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�1
1 Wellfounded Relations

GREG HJORTH

Abstract If there is a good�1
3 wellordering of the reals, then there is a�1

1
wellfounded relation for which the comparison relation is not projective.

1 Preface As much as possible in this paper I have tried to follow the notations
and conventions of Jech [2]. That text also contains most basic results for this area.
As seems to be traditional, I will call the topological spaceωω “the reals.” As usual,
all the results proved below will hold for the true reals in virtue of standard coding
arguments.

Section 2 provides an introduction to the problem and recalls various pertinent
facts. Section 3 gives the main result, and Section 4 gives some further examples.

2 Introduction

Definition 2.1 Recall that forR ⊂ ωω × ωω which is wellfounded—that is to say,
there is no(xi)i∈ω ⊂ ωω with xi+1Rxi—we can form the ranking function which as-
signs to eachx ∈ ωω an ordinalαx such that:

(i) yRx impliesαy < αx;
(ii) this assignment is minimal—so that isf : ωω → α some ordinalα satisfies (i),

then for allx ∈ ωω, f (x) ≥ αx.

For R a wellfounded relation, I will writeRkR(x) for the value of this ranking
function atx. Therank of R will denote the strict supremum ofRkR(x) asx ranges
overωω, and will be written asRk(R). Again for R wellfounded, thecomparison
relation for R denotes{(x, y) ∈ ωω × ωω : RkR(x) ≤ RkR(y)}.

Fix a recursive bijection〈 · , · 〉 : ω × ω ∼= ω. For x ∈ ωω, x can be viewed as
modeling as structure with relation∈x, wheren ∈x m if and only if x(〈 n, m 〉) = 0.
Here we can say thatx codes this model, which I will denote bymx. x ∈ W O indicates
that(mx,∈x) ∼= (β,∈) for some countable ordinalβ.

Wewill also need a method of coding sequences of reals by a single element of
ωω. Let (·, . . . , ·) : (ωω)<ω → ωω be a�1

1 bijection.
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For a countable modelLα[x], andS some�1
2 set of reals, it will be convenient to

use the expressionLα[x] |= S(x) only for the situation that the model witnesses this by
an appropriate embedding into the Shoenfield tree; if we do not take this precaution, it
may not be upward absolute. Forβ < ω1, x ∈ ωω, andB a�1

1 set of reals, it is natural
to speak ofx being inB by stageβ if the Kleene-Brouwer wellordering ofω induced
by x ∈ B has ordertype less thanβ; it will in fact be the case here thatLω·β[x] |=
B(x) in the strong sense above. A full discussion of the notions of Shoenfield tree
and Kleene-Brouwer ordering can be found in [2].

Theorem 2.2 (Classical) Let S be a wellfounded �1
1 relation. Then there exists

some β < ωck
1 such that for all x ∈ ωω, RkS(x) < β. (See Moschovakis [4]; here

β < ωck
1 merely expresses that there is some recursive wellordering of ω of ordertype

β).

This is the best possible: givenβ < ωck
1 , there is certainly a�1

1 wellfounded
relation of rankβ.

Corollary 2.3 Let S be a �1
1 wellfounded relation. Then the comparison relation

for S is �1
2.

Proof: Notice that forx ∈ ωω, andβ < ωck
1 , the statement thatRkS(x) > β is, uni-

formly �1
1(x) in any number coding a recursive wellordering of ordertypeβ; hence

RkS(x) ≤ β is uniformily �1
1(x). HenceRkS(x1) ≤ RkS(x2) if and only if for all

n ∈ ω coding a recursive orderingγn onω

γn illfounded∨ RkS(x1) ≤ γn ∨ RkS(x2) > γn.

So this statement has the form

∀n ∈ ω(�0
2(n) → (�1

1(n) ∨ �1
1(n, x1) ∨ �1

1(n, x2)).

But this is�1
2(x1, x2).

