: X -> 20, 

we can easily check that, for some z E 2W and all x E X, o(x) < co)(x)`. Fixing 
y E D [X], we see again that if D (x) = y, then a (x) < (length of the prewellordering 
coded by y), from which it follows that D1 ({y}) is Borel, and a Borel code of 
D' ({y}) can be computed uniformly in a A1 way from y. Finally, from y one 
can compute in a uniform Al way{i: WU n GX 7& 0} ={i: WU n Gc(x) 7 0} for 
any x with D (x) = y (this is independent of x), and therefore, again in a uniform 
Al way, a Borel code for a Borel transversal Ty of GX, i.e., a Borel set meeting 
every (left) coset of GX in exactly one point. 

Since for x,x' E D-1(fyj) 

xEGX' 4 3g E Ty (g * x = x') 4 3!g E Ty(g * x = x'), 

it follows that in a uniform Al way we can find from y a Borel code of 
EGID ({y}), and the proof of the lemma is complete. H 

To finish the proof of 2.5 we can now argue as follows: 
Let D, C be as in 2.8. If for some y E D(x) we have E0 Z- EGJD-1({Y}), then 

clearly E0 Z- EG and (II) holds. Otherwise this fails for all y E D (x), so by the 
result in [HKL], which holds uniformly, and using C, we can find a Al -measurable 
function U' with domain D[X] such that, for each y E D[X], U'(y) is a code of 
a Borel function f,;: X -- 2W such that for x,x' E D y 

xEGX' X fy (x) = fy (x') 

Now for x E X we let U(x) =.(D(x),fD(x)(x)) (where () is a Borel bijection 
of 2W x 2W and 2W). Then U is C-measurable and xEGX' U(x) = U(x'), so 
alternative (I) holds. - 

Theorem 2.5 has been improved first by Hjorth, who proved that (I) of 2.5 holds 
with U actually Borel, and then by Solecki, who showed that if G is a Polish group 
admitting an invariant compatible metric and (g * x) f-4 g * x is a continuous action 
of G on a Polish space X with associated equivalence relation EG, then either (I) 
EG is G6 (so (I) of 2.5 holds with U actually Borel), or (II) E0 CC EG. 

Although 2.5 has been improved on, we still consider the above proof to have 
independent interest. Lemmas 2.7 and 2.8 provide an analysis of the stabilizer 
function for abelian Polish group actions. For instance, it can be used to show 
that in the presence of projective determinacy, we have the topological Vaught's 
conjecture for abelian Polish groups even in the projective context. 
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THEOREM 2.9. Assume projective determinacy. Let G be an abelian Polish group, 
X a standard Borel space, and (g * x) I-4 g * x a Borel action of G on X with EG the 
associated equivalence relation. Let Y C X be projective. Then EGI Y has either 
countably many or perfectly many equivalence classes. 

We do not give the proof of this theorem. However, it follows easily from 2.8, 
basic facts about determinacy as found in [Mo], and the methods of [St] or the 
proof of 4.5 in [Ha]. 

?3. Embedding E0 in analytic equivalence relations. We prove here some results 
that are needed in the next section. Since they appear to be of independent interest, 
it seems best to present them separately. 

The following fact, whose proof is related to that of the Effros theorem [Efl], 
was noticed in [BK, 3.4.5]: Let X be a perfect Polish space and G a group acting 
by homeomorphisms on X with associated equivalence relation EG. If there is a 
dense orbit and EG is meager (in X2), then E0 Cc G. 

We note here a slight variation of this fact, for which we need the following 
concept. 

DEFINITION 3.1. Let X be a Polish space and E C F C X2, with E an equiva- 
lence relation. We write 

E0 zc (E,F) 

if there is an embedding f: 2w , X with 

xEoy X* f (x)Ef (y), -ixEoy = -if (x)Ff (y). 

(So E Cc. E E C c (E, E).) 
We now have: 
THEOREM 3.2. Let X be a perfect Polish space, and G a group acting by home- 

omorphisms on X with associated equivalence relation EG. Let EG C F C X2, and 
assume there is a dense orbit and F is meager. Then E0 Cc (EG, F). 

The proof is identical to that of Theorem 3.4.5 in [BK], so we omit it here. 
This has the following corollary 
COROLLARY 3.3. Let X be a perfect Polish space, and G a group acting by home- 

omorphisms on X with associated equivalence relation EG. Let EG C F C X2, and 
assume there is a dense orbit and F is an equivalence relation with the Baire property 
such that F is not comeager. Then E0 Cc (EG,F). 

PROOF. It is enough to show that F is meager. Consider the group H of 
homeomorphisms of X2 of the form (x, y) f-4 (g * x, g' . y), where g, g' E G. If U, V 
are nonempty open sets in X2, there is h E H such that h (U) n V 7 0, as follows 
easily from the fact that there is a dense G-orbit. By the usual topological 0-1 law 
(see [Ke, 8.46]) it follows that every A C X2 which has the Baire property and is 
invariant under H is either meager or comeager. But easily F is invariant under 
H, being an equivalence relation containing EG, and the proof is complete. -H 

Now let E be an analytic equivalence relation on a Polish space X and E C F C 
X2, where F is a coanalytic relation. Burgess [Bu] showed that there is a Borel 
equivalence relation E* such that E C E* C F. We show here that if --Eo K E, 
then we can also ensure that -Eo c. E*. 
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THEOREM 3.4. Let E be a El equivalence relation on a Polish space X and E C 
F C X2, where F is H1. If -'Eo Cc. E, then there is a smooth Borel equivalence 
relation E* such that E C E* C F. 

