CARDINALITY LOGICS, PART I: INCLUSIONS BETWEEN LANGUAGES BASED ON 'exactly'

Harold HODES
Sage School of Philosophy, Cornell University, Goldwin Smith Hall, Ithaca, NY 14853, USA

Communicated by A. Nerode
Received 11 February 1986; revised 15 March 1987

A connection between higher-order logics and the concept of cardinality has been long recognized; but (as far as I know) it has not been a subject of model-theoretic investigation. This paper begins such an investigation, which is continued in [3]. The philosophical motivation for this project may be culled from [2] and [4]; it seems related to ideas in [1].

To avoid reliance on the Axiom of Choice, we will take cardinals to be Scott-cardinals; that is,

$$
\operatorname{card}(x)=\left\{y: y \subseteq V_{\alpha} \text { and } x \text { is equinumerous with } y\right\}
$$

where α is the least ordinal such that the above set is non-empty. κ is a cardinal iff for some $x \kappa=\operatorname{card}(x)$; Card is the class of cardinals. Card is partially ordered by the injective ordering: for $n, m \in$ Card, $n \leqslant m$ iff for some $x \in n$ and $y \in m$ there is a one-one function from x into y. Let $\kappa \in$ Card be infinite iff some (thus every) $x \in \kappa$ is infinite. For $\kappa, \kappa^{\prime} \in$ Card, let:

$$
\begin{aligned}
& {\left[\kappa, \kappa^{\prime}\right)=\left\{n \in \text { Card: } \kappa \leqslant n<\kappa^{\prime}\right\}} \\
& \left(\kappa, \kappa^{\prime}\right)=\left\{n \in \text { Card: } \kappa<n<\kappa^{\prime}\right\} \\
& {\left[\kappa, \kappa^{\prime}\right]=\left\{n \in \text { Card: } \kappa \leqslant n \leqslant \kappa^{\prime}\right\}}
\end{aligned}
$$

Let κ be an aleph iff κ is infinite and some (thus every) $x \in \kappa$ is well-orderable. Recall these facts:
(1) If $\kappa^{\prime} \leqslant \kappa$ and κ is an aleph, then κ^{\prime} is either finite or an aleph.
(2) These are equivalent: Choice; all infinite cardinals are alephs; \leqslant linearly orders Card.
(3) These are equivalent: all Dedekind-finite sets are finite; for any infinite $\kappa \in$ Card, $\kappa \geqslant \kappa_{0}$.

For more on Scott-cardinals, see [5].
For $\kappa \in$ Card, let $\bar{\kappa}=\{n \in \operatorname{Card}: n<\kappa\}$, $\operatorname{ncb}(\kappa)=\operatorname{card}(\bar{\kappa})=$ the Number of Cardinals Below к. As usual, an ordinal is the set of its predecessors; so $\operatorname{ncb}\left(\aleph_{\xi}\right)=\operatorname{card}(\xi \cup \omega)$.
0168-0072/88/\$3.50 © 1988, Elsevier Science Publishers B.V. (North-Holland)

Remarks on notation. Where convenient, I will ignore the use/mention distinction. Let $x * y$ be the concatination of x and y in that order. Where φ is a formula, v a variable, and τ a term of the same type as $v, \varphi(v / \tau)$ is the result of replacing all free occurrences of v in φ by τ, relettering bound variables in φ if necessary to insure substitutibility. Distinct Greek letters ranging over variables in our object-languages are always assumed to take distinct values: when I say "Consider variables $\mu_{0}, \ldots, \mu_{p-1}, \eta_{0}, \ldots, \eta_{q-1}, v$ " it is understood that these $p+q+1$ variables are all distinct.

