A Nonmonotonic Sequent Calculus
for Inferentialist Expressivists

ULF HLOBIL!

Abstract: 1 am presenting a sequent calculus that extends a nonmonotonic
consequence relation aver an atomic fanguage to a logically complex lan-
guage. The system is in line with two guiding philosophical ideas: (i} log-
ical inferentialism and {ii) logical expressivism. The extension defined by
the sequent rules is conservative. The conditional tracks the consequence re-
lation and negation tracks incoherence. Besides the ordinary propositional
connectives, the sequent calculus introduces a new kind of modal operator
that marks implications that hold monotonically. Transitivity fails, but for
good reasens. Intuitionism and classical logic can easily be recovered from
the system.

Keywords: nonmonotonic logic, sequent calculus, logical inferentialism,
logical expressivism, material consequence relation

1 Philosophical motivation

What fellows is metivated by two big philosephical ideas: logical inferen-
tialism and logical expressivism. Logical inferentialism is a view about thc
meaning of logical vocabulary. Very roughly, it says that the meaning of
lagical vocabulary is settled by its inferential role, i.e., by what implies and
is implied by sentences in which such vocabulary occurs. Logical expres-
sivism is a view about the expressive funclion of logical vocabulary, i.e.,
a view about what such vocabulary is for, what it allows us to do, Very
roughly, the view is that logical vocabulary allows us to explicitly undertake
commitments regarding inferential goodness and incoherence by asserting
logically compiex sentences, whereas without logical vocabulary we could
undertake such commitments only implicitly by reasoniag or arguing in cer-
tain ways. It is part of this idea that we can introduce logical vocabulary

IThe work I am presenting here comes out of joint work with Robert Brandom and his
research group on nonmonotunic logic. So my debt to Robert Brandom and the other members
of the group can hardly be overestimated. T also want to thauk the participants of the Logica
2015 conference for invaluable commeints and discussion.
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purcly in terms of a material consequence relation and incoherence prop-
erty over a language that does not include logical vocabulary. I shall present
a logical system that exemplifies logical inferentialism and logical expres-
sivism. The system introduces logical vocahulary in terms of its inferential
role, and it does so on the hasis of material consequence and incoherence.
The perhaps biggest challenge for such a project is that material, nonlogi-
cal consequence and incoherence are virtually always nonmonotonic. Non-
monotonicity, however, is notoriously difficult to deal with in formal sys-
temns. In this section, I want to explain the basic ideas just mentioned.

1.1 Logical inferentialism

Let'’s begin with logical inferentialism. This is the view that the meaning of
logical vocabulary is a matter of its inferential role (for a recent exposition
and defense see Peregrin, 2014). Gentzen (1934, p. 189) formulated a ver-
sion of the idea when he famously said that the introduction rules of a bit
of logical vocabulary constitute, “as it were, the ‘definitions’ of the symbols
concerned.” The version of the idea that will be rclevant here, however, is
closer to Dummett’s (1991, p. 247) view that the “meaning of [a} logical
constant [...] can be completely determined by laying down the fundamen-
tal fogical laws governing it” (see also Kneale, 1956, pp. 254-55). For our
current purposes, we can think of logical inferentialismn as the idea that the
meaning of a bit of logical vocabulary is fully determined by the full set of
implications or good arguments in which it occurs. Hence, we can introduce
such vocabulary into a language by giving rules that determine the conse-
quence relation over the logically extended language. Below I will provide
such rules in the form of a sequent calculus.

Logical inferentialism has been criticized in various ways. Entering such
debates here would take us too far afield. The only point that will matter for
me is so-called “conservativeness.” Prior (1960) famously pointed out that
one can introduce connectives, like his “tonk,” that trivialize a consequence
relation by laying down introduction and elimination rules. Supposing that
such connectives are meaningless, this can seem to undermine inferential-
ism hecause it shows that not all rules that specity an inferential role specify
a meaning. In response to this worry, most inferentialists follow Belnap
(1962) and say that the rules by which we introduce a new bit of logical
vocabulary must extend the consequence relation we start with in a conser-
vative manner. That is, an implication that does not contain the new bit of
vocabulary holds in the extended consequence relation just in case it already
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held in the unextended consequence relation. T accept this as a restriction
on the rules we can use to introduce logical vecabulary. Muny more such
restrictions have been proposed in the literature, such as vartous versions of
harmony and separability. However, T will ignore such further restrictions
here and shall be content with the safeguard that conservativeness provides
against ‘tonk-hike' connectives.