The statement of2.3 is somewhat misleading, in that the proof shows the com-
parison relation to be a fairly simple�1

2 set—in fact, it will be a countable Boolean
combination of�1

1. Onthe�1
1 side we can obtain a bound for the possible ranks, and

in the presence of sharps we can obtain a precise calculation.

Theorem 2.4 (Kunen-Martin) For x ∈ ωω, the rank of every �1
1(x) wellfounded

relation will be less than ((ωV
1 )+)L[x]; if in fact every real has a sharp,

sup{Rk(R) : R is a wellfounded �∼
1
1 relation} = u2.

(See [2] or [4].)

In fact, forx, y ∈ ωω andR a�1
1(y) wellfounded relation,RkR(x) will be equal

to some ordinal definable overL[y] from ω1 and some countable ordinalα.
Here we might ask about analogs of2.3 for �1

1 wellfounded relations. One an-
swer is given by the following:

Theorem 2.5 (Harrington-Kechris) Assume �∼1
2 determinacy. Let R be a �1

1 well-

founded relation. Then the comparison relation is �1
4.
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Proof: The proof of this can be found in Harrington and Kechris [1].

I want to consider the other side of this problem. There are�1
1 wellfounded re-

lations whose comparison relation is neither�1
3 nor �1

3. If there exists a good�1
3

wellordering of the reals, then there is a�1
1 wellfounded relation whose comparison

relation is not�∼1
n for anyn ∈ ω. Hence, while ZFC puts a firm and reasonable bound

on the comparison relation for�1
1 wellfounded relations, at the level of�1

1 the possi-
bilities are already wildly divergent. Assuming determinacy, the comparison is sim-
ple. On the other hand, ifV=L, then the comparison relation is not even projective.

3 Good wellorderings The move in Theorem2.5from a�1
1 wellfounded relation

to a�1
4 comparison relation would seem like a big jump. However, there always ex-

ists a�1
1 wellfounded relation for which the comparison relation is not�1

3 or �1
3.

Let P ⊂ ωω × ωω be a universal�1
2 set. DefineR as follows: the field ofR

consists of all(0, x), x ∈ ωω, all (1, x, y), x, y ∈ ωω, and all(2, x, y,w) such thatw
codes some countable ordinalα, andLα[x, y] |= ¬P(x, y). For (0, x), (1, x, y), and
(2, x, y,w) in the field ofR, set(2, x, y,w)R(1, x, y)R(0, x). RkR(0, x) = ω1 + 1 if
and only if∃y¬P(x, y). We set(2, x, y,w)R(2, x, y,w∗) if w andw∗ code ordinals
α andα∗ respectively, withα < α∗. These cases are the only ones in whichR holds
between two elements.

Pictorially, a real,(0, x), lies above some(1, x, y) which stands above every sin-
gle ordinal where it survives as a witness to∃y¬P(x, y).

Definition 3.1 If there exists an onto functionf : ω1 → ωω which is �1
3 in the

codes, then we say thatr has agood �1
3 wellordering.

Theorem 3.2 Assume that there is a good �1
3 wellordering of the reals. Let P be

�1
2n+1 formula. Then, uniformly in P, there is a �1

1 wellfounded relation R such
that RkR(z) = ωn

1, in the sense of ordinal exponentiation, if z witnesses that P, and
RkR(z) < ωn

1 otherwise.

Proof: Weprove by induction onn that the theorem holds for alln ∈ ω. The exam-
ple above indicates how this is proved in the casen = 1, even without the wellorder-
ing. So, assumen > 1. Fix f : ω1 → ωω, an onto function which is�1

3 in the codes,
witnessing that there is a good�1

3 wellordering of the reals. Suppose thatP is of
the form∃x∀y∃zQ(x, y, z), whereQ is �1

2n−2. By inductive assumption, uniformly
in (x, y) we have a�1

1 wellfounded relationR(x,y) such thatRkR(x,y)
(z) = ωn−1

1 if
Q(x, y, z), and is less thanωn−1

1 otherwise. Now let the field ofR consist of elements
of the form(0, x), wherex ∈ ωω, and(1, x, (yα,wα)α∈ζ, ((zᾱ

