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 THE JOURNAL OF SYMBOLIC LOGIC

 Volume 53, Number 3, Sept. 1988

 CARDINALITY LOGICS. PART II:

 DEFINABILITY IN LANGUAGES BASED ON 'exactly'

 HAROLD HODES

 This paper continues the project initiated in [5]: a model-theoretic study of the
 concept of cardinality within certain higher-order logics. As recommended by an
 editor of this JOURNAL, I will digress to say something about the project's motiva-
 tion. Then I will review some of the basic definitions from [5]; for unexplained
 notation the reader should consult [5].

 The syntax of ordinary usage (with respect to the construction of arguments as
 well as the construction of individual sentences) makes it natural to classify
 numerals and expressions of the form 'the number of F's' as singular terms,
 expressions like 'is prime' or 'is divisible by' as predicates of what Frege called
 "level one", and expressions like 'for some natural number' as first-order quantifier-
 phrases. From this syntatic classification, it is a short step so short as to be
 frequently unnoticed to a semantic thesis: that such expressions play the same sort
 of semantic role as is played by the paradigmatic (and nonmathematical) members
 of these lexical classes. Thus expressions of the first sort are supposed to designate
 objects (in post-Fregean terms, entities of type 0), those of the second sort to be true
 or false of tuples of objects, and those of the third sort to quantify over objects. All
 this may be summed up in Frege's dictum: "Numbers are objects."

 As Frege realized, if we buy the above doctrine, then cardinal numbers are objects
 that somehow intrinsically represent certain quantifiers, those expressed by
 expressions like 'there are exactly ten x's such that'. In a very revealing passage in
 his Nachlass, dated July 1919, Frege wrote [2, pp. 256-257]:

 These second-level concepts form a series.... But still we do not have the
 numbers of arithmetic; we do not have objects, but concepts. How can we
 get from these concepts to the numbers of arithmetic in a way that cannot
 be faulted? Or are there simply no numbers in arithmetic? Could the
 numerals help to form signs for these second-level concepts, and yet not be
 signs in their own right?

 In [4] I argue that we cannot "get from these concepts to the numbers of arithmetic".
 Instead, Frege's suggestion, that in the relevant sense there are no numbers, is
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 766 HAROLD HODES

 correct; equivalently, the semantic thesis cited above should be rejected. (This does
 not mean that the usual logical syntax assigned to mathematical discourse is faulty;
 rather its semantics should be reconceived; the model-theory for such a recon-
 ception is presented in [6].) [5] and this paper concern several model-theoretic
 semantics in which cardinal numbers (as objects) are avoided in favor of cardinality-
 quantifiers. For more extended discussion, see [4] and [6].

 Unless otherwise stated, we do not assume the axiom of choice. Let Card be the
 class of Scott-cardinals; for K E Card we adopt these definitions:

 K is infinite iff for some (thus any) x E K, X is infinite;
 K is an aleph iff K is infinite and for some (thus any) x E K, X is well-orderable;
 K = {n: n < K};

 ncb(K) = number of cardinals below K = card(fl).
 As usual, co is the set of finite von Neumann ordinals. For any set x and class y, Xy

 is the class of functions from x into y; if x E co then such functions are identified with
 x-tuples.

 Fix for each k Ec w sets Var(2k) of type-k variables and Var(l) of type-I variables,
 all countable. Let Pred be a set of predicate-constants and Funct a set of function-
 constants, each j-place for some j Ec w. From the logical lexicon {'I', 'D ', '3, ' =',
 'exactly', '<'} we form several languages. The terms of type 0 are generated from
 Funct u Var(O) as usual; atomic formulae of these languages are generated from
 those terms and from Pred u Var(1) u {'I'} as usual. The set Fml(Llw(exactly, <))
 of formulae of L' w(exactly, <) is defined by the usual rules governing 'D' and
 '3' along with these:

 If T, a are terms of type 0 then z = a is a formula.
 If A, A' e Var(2k) for k > 0 then y < A' is a formula.
 If tp is a formula, v E Var(2k) and y E Var(2k + 2), then (exactly y v)sp is a formula.
 If tp is a formula and y E Var(2k) then (up is a formula.
 For k > 0, form L' 2k(exactly, <) by dropping variables of type greater than 2k.

 Form L' 2k*(exactly, <) from L' 2k(exactly, <) by adding this formation-rule:
 If tp is a formula and A, p E Var(2k) then (exactly y p)sp is a formula.
 In any formula of the form (exactly y p)sp, the indicated occurrence of y is free, and

 the indicated occurrence of p binds all occurrences of p free in (P.
 Form LO 2k(exactly, <) from L' 2k(exactly, <) by dropping Var(1); form

 Lo 2k*(exactly, <) analogously; form L' 2k(exactly) by dropping '<' from the
 logical lexicon; form L 2k*(exactly) analogously. Form L, -(exactly, =) from
 Lo -(exactly) by allowing use of '=' between variables of type ? 2.

 Given K E Card and a model v for Pred, Funct, introduce the type-0 constant a
 for each a E IvI; for each A c I I introduce the type-I constant A. For each n <
 ncbk(K) we introduce n as a constant of type 2k + 2. For each k < co, constants of
 type 2k shall be substitutable for variables of type 2k; similarly for type 1. We define
 #K as usual, with the following novel clauses where n, m E K-, v E Var(O), and p E
 Var(2k + 2):

 S1 #Kn < m iff n < m;
 1 tK (exactly n v)5p iff card(~pv') = n;
 v tK (exactly n p)sp iff card(ip~') =n;
 S tK (]p)5P iff, for some m < ncbk(K), v tK p(p/m).
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 CARDINALITY LOGICS 767

 Here we have used the notation

 vPr = {a e 1vI: V K ?(vla)};
 j~p5 = {m < ncbk(K): V/ tK sP(p/m)}.

 Relative to a model, we define satisfaction of a formula by an appropriate finite
 sequence as usual; we express this using the familiar form: v t [ . ].

 For any formula po of one of these languages and any p E Var(2k), let (big p)sp
 abbreviate - (]i)(exactly yi p)(p, where y does not occur free in po, with P E Var(2k) if
 we are working with Li,2k*(exactly, <), and otherwise y E Var(2k + 2). Clearly for
 any model /:

 V /_ K#(big p)po iff card(p5') i K-.

 ?1. Where L is one of the languages introduced above and (pu0, ... .,-1)
 e Fml(L) with free variables among io,... I ,u-1, (p~u0,. ..,ul-1) is of type t
 = <2to,. . . ,2t, 1 > E 'o) iff for each i < 1, pi E Var(2ti). Suppose (p = pfo~0, , .- l
 is of type F with t1 > 0 for each i < 1. Let K E Card be infinite. We adopt the following
 definitions:

 tK = {<no,. ..,n-1>: for all i < 1, ni < ncbti l(K)}.