1.2 Logical expressivism

[ am taking the idea of logical expressivism {rom Robert Brandom (together
with whom I have developed the ideas presented here). Brandom builds
on Frege's idea that his “concept-script is a formal language for the ex-
plicit codification of conceptual contents™ (Brandom, 2000, p. 58). If one is
{with Brandom} an inferentialist across the board and not just regarding log-
ical vocabulary. one believes that all (non-logical) conceptual contents are a
matter of material consequence and incoherence. On this view, Frege’s idea
is that the concept-seript is a formal language for the explicit codification of
material consequence and incoherence. Hence, the expressive function of a
format language is to let us talk ‘about’ material implication relations and
incoherence properties.” Brandom sometimes puts this view in a slogan by
saying that jogic “is the organ of semantic scif-consciousness” (Brandom,
26009, p. 11).

Logical expressivism would need a lot of unpacking, but for our pur-
poses, we can simplify the idea to the claim that, for any well-behaved lan-
guage. logical vocabulary can be introduced solely in terms of the material
consequence relation and incoherence property of the unextended language,
and the so introduced logical vocabulary atlows us to make exphcit this con-
sequence relation and incoherence property within the object fanguage.

Definition 1 Logical expressivism is the thesis thar (i) logical vocabi-
lary can be introdiced into any language with a well-beliaved material
consequence relation and incohervence properiv solely in terms of this con-
sequence relation and incoherence property, and (ii) the thus introduced
vacabulary allows us to form Sentences that make explicit fucts about the
underlying (and also the extended) consequence relation and incoherence
Propery.

INotice that, given logical inforemialism, the “about™ here must not (or not primarily} be
understoed in representationalist lerms.
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For us, the first point concerns the raw maiterials that we start with: a
maierial consequence relation and incoherence property defined over a lan-
guage without logical vocabulary.

The second peint is more difficult to understand. It concerns what we
want to built from the basic material: we want to build logical expressions
that fulfill their expressive job of making explicit consequence and incoher-
ence. Now, when can a bit of vocabulary count as "making explicit” the
material consequence relation and incoherence property? This is easiest o
grasp for the two logical expressions that 1 take to be paradigmatic: the
conditional and negation. In the system I will present below, the conditional
makes explicit—or tracks—consequence, and the negation makes explicit-—
or tracks—incoherence. For the conditional, this means thal a conditional
A — Bisimplied by a premise-set just in case B is implied by the result of
adding A 1o this premise-set, i.e., a deduction theorem holds. For negation, it
means that the negation —4 is implied by a premise-set just in case adding A
to this premise-set results in something incoherent, So logical expressivism
puts constraints on the conditional and negation that are acceptable for us.

1.3 Nonmonotonicity

Brandom and Aker have alrcady provided a system in which logical vocab-
ulary is introduced solely in terms of a material incoherence property over
sets of atomic sentences (Brandom, 2008, pp. 141-175). One crucial limi-
tation of this so-called “incompatibility semantics” is that it’s consequence
relation is monotonic, i.¢., if a set of sentences implies, say, the sentence A
then so do all its supersets (see lemma 2.1 on p. 143 of Brandom, 2008).

This is a limitation because, according to inferentialist expressivism re-
earding logic, material inferences are not just enthymematic formal infer-
ences. If we take such inferences at face value, however, it is hard to see
how their nonmonotonicity could be merely apparent. Moreover, paradig-
matic material implications, such as implications in legal matters, medicine,
or morality, are virtually always defeasible. And the same bolds for material
incoherence. Sets of commitments that don’t fit {ogether can hecome jointly
acceptable once we add another commitment into the mix.

Is there perhaps another off-the-shelf logic that suits the inferentialist
expressivists as an exernplification of her ideas? Unfortunately, it does not
seem s0. There are many nonmonotonic logics on offer today (for an in-
troductory overview sce Antonelli, 2008). But, as far as I know, nonc of
them uses a malterial consequence relation and incoherence property as their
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starting poinl. In facl. tnany nonmonotonic logics treat some logic  often
classical logic—and its vocabulary as given and freely available in the new
logic. Mareover, most nonmonolonic logics obey some version of Cut. As
we will see below. this means that they cannot have a conditional that is in
line with logical expressivism, i.c.. they cannot have a deduction theorem.

If logical inferentiatism and logical expressivism are good ideas and we
take the nonmonetonicity of material consequences scriously, there should
be formal systems that exemplify these ideas in a paradigimatic way. Thus,
we want a way of conservalively extending a nonmonotonic naterial con-
seyuence relation and incoherence properties such that the conditional and
negation track consequence and incoherence, respectively.