1. Cardinality languages and their semantics

Fix the basic logical lexicon $\left\{{ }^{\prime} \perp^{\prime}, ‘ \supset ', ‘ \exists\right.$ ', ' $=$ ' $\}$ and for each $i \in\{1\} \cup\{2 n: n<$ $\omega\}$ fix a countable set $\operatorname{Var}(i)$ of type- i variables, all sets mutually disjoint. Let Pred and Funct be given disjoint sets of predicate-constants and functionconstants respectively, both disjoint from the other lexical categories; for each $n<\omega \operatorname{Pred}(n)$ and $\operatorname{Funct}(n)$ are, respectively, the set of n-place members of Pred and Funct. The set of terms based on Funct, Term(Funct), is generated from Funct and $\operatorname{Var}(0)$ as usual. The class of models for Pred, Funct, is defined as usual. For $\tau \in \operatorname{Term}(F u n c t)$, $\operatorname{den}(\tau)$ is defined as usual, relative to such a model.
1.1. To form $\mathscr{L}^{1, \omega}$ (exactly, \leqslant, Pred, Funct) add 'exactly' and ' \leqslant ' to the basic logical lexicon, with ' \leqslant ' \not Pred. Hereafter we will omit explicit mention of Pred and Funct. The formulae of $\mathscr{L}^{1, \omega}(\underline{\text { exactly }}, \leqslant)$ are defined by the usual formation rules together with the following:
(a) If $\tau \in \operatorname{Term}($ Funct) and $Y \in \operatorname{Var}(1)$, then $\gamma \tau$ is a formula.
(b) If (and only if) $\rho, \mu \in \operatorname{Var}(2 i)$ for $i>0$, then $\rho \leqslant \mu$ is a formula.
(c) If φ is a formula, $\rho \in \operatorname{Var}(2 i)$ and $\mu \in \operatorname{Var}(2 i+2)$, then (exactly $\mu \rho) \varphi$ is a formula.

Note. Any frec occurrence of ρ in φ is bound in (exactly $\mu \rho) \varphi$ by the indicated occurrence of ρ; the indicated occurrence of μ is free and binds nothing. Let $\operatorname{Fml}\left(\mathscr{L}^{1, \omega}(\right.$ exactly,$\left.\leqslant)\right)$ and $\operatorname{Sent}\left(\mathscr{L}^{1, \omega}(\right.$ exactly, $\left.\leqslant)\right)$ be respectively the set of formulae and sentences of $\mathscr{L}^{1, \omega}$ (exactly, \leqslant). Standard abbreviations are in effect, e.g. $\neg \varphi$ for ($\varphi \supset \perp$).

For each $n \in$ Card, fix a distinct constant \mathbf{n} not belonging to any of our lexical classes. Given a model \mathscr{A} for Pred, Funct, form the language $\mathscr{L}_{s, \kappa}^{1, \omega}$ (exactly, \leqslant) by introducing:

- a new individual constant a for each $a \in|\mathscr{A}|$,
- a new 1-place predicate-constant \mathbf{A} for each $A \subseteq|\mathscr{A}|$,
and counting n as a constant of type $2 j+2$ if $n<\operatorname{ncb}^{j}(\kappa)$. For $\varphi \in$ $\operatorname{Sent}\left(\mathscr{L}_{\mathscr{A}, \kappa}^{1, \omega}(\underline{\text { exactly }}, \leqslant)\right)$, we define $\mathscr{A} F_{\kappa} \varphi$ as usual, with these novel clauses:
$\mathscr{A} F_{K} \mathbf{n} \leqslant \mathbf{n}^{\prime} \quad$ iff $n \leqslant n^{\prime}$,
$\mathscr{A} F_{\kappa}(\underline{\text { exactly }} \mathbf{n} v) \varphi$ iff $\quad \operatorname{card}(\hat{v} \varphi)=n$,
$\mathscr{A} F_{\kappa}(\exists \mu) \varphi$ iff for some $n<\operatorname{ncb}^{j}(\kappa) \mathscr{A} F_{\kappa} \varphi(\mu / \mathbf{n})$,
where $\mu \in \operatorname{Var}(2 j+2)$ and:

$$
\begin{aligned}
& \text { if } v \in \operatorname{Var}(0), \quad \hat{v} \varphi=\left\{a \in|\mathscr{A}|: \mathscr{A} F_{\kappa} \varphi(v / \mathbf{a})\right\}, \\
& \text { if } v \in \operatorname{Var}(2 j+2), \quad \hat{v} \varphi=\left\{n<\operatorname{ncb}^{j}(\kappa): \mathscr{A} F_{\kappa} \varphi(v / \mathbf{n})\right\} .
\end{aligned}
$$