 For a model A, R is K-defined by (p over v iff

 R <no,..-, nl- 1> E- tK:d- v (no,.._nl_j1)}

 R is K-defined by sp iff for any model v with card(vl) ? K, R is K-defined by so over
 d&. R is K-definable in L with respect to type F iff there is a po e Fml(L) of type f which
 K-defines R. R is K-definable in L iff, for some F, R is K-definable in L with respect to F.
 For R c 'Card, R is uniformly defined by pu iff for each infinite K E Card, R n 'K iS K-
 defined by po; R is uniformly definable in L with respect to F iff for some op e Fml(L)
 of type F, R is uniformly defined by po; and R is uniformly definable in L iff for some t,
 R is uniformly definable with respect to F.

 The inclusions given in ?2.1 of [5] generalize to yield the following, where i E 2.
 (1) If R is K-definable in Li 2k(exactly, <) with respect to F, then R is K-definable in

 Li 2k+ 2(exactly, <) with respect to F.
 (2) If R is K-definable in Liw(exactly, <) or in Li 2k+2*(exactly, <), then R is K-

 definable in Li 2k*(exactly, <).
 Thus the sequence of languages Li' - (exactly, <) as '_' is replaced by '2',...,
 .'2*' is a hierarchy of order-type co + 1 + co*, yielding nondecreasing classes

 of K-definable relations.

 Furthermore, if K is an aleph, Observation 2.3 of [5] easily generalizes to yield
 the following.

 (3) R is K-definable in L' 2k(exactly, <) with respect to F iff R is K-definable in
 L' 2k(exactly) with respect to F.

 (4) R is K-definable in L' 2k*(exactly, <) with respect to F iff R is K-definable in
 L' 2k*(exactly) with respect to F.

 Let a language be pure iff its nonlogical lexica Pred and Funct are empty; a pure
 formula is a formula of a pure language. In considering K-definability in L, we may
 without loss of generality take L to be pure. Here's why.
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 768 HAROLD HODES

 Given Pred, Funct, a nonempty set U and a function X mapping 0-place members

 of Funct into U, let Iux = X# be the model for Pred, Funct with I1X1 = U and:
 if P is 0-place then P' = False;
 if P is j-place for j > 0 thenPX = { };
 if f is 0-place then f ' = X(f);
 if f is j-place for j > 0 then f'(ao,. . ., aj- 1) = ao for all ao,.. ., aj- 1.
 Suppose that Pred, Funct is the nonlogical lexicon of L. Consider (p e Fml(L) of

 type f with tj > 0 for all i < 1; suppose po = po'(vo/co,., ,v,-1/c-1), where p'
 contains no 0-place function-constants, c0,... ,c,,-1 are the 0-place function-
 constants occurring in (p, and vo,.. ., v,- 1 E Var(0) and do not occur in (p. Form -
 from po' as follows: replace all atomic formulae starting with a member of Pred by
 '1', replace any remaining term of the form f(To,..., TM - 1) by To, and iterate that
 until all members of Funct(m) for m > 0 are gone. Thus for any model S for Pred,
 Funct and any h E tiK:

 2 IK ((VVO)(VV. f P-1)P[]

 iff for every X: Funct(O) f+ j1-, t #K fil[].

 Suppose po K-defines R with respect to T. For any X: Funct(O) -+ ,4

 Ei R iff 1jal,A K Po [1].

 Thus

 f E R iff for every X: Funct(O) 1-+1,1, Xe,? ,, K#(pan

 So (Vv0)... (Vv.- )5o, a pure formula, K-defines R with respect to t.
 The next two sections address the question "What are the classes of relations K-

 definable in above languages?" We will also get results on the Turing degrees of the
 sets of K-satisfiable formulae in these languages.

 ?2. In this section we prove a technical theorem that characterizes the relations K-
 definable in L' 2(exactly) and L' 2*(exactly) in terms of definability over two
 specific models using languages that are not quite higher-order. The basic point is
 this: for K-definability in L"12(exactly) [L' 2*(exactly)], cardinal addition [and
 'exactly' applied to count cardinals] absorbs quantification over types 0 and 1,
 permitting us to pull type 2 down to type 0.

 Let L2 be the first-order language with nonlogical lexicon Pred = {' ?', 'S'} and
 Funct empty. For K E Card, let .2(K) be the model for L2 with universe K- <X2(K)
 = ? K-, and S-2(K) - cardinal addition on K- viewed as a three-place relation. Form
 L2(exactly) by adding 'exactly' to the logical lexicon of L2 with the formation-rule:

 if v, p E Var(O) and po is a formula

 then (exactly p v)9o is a formula.

 L2(exactly) is to be interpreted only in models of the form d2(K), with the truth-
 clause

 X/2 (K) # (exactly n v) sp iff card(i~p12(K)) = n,

 for any n E K-.

 For K E Card, let K be reasonable iff K- is closed under cardinal addition.
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 CARDINALITY LOGICS 769

 THEOREM 1. For any reasonable infinite K E Card:

 (i) R is K-definable in L" 2(exactly) if R is definable over d/2(K) in L2;
 (ii) R is K-definable in Ll 2*(exactly) iff R is definable over .42(K) in L2(exactly).
 From right to left Theorem 1 follows from the usual second-order defini-

 tion of cardinal addition, formulated in L2. For any i0, i1, I2 E Var(2), let
 Add(1o ,1, ,2) be:

 (Vy0)(Vy,)([(exactly go v)y0(v) & (exactly p, v)y,(v)

 &-i(]v)(yo(v) & y,(v))] D (exactly i2v)(y0(v) v 71(v))),

 where To, e, E Var(1) and are distinct. For any model v with card(s/) ? K and any
 no, n1, n2 EK:

 S/ K Add(nO, n1, n2) iff no + n, = n2.

 If I0, 91, 92 are all distinct, Add(yi0,u1, 2) K-defines cardinal addition on K- and
 uniformly defines cardinal addition simpliciter. Furthermore these definitions may
 plausibly be called "analytic" in that they provide an analysis of what we mean by
 "cardinal addition". Notice that the reasonableness of K is not used.

 We now prove Theorem 1 (ii) from left to right. Our strategy is to find a finite set
 of simple formulae, each one determining whether an assignment of values (to the
 free variables of po) and a choice of cardinalities for the "cells" produced by the free
 type-I variables satisfies po (Lemma 1); then for each such simple formula we con-
 struct a formula / in our target language asserting the existence of values satisfying
 po (Lemma 3).

 For any formula 0, let 00 be 0 and 0' be m 0. Suppose that

 do = {v0,..., v 1-} ' Var(O), At = {Io, -, Yk- 1} ' Var(1).

 A profile for 0o u 1l is a satisfiable conjunction of formulae of the forms

 (vi = Vy)a(ij), where a(i, j) E 2 for i < j < 1,

 Tvi)b(i j), where b(ij) 6 2 for i < 1,J < k.

 Clearly a and b uniquely determine and are determined by a profile for Jo U z1.
 Suppose 0 is such a profile. For i, i' E 1 let i 0 i' iff:

 either i = i', or i < i' and a(i, i) = 0, or i' < i and a(i', i) = 0;

 clearly , is an equivalence relation on 1. In what follows, let A4 = Ac IS/I and A
 = Ai-4,A.