α)ᾱ∈α)α∈ζ, xβ) such that:

(i) xβ ∈ W O codes an ordinalβ < ω1 andζ ≤ β;
(ii) x ∈ ωω and eachyα,wα, zᾱ

α ∈ ωω;
(iii) eachzᾱ

α is in the field ofR(x,yᾱ );
(iv) wα attempts to witness thatf (α) = yα, and this attempt is not refuted by stage

β; in other words, if f (γ) = a is equivalent to∃wS(γ,w, a), whereS is �1
2 in

the codes, thenLβ[wα, yα] |= S(α,wα, yα).

The relation ofR is then defined by its holding among objects in its field in just the
following three cases:
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(i) (1, x, (yα,wα)α∈ζ, ((zᾱ
α)ᾱ∈α)α∈ζ, xβ)R(0, x) for all x, (yα,wα)α∈ζ,

((zᾱ
α)ᾱ∈α)α∈ζ, ζ, xβ as above;

(ii) (1, x, (yα,wα)α∈ζ+1, ((zᾱ
α)ᾱ∈α)α∈ζ+1, xβ)R(1, x, (yα,wα)α∈ζ+1,

((z̄ᾱ
α)ᾱ∈α)α∈ζ+1, xβ̄ ) if xβ codes a countable ordinalβ such that for eachα <

ζ,zᾱ
α = z̄ᾱ

α and for each̄α < ζ zᾱ
ζ R(x,yᾱ ) z̄ᾱ

ζ is seen to be true by stageβ; that is,
the Kleene-Brouwer ordering corresponding to this�1

1 fact is less thanβ;
(iii) (1, x, (yα,wα)α∈ζ, ((zᾱ

α)ᾱ∈α)α∈ζ, xβ)R(1, x, (yα,wα)α∈ζ̄, ((zᾱ
α)ᾱ∈α)α∈ζ̄, xβ̄ ) if

ζ < ζ̄.

Claim 3.3 For any (1, x, (yα,wα)α∈ζ, ((zᾱ
α)ᾱ∈α)α∈ζ, xβ) in the field of R,

RkR(1, x, (yα,wα)α∈ζ, ((zᾱ
α)ᾱ∈α)α∈ζ, xβ) ≤ ωn−1

1 · ζ.

Proof: The proof is by induction onζ. At ζ = 1 this follows by the assumption on
R(x,y0). At the successor stepζ = ζ̄ + 1, the inductive hypothesis implies that for all
γ < ζ, any (1, x, (yα,wα)α∈γ, ((zᾱ

α)ᾱ∈α)α∈γ, xβ) has rank at mostωn−1
1 · γ. Hence

we set

g(1, x, (yα,wα)α∈ζ, ((zᾱ
α)ᾱ∈α)α∈ζ, β) =

ωn−1
1 · ζ̄ + 1+ infᾱ∈ζ̄ RkR(x,yᾱ )

(zᾱ
ζ̄
)

for any(1, x, (yα,wα)α∈ζ, (zᾱ
α)ᾱ∈α)α∈ζ, xβ) and forγ < ζ we set

(1, x, (yα,wα)α∈γ, ((zᾱ
α)ᾱ∈α)α∈γ, xβ) =

RkR(1, x, (yα,wα)α∈γ, ((zᾱ
α)ᾱ∈α)α∈γ, xβ);

by clause (ii) of Definition2.1 g witnesses that

RkR(1, x, (yα,wα)α∈ζ, ((zᾱ
α)ᾱ∈α)α∈ζ, xβ) ≤ ωn−1

1 · ζ.

Forγ a limit ordinal, it follows that

RkR(x, (yα,wα)α∈γ, ((zᾱ
α)ᾱ∈α)α∈γ, xβ) ≤ ωn−1

1 · γ.