Let $\mathscr{A} \vDash \varphi$ iff $A F_{\text {card }(\mathscr{A})} \varphi$.
Where the free variables in φ of type- 0 are among v_{0}, \ldots, v_{m-1}, the free variables in φ of type $\geqslant 2$ are among $\mu_{0}, \ldots, \mu_{t-1}, \vec{a} \in|\mathscr{A}|^{m}$ and $\vec{n} \in \bar{\kappa}^{\prime}$, we will write $\varphi[\vec{a}, \vec{n}]$ for $\varphi\left(v_{0} / \mathbf{a}_{0}, \ldots, v_{m-1} / \mathbf{a}_{m-1}, \mu_{0} / \mathbf{n}_{0}, \ldots, \mu_{l-1} / \mathbf{n}_{l-1}\right)$ provided that for $\mu_{j} \in \operatorname{Var}(2 k+2), n_{j}<\operatorname{ncb}^{k}(\kappa)$, for all $j<l$.

For $k<\omega$, let $\mathscr{L}^{1,2 k}$ (exactly, \leqslant) be the sublanguage of $\mathscr{L}^{1, \omega}$ (exactly, \leqslant) resulting from dropping all variables of type- $2 j$ for $j>k$. Let $\mathscr{L}^{0, \omega}(\underline{\text { exactly }}, \leqslant)$ be the sublanguage of $\mathscr{L}^{1, \omega}$ (exactly, \leqslant) formed by dropping use of type-1 variables. For $i<2$ and $k<\omega$, let $\mathscr{L}^{0,2 k}$ (exactly, \leqslant) be the sublanguage of $\mathscr{L}^{0, \omega}$ (exactly, \leqslant) formed by dropping use of all variables of type $>2 k$. Since 'exactly' and ' \leqslant ' do not occur in formulae of $\mathscr{L}^{i, 0}(\underline{\text { exactly }}, \leqslant)$, let that language be \mathscr{L}^{i}.
1.2. The model-theoretic semantics just presented may be thought of as a fragment of higher-order logic in which, for a given model, variables of type $\geqslant 2$ range over certain quantifiers over that model. More precisely, we could have introduced languages in which formulae of the form (exactly $\mu \rho$) φ were replaced by $(\mu \rho) \varphi$, and defined satisfaction so that in \mathscr{A}, variables of type $2 i+2$ ranged over ${ }^{2 i+2} \operatorname{EXACTLY}(\kappa)$, letting:

$$
\begin{aligned}
& { }^{2} Q(n)^{\kappa}=\{A \subseteq|\mathscr{A}|: \operatorname{card}(A)=n\}, \\
& { }^{2} \mathrm{EXACTLY}(\kappa)=\left\{{ }^{2} Q(n)^{\kappa}: n<\kappa \quad \text { and } \quad{ }^{2} Q(n)^{\kappa} \text { is non-empty }\right\}, \\
& { }^{2 i+2} Q(n)^{\kappa}=\left\{Q \subseteq \subseteq^{2 i} \mathrm{EXACT}(\kappa): \operatorname{card}(Q)=n\right\}, \\
& { }^{2 i+2} \operatorname{EXACT}(\kappa)=\left\{\left\{^{2 i+2} Q(n)^{\kappa}: n<\operatorname{ncb}^{i}(\kappa) \text { and }{ }^{2 i+2} Q(n)^{\kappa}\right.\right. \\
& \text { is non-empty }\}, \\
& \mathscr{A} \vDash^{2 i+2} \mathbf{Q}(\mathbf{n}) \leqslant{ }^{2 i+2} \mathbf{Q}\left(\mathbf{n}^{\prime}\right) \quad \text { iff } n \leqslant n^{\prime}, \\
& \mathscr{A} \vDash\left({ }^{2 i+2} \mathbf{Q} \rho\right) \varphi \text { iff } \hat{\rho} \varphi \in^{2 i+2} Q .
\end{aligned}
$$