 For each k > 0 and c 6 k2, introduce a distinct type-2 variable pc and a distinct

 type-0 variable vc; for z c k2 let Liz and iz be the sequences of these variables with
 subscripts c 6 z, ordered according to the position of c in the lexicographic ordering

 of k2. Let ok,z be:

 &{(exactly C v)( & Yi(V)c(J)): c 6 z}

 & &{(big V) & yi(v)c'i)): C 6 - z}.
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 770 HAROLD HODES

 Given / and A E ky(1d/), there is a unique z and P E ZK- SO that v # k z[Aiil,
 that is such that, for each c c z, pc = card(qj<k ) and, for each c6k2 -
 card(nJ< A(J))
 For Ko, K1, K E Card, let Ko -K K1 iff either Ko, K1 ? Ki or Ko = K'1 E K. In what
 follows, let Jo, 11 be as above, let 0 be a profile for Jo u 11, and let A2 =
 {lo) ... . il- 1 } C Var(2), all pi different from all variables of the form Pc and all
 vi 6 zo different from all variables of the form vc for c 6 k2. We write '(]i)' for
 '(]vo) (]v1- J)', etc. Let po 6 Fml(Ll2*(exactly)) be pure and have free variables in
 0do U A- U 2. For each pi 6 A2 fix a distinct i' 6 Var(0) different from all type-0
 variables fixed so far.
 LEMMA 1. Suppose that K 6 Card is infinite, d1o and -1 are models with card(-0)

 Kcard(-11), di 6 'I di, A1i k(l-di 1) for i 6 2, and 4 6 mK-. Suppose that for P 6 ZK- and

 both i 6 2, vi #K (0 & 0kz)[ai, Ai, P], where pc is assigned to pc for each c 6 z. Then

 10 tK [aOA0 q] iff -1 K#([alA1q].

 LEMMA 2. (53O)(])(O & Okz & (p) is superequivalent to (VV)(0V)((0 & Ok, ) D 9).
 (Note. Superequivalent means equivalent under #K for models of cardinality > K

 for every K 6 Card.)
 LEMMA 3. From (P, 0 and z C k2 we may construct / 6 Fml(L2(exactly)) with free

 variables among Hi' and i, so that for any infinite K 6 Card, any model -1 with
 card(1) > K, any p E zK- and any q E mK-

 1 k=-((]))(]V)(0 & k,z & (p)[Pq] if f 20) t (j,4);

 in the latter statement, vc is assigned to pc for each c 6 z.
 The proof of Lemma 1 is by induction on the construction of (p. We consider the

 case in which po is (exactly Pk- 1 v1)p0. By the induction hypothesis, for all i 6 2

 dO1 5p0[aOaOi,)A0oq] if k=p[aa1, al.i, q].
 Suppose that for j 6 2, aj {aj 0, . ., aj l 1 } and aj 6 ckA() for C k2 independent
 of j; again we have

 10#Kpo0[ao,ao,A0,q1 iff -1 K# 0[aalal,q1,

 Thus for some s c 1 and t C k2

 v(po[aj, Ap, 4] - U{.OkA X :c6t}-{a ii6s}j

 for both j 6 2. Thus, by the construction of 0 and Ok z,

 card((po[60,4A0,A4L]0) Kcard(v(Po [a1 A 1, 1q ] );

 this yields the desired biconditional. Other cases are left to the reader.
 Lemma 2 follows easily from Lemma 1.
 The proof of Lemma 3 is by induction on the construction of so. We may assume

 that none of the bound variables in po are among those variables fixed so far. It will
 be convenient to suppose that negation and disjunction, rather than 'D' and 'I',
 are primitive.

 Suppose po is (vi = vi ) or yj(vi). If po is a conjunct of 0 let / be ' I'; otherwise p
 is a conjunct of 0, in which case let 0 be 'I'.

This content downloaded from 
������������132.174.252.179 on Mon, 07 Feb 2022 01:29:16 UTC������������ 

All use subject to https://about.jstor.org/terms



 CARDINALITY LOGICS 771

 Suppose (o is poo and that V0 has been constructed for poo and 0; let / be - f0.
 Then for any model -1 with card(-1) 2 K, the following are equivalent:

 ' kJ((I))(])(O & Ok,z & E)[pq];

 -4 kKffi)ffV)((0 & Ok,Z) D PO)[ IA 4];

 ' VK(3Y)(3V)(0 & Ok,z & o)[pq];

 J/2(K) V 0o(P, 4);

 this uses Lemma 2.

 Suppose po is (Poo v oi)' and i has been constructed for 5pj for i e 2. Let / be

 (0 v /1). Since (]j)(]i)(0 & ?k,z & p) is superequivalent to

 (]D)(]i)(0 & Ok,z & Po) V (]O)(]OD(0 & Ok,z & 9P),

 / is as required.
 Suppose po is (]vj)poo. Let 00,.. . ., 1 be the profiles forl0o u {vj} u zl, consistent

 with 0; suppose Oi has been constructed for Oi, z and (po, for each i < 1. Since
 0 & Sk,z & (Po is superequivalent to V{0i & ?k,z & Po: i < y} for some y, the
 following are superequivalent:

 (]D)(]V)(0 & Ok,z & );
 (IO)(]i)(]v1)(0 & ODkz & (o);

 V{(3D)(3V1(3V(0i & ODk,z & Po): i < y}.

 Thus VPI,: i < y} is as desired.

 Suppose that 5p is (OAk) Po. For each d e (k + ')2 we have Pd e Var(2) and vd e Var(O),
 all distinct from the other variables under discussion; for z' c k + 12, let iz and iz be
 the sequences of these 1d and Vd respectively, for d e z' according to the lexicographic
 order of (k+1)2. Let 00,.. .,021-1 be the listing of all profiles for O Ui U {YI}
 consistent with 0. Let z' refine z iff for all c

 cez iff c*Oandc*1 ez'.

 (Here c*i = c u {<k, i >} for c e k2.) Suppose that kj z has been constructed for Oj, z',

 Poo' for each j < 21 and z' refining z. Let oz be

 V{(Vz1 )lj z' & & A(vc*ovc*i5vc)):j < 21}.

 Let / be V{ /z': z' refines z}. We now show that / is as required. Suppose that

 4 k=pK(0 & Ok,z & f)[dA,5p,q

 Fix A c 1v1 so that V - 9oo[aA4, A,4]. Fix the unique z', r e Z'K and j < 2K such
 that

 65/ k=K(0j & Ok+ Z)[a,A,A,] r

 Clearly z' refines z, and for c e z and io e 2

 = card(F Ac() n Aio);
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 772 HAROLD HODES

 so pc = rc*o + rc* By choice of j, _42(K)k I= j,_[Jr,q]; so ,42(K) i[p3,q].
 Conversely, suppose that 1/2(K) I i[p, q]. Fix ] < 2', z' refining z and r G z'K SO
 that A42(K) I= jz, [r, q] and qc = rc*0 + rc*1 for all c e z. By the induction
 hypothesis

 S K (])P(]Yk)(PV)(0j & 0 kz & O)[r, q]-

 When a? I=K (0j & ?k+l,z' & PO)[dA,A,r,4], K y[t, A,4 ]; since r =
 card(ni<k Ac(" r- Aio) for io e 2,

 tsd5 =K k,z[Ai5P]

 thus

 c? l=K()(3v)(0 & Ok,z & ()[pUq],

 as required.