Claim 3.4 For α0 < ζ and wα0 failing to witness that f (α0) = yα0, we have

RkR(1, x, (yα,wα)α∈ζ, ((zᾱ
α)ᾱ∈α)α∈ζ, xβ) < ωn−1

1 · (α0 + 1).

Proof: If wα0 fails to witness, then there will be some ordinalβ∗ at which point it
becomes apparent that it does not witness—that is,

Lβ∗ [wα0, yα0] |= ¬S(α0,wα0, yα0).

But that means we can never go beyond thisβ∗ until after we have dropped down to
some(1, x, (yα,wα)α∈α0, ((z̄ᾱ

α)ᾱ∈α)α∈α0, xβ̄ ), which must have rank no greater than

ωn−1
1 · α0 by the previous claim. So, as long as we are aboveα0, weare in effect look-

ing at a�∼1
1 wellfounded relation, and when we are belowα0 we have a wellfounded
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relation of rank≤ ωn−1
1 · α0. But the rank of a wellfounded Borel relation is always

strictly less thanω1, and hence the total rank must be strictly less thanωn−1
1 · (α0 +1).

More formally, setz∗
1Rαz∗

2 if z∗
1R(x,yα)z∗

2 and this is seen to be the case by stage
β∗. These are wellfounded Borel relations, and hence there is someγ which strictly
bounds the rank ofRα for everyα less thanζ. Now set

g(1, x, (yα,wα)α∈ζ̄+1, ((zᾱ
α)ᾱ∈α)α∈ζ̄+1, xβ) =

ωn−1
1 · α0 + 1+ γ · ζ̄ + 1+ infα∈ζ̄ RkRα

(zα
ζ̄
)

for ζ̄ greater thanα0; set

g(1, x, (yα,wα)α∈ζ̄, ((zᾱ
α)ᾱ∈α)α∈ζ̄, xβ) = ωn−1

1 · α0 + 1+ γ · ζ̄

for ζ̄ a limit greater thanα0; and set

g(1, x, (yα,wα)α∈ζ̄, ((zᾱ
α)ᾱ)α∈ζ̄, xβ) =

RkR(1, x, (yα,wα)α∈ζ̄, ((zᾱ
α)ᾱ∈α)α∈ζ̄, xβ)

for ζ̄ less than or equal toα0. So, as in the previous argument,g witnesses the appro-
priate bound on the rank function.

Claim 3.5 If ∀z¬Q(x, yα0, z) then

RkR(1, x, (yα,wα)α∈ζ, ((zᾱ
α)ᾱ∈α)α∈ζ, β) < ωn−1

1 · (α0 + 1).

Proof: This follows by the assumption onR(x,yα0 ). If ∀z¬Q(x, yα0, z), then we are
permanently constrained aboveα0. Suppose that for a given condition

(1, x, (yα,wα)α∈ζ, ((zᾱ
α)ᾱ∈α)α∈ζ, xβ)

we have
supα∈ζ(RkR(x,yα0 )

(zα0
α )) = γ < ωn−1

1 ,

then aboveα0 we have, in effect, a wellfounded relation of size at mostγ · (ζ + 1) <

ωn−1
1 by the assumption onR(x,yα) and by adjusting the argument from the first claim.

Belowα0 we have a wellfounded relation of rank at mostωn−1
1 · α0. Hence, the total

rank is less thanωn−1
1 · (α0 + 1).

More formally, set

g(1, x, (yα,wα)α∈γ, ((zᾱ
α)ᾱ∈α)α∈γ, xβ) =

ωn−1
1 · α0 + 1+ �α∈ζ̄ (RkR(x,yα0 )

(zα0
α ) + 1)

for ζ̄ greater thanα0, and set

g(1, x, (yα,wα)α∈γ, ((zᾱ
α)ᾱ∈α)α∈γ, xβ) =

RkR(1, x, (yα,wα)α∈γ, ((zᾱ
α)ᾱ∈α)α∈γ, xβ)

pfor ζ̄ less thanα0. Asbefore,g witnesses the bound.
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Claim 3.6 ∃y∀z¬Q(x, y, z) ⇒ RkR(0, x) < ωn
1.