2 The basic setup

As 1 explained in the previous section, our motivating philosophical ideas
are. firstly, that the meaning of logical vocabulary is determined by its infer-
ential role and, secondly, that logical vocabulary makes explicit features of
an underlying, nonmonotonic, material consequence relation and incoher
ence property, So we musi start with & material conscquence relation and
incoherence property over # language that does not contain logical vocub-
ulary. Call this lunguape #H-. We can think of Z5_ as a set ol aloic
sentences, {p1,....p, }. Some subsets of Z_ aterially imply some sen-
tences in .Z5_. And some subsets of %, . ure materially incoherent. So
the structures that we start with are triples of (a) an atomic language, {b)
a (single conclusion) consequence relation over it, and {c} an incoherence
property defined over sets of atoms.

In order to express incoherence and consequence in a unified way, we
introduce the constant “ 1. Let . %5 = %5 . {+ }. Let b~ be the relation
over &, such thai {pe, ..., o} o pi i {pp..... pi b materially implies
p; and, moreover, such that I’ f~L iff I' is materally incoherent.’> The
constant L cannot occur on the left of the snake-turnstile and it cannat be
embedded. We used it merely o encode the incoherence property nto the
“undertying consequence relation;” 5o req & PL%0-) x £, We say thata
consequence relation b~ is preper just in case (a) the whole atomic language
is incoherent (4 p~q L), (h) the emply set is coherent (@ By 1 1 (€) b~o is

3 use capital Greek letters for sets of sentenees, lower case Latin letters for atomic sen-
tences, and upper case Latin letiers for arbitrary sentences. [ will onut the set-brackets on the
left of the spake-turnstile if no confuston can avise,
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reflexive (WI C %5 {(pe T =T | p)). and (d) b+ obeys what we call
“Ex Falso Fixo Quaodlibet” (ExFF):

ExFF For any atom p, if YA C & (T, A kg L) then T fepy o,

This principle is a variant of ex falso quodliber, i.e., explosion. Notice that
the difference between the traditional version of ex falso and ExFF only
shows up in 2 nonmonotonic context. After ail, I' pop L guaranices vA Z
o AT, A~ L) if monotonicity holds for kg,

Let’s sum up our starting point in two definitions.

Definition 2 Base Structure: A base siructure is a pair { £, o) such
that (i) % is a ser of atomic sentences, {py,...,pnt = Zu-. and the
symbol |, and {ii} |q is a material consequence relation that also encodes
an incoherence property, by Z P L) x 2.

Definition 3 Proper Base Structure: A base structure is proper iff its un-
derlying consequence relation, g, is proper, i.e., if it satisfies the following
conditions: (a} Za_ b L, (B) @ oL, (¢) peq is reflexive, and (d} ExFF.

All base structures I will talk about are proper base structures. Qur goal
is to extend arbitrary proper base structures to structures with a language,
&, that contains logical vocabulary and a conseguence relation, k., over
this extended language. Moreover. this extension should be such that, firstly,
we introduce togical expressions by giving rules that determine their roles
in the extended conscquence relation. This is the logical inferentialism.
And secondly, the so introduced logical vocabulary should make explicit
features of the consequence relation into which it is introduced. That is the
logical expressivism. As already intimaied, for our purposes, the second
point amounts to two desiderata: the extended consequence relation should
satisfy, the Deduction Theorem (DT) and what T shall call the “Negation
Theorem™ (NT):

DT T4 »Be>T, AR~ DB
NT =4 = T, AKL

If DT holds, the conditional is tracking the consequence refation, Such a
conditional allows us to not only practically acknowledge that B follows
from A in the context of T by inferring B from 4 in the context of T, but
to assert something on the basis of I that commits us o B following from
A, in the context of . Similarly, if NT holds, the negation is tracking the
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incoherence property. Such a negation allows us to asserl something on
the basis of T, that commits us to T' being incompatible with 4 (i.e., they
being jointly inceherent). That ts the sense in which such a conditional and
negation make explicit the consequence relation and incoherence property
of the language in which they vecur.

There are two further desiderata {or the extension of the underlying con-
sequence rclation. First, as explained above, we want the extension to be
conservative. 1.e, if ' € % and 4 € &, then T ~ AT oy A
Second, we want the extension (o preserve reflexivity, i.e., if the base con-
sequence relation is reflexive, the extended one must be 5o, too,

Let's sum up the goal that | shall pursue in the reminder of this paper:

GOAL We want to find a way to extend any proper base structure in
such a way that the extension, {.&, ), Is conservative, pre-
serves reflexivity, and obeys DT und NT.

