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11 Wellfounded Relations

GREG HIORTH

Abstract  If there is a goodA} wellordering of the reals, then there igH
wellfounded relation for which the comparison relation is not projective.

1 Preface As much as possible in this paper | have tried to follow the notations
and conventions of JecB]] That text also contains most basic results for this area.
As seems to be traditional, | will call the topological spa¢e“the reals.” As usual,
all the results proved below will hold for the true reals in virtue of standard coding
arguments.

Section 2 provides an introduction to the problem and recalls various pertinent
facts. Section 3 gives the main result, and Section 4 gives some further examples.

2 Introduction

Definition 2.1  Recall that forR C w® x »® which is wellfounded—that is to say,
there is Na(X)ic, C w® With x;, 1 Rxi—we can form the ranking function which as-
signs to eaclx € w® an ordinalkxy such that:

() yRximpliesay < ay;
(i) this assignment is minimal—so that fs: ©“ — « some ordinak satisfies (i),
then for allx € w?, f(X) > ax.

For R a wellfounded relation, | will writeRkr(x) for the value of this ranking
function atx. Therank of R will denote the strict supremum &kgr(X) asx ranges
over w®, and will be written asRk(R). Again for R wellfounded, thecomparison
relation for Rdenoteq (X, y) € w® x w® : RKr(X) < RKr(Y)}.

Fix a recursive bijection-, ) : w x w = w. Forx € o®, x can be viewed as
modeling as structure with relatias®, wheren €* mif and only if x({(n, m)) = 0.
Here we can say thatcodes this model, which | will denote ly*. x € WO indicates
that (m*, €*) = (B, €) for some countable ordinl.

We will also need a method of coding sequences of reals by a single element of
w®. Let(, ..., (@?)=® - »” be aAl bijection.
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For a countable modél,[X], and SsomeX3 set of reals, it will be convenient to
use the expressidn,[X] = S(x) only for the situation that the model witnesses this by
an appropriate embedding into the Shoenfield tree; if we do not take this precaution, it
may not be upward absolute. F® w;, X € ®*, andB al‘[i set of reals, itis natural
to speak ok being inB by stages if the Kleene-Brouwer wellordering @6 induced
by x € B has ordertype less thah it will in fact be the case here that, s[X] =
B(x) in the strong sense above. A full discussion of the notions of Shoenfield tree
and Kleene-Brouwer ordering can be foundzh [

Theorem 2.2 (Classical) Let S be a wellfounded E% relation. Then there exists
some B < w$k such that for all x € w®, Rks(X) < B. (See Moschovakis [[4]; here
B < w‘l’k merely expresses that there is some recursive wellordering of w of ordertype

B).

This is the best possible: giveh < a)‘i", there is certainly aEi wellfounded
relation of rankg.
Corollary 23 Let Shea 2} wellfounded relation. Then the comparison relation
for Sis AJ.

Proof: Notice that forx € w®, andg < a)‘ik, the statement thakks(x) > g is, uni-
formly £1(x) in any number coding a recursive wellordering of ordertgpaence
Rks(x) < B is uniformily H}(x). HenceRks(X1) < Rks(xp) if and only if for all
n € w coding a recursive ordering, on w

yn illfoundedy Rks(X1) < vn V Rks(X2) > .
So this statement has the form
vn € o(T3(n) — (£1(n) v IIi(n, x1) v (N, X2)).

But this isAL(xq, X2).

The statement @ 3Jis somewhat misleading, in that the proof shows the com-
parison relation to be a fairly simpl&e set—in fact, it will be a countable Boolean
combination off1}. OntheIl] side we can obtain a bound for the possible ranks, and
in the presence of sharps we can obtain a precise calculation.

Theorem 2.4 (Kunen-Martin) For x € w®, the rank of every I1}(x) wellfounded
relation will belessthan ((»))*)-D; if in fact every real hasa sharp,

sup{RKk(R) : Risa wellfounded [17 relation} = u,.

(See[E] or [H].)