Proof: If f (α0) = y with ∀z¬Q(x, y, z), then the previous two claims established
that RkR(0, x) ≤ ωn−1

1 · (α0 + 1).

Claim 3.7 ∀y∃zQ(x, y, z) ⇒ RkR(0, x) = ωn
1.

Proof: Let f (α) = yα be witnessed bywα. Let zα be such thatQ(x, yα, zα).
Set zᾱ

α = zα for each ᾱ < α. It suffices to show that each(1, x, (yα,wα)α∈ζ,

((zᾱ
α)ᾱ∈α)α∈ζ, xβ) has rank at leastωn−1

1 · ζ, but this follows by the assumption on
the R(x,yα) and by induction onζ.

But these last two claims are exactly as required.

Corollary 3.8 If there is a good �1
3 wellordering of the reals, then there is �1

1 well-
founded relation for which the comparison relation is nonprojective.

Proof: Using that the last argument produced the wellfounded relations uniformly,
we can join them together to obtain a wellfounded relation whose comparison relation
is not�1

n for anyn ∈ ω. But by just relativizing the above construction to every real,
and joining all those relations together, we can obtain a relation whose comparison
relation is not�1

n(y) for anyn ∈ ω andy ∈ ωω.

The assumption of the existence of a good�1
3 wellordering of the reals is not

overly restrictive.L has a good�1
2 wellordering of the reals, and so certainly it has

a good�1
3 wellordering. It follows from early work by Silver that the existence of a

measurable cardinal is compatible with a good�1
3 wellordering of the reals (see [4]).

4 Examples

Example 4.1 (The Solovay model) Supposeκ is inacessible overL, then in
LColl(ω,<κ) there is a wellfounded�1

1 relation whose comparison relation is not pro-
jective. This is a slight variant on the argument in Theorem3.2 using that the first
order theory ofHC ∩ L is not projective in this model, but the initial segments of the
form Lα, someα < κ, can be easily enumerated in ordertypeω1; whereas the argu-
ment of Theorem3.2tried to grab hold of a good guess at an initial segment of some
good wellordering, and we showed that only the good guesses could have high rank,
the variant here consists, in part, of attempts to enumerate the countable levels ofL
and witness some fact about the theory ofL[x], for variousx.

If, on the other hand, we begin withL[µ] |= κ measurable, then the comparison
relation for a�1

1 wellfounded relation inL[µ]Coll(ω,<κ) is always�1
4. Fix δ some

big ordinal such thatLδ[µ] satisfies a large fragment of ZFC. Work in the generic
extension. Forx ∈ ωω, R a wellfounded�1

1 relation,α ∈ κ, andτ a Skolem term
overL, it will be the case thatRkR(x) > τ(α, κ) if and only if for some

(X[x], κ, µ, α) ≺ (L[µ][ x], κ, µ, α),

with α ⊂ X, and for transitive

(M[x], κ̄, µ̄, α) ∼= (X[x], κ, µ, α)
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we have

M[x]Coll(ω,<κ̄) |= RkR(x) > τ(α, κ).

But the existence of such an iterableM[x] will be a�1
3(x, α) fact.

In fact in this modelL[µ]Coll(ω,<κ) we obtain that there is a realy such that
L[x, y]Coll(ω,<κ) correctly calculatesRkR(x). Indeed, this observation is not restrict-
ed to�1

1 relations. What we really needed was that the rank is shorter thanδ∼
1
2. More

generally one can argue that ifκ is measurable inV, andG ⊂Coll(ω,< κ) is V-
generic, then for any�1

3 wellfounded relation, R, inV[G] with rank less than theδ∼
1
2

of V[G], there will exist a realy in V[G] such thatL[y]Coll(ω,<κ) correctly calculates
RkR.