PROOF. We will use the so-called second or strong reflection theorem (see [HMS] 
or [Ke]), which reads as follows: 

Let W be a Polish space and 1 C 2 (W) x 2 (W), where 9 (W) is the power 
set of W. Assume: 

(i) s is hereditary, i.e., D(A,B) & A' C A & B' C B * D(A', B'); 
(ii) 1 is continuous upward in the second variable, i.e., if Bn C Bn+l and 

Un B, = B, then VnD(A, Bn) X- cD(A, B); and 
(iii) M is HI on El, i.e., if Y. Z are Polish spaces and A C Y x W, B C Z x W 

are El, then the set {(y,z) E Y x Z D(AyB )} is Hl. 
Then, for any A C W, A E El, 

D(A, A) _* 3B 2 A(B E Al and D(B, B)). 

Now take W = X2 and consider the 1 given below, where A, B C X2: 

D(AB) X (i) A C F& 

(ii) Vx (x, x) 0B & 

(iii) VxVy[(x,y) E A =X (y,x) B B]& 
(iv) VxVyVz[(x,y) E A & (y,z) E A =- (x,z) 0 B]& 
(v) V embedding f: 2' -> X[V2*aVbEoaVcEoa(f (b), f (c)) E A 

=* V20 x20 (b, c) (f (b), f (c)) 0 B] 

where "V*y y y" means "for comeager many y E Y, y. 
It is clear that D is hereditary, and it is easy to see that 1 is continuous upward 

in the second variable (using the fact that VnVX*x(x E CO) =* V xVn(x E Cn)). 
Finally, by the standard fact that Lj, HI are each closed under the V* quantifiers 
for Polish Y (see, e.g., 29.22 in [Ke]), it follows that 'D is Hl on 1 

We claim now that O(E, E) holds. This is clear for (i)-(iv). For (v), assume 
an embedding f: 2' -- X is a counterexample, towards a contradiction. Then 
there is a comeager GC Eo-invariant set G C 2' such that 

b, c E G & bEoc =* f (b)Ef (c). 

(To see this, notice that there is a countable group of homeomorphisms of 2W 
inducing Eo, and thus every comeager set contains a Gd Eo-invariant set.) Put 

El = {(b,c) E f 2 : (b)Ef(c)}, 

so that EoIG C E' C G2 and, since nV*2( X2((b, c)[(f (b), f (c)) E E], we have 
that E' is not comeager. It follows from 3.2 that E0 Z, (EoIG, El), say via g, 
i.e., g: 2w -- G is an embedding and xEoy ?: g(x)Eog(y), -'xEoy ?: -'xE'y. 
Let h = f o g. Then h: 2w X is an embedding and xEoy 4 h(x)Eh(y), i.e., 
Eo C E, a contradiction. 

So by second reflection, there is a Borel E* D E such that O(E*, E*), so 
in particular E* 5 F, by (i), and E* is an equivalence relation, by (ii)-(iv). We 
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claim that E* is smooth. Otherwise, there is an embedding f: 2W - X such that 
xEoy X?~ f (x)E* f (y), and this clearly violates (v). H 

Burgess [Bu] derives from his reflection property that any El equivalence relation 
can be written canonically as the intersection of a decreasing sequence of co, Borel 
equivalence relations. We have the analogous fact in our context. 

COROLLARY 3.5. Let X be a Polish space, E a El equivalence relation on X, and 

p: E - co, a Ill-rank. Let E(E) = {(xy): ,o (x,y) < ,}, for 4 < co,, so that 
(E(E)) is decreasing, each E(E) is Borel and E = nO<., E(4). Then, if -'Eo Cc E, 
the set {E,: E(E) is a smooth Borel equivalence relation} is closed unbounded in Col. 

PROOF. Since the intersection of a sequence of smooth Borel equivalence re- 
lations is smooth, it is enough to show that the above set is unbounded. So 
fix q < co,. Since E C E(j), by 3.3, there is a smooth Borel equivalence re- 
lation EOl) with E C E(1) C E(C). Then E-l) Coo E, so, by boundedness, 
, E(1) C {(x,y) ? E: (p(x,y) < rj} for some ijl > ij; thus E(1) D E(,q1). By 
repeating this argument, we can find a sequence ?1 < 11 < '2 < ... and a sequence 
Ei of smooth Borel equivalence relations such that 

E(,q) D E(l) 2 E(q7) 2 E(2) 2 E(,,) 2 

Let s = limn q1n. Then s > q1, and 

E(4) =n E(,71) = nE 
n n 

is a smooth Borel equivalence relation. H 

?4. El Equivalence relations with Borel classes. For the more general case of 
arbitrary El equivalence relations it seems necessary to pass to a more complex 
type of reduction, namely AI = Ue AI (x) (in the language of set theory). Of 
course these include the C-measurable functions, and a Al function with domain 
and range a Polish space will be Al. We will consider in this section the case when 
all equivalence classes are Borel. The main result is 4.4, but before proving it we 
will need three useful lemmas. 