 Suppose that (o is (3l.m)9soo and that 9oo has been constructed for Po . Then we take /
 to be (3y'm)1I0, where I'm c Var(O) is new.

 Now suppose po is (exactly m-1 vj)0oo for v, e Var(O). Let 00,..., 0 be the
 profiles for zAo u {v1} u A1 consistent with 0 and such that Oj has the form 0 & Oi,
 where Oj has the form

 & {(vi = v,): i < l} & &{yi(vi)c(i): i < k};

 let cj be that c k2. For X c y, let 'ox be

 &{(]Vi)(0 & (oO): I C X} & &SL(-Vi)(j0 & (oO):I C y - X}.

 By the induction hypothesis and the previous cases of the induction step, there is a

 ox corresponding to 0, z, 'ox meeting the conditions of this lemma.
 Claim 1. For each p e zK- and q 4 mKe there is a unique X = Xp y such that #2(K)

 I=xP, q]

 To see this, fix -V, a e -1L and A e ky(1-41) so that

 -4 I=K(O & kz)[a A p, q].

 Let i e X iff = K (3v,)(Oj & po0)[a, A, q]; therefore 4 I=K 5 x[6 A, q]; so C42(K) I=K
 x[P[ q4]. Now suppose that, for X' _ y, i12(K) l=K /X'p[j q]; so

 -' l=K(3Y)(3V)(0 & Ok,z & (PX')[ Ip ]

 Fixing witnesses B e ky(1f41) and be 'LVI, we have that j e X' iff F' K
 (]vi)(Oj & qp)[b, B. q]. By Lemma 1, the right-hand side holds iff

 l=K K(v)(0j & qpo)[a, A, q];

 thus X = X', establishing Claim 1.

 For U c 1/,, let 5p* be

 &I{9o(Vi/Vi) [i] e U} & &{n5Oo(Vi/vi): [i] 0 U}.
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 CARDINALITY LOGICS 773

 For X c y let X* be

 {i < 1: for some j e y - X, for each j'e k

 y(vi)cj(j') is a conjunct of Oj}.

 For U and X as above let ox~u be

 JLmi1 +C= Vcj+ d,
 jeX

 expressed using 'S', where c = card(l/ -U) and d = card {[i]: i e X*}. Let / be

 V{IOx & Pu & ixu: X c y and U c 1/-01.

 We must show that / is as required.

 Suppose that S K (,)(D(0 & 0 k,z& )[j], with A e ky(1,1) and d e 'I'
 as witnesses. Let Y = 1(po[aA,} q; thus card(Y) = Pm- Let X = Xp j. Fix U c 1
 so that -1 K (Pu[la, 4] q.

 Claim 2. For j < y, if d tK Oj [6 a, A] then a e Y iff j e X.
 Assume the antecedent. If a e Y then by the argument for Claim 1, j e X. Suppose

 that j e X. By the definition of X, #2(K) t /x[p, 4]; so by the construction of lx,

 K 0k(]y)(]v)(0 & Ok,z & ([pA ,4];

 fix witnesses B and b for this. Since j e X,

 ' l=K(3Vi)(0j & 9o)[b, B, q];

 fix the witness b for this. By Lemma 1, 5 tK 9o[a, a, A, 4] iff s tK p[b, b, B, 4];
 thus a e Y.

 Thus we have

 Yu {ai Y:i < l}

 u U ( j)AJ u {ai: i < l and, for some j c y-X, ai q- AcjJ4.
 je-Xj'<k j'< k )

 Therefore

 card(Y) + card(l/ -U)

 - E+card nAJ(j)) + card{[i]: i e X*3,
 j c-X j' <k

 yielding #2(K) I= 'x'u[P,3q], and thus #2(K) I i/[p, 4].
 Now suppose that #2(K) t k [p, fl. Fix X and U so that

 1#2(K) (OX & (PU & X,U)[ip, q].

 By Claim 1, X = Xp q. By the construction of ox,

 S k=,(]))(v)(O0 & Ok,z & qPx)[I,4];

 fix witnesses A and d. Letting Y = i7qoo[d, A, q], by the construction of ox/u we
 have card(Y) = q,,- 1. Thus V kt,, o [a, A, q].
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 774 HAROLD HODES

 For the final case, suppose (p is (exactly alrn- 1 Ilm)pO' with lurn e Var(2) distinct from

 the entries in -A, and with V' constructed for qoo. Let V be (exactly gm -1m)
 Suppose that

 -/ ki= K(O & ?k,z & P)[aA, pq]

 Letting Y = m 1o[6 A, q], qm-1 = card(Y). For each q e Y,

 &I k=_K(]))(]V)(0 & ?k,z & po)[p q, q];

 by the induction hypothesis, d2(K) t/0[[p,q ,q]. Conversely, if d2(K) #
 V' [fl' q, q], by the induction hypothesis, fix b and B so that a? I=K (o [be B, pf, q, q].
 By Lemma 1, a k#K (po[d,A,qq]; so q e Y. Thus k2(K) I p,[q]. Now suppose
 that k2(K) i f[i pa q]; letting Y = gm p q] we have qm_1 = card(Y). Sup-
 pose that Y is nonempty; fix q e Y; then

 &I #=K (]))(]V)(O & ?k,z & po)[ p q, q].

 Fix witnesses A and a for this. By Lemma 1, for any q' e Y,

 v4 -K (PO [aA 5q5 q ]-

 For any q' 0 Y.

 &I kK(iY)(OV)(P & ?k,z & 0)[I p q, q']

 Thus for any q' en, q' e Y iff sa k-K (p[a, A, q, q']. Thus Sa I=K (p[aA, fl. If Y is
 empty, qm1 = ; fix any a and A so that a? k K(O & ? kz)[adA, p]; then for all q e K,
 a? kK (pO la A, 5, q]; thus a K p[a, A, q]. So

 'a k=K(3))(]V)(O & ?k,z & (p)[pq].

 This completes the proof of Theorem 1(ii). By restricting this construction to
 p e Fml(L" 2(exactly)), part (i) also follows.

 COROLLARY. If K is an aleph then K-satisfiability for formulae of L" 2(exactly) is

 decidable. For op e Fml(L" 2(exactly)) with free variables among v-, yI, ji as above, 0p is K-
 satisfiable if for some profile 0 for v-, Y- and some z C k25 (]17)(]iv)(O & ? z,k & (p) iS K-
 satisfiable.

 Since the translation constructed in proving Theorem 1(i) was effective, the
 corollary follows if satisfiability in k2(K) for formulae of L2 is decidable. Since K is
 an aleph, for n, m e K, if either n or m is transfinite, their sum is their maximum; thus

 addition is really no worse than on NO; so the last-mentioned problem is decidable;
 details are left to the reader.

 ?3. We now consider the special case in which K = No. For this section, let X
 = /2(N0). The next theorem identifies the class of relations N0-definable in

 Ll 2*(exactly) with a simple and well-understood class of relations on NO; see [3] for
 more information on that class.

 THEOREM 2. R is No-definable in L" 2*(exactly) iff R is first-order definable over X,
 i.e. if R is definable in Presburger arithmetic.