In fact, forx, y € w® andRal‘Ii(y) wellfounded relationRkr(x) will be equal
to some ordinal definable ovefy] from »; and some countable ordinal

Here we might ask about analogd8lfor H% wellfounded relations. One an-
swer is given by the following:
Theorem 2.5 (Harrington-Kechris) Assume [13 determinacy. Let R be a 1] well-
founded relation. Then the comparison relation is Al.
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Proof: The proof of this can be found in Harrington and KecHiik |

| want to consider the other side of this problem. Therelgfevellfounded re-
lations whose comparison relation is neitf®J nor I13. If there exists a good
wellordering of the reals, then there iS‘Iql wellfounded relation whose comparison
relation is notZ? for anyn € w. Hence, while ZFC puts a firm and reasonable bound

on the comparison relation fai} wellfounded relations, at the level bif} the possi-
bilities are already wildly divergent. Assuming determinacy, the comparison is sim-
ple. On the other hand, =L, then the comparison relation is not even projective.

3 Good wellorderings  The move in Theoref@.Sfrom a1} wellfounded relation
to aA; comparison relation would seem like a big jump. However, there always ex-
ists aIl} wellfounded relation for which the comparison relation is Btor I13.

Let P C 0 x o be a universak] set. DefineR as follows: the field ofR
consists of all0, x), x € ®, all (1,X%,Y), X,y € w®, and all(2, X, y, w) such thatw
codes some countable ordinglandL ,[X, y] = —P(X, y). For (0, x), (1, X, y), and
(2, %, ¥, w) inthe field of R, set(2, x, y, w)R(1, X, Y) R(0, X). RKr(0, X) = w1 + 1if
and only if3y—=P(x, y). We set(2, X, ¥, w) R(2, X, y, w*) if w andw™* code ordinals
a anda™ respectively, withe < o*. These cases are the only ones in whitholds
between two elements.

Pictorially, areal(0, x), lies above somél, x, y) which stands above every sin-
gle ordinal where it survives as a witnessitp-P(X, ).

Definition 3.1  If there exists an onto functiofi : w1 — «® which is A} in the
codes, then we say thahas agood A% wellordering.

Theorem 3.2 Assume that there is a good A% wellordering of thereals. Let P be
2341 formula. Then, uniformly in P, there is a T1 wellfounded relation R such
that Rkr(2) = a)Q, in the sense of ordinal exponentiation, if zwitnesses that P, and
RKr(2) < o} otherwise.

Proof: We prove by induction om that the theorem holds for alle w. The exam-
ple above indicates how this is proved in the case 1, even without the wellorder-
ing. So, assume > 1. Fix f : w; — »®, an onto function which isZ% in the codes,
witnessing that there is a goold% wellordering of the reals. Suppose tHts of
the form3axvy3zQ(x, y, z), whereQ is H%n_z. By inductive assumption, uniformly
in (X, y) we have al'[% wellfounded relationRx y) such thatRkg, , (z) = wT’l if
Q(x,y,2),andis less tha&pg—1 otherwise. Now let the field dR consist of elements
of the form(0, x), wherex € o, and(1, X, (Yo, Wa)aer, ((Z3)aca)acr, Xg) SUCh that:

() Xg € WO codes an ording$ < w; and¢ < g,
(i) x € w®andeachy,, wy, Z € v®;
(i) eachz is in the field ofRix y,);
(iv) w, attempts to witness thdt(«x) = y,, and this attempt is not refuted by stage
B; in other words, iff (y) = ais equivalent tdw S(y, w, a), whereSis 1‘[% in
the codes, theh g[w,, Vo] = S(o, wa, Yo)-

The relation ofR is then defined by its holding among objects in its field in just the
following three cases:
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(I) (lv _Xv (ya, wa)a€{1 ((Zg)&EQ)GEQW Xﬂ) R(Oa X) for a” X, (yOlv wa)a6{7
((Z))aea)act ¢ Xg as above;