LEMMA 4. 1. Let E be a El equivalence relation on X. Then {w E WO 

E(l2l) is a smooth equivalence relation} is 111, where E(Q) is as in 3.4 with (o a 1- 
rank on E, p: -E -41. 

PROOF. Given w E WO, E(lw 1) is uniformly A|(w), and so, by 1.4 of [HKL], if 

E(Iwl)is smooth, then there is a Al (w) function f: X/ X- Atsuch that xEqjwj)y -} 

f (x) = f (y). Thus E(q w ) is a smooth equivalence relation if E(I w ) is an equiv- 
alence relation and Bf E A(w)Vx, y E X(xE(Ix w )y f (x) = f (y)), which is 
clearly Il . H 

LEMMA 4.2. Let E be a 1 equivalence relation on XA. There is afunction f: X x 
oi -4 2<0 with f (x, ) C X, such that if E(Q) is a smooth equivalence relation and 

> co, then 

xE(,)y X? f (x,) =f (y 

and, moreover, if 4+(X) is the least x-admissible > X, then f (x, ) is uniformly Al 
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definable in L~+(X) [x], i.e., there are El formulas W, y/ such that, for 4 as above, 

/:3 E f (x, 4,) X- L~+(X) [x] F- (p(/:3 4, x) <- L~+(X) [x]I=~- yv(/:3, 4, x). 

PROOF. Fix > > co such that E(:) is a smooth equivalence relation. Then by 
1.4 of [HKL] we can find for any w c WO, 1w = X, a family (Rw)n6,,5 separating 
for E(,), such that (R'O) is uniformly Al in n and w. For do, ,Xk-1 < , put 
(in the notation of ?2) 

n f0''4- {x: V*f E N(E0,-k-l)(x n 

By standard facts on admissible sets it follows that there are El formulas A', V' 
such that 

x E RX L+('V) [xI W (p 05 ... ,k-ln),x) 

XLE+(X) [x] F--yV (d, (do, .. Ok-1, n)x). 

Let H: 4 ' be a map whose range consists of all (o, ... ,k-1,n) with 

0, ... , 5k-l < distinct and n c co, such that H is uniformly Al definable from 
4 in Lo+. Let 

f(x,) = {fl < : x E S where H(/J) = (4 . Xk-l n). 

Then 

/ e f (x,4) L~+()[x] I (p(4,H(/3),X) 

X~ +(x) [x I y/'(4,5 H (P) , x), 

so that f (x, 5) is uniformly Al definable in L~+(,,) [x]. Finally, 

xE(,) y X~ f (x, f)= (y, 4 

by an argument similar to that in the proof of 2.1. 1 
The following is a well-known application of the boundedness theorem for FJ1- 

ranks. 
LEMMA 4.3. Let E be a El equivalence relation on Xr. Suppose [X]E is Borel. 

Then, for some 4 < co, [X]E [X]E(4) 

We now have the main theorem for this section. 
THEOREM 4.4. Let E be a El equivalence relation on X1. Suppose that 

VX ([X]E is Borel). Then one of the following holds: 
(I) There is U: X1 2`w1 which is A1 (in the language of set theory) and 

xEy X U(x) = U(y). 
(II) Eo C E. 
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PROOF. Assume (II) fails. Let f be as in 4.2. For x E X, let Ax {(/3, 4) E(E) 
is a smooth equivalence relation &/3 < 4 & /3 c f (x, 4)}, where () is a A1 pairing 
function on the ordinals mapping o-) 2 onto cwl. Note that by 3.5 

xEy x Ax = -4 

Below IP denotes notions of forcing, - denotes terms in the forcing language, 
and k is a name for the generic object. If IP c N, a model of a fragment of ZF, 
then IFp denotes forcing over N. 

Claim. There are q, 0 < coa such that M L4 [AX n 0] - ZFCN (a fixed large 
finite fragment of ZFC) and IP, - c M, p c IP such that 

(i) (p, p) IF4{ <J z(k 1)Ez(g2), and 
(ii) there is an M-generic g for P above p such that T (g)Ex. 

Granting this claim, let qx, Ox be least such that this claim holds for some 
IP, T, p and then let 1Px, Tx, px be least in the canonical wellordering of L,1Z [Ax n Ox] 
satisfying the above. 

Let U'(x) = (ax, Ox, Ax n OxI Px,TX, p p). Then clearly xEy => U'(x) = U'(y). 
Conversely, if U'(x) = U'(y), then M = L, [Ax n Ox] = L qY [Ay n 0Y0, IP = PX = IPY, 
T Tx = Ty, P = Px py and (p, p) I$m {Jp T(kl)ET(g2), while there exist M- 

generics gl, 2for IP above p such that -c(gi)Ex and T(g2)Ey. Let g* be M[g1]- and 
M[g2]-generic above p, so that T(gl)ET(g*) and T(g2)ET(g*); thus T(gl)ET(g2) 
and xEy. 