Notice that the conservativeness of the extension means that the extension
must not force monotenicity, After all, a nonmonotonic consequence rela-
tion cannot be extended conservatively to a monotonic consequence relation.

Ag a bonus, [ wilt also introduce a new modal operator. [ |. This opera-
tor marks consequences that hold monotonically. In order to see what this
means, notice that even in a consequence relation where monotonicity fails
as a global property, there can be sets of sentences, [, such that I" and every
superset of it imply a certain sentence 4, 1.e,, VA C ¥ (A, 1"~ A). Thus,
the implication T - A behaves monotonically. T will introduce an oper-
ator that tracks this property of implications in the object language. More
precisely, the operator will obey the foliowing principle.

BOX T OAIffYA © % (AT b A).

[ will sometimes call this operator the “maonotonicity-box.” Having such
an operator is not necessary for a logical system that exewmnplifies the ideas
of Jogical inferentialism and logical expressivism in a nonmonotonic sel-
ting. In so far as regions where monotonicity holds locally are of interest.
however, having such an operator is desirable.

3 The construction

In the previous section, I explained that we wanl Lo extend u malerial con-
sequence relation to a language, .27, with fogical vocabulary. The extended
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language 1 shall usc includes negation, a conditional, conjunction, disjunc-
tion, and the new kind of modal operator mentioned in the previous section.
The syntax of the language without L is straightforward.

Syntaxof £_: ¢ = p| -l — ¢|p&p|e Ve |y

And p is an atomic sentence of ¥ iff p € Z5_. We now define the
exlended fanguage as & = .Z_U{L}.

Extending the consequence relation to |~ € P(¥_ ) x % is more tricky.
We do this by way of a sequent calculus in which the material implica-
tions serve as axioms. 1 call it the Non-Monotonic Modal sequent calculus
(INMDM).

We start with the straightforward idea that whatever is in the underlying
consequence relation, g, is an axiom of the sequent calcujus, However,
there is a complication that has to do with our monotonicity-box. Our se-
quent calculus does not only have one kind of turnstile but |P(P{.%5))]
many turnstiles. The idea is that, for every subset X of P(.%3), we want to
have T' "¥ A just in case VA € X (AT ~ A). We stipulate this for the
axioms of our sequent calculus and, hence, get axioms with different kinds
of turnstiles.

Here is how we construci the extended consequence relation, |~. First,
we have two clauses that provide us with axioms of cur sequent calculus.

Axioms of NMM:

AxL:TfT o A, then T}~ A is an axiom.

Ax2: If X C P(%) and YA € X (AT v A), then T 1Y 4 is an
axiorm.

Convention: If X = P(%), wecan write I "% 4 asT |1 A,

A sequent is in p~ just in case it can be derived [rom these axioms in a
proof-tree using only the following sequent rules:

Ratles of NMM:

Note on the notation: What is on the left of the turnstile are sets of formu-
lac. The comma is fo be read as set-union with flanking individual formulae
being read as in set brackets; e.g., “I', 4" on the left means “T U {A4}". Up-
ward arrows and formulae in square brackets are optional. That is, both, the
sequent with and the sequent without the bracketed upward arrow, are deriv-
able via the rule. Some rules are presented as involving ordinary sequents,
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i.c. po-lype sequents. bul they also apply to quantitied sequents, i.e. BT--
type sequents. That is. they should be read as systematically ambiguous
in the following way. Ordinary sequents can be replaced by quanitified se-
quents in unified ways. Le. the rule can be applied if all the o-type turnstiles
in the premises and the conclusion are replaced by T -type turnstites with
the same X in all of these premises and the conclusion.

T'Ar~B ‘ I'mdA—+B
TeAoB T o
U A, A "B [LBR'A ... T.BRT4, T.ChD »
FA.. AL B=Ch D
T, : - .
LaAr- _TieA
I A I -Aprd
T.ABRrC I'~A TI'kB
-—_— L R&r
TALB | C [T ACH
A~ C I.or-C ) I~ 4 - I'~D .
TAVB AL [B[C =~ TRAvB  TRAVE
T
rpta rArD
[ ~04 I A~ B
T ~"A T A T~
r Kk f NE - - [xFF
B Cpr A I,—B 14 T~ 14
IAY iy
U174 a4 UN Do e A PushUip
T o TYUY 4 1" t{{mpatt 4

These sequent rules define a consequence relation - P{¥_ ) x &

They also define many

.