(”) (1’ _Xv (Yas wd)(xé{-‘rlv ((Zg)&ea)aeg—ﬁ-l’ X,B) R(lv X, (Ya, wa)ae§+l’
((Z)aea)acr+1, Xp) if xg codes a countable ordinglsuch that for each <

¢,Z = 7, and for each < ¢ R« y,)Z is seen to be true by stagethat is,
the Kleene-Brouwer ordering corresponding to fiiisfact is less thars;

(“I) (1a X, (yOH w()l)OlG{a ((Zg)&ea)aeg“v Xﬁ) R(lv X, (you wa)aez’ ((Zg)&éa)an‘a XB) if
¢ <g.

Claim 3.3  For any (1, X, (Ya, Wa)aet, ((Z)aca)acs, Xp) inthefield of R,
RKR(L, X, (Yo, Wedaers (Z)aeadacss Xp) < @f - L.

Proof: The proof is by induction og. At ¢ = 1 this follows by the assumption on
Rix yo)- At the successor step= ¢ + 1, the inductive hypothesis implies that for all
y < & any (L% (Ya, Wadacy, ((Z)aca)acy, Xp) has rank at mosbi~* - y. Hence
we set

9L X, (Yoo Wedaets (Z)aea)uer: B) = ]

ot T+ 14 infscz RKR y,, (%)

for any(lv X, (yolv wa)ozegv (zg)&ea)ae{’ X,B) and forV < {We set

(L, X, (Yo Wa)aeys (Baca)acy, Xg) = ]
RkR(l, X, (ya, woz)oceya ((4)5[60{)0{6)” Xﬁ);

by clause (ii) of DefinitiofZ g witnesses that
RKR(L, X, (Yo, Wedaers (Z)aeadacss Xp) < @7 - L.

Fory alimit ordinal, it follows that

RKR(X, (Ya» Wa)aeys (Z)aca)uey, Xpg) < o7 1 y.

Claim 3.4 For ap < ¢ and wy, failing to witnessthat f (ag) = Yo, We have

Rkr(1, X, (Yo wa)ae;" ((Zg)&ea)aeb Xﬂ) < 60271 “(ap+1).

Proof: If w,, fails to witness, then there will be some ordirilat which point it
becomes apparent that it does not withess—that is,

L,B*[wOIO’ yOlO] }: _|S(a0’ wOl()7 yOlo)'

But that means we can never go beyond giisintil after we have dropped down to
some(l, X, (Yo, Wa)acag ((25)&@)0,@,0, XB)’ which must have rank no greater than
a)T_l - g by the previous claim. So, as long as we are algyeve are in effect look-
ing at aA1 wellfounded relation, and when we are belagwe have a wellfounded
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relation of rank< w~* - . But the rank of a wellfounded Borel relation is always
strictly less thamw,, and hence the total rank must be strictly less tb?;rn1 “(ap+1).

More formally, setz; R, Z; if Z; Ry y,)Z; and this is seen to be the case by stage
B*. These are wellfounded Borel relations, and hence there is gommech strictly
bounds the rank oR, for everyu less thar;. Now set

9L X, (Yoo Wa)gepp1r (Baea)aeiss Xp) =
o] - ao+ 1+ y- T+ 1+ inf,RkR, (Z)
for ¢ greater thang; set

9L X, (Yo Wadgeps (Zaca)ep Xp) = 0] T a0+ 1+y-C
for ¢ alimit greater thanxg; and set
g(]-’ Xv (yOtv wol)an'v ((zg)&)aGZW Xﬁ) =
RKR(L, X, (Yar W) gegr (Z)aca)aez Xp)

for ¢ less than or equal t@y. So, as in the previous argumegtywitnesses the appro-
priate bound on the rank function.

Claim 35 If VZ=Q(X, Yq,, 2) then

RKR(L, X, (Yo Wa)aer> (Zaca)ace: B) < @F 1 (ap+1).