We verify next that U' is a Al function. This follows from 4.1 and 4.2 together 
with the fact that, in the presence of (i), (ii) of the claim is a Al condition since 
it is equivalent to: 

(ii)' VM-generic g for IP above p we have z(g)Ex. 
(This is seen exactly as in the just preceding argument.) 

Finally, via the canonical wellordering of Lqx [Ax n Osx], IPX Tx, px can be viewed 
as ordinals < qx; so, via some simple Al coding, we can view U'(x) as a bounded 
subset of ca,, say U(x), and this completes the proof, modulo the claim. 

Proof of the Claim. Let ca < 4 < co, be such that E(,) is a smooth equivalence 
relation and [X]E = [X]E(d,, and choose 1, 0 > 4 large enough so that L1 [Ax n 0] 

ZFCN. Let P be the collapse of 4 to ca and let g be M-generic for 1P. We claim 
that there is y c XI n M[g] such that Vfl < X, if H(fl) = (o, ..., k-l, n), then 

y E RC ' I 
<-l (fl) Ax 

This follows from the fact that if w c WO n M[g] is such that jw X, then (since 

{fl < : (fi, 4) E Ax} is in M[g]) the set of y's satisfying the above condition is 
El in some parameter z c M[g] and has a solution (namely x) in V, so has a 
solution y c M[g]. Now let - be a term such that y = T(g), and p a condition 
such that g meets p and 

p F4 Vfl < 4(if H(fl) = (o, ... 5, k-l. n), 

then T(g) c R"'40) 417- X (fl, ) C Ar) 

(Note that this is a statement in the forcing language of M by the argument in 
the proof of 4.2.) Thus (ii) is clearly satisfied. 
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Finally, we verify (i). If (g1, g2) are M-generic for P x P above (p, p), then 
clearly-r(gl)E(,)x and r(g2)E(4)x, so r(g1)Ex and -C(g2)Ex; thus r(g1)Er(g2). 

A relativized version of the preceding arguments gives as usual a result for 
general Polish spaces and El equivalence relation with Borel classes. 

THEOREM 4.5. Let E be a El equivalence relation on a Polish space X. Suppose 
every equivalence class is Borel. Then one of the following holds: 

(I) There is a map U: X -+ 2'w such that xEy X U(x) = U(y) and U is Al 
in the codes (in the sense of 2.2). 

(II) E0 Cc E. 
As in the proof of 2.1 we have that exactly one of (I), (II) holds assuming 

that every El set is measurable (e.g., if Hfi[x] < N, Vx E X) . In this case (II) is 
equivalent to (II)'as in 2.1. 

?5. General Sl equivalence relations. 
DEFINITION 5. 1. Assume x# exists. Then, for v a linear ordering, F(x#, v) indi- 

cates the canonical model obtained by expanding x# along indiscernibles (ci)iEv. 
(A detailed discussion of this construction can be found in ?30 of [Je].) 

For a E ORD, let ix be the ath Silver indiscernible for L[x], and let ic, be the 
ath Silver indiscernible for L. 

LEMMA 5.2. Suppose x# exists, where x E X. Let A C ORD be a class of ordinals 
definable over L[x] from the parameter x. Let v be some countable ill-founded linear 
ordering with limit type. Then: 

(a) The Scott height of M = (L[A]; E, A)r(x#,v) is less than or equal to ix, where 
/B is the well-founded part of v; 

(b) M realizes the same ixF-types as (L[A]; e, A)r(x#,f+w). 
A proof of this lemma can be found in 1.1 of [Hj ]; a discussion of the ideas 

needed for the proof can also be found in [Hj]. It follows from (b) that M will 
be an co-model. 

COROLLARY 5.3. Suppose x and A are as in 5.2 above. Then there exist a <fi < oI 
such that 

(L[x];e, A n x) -< (Lfi[x];e, A n fl, x) -< (L[x];e, A, x), 

and there exists an ill-founded model N such that 
(i) INI = No 

(ii) 1(N) = (eA), 
(iii) N has well-founded ordinals isomorphic to a, 
(iv) N has Scott height less than or equal to a, 
(v) N realizes the same ac-types as (Lf [A]; e, A n fi) 

(vi) for some countable ordering v, N (L[A]; e, A)r(x) 
PROOF. Let y be any countable ordinal. Let Ol = iy and/B = i,+X. The first part 

of the corollary is then a well-known consequence of indiscernibility. 
Now for v = y + Q we obtain (i)=(vi) by 5.2. H 
It is important to note that in the situation of 5.3, the set of ae-types realized 

by N will exist in L[A], since L[A] can determine which at-types are realized by 
L,[A]. In this sense, a description of N exists in L[A]. In fact, by 5.1 absoluteness 
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(see, for instance, Section 41 of [Je]) in any transitive model of ZFCN in which 
Lfi[A] is countable, there must exist an isomorphic copy of N, since the existence 
of such a model is E in any code for a and the collection of a-types. 