(Here if $i \geqslant 1$ then $\hat{\rho} \varphi=\left\{{ }^{2 i} Q: \mathscr{A} \vDash \varphi\left(\rho /{ }^{2 i} \mathbf{Q}\right)\right\}$.)
If $\operatorname{card}(\mathscr{A}) \geqslant \kappa$, then for every $j>\omega$ the map $n \mapsto^{2 j+2} Q(n)^{\kappa}$ is a $1-1$ correspondence between $\overline{\mathrm{ncb}^{j}(\kappa)}$ and ${ }^{2 j+2} \mathrm{EXACT}(\kappa)$; therefore truth in \mathscr{A} under F_{κ} for sentences of $\mathscr{L}^{1, \omega}$ (exactly, \leqslant) is an alternative representation of truth in \mathscr{A} under the semantics just sketched. The semantics just presented carries a type-structure, since if $0<i<j$, and ${ }^{2 i} Q(n)^{\kappa}$ and ${ }^{2 j} Q(n)^{\kappa}$ are both non-empty, ${ }^{2 i} Q(n)^{\kappa} \neq{ }^{2 j} Q(n)^{K}$; this semantic typing is erased in the semantics for $\mathscr{L}^{1, \omega}($ exactly,$\leqslant)$, under which variables of type $2 i$ are assigned simply to $n<\mathrm{ncb}{ }^{i-1}(\kappa)$, rather than to ${ }^{2 i} Q(n)^{\kappa}$. The semantic type-structure in the former semantics does no work; so it is more convenient to work with $\mathscr{L}^{1, \omega}$ (exactly, \leqslant).
1.3. We will now consider another hierarchy of languages in which final parts of
the syntactic type-structure of $\mathscr{L}^{1, \omega}$ (exactly, \leqslant) are collapsed. For $0<k<\omega$, the
 The formation-rules for $\mathscr{L}^{1,2 k *}\left(\underline{\text { exactly }}, \leqslant\right.$) are like those for $\mathscr{L}^{1,2 k}$ (exactly, \leqslant), with this addition:

- if $\mu, \rho \in \operatorname{Var}(2 k)$ and φ is a formula, then (exactly $\mu \rho) \varphi$ is a formula. Given \mathscr{A} and $\kappa \in$ Card, form $\mathscr{L}_{A, \kappa}^{1,2 k *}$ (exactly, \leqslant) as before.
The definition of $\mathscr{A} F_{\kappa} \varphi$ for $\varphi \in \operatorname{Sent}\left(\mathscr{L}_{\mathscr{A}, \kappa}^{1,2 k *}(\right.$ exactly,$\left.\leqslant)\right)$ proceeds as before. Notice that for $\mu \in \operatorname{Var}(2 k)$, (exactly $\mu \mu) \varphi$ is well-formed; the semantics makes the two indicated occurrences of μ function as if they were occurrences of distinct variables; the left-most occurrence of μ is free in (exactly $\mu \mu) \varphi$; the second occurrence is not free and binds all occurrences of μ free in φ.

We form $\mathscr{L}^{0.2 k *}(\underline{\text { exactly }}, \leqslant)$ from $\mathscr{L}^{1,2 k *}(\underline{\text { exactly }}, \leqslant)$ by dropping $\operatorname{Var}(1)$.
1.4. For languages $\mathscr{L}, \mathscr{L}^{\prime}$ as above and $\varphi \in \operatorname{Sent}(\mathscr{L}), \psi \in \operatorname{Sent}\left(\mathscr{L}^{\prime}\right)$, we adopt these definitions:
(a) φ is K-equivalent to ψ iff for all models \mathscr{A} for Pred, Funct with $\operatorname{card}(\mathscr{A}) \geqslant \kappa: \mathscr{A} F_{\kappa} \varphi$ iff $\mathscr{A} F_{\kappa} \psi$.
(b) φ is equivalent to ψ iff for all infinite models \mathscr{A} for Pred, Funct: $\mathscr{A} F \varphi$ iff $\mathscr{A} \mid \psi$.
(c) φ is equivalent ${ }_{k}$ to ψ iff for all models \mathscr{A} for Pred, Funct of cardinality $\kappa: \mathscr{A} \vDash \varphi$ iff $\mathscr{A} F \psi$.
(d) φ is super-equivalent to ψ iff for all infinite κ, φ is κ-equivalent to ψ.