‘quantified consequence relations™ of the T4 1ype.
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The purpose of the latter ones is merely auxiliary. They allow us to introduce
the monotonicity-box, to use ExFF as a rule, and to use rules like LC, CK
and NK for our conditional and negation. In this way, gquantificd sequents
influence the extension of ~ indirectly.

This construction gives us an extension of base structures: {Z°, p). We
now have to show that this extension satisties the requirements set oul in
GOAL and BOX above.

4 Properties of the extension

Given GOAL and BOX above. we wani the extended consequence relation
to have the following properties:

1. r-is well delined.
2. poisreflexive—ie VI C % (A € T =T pv A)—if ey is reflexive.

3. b~ is aconservative extension of pvg. ie, forall A € Z5 and T C %,
T o AIED ~ A

4, DT holds, te.. ' ~ A — BilfI' A o B.
5. NTholds, ie. T ~=AiffT. A r~_,
6. BOX should hold, i.e.. T v LA HEVA C &Z_ (T A v A}

Two remarks are in order: first, [ restrict all these claims to finite premise
sets; and I will assume that the base language is finite. I will not worry about
compactness. This is a restriction of the current approach that [ hope can be
lifted for future descendants of it. Second. due to limitations of space [ can
only sketch the proofs of these properties. And sometimes I will omit proofs
entirely.

Restricting ourselves to finite premise sets, the first of these claims can
casily be seen to be true because we only add sequents to our consequence
relation. Since we never explicitly requirc something to not be in the rela-
tion, we cannot contradict ourselves. If we can show that our extension 1s
conservative, this wijl also show that our consequence relation is not trivial,
i.e., that it does not hold between every premise set and every formula. Se
let’s look that conservativeness and the preservation of reflexivity.

*Contact me for detailed versions of the proots.
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4.1 Preservation of reflexivity and conservativeness

In order to show that reflexivily is preserved and that the extension is con-
servative, we first necd some lemmas.

Lemmal If pio....pp. T~ A then U poTHPpdt
Proof. Immediate from PushUp. O
Lemma2 I[fvA .2 (AT A) thenT ~T A

Proof. Suppose that YA (AT |~ A). This implies VA O % (AT -~
A). So, for every subset of our atoms, {p1 ... fowehave py . op, T~
A. So. by lemma 1. 1" p.71s o padt 4 By 2140 upplications of UN. we
get ' W1 A O

Next, we need a lemma that suys that if we can weaken a sequent with
arbitrary sets of atoms, then we can weaken it with arbitrary sets of formu-
lae.

Lemma3 YA C.# (AT A), then ¥A 2.2 (AT |~ A)

Froof. By induction on the complexity of the most complex formulae in
A, where complexity is the number of connectives in a formula. The base
case is immediate. For the induction step, take an arbitrary set, €. with the
maximally complex formulae in it being of complexity #+1. We divide ©
mto the following sets: N is the set of formulae of complexity < n, Cis
the set of conditionals of complexity n+1, ¥EG is the sel of negations of
complexity r+1, CON is the set of conjunctions of complexity n+1. D is the
set of disjunctions of complexity n+1, and B is the set of necessitations of
complexity n+1. So, ® = N O CUNEGUCON 0 DU B. Tooking
at the proof of lenuna 2 again, we know that the antecedent of our condi-
tional gives us T' =T A. So we can easily weaken with N. C, and NEG. We
can also weaken with the embedded formulae of conjunctions. disjunctions
and necessitations of complexity #. From this we can derive the conjunc-
tions and necessitations via [.& and LB. So the unly potential difficulty
is weakening with disjunctions of complexity n. In order to do this, we
make a list of all the forinulue that are the disjuncis of the & elements of
D:dyy.dia, dag .. di 1e. diq, droo, where the first index indicates the
number of the disjunction from which the formula stems and the sccond in-
dex indicaies whether it is the first or the second disjunct. We tuke the 2%
different subscis from this list for which: forcach 1 < » < & exactly one
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of d, | or d;.o is in the sel and nothing efse is in the set. Call these sets
=1, S Letll = NUCUNEGUQON 1L BUT. Thus, for each
1 <m < 2% we get =,,,IT b A, We now construct our proof-tree in the
following way:

R S L L ook
Lv
diaVdiy. odey I A diy Vo cdpa e A
— Lv
digVdig. . dpa Vdig, T A

(RS

Since © was arbitrary, we have VA (A, T |~ A) for As ol complexity
n+l, |

Proposition 1 The extension preserves reflexivity.