Proof: This follows by the assumption dﬁ(x,yao)- If VZ=Q(X, Yap, 2), then we are
permanently constrained aboxg. Suppose that for a given condition

(L, X, (Yo Wa)aers (Z)aea)aers Xp)

we have
SUR,c; (RKRy,, , (Z0) = ¥ < ot

then aboverg we have, in effect, a wellfounded relation of size at mos{: + 1) <
w?‘l by the assumption oR(y y,) and by adjusting the argument from the first claim.
Below ag we have a wellfounded relation of rank at mo§r1 - ag. Hence, the total
rank is less thaw ™t - (g + 1).

More formally, set

9L, X, (Yo Wa)aey> (Zaea)acy, Xg) =
w?—l cap+ 1+ Ean(RkR(x_ya()) (Z°) +1)

for ¢ greater thamg, and set

I(L X, (Yor Wadaey, (Zaca)ucys Xg) = ]
RkR(l» X, (Ya, wa)aey» ((zg)&ea)aeya Xﬂ)

pfor ¢ less thanyg. As before,g witnesses the bound.
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Claim 3.6 3yvz—Q(X, Y, 2) = RKkr(0, X) < o].

Proof: If f(ag) = ywith VZ=Q(X, Y, 2), then the previous two claims established
that Rkr(0, X) < w1 (g + 1).

Claim 3.7 Vy3zQ(x, Y, 2) = RKr(0, X) = .

Proof: Let f(a) = y, be witnessed byw,. Let z, be such thatQ(X, Y, z,).
SetZ = z, for eacha < «. It suffices to show that eactL, X, (Ye, Wa)acr
((Zg)&ea)aeg, Xg) has rank at Iea&bT‘l - £, but this follows by the assumption on
the Ry y,) and by induction or.

But these last two claims are exactly as required.

Corollary 3.8 Ifthereisagood A% wellordering of thereals, then thereisl'[} well-
founded relation for which the comparison relation is nonprojective.

Proof: Using that the last argument produced the wellfounded relations uniformly,
we can join them together to obtain a wellfounded relation whose comparison relation
is not=! for anyn e w. But by just relativizing the above construction to every real,
and joining all those relations together, we can obtain a relation whose comparison
relation is not=}(y) for anyn € w andy € w®.

The assumption of the existence of a gcmgjwellordering of the reals is not
overly restrictive.L has a good&% wellordering of the reals, and so certainly it has
a good A% wellordering. It follows from early work by Silver that the existence of a
measurable cardinal is compatible with a ganidwellordering of the reals (sefé]).

4 Examples

Example 4.1 (The Solovay model) Suppose is inacessible ovelL, then in
L Coll(@.<0) there is a WeIIfoundeﬁIi relation whose comparison relation is not pro-
jective. This is a slight variant on the argument in Theof2&lusing that the first
order theory oHC N L is not projective in this model, but the initial segments of the
formL,, somea < k, can be easily enumerated in ordertypg whereas the argu-
ment of Theorerf®. Zltried to grab hold of a good guess at an initial segment of some
good wellordering, and we showed that only the good guesses could have high rank,
the variant here consists, in part, of attempts to enumerate the countable lelvels of
and witness some fact about the theory.g£], for variousx.

If, on the other hand, we begin with{ 1] = « measurable, then the comparison
relation for arli wellfounded relation irL [1]°° @ <9 js alwaysAJ. Fix § some
big ordinal such thak s[u] satisfies a large fragment of ZFC. Work in the generic
extension. Fox € o“, R awellfoundedl‘[% relation,a € k, andt a Skolem term
overlL, it will be the case thaRkr(X) > t(«, k) if and only if for some

(X[A, &, s o) < (L[p][X, 6, 1, @),
with o C X, and for transitive

(M[X], &, i, @) = (X[X], &, u, &)
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we have
M[X]Coll(a),<'?) = RKr(X) > 1(a, k).

But the existence of such an iteratd x] will be a Eé(x, a) fact.