We now define these inclusion relations:
$\mathscr{L} \stackrel{\kappa}{\prec} \mathscr{L}^{\prime}$ iff for each $\varphi \in \operatorname{Sent}(\mathscr{L})$ there is a κ-equivalent $\psi \in \operatorname{Sent}\left(\mathscr{L}^{\prime}\right)$;
$\mathscr{L} \prec \mathscr{L}^{\prime} \quad$ iff for each $\varphi \in \operatorname{Sent}(\mathscr{L})$ there is an equivalent $\psi \in \operatorname{Sent}\left(\mathscr{L}^{\prime}\right)$;
$\mathscr{L} \widehat{\kappa} \mathscr{L}^{\prime} \quad$ iff \quad for each $\varphi \in \operatorname{Sent}(\mathscr{L})$ there is an equivalent ${ }_{\kappa} \psi \in \operatorname{Sent}\left(\mathscr{L}^{\prime}\right)$;
$\mathscr{L} \stackrel{s}{\sim} \mathscr{L}^{\prime}$ iff for each $\varphi \in \operatorname{Sent}(\mathscr{L})$ there is a super-equivalent $\psi \in \operatorname{Sent}\left(\mathscr{L}^{\prime}\right)$; $\mathscr{L} \stackrel{\kappa}{\sim} \mathscr{L}^{\prime} \quad$ iff $\mathscr{L} \stackrel{\kappa}{\leftarrow} \mathscr{L}^{\prime}$ and $\mathscr{L}^{\prime} \stackrel{\kappa}{\kappa} \mathscr{L}$;
similarly for $\mathscr{L} \nprec \mathscr{L}^{\prime}, \mathscr{L} \stackrel{H}{\kappa}_{\mathscr{L}^{\prime}}$, and $\left.\mathscr{L}\right)^{\text {s }} \mathscr{L}^{\prime}$. Then:

and so:

2. The basic inclusions

2.1. For $i<2$, clearly:
(1) $\mathscr{L}^{i} \xrightarrow{\mathrm{~s}} \mathscr{L}^{i, 2}(\underline{\text { exactly }}, \leqslant) \stackrel{\mathrm{s}}{\mathscr{L}^{i, 4}}(\underline{\text { exactly }}, \leqslant) \xrightarrow[\sim]{\mathrm{s}} \cdots \stackrel{\mathrm{s}}{\mathscr{L}^{i, \omega}}(\underline{\text { exactly }}, \leqslant)$.

This hierarchy of order-type $\omega+1$ continues with order-type of converse $(\omega)=$ ω^{*} :

$$
\begin{equation*}
\mathscr{L}^{i, \omega}(\underline{\text { exactly }}, \leqslant) \xrightarrow[s]{s} \cdots \mathscr{S}^{i, 4 *}(\underline{\text { exactly }}, \leqslant) \xrightarrow{\mathrm{s}} \cdots \stackrel{\mathrm{~s}}{\sim} \mathscr{L}^{i, 2 *}(\underline{\text { exactly }}, \leqslant) . \tag{2}
\end{equation*}
$$

To see this, for $0<k<\omega$ we adopt these abbreviations:

$$
\begin{array}{ll}
\mathrm{ncb}^{k}=\rho: & (\underline{\text { exactly } \rho} \eta) \neg \perp \\
\mathrm{ncb}^{k} \geqslant \mu: \quad(\forall \rho)\left(\underline{\left.\mathrm{ncb}^{k}=\rho \supset \mu \leqslant \rho\right)}\right.
\end{array}
$$

for $\mu, \eta, \rho \in \operatorname{Var}(2 k)$. If $k=1$, we will omit the superscript. Clearly $\underline{n c b}^{k} \geqslant \mu$ is a formula of $\mathscr{L}^{0,2 k *}($ exactly,$\leqslant)$, and for every $n<\operatorname{ncb}^{k-1}(\kappa)$ and any model $\mathscr{A}: \mathscr{A} F_{\kappa} \underline{\mathrm{ncb}}{ }^{k} \geqslant \mathbf{n}$ iff $n \leqslant \mathrm{ncb}^{k}(\kappa)$. Claim: for $1 \leqslant k<\omega$:

$$
\mathscr{L}^{i, 2 k+2 *}(\underline{\text { exactly }}, \leqslant) \stackrel{s}{s} \mathscr{L}^{i, 2 k *}(\underline{\text { exactly }}, \leqslant)
$$