Proof. We assume that pg is reflexive. First, we show, by induction on
the complexity of @, that VA € #- (A v )~ ). And by lemma 3, this
implies that VA C % {A a b~ a). |

We now know that the first two of the six points ahove hold. Before we
turn to conservativeness, we need two more lemmas.

Lemmad4 [fT T A thenvA e X (AT 4}

Proof. By induction on proof height. i.c., the number of rule-applications
in the lTongest branch of the proof-tree. The proof is, for the most part, |
straightforward. | will leave somc minor complications with LC, UN and
PushUp as an exercise for the reader. O

Lemmas 3 and 4. when applied to the case where X = P(.%5). imply
the following:

Lemmas5 [fL ! A then VA C & (AT v A).

With these lemmas in hand, we can show that the extension is conserva-
tive for any underlying consequence relation that obeys ExFE.

Proposition 2 The extension is a conservative extension of any non-nono-

tonic material consequence relarion that abeys ExFF, ie., for ali 4 € %
andl C 25, U o AT~ A
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Proof. The left-to-right direction is immediate from Ax1. So we only have
10 show that our construction does not add any sequent that cun be forinu-
lated in the hase language and is not already in pvn. We argue by reductio.
and we look at the {or a} shortest pussihle proof of a given violation of con-
servativeness (where length is the number of rule applications in a proof-
tree). 1f NMM allows a violation of conservativencss, the last step is either
an application of CCP or of ExFF. After all, the otber rules have logical
connectives in the conclusion-sequent; or etse they apply only to quantified
sequents. So we have two cases:

(Case 1) Assume thal the violation, T' p~ p, comes by ExFF. The premise
is I p~" L. This must coine by Ax2 or by UN. If it comes by Ax2. we have
YA (A, D ~gL). But b~ obeys ExFF by stipulation. So I’ j~ p cannot
violate conservativeness. Hence, I' p~ p musi come by UN. The premises
are T 1Y Land D TV Land X UY = P(% ). Tt can be shown by
induction on proof height that if I" contains only atoms and T' i~ L, then
YA € X (A, T hopl). Thus, we gat YA € P(#_) (AT ~gL). And by
ExFF for the underlying consequence relation we have 17 -y, p.

{Case 2) Assume that the viclation comes by CCP. The premise 1s [~
A+ B. This must come by CP or CCP or ExFF. If it comes by CP, the
premise is I', A B. This violates our assumption thal there is no shorter
proof of T, A b~ B. So. it must come by CCP or ExFFE.

(Casc2.0)IfT f~ s1 + I3 comes by CCP, the premiseis T\{C'} 1~ (' —
(A — B). Since 'Y, {€"} contains only atoms, we are in the same situation
again: either it must come by CP, CCP, or ExFF. If it comes by CP, we are
back at ' v A — B. If it comes by CCP, the premise is T\ {C. D} |~
D — (C'— (A — B)). The same question arises again. I{ we continue like
that, we are launched on an infinite regress of CCP applications. So at some
point the conditional must come by ExFE. But if one ol these conditionals
comes by ExFF some subset, ¢, of I must be persistently incoherent, i.e..
O k'L Bylemma 5. ¥A ¢ % (A, O ~1). Since ExFF cannot conclude
a violation of conservativeness (see Case 1} and everything in & is atomic,
we have VA (A, 0 pp | ). Hence, VA (AT, A o L). But then ExFFE for
~q applies.

{Case2.b) T’ ~ A — DB comes by ExFF. The same reascning as in the
previous subcase applies. i

We now know that our extension 15 well-defined, conservative and that

it preserves reflexivity. So we can now turn to the last three properties Hsted
at the bepinning of this section.
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4.2 Behavior of the conditional, negation, and box

We want the conditional to express the consequence relation, the negation to
express incoherence, and the box to express monotonicity. What this comes
1o, for our purposes. is that DT, NT, and BOX hold.

It is immediate that DT holds. After all, CP gives us the right-to-left
direction, and CCP gives us the lefi-to-right-direction. Parenthetically, it
is worth pointing out the CCP is a simplifying rule. This would lead to
problems if we wanted to prove Cut-elimination. As I will explain below,
however, we don’t want to do that,

Regarding negation. we want NT to hold, i.e., we want:

Proposition3 [, A plé T A

Proof. The left-1o-right direction is immediate because we have RN. So we
must show that if ' j —A, then I', A . We argue by induction on the
height of a shortest proof of ' v —A. Base case: ' |~ -1A comes by the
application of just one rule. It must come by RN or ExFF. In either case,
we have T', A |~ L. Induction step: our hypothesis is that if I' ~ —A can be
derived in a proof of height i, then I', A 1. For a proof of height r+1. the
last rule applied cun be: CCP, RN, L&, Lv, CK, NK, LC, LB, or Ex¥FF. It is
easy to see that in the cases of RN, ExFF, L&, Lv, CK, NK, and LB we get
I, A )~L in one or two steps. For, either the premise itself is I, A L, or
we apply the hypothesis to the premise and derive I', A |~L with the same
rule, or we get it by ExFF. So we are lefi with two cases.