 LEMMA 4. If R is definable in L2(exactly) over X then R is first-order definable over

 Using Theorem 1, Lemma 4 will yield Theorem 2 from left to right. The other
 direction is trivial. To prove Lemma 4, it will be convenient to revise X, L2, and
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 CARDINALITY LOGICS 775

 L2(exactly). Fix Pred = {' <'} u {'E.': 0 < m < co}, all 2-place; let Funct = {'A',
 s'+'}, where 'O' is 0-place, 's' is 1-place, and '+' is 2-place. Let the first-order
 language based on this Pred, Funct be L'2. Let I J('J = No, <a = < [ No, 0 = 0,
 s = successor P No, +' = addition P No, and E." = {<no,n1>: no=- n}. Since
 there are obvious translations between L2 interpreted over X and L2 interpreted
 over V', it suffices in Lemma 4 to replace the former pair by the latter pair. We will
 construct a translation t from Fml(L'2(exactly)) to the set of quantifier-free formula
 of L'2 so that for any (p E Fml(L'2(exactly)), (p _ t((p) is true in A' for all assignments
 of values to free variables.
 If (p is 'I', (T = a), (T < a), or Em(T, a), let t((p) = (p. Let t((p :D 4) be t((p) D t(4).

 Form t((]v)(p) by eliminating the prefixed quantifier in (]v)t((p), using the procedure
 due to Presburger and described in [1, pp. 189-192].
 We must construct t((exactly p v)(p), where t((p) has been constructed. Suppose

 that t((p) is in disjunctive normal form; say t((p) is Vj<z o where each Oj is a
 conjunction of atomic and negated atomic formulae. If z = 0, let t((exactly p v)(p) be
 (p = 0); suppose that z > 0. Without loss of generality let each /j be Q+ & 4j with v
 occurring free in each conjunct of 'j and not in any conjunct of 4i, and suppose
 that for distinct j < ' < z:

 either 4J- is 4i or 4i- and IjI are incompatible;

 if 4- is /- then O'7 and Qt are incompatible.

 We may also suppose that no conjunct of /j is negated, making these replacements
 and distributing '&' into ' v':

 (T = a) (T < a) v (a < T);

 (T < a) (a < T) v (T = a);

 E Em(T, a) V Em(T, si()).
 O<i<m

 We let the left entry below abbreviate the right entry:

 n-c T + - + T, with n occurrences of T;

 T2 = TO - TO = TI + T2;

 Em(T2,TO -TO) Em(TOT1 + T2).

 Thus each A+ may be viewed as a conjunction of atomic formulae of these forms:

 nv = T0-T1, Em(nv,TO- T), nv < To-T1, nv > To-T1

 For ],' E z, let] j' iff ,- is 4j,; is an equivalence relation; for d E z/1, let 4,-
 be 4, for any j E d; let 4,+ be Vjed Q- . Then (exactly p v)p is equivalent over A' to

 V (i- & (exactly p v)4 0) v p = 0 & & - d - dez d d

 Fix a d E z/; suppose d = { j - , iq- I} Let pjop. . . ., pj e- Var(O) be distinct,
 distinct from p, and not occurring in i/4 . Then (exactly p v)4,+ is equivalent over A'
 to

 (]pjo)..(]pjq- )(p = o ... + Pjq - & 4(exactly pji v)o'i).
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 776 HAROLD HODES

 We now take a careful look at (exactly pj v)i/< for j E d. If some conjunct of i+ has
 the form nv = 'O- T, let ij be

 ((3v)(nv = -co - -r & pj = 1

 v (-i (v)(nv = To - T1) & p. = 0).

 Suppose now that no conjunct of fj' has that form. Transform A+ into A++ by
 uniformizing the coefficients on v; in other words, where p is the least common
 multiple of all such coefficients, multiply through each atomic conjunct in which v
 has coefficient n by p/n. Thus in t'+ all occurrences of v have coefficient p; clearly

 A+ + is equivalent over A' to Ot/. Transform /i + into dt + + by replacing each
 occurrence of pv by v and conjoining Ep(v, 0). Then:

 w I= h+[ha] iff X' k V4j [0aJ;
 if A' k + + + [cvb] then b = p * a for some a.

 Thus (exactly pjv)o+ is equivalent over A' to (exactly pjv)/<+++. id+++ has the
 form

 & (Ti - T < v) & & (v < vi -v)
 i<r i<t

 & & Emi (v, r-Ei)
 i<u

 We may then suppose that 0 < r, since we could let To and T0 be '0'.
 For each nonempty b c r and c c t let 00,b and 01,c be respectively

 T- T = Ti- ): i, i' E b}

 & &{(Ti - T < Ti -, T): ic band i er -b;
 &(Ui - a' = ai- - o'): i, i' E c}

 & &{(i - ai < i - o'): i E c and i' E t - c}.

 We may suppose, without loss of generality, that there is a unique b C r (let it be ib),
 and if t =# 0 there is a unique c c t (let it be ic) so that 0O,b and 01c are conjuncts of
 each disjunct in l 4 . (If this condition fails, we may select "finer" Ij's and a larger z at

 the beginning and end up with formulae for which this holds.) If t #A 0 let /j be

 (Tib i- Tb < v) & (v < aic - o) & & Emi(v, 1i -iD
 i<u

 If t = 0 let by be

 (Tib -Tb < v) & & Emi(V, r1i - qi)
 i<u

 Let a be an assignment of type-0 variables to members of No. Suppose that A'
 I= SOOb[al and if t #A 0 then A' # O1, C[]. Clearly, A' = a A+ [a] if f' # VIix].
 Now suppose that t # 0 and ao is the least so that i' # /j[av]. Let m be the least
 common multiple of mo,.. ., - 1. Then, for any a,

 XhI= &Emi(Vli - )[ )] iff a-mao.
 i<u
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 CARDINALITY LOGICS 777

 Then card(i?j/<a) = the maximum y such that

 A1 # (aO + mpj < Sic- a,)[Ikj1

 Let hj be

 [' (]v) /j & pi = 01
 v [(3v)/j & (Vv')(v' < v D - /j(v/v')) & V + mpj < aic - U

 & (Vv')(pj < V t --I (V + mv' < ?ic-

 where v' E Var(O) does not occur in bj and is distinct from p . Now suppose that
 t 0. If #'1= ?j[aao] then, for infinitely many a, M'1= Lj[xci; so card(i7Oi a)
 c{0,N0}. Let 4j be -(3v)Oj /&pj=O. For either case on t we have, if A't
 d- [a] and y E w), then

 A' # Vj[(xa] if A" # (exactlyppj v)0/j+[cxy].