Our invariant will consist of assigning to each x E X the description of some 
N and a E N as in 5.3. We will first obtain Ax C ORD so that Ax is uniformly 
definable, from x, over L[x], and Ax depends only on [X]E. Then we try to find 
a canonical ill-founded N, as in 5.3, which somehow captures the equivalence 
class of x. Assuming this all to be possible, we attempt to assign some bounded 
subset of the ordinals of L[Ax] that canonically codes the description of N and 
the method by which it entraps [X]E. 

THEOREM 5.4. Suppose that Vx E X (x# exists). Let E be a S1 equivalence 
relation on X. Then exactly one of the following holds: 

(I) There exists U: X - 2<W1 such that U is Al, and Vx, y C Xi(xEy X U(x) 
U (y)). 

(II) Eo 7c E. 
PROOF. We first prove that at least one of (I) and (II) must hold. Since E is 

El, we can find a recursive tree T such that E is the projection of [T]. We can 
then fix the HIl-rank on F, E, p: ? E w- c, where for (x, y) E, p(x, y) is the 
rank of T(x, y) - {s E coW (s, x [ lh(s), y [ lh(s)) E T}. Following the notation 
of ?3, we then have xE(,)y if T(x, y) is ill-founded or T(x, y) has rank > 4. We 
view E(,) as defined by this even for 4 > o,. Now suppose that Eo IrcE. 

Following the argument from 4.4, we can assign to each x E X a set Ax C co 
such that Vy c IV(xEy => Ax = Ay), and moreover, for all 4 < co with E(,) a 
smooth equivalence relation, Ax(4) =df {f: K, A) Ec Ax} = Ay(4) iff xE(4)y. We 
now pass from Ax to a new class of ordinals; it will be convenient to remove the 
parameter co from consideration. Let A* C ORD be defined for each x E X so 
that 

(i) Ax is definable over L[x] using x as the only parameter, and 
(ii) A* n o_) = Ax . 
Since Ax(4) was defined in a uniformly Al(x, ) fashion for any 4 < wl, 

there exists a canonical choice for this class of ordinals. Since co is a uniform 
indiscernible, it follows that there is a unique choice of A* satisfying (i) and (ii). 
Again by indiscernibility, but this time over L[x, y], we have that Ax = Ay implies 
A* = A> It then follows from (i), (ii), and the previously established properties 
of Ax that, for all x, y E X, 

xEy X A* = A* 

So the assignment x X > A* is an invariant for the equivalence classes of E. We 
would be done if there existed some x* E [X]E n L[A*], since we could assign to 
each [X]E the least such real in the canonical wellorder of L[AZ]. However, by 
the examples of ?6, this would be overly optimistic. 

In 4.4 we essentially took the approach of specifying some p,IP, Cz L[AZ], 
with p IV-D -r[g]Ex, and then, in effect, using (p,IP,-) as the invariant. While 
it is possible to argue that such (p, P, -r) must exist in L[AZ] even in the present 
circumstances, we will take an alternative route. We will assign as our invariant 
the description of some such (p, IPr). 
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Fix x E X. 
Claim. 

FX < o~p~-c Ez L[A*](p 1VL[x] rgE(,:)x). 

Proof. This follows as in the proof of 4.4. - 

Thus, by indiscernibility of co over L[x], 

L[x] I= "Vi Ec ORDMpIPz Ez L[Aj](p VE[x] zWE(,)x)". 

Now applying 5.3 to x and A* we obtain a </3 < co such that 

(La[x]; E, A* n a, x) -< (Lfi[x]; E, A* n /, x) -< (L[x]; E, Ax, x), 

and there is an ill-founded countable M, elementarily equivalent to (LA [x]; E, A* n 
,x), such that for N = (L[A ];(,A) ATM we have 

(i) N has Scott height < a, and 
(ii) N realizes the same a-types as (L4[A*]; E, A* n/3) 
So, in particular, by the preceding claim, there exists some ill-founded * E 

(ORD)M = (ORD)N and p, IF, z E N such that p U-'M r[k]E(,*)x. - 
Claim. p FV -r[k]Ex. 
Proof. We may assume p SLAM c[k]Ex or p I$ --c[]Ex. Let us prove the claim 

in the second case; the proof in the first case is basically the same, only slightly 
easier. 