(Case 1) the last rule applied is CCP. The premisc is '\ {B} |~ B —
-A. If this comes by CP or ExFF, ", A p~ | is immediate. If it comes by
CCP, L&, Lv, CK, NK. L.C, or LB, this also gives us what we wani. As an
exainple, suppose it comes by L&. The premise is '\ {B,C& D}, C, D |~
B — —A. We can argue thus:

T\ {B.C&D}.C,D B — —A
T\{C&D},CDp -4
C\{C&D}CDANL
T,AM L

CCP

Lv, CK, NK, and LB work in an analogous way.

Next suppose '\ {B} b B — —A comes by LC. The right premise
is TN\ {Cy....,Cp, D - E}E | B — -A. So. by our hypothesis,
A, B, T\{Cy,...,Cn, D — E}, E ~_1. The other premises are: ['\ {1} —
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FY E " D,and 'V {D - E},D ~" Cy,and ..., and T 4 {D —
E}D rT C,,. By lemma 5, the upward arrow implies that we can weaken
with {4, B}. Hence, 4, B,T'\{D = E},E T D,and A, B,T\ {D —
E}Y,D T Cy,and ..., and 4, B,T\{D » E},D i+t C,. Soby LC,
ARl

Suppose I' \ {B} |~ B - —A comes by CCP. The premise is I' \
{B,C} ~ C — (B — —A). The reasoning we just weni through applies
again. So CCP cannot conclude a sequent that contradicts our proposition.

(Case 2) the Tast rule applied is LC. We apply the same reasoning that
we applied in the LC subcase of (Case 1}, O

Finally, we must show that BOX holds. We divide BOX into two parts:
o I' b OAGIT BT A
o I T AMFYA (AT b A).

Regarding the second part of BOX, notice that we have already proven both
directions of this principle as lemmas 2 and 5. So we already know that:

Propositiond VA (AT~ A)if T T A

Hence, it is just the first part of BOX that still needs to be proven. In
order to do so. we again first nced a lemma.

Lemma6 [T | By — (By...— (By — UA)), then 1, By ... B; b7
A

Progf. By induction on proof height of I v B, — {By... = (By —
OA)). The only tricky case is tbe induction step for LC. Jt goes as fol-
lows: The premisesare T\ {I? = E} T D, and T\ {C,...,Ch, D =
E}L, DR CL ... ,TN\{Cy,...,Cn, D = E}, D T Gy and TN\ {C, . .
CoD = E},E |~ By = (Ba... - (B, = [CA)). By our hypoth-
esis, [\ {Cy,....Cp. D = E}.E,B;...B; b A. By a couple of
CP application, this gives us I' \ {C1,...,C.,D = E},E 7 B —
{Br... = (Bi — A)). Together with the other premises, LC allows
us derive: T T By = (By... = (By - A)). And by iterated CCP,
[,B,...B; b A O

We can now prove the first part of our BOX-principle.

Proposition5 T OAif T T A
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Proof. First, the left-to-right direction. We argue by induction on proof
height. Base case: The shortest proof-trec of such a sequent is RB or ExFF
and both guarantec that T T A. For the induction step, notice that ihe last
step in a proof-tree for I' |~ 0.4 can be CCP, L&, Lv, CK, NK, LC, RB,
LB, or ExFF. Lemma 6 gives us the induction step for CCP. The others
are straightforward and I'il leave them as an exercise for the reader. The
cight-to-left direction is immediae becausc of RB. O

From propositions 5 and 4 the desired BOX follows immediately. Thus,
we have shown that the exlension defined by our sequent rules has all the
six properties we want it to have. Hence, we have a sequent calculus that is
in line with logical inferentialism and logical expressivism.