 We may now let t((p) be

 V (]Pjo)*(]Pjq-)(P=Pjo +**+ Pjq&V jo &***&V jqi ) V (P = O & *).
 dez/;

 By the preceding remarks, t((p) is as required.
 Suppose Pred and Funct are given, all members of Pred are at most 1-place, and

 all members of Funct are 0-place. Suppose we are given op E Fml(Ll 2*(exactly)) with
 free variables among v1,...,v11 E Var(O), YO Yn-1 E Var(1), and Ho,. -, Pk-1
 E Var(2). By existentially quantifying out (and replacing 0-place predicates by
 'I' or 'm I' in all possible ways and taking disjunctions) we obtain a pure up*
 e Fml(Ll 2*(exactly)); let a' be (3Y5)(3vj)p*. Clearly p is No-satisfiable iff up' is No-
 satisfiable. Using the above constructions, up' may be effectively transformed into a

 u e Fml(L2) so that up' is No-satisfiable iff / is satisfiable in A'; and whether the
 latter is the case is decidable. Thus:

 THEOREM 3. NO-satisfiability of a formula containing only 0- or 1-place predicate-
 constants and 0-place function-constants is decidable.

 ?4. So far we have been looking at K-definability in the most powerful of our
 languages. We will now look at the least powerful ones. For PO, P2 E Var(2) and y
 E Var(4) let Plus' (poa, Y P2) be

 (exactly yup)(pO < p & p < P2),

 where p E Var(2) is distinct from PO and P2, and (p < P2) abbreviates (p < P2 &
 (P2 < p)). With Pt E Var(2) let Plus*(pO, P1, P2) be

 (]4u)(Plus'(pO, j, P2) & Pi =2 1)

 where, following [51, (Pi =2 i) abbreviates (exactly ji p)p < PI where p E Var(2) is
 distinct from PI* (The latter No-defines identity on RO with respect to (2,4).) It is
 easy to see that with Pot PI, P2 all distinct:

 Plus'(po, a, PI) No-defines addition on No with respect to (2,4,2);

 PIUS*(PO, PI, P2) No-defines addition on No with respect to (2,2,2).

 Let Fin(p2) be as in [5], and let Max(po, P1, P2) be:

 (Po < Pt D P2 = PI) & (Pt < Po D P2 = PO);
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 778 HAROLD HODES

 let Plus(pO, PI, P2) abbreviate

 (Fin(p2) D Plus*(pOpI,p2)) & (-iFin(p2) D Max(pO,pIp2)).

 For any aleph K, if PO' Pt' P2 are distinct then Plus(pO, P1, P2) K-defines addition on K;
 in fact, Plus(pOp1, P2) uniformly defines cardinal addition. Clearly any R that is
 first-order definable over J/2(K) is K-definable in L0'4(exactly, <) with respect to
 (2, 2, 2). Together with Theorem 2, the above discussion yields the following.

 THEOREM 4. For any R, R is N0-definable in L0'4(exactly, <) iff R is first-order

 definable over A2(No).
 The analysis provided in ?3 of definability in L2(exactly) over #2(K) for the case in

 which K = No may be extended to the case in which K < No2. Thus Theorems 2, 3,
 and 4 also extend to that case; details are left to the reader. Curiously, this is as far as
 we may go with those theorems: multiplication on No is N,02-definable in
 L04 (exactly, <).

 The idea is to compute n * m by counting Ui<m {i + j: j < n}. (Here wi is an
 ordinal product.) For p E Var(2) let Lim(p) be as in [5]; so, for any v/ and any n < K,
 tS k = Lim(n) iff either n = 0 or n is a limit cardinal. For /, i5 PI2 E Var(4) let y
 E Var(4) be new, and fix distinct PO' PI' P2 P, p' E Var(2). Let Times([o , PI, 12) be:

 (]po)(Lim(po) & (exactly /t p)(p < PO & Lim(p))

 & (exactly Iu2 p)[p < PO & (]p,)(]I)(Lim(p1)

 & -i(]P2)(Lim(P2) & PI < P2 & P2 < P)
 & (exactly y p')(p, < p' & p' < p) & y < yo)])-

 It is not hard to see that if o, /h, /Y2 are distinct then this formula NK.2-defines
 multiplication on No. Since multiplication is not first-order definable over #2(N 02),
 the analogs of Theorems 2 and 4 fail for N,,2. Furthermore, arithmetic-truth can be
 encoded into Nco2-satisfiability of pure sentences of L0'4(exactly, <), and thus of
 Ll 2*(exactly). So the Turing degree of the set of NK.2-satisfiable pure sentences of
 even L0'4(exactly, <) is at least 0(0)).

 ?5. We now show that L0'4(exactly, <) is the lowest language in the hierarchy for
 which the sorts of results proved so far could hold. Let L1 be the first-order language
 with nonlogical lexicon Pred = {'<'} and Funct = {n: n <No}; let Lo be the
 first-order language based on Pred empty and Funct as just above. For K e Card let

 J1I(K) be the model for L1 with universe K < 1(K) = < [ K and n'l(K) = n; let 'O(K)
 be the contraction of J/1 (K) to Lo. Let L_ 1 be the first-order language without identity

 based on the nonlogical lexicon Pred = {II: n < No}, each 1-place, and Funct
 empty; let &_1(K) be the model for LU1 with universe K and I-fr(K) = {n}. For
 this section we will assume that every Dedekind-finite set is finite.

 THEOREM 5. For any K e Card and any R:
 (i) R is K-definable in L0'2(exactly, <) iff R is first-order definable over 1(K);
 (ii) R is K-definable in L0'2(exactly, =) iff R is first-order definable over 04(K).
 (iii) R is K-definable in L0 2(exactly) iff R is first-order definable over /_ 1(K).
 Our strategy will be to transform a defining formula into one in a simple normal

 form. For j e Var(2) and n < No, let (n = j) be as in [5], so that for any infinite K
 e Card and m < K and any infinite model , d I=K n = m iff n = m. Let a basic
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 CARDINALITY LOGICS 779

 formula be of the form j < A', n = A, or 'I'. Let Jo = {vO,. .. ,v1} c Var(O), all
 indicated variables distinct. Let a normal formula for Jo have the form V < (iJ & O0),

 where each Oj is a profile for JO, each Oj is generated from basic formulae, and for any
 j, j' < C:

 either Oj is Oj or (Oj & Oj,) is not satisfiable;

 similarly for Oj and Oj .

 To prove Theorem 5(i) it will suffice to prove the following.
 LEMMA 5. For any pure (p E Fml(L0'2(exactly, <)) with free variables of type 0

 belonging to Jo, (p is superequivalent to a normal formula for J0.
 PROOF (by induction on the construction of (p). Suppose that (p is (]vl)9p' for

 v cE Var(0) - J0, and that V <c(Vj & 0) has been constructed for 9p'. Form Oj from
 Of by deleting each conjunct containing vI. Then (p is superequivalent to
 V<c(Vj & (]v1)0j), and the latter is in turn superequivalent to Vji1V{ & 0).
 Suppose 9p is (]j)9p' for j E Var(2) and that V <c(V' & Oj) has been constructed for

 (p'. Then Vi<,((#O)O' & Oj) is superequivalent to 9p and may be transformed into the
 desired formula by Boolean manipulation.