At this point we might wonder why the argument that shows there to be a�1
1

wellfounded relation with a violently complicated comparison inLColl(ω,<κ) fails in
L[µ]Coll(ω,<κ). The problem is not that the natural wellordering of this later model is
too complicated; the natural ordering is still only�1

3 and hence would seem to pro-
vide no obstruction to the technique of Theorem3.2. The problem is that the natural
enumeration ofL[µ] ∩ Vκ does not have ordertypeκ. Indeed, one can prove that in
this model there is no ontof : ω1 → L[µ] ∩ Vκ which is�1

3 in the codes.

Example 4.2 (Precipitous ideals) It is now known to be possible to have a precip-
itous ideal onω1 along with a good�1

3 wellordering of the reals. This follows from
as yet unpublished work of Shelah, Martin, and Steel: Shelah for obtaining the pre-
cipitous ideal with a forcing notion that adds no reals; Martin and Steel for showing
compatibility of his initial assumptions with the existence of such a wellordering. So,
as a consequence of Theorem3.2, the existence of a precipitous ideal onω1 is not
sufficient to guarantee that the comparison relation for�1

1 wellfounded relations is
simple.

However, in a wide range of situations, a precipitous ideal will give a simple
comparison relation. For instance, if the ideal arises as a result of Levy collapsing a
measurable cardinalκ in V, then as in Example4.1 the comparison will be�1

4; this
follows by essentially the same argument.

Example 4.3 (Changing ranks but not�1
3 truth) It is possible to change the rank of

awellfounded�1
1 relation without changingω1 or introducing any new�1

3 truths. Re-
call from Jensen and Solovay [3] that if δ is inacessible overL, but not Mahlo, there is
aδ-c.c. notion of forcing which introduces a realx such thatL[x] |= ω1 = δ. Suppose
now thatκ is Mahlo overL, and it is the least such. A downward Lowenheim-Skolem
argument and an application of Shoenfield absoluteness shows that there must exist
an inacessibleδ such that ifG ⊂ Coll(ω,< δ) is generic, then for allP ∈ Lκ, and
H ⊂ P which areL[G] generic,

L[G] ≺�1
3

L[G][ H],

that is to say, no new�1
3 truths in parameters fromL[G] are introduced by the further

forcing. Now letx be a real as above, so thatδ = ωL[x]
1 . Let G ⊂ Coll(ω,< δ) be

L[x] generic. It follows from the factor lemma for forcing thatx is generic overL[G],
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and thatL[G] andL[G, x] both calculate the same value forω1—namelyδ. It follows
by assumption onδ that

L[G] ≺�1
3

L[G, x],

so to complete the example we need only find a�1
1 wellfounded relation which has

greater rank inL[G, x] thanL[G].
Now for y,w0, andw1 all reals,w0 andw1 both reals coding wellorderings of

ordertypesβ0 < β1 respectively, and for(aβ)β∈α1 a sequence of reals, withz1 ∈ ωω

coding this sequence andz0 ∈ ωω coding (aβ)β∈α0, whereα0 < α1, α0 < β0, and
α1 < β1 set

(y,w0, z0)R(y,w1, z1)R(0, y)

if and only if
(aβ)β∈α1 ⊂ Lβ1[y],

and
(aβ)β∈α0 ⊂ Lβ0[y].

This relation will have the property thatRkR(0, y) = ω1 if and only if L[y] has
uncountably many reals. So

(Rk(R))L[G] = ω1, (Rk(R))L[G][ x] = ω1 + 1.

Herex will be generic overL[G] for a notion of forcing that is c.c.c. inL[G].
Hence, we have a change of ranks induced by a c.c.c. notion of forcing that introduces
no new�1

3 truths.

A slightly more complicated version of this example, using the same type of ar-
gument as in Theorem3.2, will show that is possible to have models where there is
awellfounded�1

1 relation whose rank can change after forcing without affectingω1

or introducing new�1
4 truths.
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