It follows from the forcing theorem that if g is an M-generic filter on IP below 
p, then in M[g] there is an order-preserving map from 4* into T(-c[g], x) equipped 
with the Kleen-Brouwer ordering; it follows from M being an c-model that -r[g] 
is a real and T(z[g], x) is calculated correctly by M[g]. Hence T(-C[g], x) is ill- 
founded, and so -c[g]Ex. Now if go is a V-generic filter on IP, then in particular 
it is M-generic, since all dense sets in M are also dense in V; thus, if go C IP is a 
V-generic filter containing p, then r[go]Ex. Now the claim follows by the forcing 
theorem applied over V. -1 

Notice, moreover, by remarks following 5.3, whenever G C Coll(w, (J+)Lco[xI) 

is LC!9 [x]-generic, such an M and N exist in LC!9 [x][G]. The preceding calculation 

then gives p F1LD,1[][G] -c[j]Ex. 
Now let yx be the least y E ORD such that there exists & <3 < y and q, Q E LY [X] 

for which 
(i) Ly[x] F ZFCN, and 
(ii) for any G C Q Ly[x]-generic with q c G, there exist N E Ly[x][G] and 

(T.p,1P) E N such that 
(iia) - 

ILy[x][G] N*jEX; 

(iib) N has Scott height a; 
(iic) N realizes the same a-types as (L4[A*];E, A0 n). 

Let (&x, /kx) be the least such (a,,/) in some canonical wellordering of ORD x 
ORD. Now let (Q )c,<#~ be some canonical enumeration in L a[Ax] of the l- 

types realized in (L/3 [Ax]; E, Ax n flX). Let DX be the least 5x -type realized in 

(L/3 [AZ];E,5 A* n0 fx) such that, for some Qxqx q YX [x], if G C QX is LYX [X]- 

generic with qx c G then there exists (TX, iPX35 x) as in (iia)-(iic) above, with DX 
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the a-,-type of (X, P Px). Since we may assume without loss of generality that 
the condition q E Q in (ii) above has the further property of deciding the a- 
type of (P, jl), such a set DX must exist. Now let U(x) be a canonical code of 

((Cx),,<,DX) inside L&.cAx]. 
It is immediate from the construction that U(x) is uniformly AI in x. It is also 

immediate that U(x) is a bounded subset of Wi. It only remains to show that 
U(x) is a complete invariant for [X]E. 

Claim. xEy =z U(x) = U(y). 
Proof. Suppose instead that (ax fix) is less than (ay, fly) in the canonical 

wellordering of ORD x ORD, but xEy. Let Go be Ly, [x]-generic; let NX C 
Ly. [x][Go], with Nx having Scott height ax, and realizing the same ax-types as 

(L, [Ax], C, A n flx); let (,Fx, -x, cPx) NE with 

pILyx [x][Go] [gE 

Now by the remarks following 5.3, if G1 C Coll(w, fix) is Lyy [y]-generic, then 

ENy E Ly,,[y][G1], (P, , py) c Ny, such that Ny has Scott height ax, realizes the 

same ax -types as (LAY [Ax],CAx oAX), and hence Nx, and such that (r y) 
has the same &x -type as (', k X~ ). Thus there is an isomorphism j: Fx 
Ny with I(T x,Px1Px) = (', pyf Y), and thus for any sufficiently generic h C 

IP with E c h we have that j-'[h] is LyY[x][Go]-generic below ix and hence 
xETx[j-'[h]]; but since Tx[i-[h]] = Ty[h] and xEy, we have yETY[h] and hence 

Ly,[y][Gi][h] k'yET [h]", by El absoluteness for transitive models. Thus, by the 
forcing theorem, 

p V Ly, [y][GI] y [k]Ey 

contradicting that (a /l3x) is smaller than (ay fly) in the canonical wellordering 
of ORD x ORD. 

Similarly we obtain ((C,,x),-<p ,DX) = ((Co),, DY), and U(x) U(y), as 
required in order to prove the claim. - 

Claim. U(x) = U(y) z> xEy. 
Proof. Suppose U(x) U(y), Nx E LyA[GO], NY E Lyy[y][G1], (xTx Pxk1K) E 

fr, (- C {E, N~, k lLyx[x][Go] -[gEX LY L~yy [y][GI] g and, by 

our supposition, that there exists j: Nx RNY i( xPxfx) = (I,,yppy) 
But now if h C Py is sufficiently generic below the condition y, then we have 

_x[j-'[h]] = rY[h], xEtx[j-1[h]]5 yErv[h], and hence xEy, as required for the 
claim. -1 

To complete the proof of the theorem, we must show that (I) and (II) are 
mutually exclusive; however, this follows just as in 2.1, since the assumption that 
Vx E Xf (X# exists) gives that all V sets are Lebesgue measurable. 

For the usual reasons, the preceding argument can be generalized and lifted to 
arbitrary Polish spaces. 

THEOREM 5.5. Let X be a Polish space, and let E be a S equivalence relation 
on X. Suppose Vx E X (x# exists). Then exactly one of the following holds: 
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(I) There is function U: X -- 2Kw, Al in the codes, such that Vx, y E X(xEy X 

U(x) = U(y)). 

(II) Eo Ec E. -d 
We do not know how to prove that at least one of (I) and (II) must hold in 

5.4 or 5.5 without making use of the assumption of sharps; nor do we have any 
reason for believing that one needs anything beyond ZFC. However, it is clear that 
ZFC alone is insufficient to obtain an actual dichotomy. For instance, if V = L, 
then there is a Al reduction of Eo into A(2<w1), for pathological reasons. 

As in the earlier case of 2.1, assuming Vx E IV (X# exists), we have that (II) 
is equivalent to (II)'. 