 For example, if /j is not Vj, replace ((]i)/j & Oj) by

 ((0u)j & (0u)j & 09) v ((u)j & 7 (0u)/,> & 0).
 If (p is of the form (9po D 9pi), Boolean manipulation produces the desired formula
 from the corresponding formulae for 9po and 9pi. Suppose that 9p is (exactly j vl)(p' for

 vI as above, and that Vi<,(Q & 0o) has been constructed for (0'. If c = 0, (p' is K-
 unsatisfiable for all K; SO 0= j is as desired. Suppose that c > 0. Let Oj be the profile
 for JO obtained from Of by deleting all equations and inequations containing vI. Let
 O7 be the conjunction of all those equations and inequations deleted in forming Oj.
 For j, j' < c, let j - j' iff of is Ofj and Oj is Oj'; - is an equivalence relation on c.
 For d E c/~, let Id be /j and Od be Oj for any j E d, and let 0* be VJedO7. Then 9 is
 superequivalent to

 V (Vid & Od & (exactly j vI) 0d)
 d E c/

 If for some j E d, vi # vI is a conjunct of Ot' for all i < 1, then, for any infinite model a?
 and a E '1WI satisfying 0d,

 card(- 0* [a-]') = card(l 1v),

 using our assumption that Dedekind-finite sets are finite. For such d, in the
 preceding disjunction delete the d-disjunct. Suppose for each j E d there is an i < 1

 with vi = vI a conjunct of 0 t; from Odand 0d* we may easily find an n < No so that, for
 vd and a as above, card( 0l* [a-]') = n. In the above disjunction, replace
 (exactly j vl)0O* by n = j. The resulting formula may easily be transformed into the
 desired formula.

 Similar constructions yield (ii) and (iii) of Theorem 5.

 ?6. Form L2 2*(exactly) from Ll 2*(exactly) by introducing a countable set
 Var((O, 0)) of variables of type (0,0 ), with the further formation rules:

 If y E Var((O, 0)) and c, a are terms then y(z, a) is a formula.
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 If (p is a formula and y E Var((O, 0)) then (]y)9p is a formula.

 When A c 21,41 let a? k=KA(Z,Oa) iff <Kv ,-> E A; let a? k=K( y)9p iff, for some
 A c 2I1_1, a? V=K (p(y/A). Similarly, when L is any first-order language, form L2 by
 introducing Var((0, 0)) as above; if a? is a model for L, a relation R on 1s/I is second-
 order definable over a? iff R is defined over a? by a formula of L2.

 THEOREM 6. Suppose that K is an aleph.

 (i) If card(K-) = K and R is K-definable in L2 2*(exactly) then R is second-order
 definable over X1 (K).

 (ii) If R is second-order definable over X1(K) then R is K-definable in L2 2(exactly).
 PROOF. For (i), suppose that card(K-) = K and R is K-defined by 9p E

 Fml(L2 2*(exactly)). Then R is K-defined by 9p over X1(K); the variables of type 2 in

 that definition must be replaced by variables of type 0. For each n < K let f (n) < K

 be the least m so that card(m-) = n; let the canonical K-standard be {<n, m>: m
 < f (n)}. The canonical K-standard exists, and is second-order definable over 41 (K),
 since K is an aleph. Using the canonical K-standard along the lines of the argument
 for Observation 2.2 in [5], we may transform 9p to a formula of L1 that defines R

 over k1(K); details are left to the reader.

 Suppose that R is defined over 41(K) by 9p e Fml(L 2). We want to replace

 variables of types 1 and (0, 0), as interpreted over #1 (K), by variables of type (0, 0)
 interpreted over any model dW with card(,W) ? K. The idea is this. Any A = K- can be

 coded by B c 2Ia~'I where A = {card({b: Bab}): a e l1 I}; any A K can be coded
 by <B, C> where B, C c 2 Isl and

 A = {<card({b: Bab}), card({c: Cac})>: a e 1,?1}.

 Since K is an aleph and card(,1) ? K, such a B (or B and C) exists. Associate each
 variable of type 0 with a new variable of type 2, each variable of type 1 with a new
 variable of type (0, 0), and each variable of type (0, 0) with two distinct new variables

 of type (0,0). Suppose that v0, v1 e Var(2) has been associated with go, 1, and y
 e Var((0, 0)) has been associated with yo, yi; replace the variables in p by their new
 associated variables, and replace any occurrence of y(v0, v1) by

 (3v)((exactly j0 v')y0(v, v') & (exactly p1 v')y1(v, v')).

 It is easy to see that the resulting formula K-defines R. Details are left to the reader.

 For im, ih,, /2 e Var(2) let Mult(Y0, Y1, 12) abbreviate

 (Vy)(Vy')([(Vv)(y(v) D (exactly go v')y'(v, v')) & (exactly Yj v)y(v)
 & (Vv)(Vv')((y(v) & Y(v')) D n (3v")(y'(v, v") & Y'(v', v")))]

 D (exactly 12 v')(3v)(y(v) & y'(v, v'))).

 Here y e Var(l) and y' e Var((0, 0)). If 0,# 1,12 are all distinct then, for any K
 e Card, Mult~u0, 112) i-defines cardinal multiplication restricted to K-; in fact it
 uniformly defines cardinal multiplication. Indeed this definition is "analytical". It
 might seem rather abstruse to be taken as expressing the "man in the street's

 understanding" of multiplication; but it is really not that bad. Think of the v's falling

 under y as indexing the class Zv of v"s such that y'(v, v'); it says that if we take g1-
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 CARDINALITY LOGICS 781

 many things (the Z,'s) exactly p1-many times and the Zr's are pairwise disjoint then
 we get exactly j2-many things (in U {Z,: y(v)}).

 ?7. The introduction of quantification of type-((O, 0)) variables expands the class

 of relations NO-definable in L12*(exactly) from those definable in Presburger
 arithmetic to those definable in full second-order arithmetic. This is an enormous

 leap; where, one might ask, are the other familiar classes of relations on No, those
 more complex than the former class but less complex than the latter? We will now
 see that the class of arithmetic relations (those first-order definable in Peano
 arithmetic) is characterizable in terms of a sort of cardinality logic.

 We now consider languages of the forms L1 2(fexactly) and L' 2*(fexactly)
 formed in the obvious ways using 'fexactly' rather then 'exactly' in the logical
 lexicon. Fix an infinite K E Card. We will have variables of type 2 range over F(K)

 = the set of finite subsets of K-; so for each x E F(K), fix a type-2 constant x. The novel

 clause in the definition of k=K is

 &Q/ V=K (fexactly x p)q iff card(jhp') E x.

 Here if p E Var(2), -pp c F(K). Clearly 'fexactly' is a weakening of 'exactly', since
 to be given finitely many choices of the number of things meeting a condition is less
 informative than to be given the exact number; nonetheless, it can strengthen our

 ability to give K-definitions. Suppose that 9(i0o,. , - 1) e Fml(Ll 2*(fexactly)) is
 of type <2,.. ., 2>; let (p K-define R over d iff

 R = {K<no,. . ., n, - 1 >: # I=K (pI(O/{nO }*, I- 1/n/{l - })}-

 THEOREM 7. For any reasonable infinite K e Card, R is K-definable in L" 2(fexactly)

 iff R is definable in Ll (i.e. is finite-monadic-second-order definable, i.e. type-1
 variables range over F(K)) over #2(K).