4.3 Why does cut fail?

Before T move on to the relation berween NMM and intuitionism. [ want to
point out a leature of the system that might seem problematic: the conse-
quence relation p~ is not transitive. That is, Cut is not only not provable but it
actually fails. Monotonicity, transitivity, and reflexivity are often considered
essential to anything being a consequence relation. Of course, we already
abandoned that idea when we started to do nonmonotonic logic. But that we
are also giving up transitivity might seem like a problem. I'don’t think itis a
problem.® Rather, it is an insight that if you want to have a conditional that
obeys a deduction theorem in a nonmonaotonic setting, you need to give up
transitivity.
To see this, lake a mixed context version of Cut (Cut-MC):

LArB A%ic MC
A~ B "

Proposition 6  Cur-MC together with reflexivity implies that f T v A,
then ', A~ A

Proof. We argue thus:
FAARA ' A
LARA
The left premisc is an instance of reflexivity and, hence, can be derived. O

Cut-MC

*Dave Ripley has provided some independent mativation to be skeptical about Cut (Ripley,
2013, 2015; sec also Schroeder-Heister, 2004).
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So you cannot have a mixed context version of Cul in 2 nonmonotonic
system with a reflexive consequence relation.

One might move to a shared context version of Cut (Cut-SC) o get rid
of this problem.

Ay B Ci~ A
W

Cut-5C

However, if we have a deduction theorcm., we can run a similar argument
for monotonicity with Cut-SC:

LA BRA
: CP
rApHoH A '~ A
. Cut-5¢
~8— A
[
Coispe A

Hence, if you want a nonmonotonic, reflexive consequence relation with
aconditional that obeys a deduction theorem, you need to give up Cut—even
the shared context version, Of course. you can reason by maodus tollens at
this point (see Morgan, 2000). I think, however, that given the plausibitity of
nonmonotonicity and reflexivity and the logical expressivist motivation for
DT, there is good reason to at least investigate systems in which Cut fails
along with monotonicity.

There may he particularly welt behaved regions of logical space in which
transitivity holds. And in the fullness of ime. we hope o study such regions
systematically und perhaps even to introduce un object language operator
that lets us mark such regions. Here 1 just want Lo point out that the failure
of Cut is not an unmotivated guirk of the NMM system. Tt is entailed by the
praperties that I require the systemn to have.

5 Relation of NMM to intuitionistic and classical logic

I want to brielly describe the surprisingly struightiorward relation hetween
NMM and intuitionistic and classical logic. Due to limitations of space, [
will omit the prools of the results I amn presenting.

I have already pointed out that Cut-SC fuils in NMM. However, if we
add Cut-SC 10 our sequent rules, the NMM rules are equivalent to Gentzen's
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sequent rules for intuitionistic logic, LY, moduio the rules governing the box
(which is pointless in a monotonic system}. Call the system that results
from adding Cut-SC to the NMM rules the “Cut-System.” Moreover, read
a sequent with _L on the right in the Cut-System as meaning the same as
a sequent with an empty right side in Gentzen's LJ. Translate ail other se-
quents in the abvious way. It can be shown that, under this translation, the
following holds:

Proposition 7 Traaslarions of all rules of Gentzen’s LJ system can be de-
rived in the Cut-System, and transiations of all rules of the Cut-System that
don’t use the box or sequents quantifying over less than P( %) can be de-
rived in Genizen's IJ.

In effect, the Cut-System without the apparaius governing the box is
equivalent to Gentzen's LJ. This does not enly hold at the level of sequent
rules, but also at the level of theorems. All the theorems of intuitionistic
logic are theorems of the Cut-System., i.c., they are implied by the empty
set. Given these facts, it is easy to sce that the following holds:

Proposition 8 If the underlying material consequence relation contains
all and only instances of reflexivity and we ignore the box (by deleting RB
and LB), the (non-quantified) consequence relation of the Cut-System coin-
cides with the intuitionistic consequence relation.

Since the Cut-Systern gives us intuitionism, it is clear that adding double
negation elimiation to the Cut-System will give us classical logic. It is easy
to add sequent rules that give us double negation elimination. Hence, clas-
sical logic can be recovered by adding Cut and such further sequent rules
to NMM. In this sense, the system I have presented can be viewed as a
“mother-logic” that gives rise to intuitionism or classical logic under special
circuimstances.

6 Conclusion

I have presented a way of extending a nonmonotonic material consequence
relation over an atomic base language to 4 consequence relation over a logi-
cally complex language. The extension is conservative; it preserves reflexiv-
ity; the conditional tracks the consequence relation; the negation tracks the
incoherence property; and a new kind of moedal operator tracks local regions
of monotonicity. Thus, T have presented a logical system that does justice to
the philosophical ideas of logical inferentialism and logical expressivism.
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