?6. Examples and counterexamples. In this section we present counterexamples 
to some putative dichotomy theorems that might be suggested for analytic equiv- 
alence relations. 

EXAMPLE 6.1. Assume Vx E Y(w L[x] < i). Then there is a El equivalence 
relation E such that 

(I) E A, A(2T); 
(II) Eo $A, E. 
PROOF. For x, y E 2', set xEy if and only if either (i) x, y f WO, or (ii) 

x,y E WO and IxI = y. 
It is clear that E is X1. If E <Ai A(2W) then there exists a El set carrying a 

El wellordering of order type Wi, violating our hypothesis. If, on the other hand, 
Eo <A, E, then let f: 2W -- 2W be Al and such that Vx, y(xEoy X f (x)Ef (y)). 

LetX: ={x E 2w: f (x) E WO and If(x)I < X, or f (x) V WO}, foreach 4 <w,. 
Since each X; is countable, we obtain that it has Lebesgue measure zero. 

Now, recall first that we have El Lebesgue measurability by our assumption, 
and second that the induced prewellordering, x < y iffV < ci (y C X: X. x c X,), 
is A1. Thus, by the same Fubini argument used in 2.1, we obtain that U. X: has 
Lebesgue measure zero, and therefore that 2' is null; this is absurd. - 

In the case of E induced by the Borel action of a Polish group, it is still possible 
to give a counterexample along the lines of 6. 1, thus showing the use of transfinite 
ordinals to be necessary. One actually obtains a counterexample for the logic 
action. Before presenting the example, it will be helpful to recall some fundamental 
properties of Ulm invariants for torsion abelian groups. Let p be some fixed prime 
number. 

THEOREM 6.2. Let L be the language of groups, and let P C XL consist of the 
abelian p-groups. Then there is a Al function U: P -- (c U {oo})<" such that: 

(I) Vx,y E P(s1X ,? an X U(x) = U(y)). 
(II) If a < Wi, and f: a + 1 -- o U {oo} is given by f (O) = -o, and f (/3) = 1 

forfl /: O, fl < a, then there exists x E P with U(x) =f. - 
This theorem is a standard result in abelian group theory; see, for example [BE]. 
COROLLARY 6.3. If Vx E X(0 L[x] < 01), then there is a Borel action of SO, 

with induced equivalence relation E, such that: 
(I) E A, A(2w). 
(II) Eo 0 i E. 
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PROOF. As in 6.2, let P be the set of all abelian p-groups. Then P is Al and 
there is a Al action g * x of SOO on P such that 

Vx, y E P(Hg C Soo (g x =y) = 

Claim. E SAi A(20). 

Proof. Suppose instead that there is a Al (z) reduction h: P -- 2?0, for some 
z E X. Then there is a nc-sequence of functions (fa)a<, E L[z], where , = o1, 
defined by 

f~g:aA-1->U{oo}, f(,3fOO{ forfO, 'a co 
1,pIi otherwise. 

But then for each x E P with U(x) fa we would have h(x) E L[z]. This gives 
a ic-sequence of reals in L[z], contradicting our assumption that co11~] < a, and 
hence lI-nL[z] I= Ao. 

Claim. EO ~A E. 
Proof. This follows essentially as in 2.1; the only difference is that we now use 

the fact that El Lebesgue measurability already holds in V. Starting with the 
assumption of EO <?A A(2<w01), we obtain the same contradiction as before. A - 

In fact, it is well known that one obtains, provably in ZFC, that the isomorphism 
relation on countable torsion abelian groups is reducible to A(2<Wl) by a function 
C-measurable in the codes. In other words, if X is the space of countable torsion 
abelian groups, if G = SOO is viewed as acting on X in the usual fashion, so that 
EG is the relation of isomorphism, then we are in case (I) of 2.2. 

In light of these last two examples, one might want to try to obtain a dichotomy 
theorem along the lines of the original result from [HKL] by simply introducing 
a third possibility, to allow for E resembling the examples from 6.1 and 6.3 in 
that it has an co,-sequence of equivalence classes. However, even this is overly 
optimistic. Certain constructions of Woodin, arising in connection with the sudy 
of definable cardinality in the context of AD, provide a counterexample. 

EXAMPLE 6.4 (Woodin). Assume ADL(R). Then there is a El equivalence rela- 
tion E such that 

(I) E SL(R) A(2w); 
(II) Eo L(R) E; and 
(III) there is no co-sequence of equivalence classes in L(R). 
By combining some of the ideas which were used in 6.4 with certain techniques 

from [Sa], we will give what seems the strongest possible counterexample at the 
least possible cost. We will make use of the Solovay model; a discussion of the 
basic properties of this model can be found in ?42 of [Je]. 