 COROLLARY 1. R is No-definable in L" 2(fexactly) if R is Presburger-definable.
 COROLLARY 2. For any reasonable infinite K e Card, K-satisfiability of formulae of

 L' 2(fexactly) is decidable.
 Form L" 2'3(exactly) from L 1 2(exactly) by introducing a new countable set Var(3)

 of variables of type 3, with the following formation rules:

 If 4 e Var(3) and j e Var(2) then 4(y) is a formula.
 If (p is a formula and 4 e Var(3) then (I4)9 is a formula.
 We extend the definition of l=K by taking type-3 variables to range over F(K), with

 the obvious clause d I=K x(n) iff n e x. The following brings out the fourth-order
 aspect of Ll 2(fexactly). For 9p e Fml(L" 2(fexactly)) and V e Fml(L" 2'3(exactly)),
 where both have free variables among v e 'Var(O), - e mVar(l), - e kVar(2), let 9p be
 K-equivalent to / iff for any model dW of cardinality ? K and any ae- c
 A e mPower(I /I), n e K:

 -#K(p[a;A;{nO},...,{nk-1 iff 'Wk=KV[la;A; nf.

 LEMMA 6. For any infinite K e Card:

 (i) Each formula of L1 2(fexactly) is K-equivalent to a formula of L" 2'3(exactly) in
 which no type-3 variables are free.

 (ii) Each formula of L" 2'3(exactly) in which no type-3 variables are free is K-
 equivalent to a formula of L' 2(fexactly).
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 782 HAROLD HODES

 For op E Fml(L" 2(fexactly)), form (p+ by replacing each ji eVar(2) by a
 new 4 E Var(3) and replacing subformulae of the form (fexactly j v)(p by

 (]ip)(4u) & (exactly j v)V), and iterating this until all occurrences of exactlyl' are

 eliminated; obviously (9+ is as desired. For 9p E Fml(L" 2'3(exactly)) form 90- by re-
 writing each type-3 variable as a new type-2 variable, replacing each occurrence of

 the form (exactly j v)V by unit(j) & (fexactly j v)V, and iterating replacement of

 each subformula of the form (3y)V, where j was of type-2 to begin with, by
 (]i)(unit(j) & /). Here unit(p) abbreviates

 (Vy)(Vy')([(fexactly j v)y(v) & (fexactly j v)y'(v)]

 D (Vi')[(fexactly I' v)y(v) _ (fexactly I' v)y'(v)]);

 so for any model -/ and x E F(K)

 d ==K unit(x) iff x = {n} for some n < K.

 With that fact, it is easy to see that 9p- is as desired.
 Form LI from L2 by introducing Var(1) with the obvious formation rules; when

 interpreted in X2(K), we will take the type-I variables to range only over F(K).
 LEMMA 7. For any reasonable infinite K E Card, R is K-definable in L" 2'3(exactly) itf

 R is definable in LI over 2(K).
 From left to right, this is simply a variant of Theorem 1(i); the type-3 variables in

 L" 2'3(exactly) become the type-I variables in L'. From right to left is trivial.
 Lemmas 6 and 7 yield Theorem 7. For Corollary 1 it suffices to notice that the

 usual quantifier-elimination proof for Presburger arithmetic still works in the

 presence of type-I variables. Thus a relation is definable in LI over '#2(N0) iff it is
 Presburger-definable. The argument for the corollary to Theorem 1(i) also yields

 Corollary 2.

 The following is what motivated this section.

 THEOREM 8. R is NO-definable in L" 2*(fexactly) iJf R is an arithmetical relation
 on No.

 PROOF. Enrich LI 2*(exactly) to Ll 2*(exactly, M) by adding the constant 'M' to
 the logical lexicon with the formation rule

 if H e1,92c- Var(2) then M(u0, u1 j2) is a formula

 and the truth-clause

 d VI=KKM(nO, nj, n2) iff no * nj = n2.

 Code each x E F(No) by t(x) = the sequence number for the increasing sequence of
 elements of x. Construct Seq(y1), Member(yo, yj) E Fml(Ll 2*(exactly, M)) so that
 for any model a? of cardinality 2 NO and any n, m < NO:

 ,? V=K Seq(m) iff m is a sequence-number;

 'd V=K Member (n, m) iff m is a sequence-number and, for some i < lh(m), n = (m)j.
 LEMMA 8. Suppose 9p E Fml(L1 2*(fexactly)) has free variables among v-, a, Hi. There

 is a 9p' E Fml(Ll 2*(exactly, M)) with the same free variables such that for any model

 vd of cardinality ? No, any a E '1,L4, A E ky(J1), and x- E mF(K),

 vW X (p I[a, A,x] v I ff -W V [a, A,t( X]
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 CARDINALITY LOGICS 783

 To form qp', iterate replacing subformulae of (p of the form (gy)V by

 (]i)(Seq(u) & A),

 and those of the form (exactly, j p)o by

 (]u')(Member(u', j) & (exactly [A' p)i),

 where A' e Var(2) and does not occur free in Q. It is easy to see that this does it.
 Form L3(exactly) from L2(exactly) by adding 'M' to its nonlogical lexicon.

 Expand _'2(No) to &3(No) by interpreting 'M' as multiplication.
 LEMMA 9. If R is NO-definable in Ll 2*(exactly, M) then R is definable in L3(exactly)

 over /3(No)
 This is just the construction used to prove Theorem 1 (ii); 'M' rides along, causing

 no trouble.

 Any relation definable in L3(exactly) over Xk3(8o) is really arithmetical (i.e.
 definable in L3 over X13(80)), since all uses of 'exactly' can be eliminated using
 sequence-numbers. This proves Theorem 8 from left to right.

 To prove Theorem 8 from right to left, it suffices to get an NO-definition of
 multiplication on NO in Ll 2*(fexactly). Form Ll 2*,3(exactly) in the obvious way,
 with type-3 variables ranging over F(K) for any K.

 LEMMA 10. For any infinite K E Card, each formula of L 2*,3(exactly) containing
 no free variables of type 3 is K-equivalent to a formula of Ll 2*(fexactly).

 The construction is just like that for Lemma 6(ii).

 Thus it will suffice to give an NO-definition of multiplication in Ll 2* 3(exactly).
 For any j E Var(2) let Z(u) be (Vyu')y < j', where A' is not j. For yi,91, pi2 E Var(2)
 fix new and distinct A, A', ji" e Var(2) and 4 E Var(3); let Max(d, 92), Min(d, go) and
 Between(4, go) be the following formulae:

 '(C2) & (Vj)(4(P) :D f < 12); 4(Co) & (Vj)(4(P) 2D go < j);

 (Vi')(V#i")(Lu' < a" & - (00)yu' < a & j < i ")

 & 4(V) & 4(Pff)] vDA(yf, go, yff))_

 Let Mult(P,., I1, 12) be the following:

 (Z(91) & Z(92))

 v (]4)((exactly y, y)4(y) & Max(d, 12) & Min(d, go) & Between(d, go)).

 It is easy to see that if go, y, and 12 are all distinct, this formula of L' 2* 3(exactly)
 does NO-define multiplication on No.

 COROLLARY 3. The set of NO-satisfiable formulae of Ll 2*(fexactly) is of Turing
 degree 0('O).

 Since all translations were effective, this follows from the argument for Theorem 8.
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