In fact in this modelL[p]€°!(@-<¥) we obtain that there is a reglsuch that
L[x, y]°!!@ <€) correctly calculate®Rkr(x). Indeed, this observation is not restrict-
ed toI1} relations. What we really needed was that the rank is shortegthanore
generally one can argue thatsfis measurable iy, and G cColl(w, < «) is V-
generic, then for anE% wellfounded relation, R, iV[G] with rank less than th%
of V[G], there will exist a realy in V[G] such that[y]€?!(©-<%) correctly calculates
RKRg.

At this point we might wonder why the argument that shows there to Ilig a
wellfounded relation with a violently complicated comparisot. ff'!! - <% fails in
L[]0 <0 The problem is not that the natural wellordering of this later model is
too complicated; the natural ordering is still onﬂgial and hence would seem to pro-
vide no obstruction to the technique of Theoifé] The problem is that the natural
enumeration of.[u] NV, does not have ordertype Indeed, one can prove that in
this model there is no ontb : w; — L[] NV, which is A;l% in the codes.

Example 4.2 (Precipitous ideals) Itis now known to be possible to have a precip-
itous ideal onw, along with a goodﬁ% wellordering of the reals. This follows from

as yet unpublished work of Shelah, Martin, and Steel: Shelah for obtaining the pre-
cipitous ideal with a forcing notion that adds no reals; Martin and Steel for showing
compatibility of his initial assumptions with the existence of such a wellordering. So,
as a consequence of TheorBm2] the existence of a precipitous ideal @ is not
sufficient to guarantee that the comparison relationforwellfounded relations is
simple.

However, in a wide range of situations, a precipitous ideal will give a simple
comparison relation. For instance, if the ideal arises as a result of Levy collapsing a
measurable cardinalin V, then as in Exampthe comparison will b$411? this
follows by essentially the same argument.

Example 4.3 (Changing ranks but ndﬁé truth) Itis possible to change the rank of
awellfoundedrl} relation without changing; or introducing any nevE% truths. Re-

call from Jensen and Solovd§][that if § is inacessible over, but not Mahlo, there is
as-c.c. notion of forcing which introduces a reauch that. [X] = w; = 8. Suppose

now thatx is Mahlo ovell_, anditis the least such. A downward Lowenheim-Skolem
argument and an application of Shoenfield absoluteness shows that there must exist
an inacessiblé such that ifG c Coll (w, < 8) is generic, then for alP € L., and

H < P which areL [G] generic,

L[G] <x; LIGI[HI,

that is to say, no ne\Ez:% truths in parameters froin[ G] are introduced by the further
forcing. Now letx be a real as above, so thiat wt™. Let G ¢ Coll(w, < §) be
L[X] generic. It follows from the factor lemma for forcing thais generic oveL [G],
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and that. [G] andL [G, X] both calculate the same value to;—namelys. It follows
by assumption o4 that
L[G] <51 L[G, X,

so to complete the example we need only finﬂjfawellfounded relation which has
greater rank iL[G, x] thanL[G].

Now for y, wo, andws all reals,wg andw; both reals coding wellorderings of
ordertypesBo < B respectively, and fo(ag) gco, @ ®quence of reals, withy € w®
coding this sequence arg € o coding (ag) geq,, Whereog < a1, g < o, and
oy < By set

(Y, wo, Z0) R(Y, w1, 1) R(0, y)

if and only if

(@p) gea; C Lg, [V,
and

(@p) geay C L golY]-

This relation will have the property th&kr(0O, y) = w; if and only if L[y] has
uncountably many reals. So

(RK(R)HC = o1, (RK(R)MCIM = g + 1.

Herex will be generic ovelL[G] for a notion of forcing that is c.c.c. ih[G].
Hence, we have a change of ranks induced by a c.c.c. notion of forcing that introduces
no newx} truths.

A slightly more complicated version of this example, using the same type of ar-
gument as in Theore®.2] will show that is possible to have models where there is
awellfoundedl‘l% relation whose rank can change after forcing without affecting
or introducing news? truths.
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