EXAMPLE 6.5. Let K be inaccessible in L. Let G C Coll(o, < K) be L-generic, 
and let R = RL[G]. Then in L[G] there is a El equivalence relation E on 2W such 
that Vx E 20 ([x]E E H?) and such that 

(I) E SL(R) A(2O); 

(II) Eo SL(R) E; 
(III) there is no co,-sequence of equivalence classes in L(IR). 
PROOF. The equivalence relation will concentrate on the elements x E 2W such 

that x codes an (0-model MA4, of some fragment of set theory, with (M.) 
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(E,&?S) and field(Mx) w O. We will insist also that (o)MX - {2n: n c w} with 
the successor of 2n in M, being 2n + 2. We will also require that 

M~ l= "V =L [t ], C c". 

By assuming that x also codes the satisfaction relation for Mx, along the lines of 
1 of [Sa], we obtain that the set of x E 2W giving rise to Mx as above is a fl? set 

of reals; such x E 2W will be called good. 
For x as above, let P,S be the order type of the well-founded ordinals in Mx. 

Then let ax be the unique element of Cantor space such that 

n E ax X~ 2n E (a)mx. 

Let Sx be the collection of z C o such that there exists some m E o with 

M "im is a subset of the natural numbers" & m E 

& Vn E c(n E z Mx "2n Em") & z E LA[ax]. 

For x and y both good, set xEy iff S,'= Sy, and ax = ay, and 2? n LAY [ax] 
20 n L#,, [aj]. If only one of x and y are good, set -ixEy; and if neither are good, 
set xEy. 

Claim. Vx E 2'([X]E E Ho). 
Proof. First of all, if x is not good, then [M]E E LO. Suppose instead that x is 

some fixed good element of 2t. 
As we range over y, the requirement that ax = ay is only HO, and, more 

generally, for m, m' such that Mx k "im is a set of natural numbers" and My k "nm' 
is a set of natural numbers", the requirement that 

Vn E w(My F "2n Ei m"' X> Mx F "2n E ml") 

is HO 
If /hx > o L[ax] then the requirement that Sx = Sy amounts to insisting that 

2W n L[ax] C Lf, [aj] & Vz E 21 n L[ax](z E Sx X z s,). 

These conditions are both HO, since 2W n L[ax] is countable. If Ix < 1 L[ax] and 
zo E 21 n L[a,] is least such that zo codes a wellordering of order type /3x, then 
the requirement that Sx = Sy and fix fly amounts to demanding that: 

VmE C (]n Cz wM F "2n C mi" if (n V zo)) 

&V z C 2W n Lf, [ax](z E My) 

&Vz C 2OnL&x[a,](z ESx iff z cS,). 

Again, none of these is worse than H-1. - 
Claim. Eo AL(gR) A(2(0). 
Proof. Suppose f: 2W - 2W were an OD(z) reduction of E to A(2W), where 

z c 2W. Then for each S C (39J(20))L[-] there would exist ys E 2W such that for 
any x coding (LL[A [z]; E, z, S) we have f (x) = ys. Hence, ys would be OD(z, S) 
over L(R), and hence, by the property of the Solovay model, ys E L[z]. But since 
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this assignment can be performed over L[z], we obtain a contradiction to Cantor's 
theorem that 19(2w) I> 12W inside L[z]. -1 

Claim. Eo AL(R) E. 
Proof. Suppose f: 2' Y 2W is an OD(z) reduction of Eo to E, where z C 2w. 

Applying the argument from 2.1 and using that all sets are Lebesgue measurable, 
we obtain that there is a measure one set B C 2Y such that for some a E 2Y 

VY1 5Y2 zB (f (yi) = xi f(Y2) =X2 =ax, = ax,^) 

Similarly we obtain a single /3 < i, and S C 2Y n L[a] such that on some measure 
one set B1 C B 

Vy E B, (if Wy = x fX.A = P, Sox = S) 

This contradicts the fact that B1 must contain many equivalence classes. A 
Claim. There is no Lo [G]-sequence of E equivalence classes in L(R). 
Proof. Otherwise let (A, ),<,. be such a sequence. We may assume, by thinning 

out the sequence, that either 

Va f < l (xa Ez A,,, xfi E Af, ax, # axl), 

or 
Va#, < KX(X,, E A,,, xf E , a Y.> = axfl). 

The first possibility is out of the question, since there is no ic-sequence of reals in 
L(IR). So let us assume the second. There must then be some fixed a E 2Y such 
that Va < MNx E AO, (Sx C 21 n L[a]). But since (20)L[a] is countable in L((R), 
this again gives us a ti-sequence of reals, contradicting known properties of the 
Solovay model. -1 ] 

Becker raised the question of whether every EG induced by a Borel action of 
a Polish group must satsify either (I), (II), or (III) of 6.5. This remains open. 

?7. Open problems. We collect here various open problems suggested by the 
preceding work: 

(1) (Becker) In 2.1, can one choose U so that for each countable ordinal ao, 
the set {x C IV : a C dom(U(x)) & U(x)(ao) 0} is Borel? This is the case for 
the classical Ulm invariants for abelian p-groups. 

(2) Is the complexity of U in 4.4 or 5.4 best possible? 
(3) Is it provable in ZFC that (I) or (II) holds in 5.4? 
(4) (Becker) Is one of the alternatives of 6.5 false for the equivalence relation 

EG induced by a Borel action of a Polish group? 
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