Given $\varphi \in \operatorname{Sent}\left(\mathscr{L}^{i, 2 k+2 *}(\underline{\text { exactly }}, \leqslant)\right)$, for each $\mu \in \operatorname{Var}(2 k+2)$ occurring in φ introduce a distinct $\mu^{\prime} \in \overline{\operatorname{Var}(2 k)}$ not occurring in φ; form φ^{\prime} as follows: first replace all occurrences of each μ as above by μ^{\prime}; then restrict all prefexes binding μ^{\prime} by ($\mathrm{ncb}^{k} \geqslant \mu^{\prime}$), i.e. replace subformulae of the form $\left(\exists \mu^{\prime}\right) \psi$ and exactly $\left.\rho \mu^{\prime}\right) \psi$ by $\left(\exists \mu^{\prime}\right)\left(\right.$ ncb $\left.^{k} \geqslant \mu^{\prime} \& \psi\right)$ and (exactly $\left.\rho \mu^{\prime}\right)\left(\right.$ ncb $\left.^{k} \geqslant \mu^{\prime} \& \psi\right)$ respectively. This establishes our claim. If $\varphi \in \operatorname{Sent}\left(\mathscr{L}^{i, \omega}(\right.$ exactly, $\leqslant)$), fix k so that $\varphi \in \operatorname{Sent}\left(\mathscr{L}^{i, 2 k+2}\right.$ (exactly, $\left.\leqslant\right)$). If $1 \leqslant j \leqslant k \quad$ we have $\psi \in \operatorname{Sent}\left(\mathscr{L}^{i, 2 k+2 *}\right.$ (exactly, \leqslant)); also:

$$
\mathscr{L}^{i, 2 k+2 *}(\underline{\text { exactly }}, \leqslant) \xrightarrow{\mathrm{s}} \cdots \stackrel{\mathrm{~s}}{\mathscr{L}^{i, 2 j^{*}}}(\underline{\text { exactly }}, \leqslant) .
$$

So φ is expressible in $\mathscr{L}^{i, 2 j *}$ (exactly, \leqslant), yielding the desired inclusion hierarchy.
Form $\mathscr{L}^{i, 2 k}$ (exactly) from $\mathscr{L}^{i, 2 k}$ (exactly, \leqslant) by dropping ' \leqslant ' from the logical lexicon. Form $\mathscr{L}^{i, 2 k}$ (exactly, $=$) from $\mathscr{L}^{i, 2 k}$ (exactly) by changing the formationrule for formulae by permitting ' $=$ ' to occur between all variables of type- $2 i$ for $i \geqslant k$, giving such atomic formulae the obvious satisfaction conditions. Form $\mathscr{L}^{i, \omega}\left(\underline{\text { exactly })}, \mathscr{L}^{i, 2 k *}(\underline{\text { exactly }}), \mathscr{L}^{i, \omega}(\underline{\text { exactly }},=)\right.$, and $\mathscr{L}^{i, 2 k *}(\underline{\text { exactly }},=)$ in the same way.

It should be obvious that an inclusion-hierarchy like (1) also holds for languages of the form $\mathscr{L}^{i, 2 k}$ (exactly, $=$) and $\mathscr{L}^{i, 2 k}$ (exactly). It seems that one like (2) does not hold for languages of the form $\mathscr{L}^{i, 2 k *}$ (exactly, $=$) and $\mathscr{L}^{i, 2 k *}$ (exactly). The rub is that ' \leqslant ' is needed in $\underline{n c b}^{k} \geqslant \mu$. However it should be clear that for any
$k<\omega:$ if $\operatorname{ncb}^{k}(\kappa)=\operatorname{ncb}^{k+1}(\kappa)$, then:

$$
\begin{aligned}
& \mathscr{L}^{i, \omega}(\underline{\text { exactly }},=) \stackrel{\kappa}{\kappa} \cdots \stackrel{\kappa}{\swarrow} \mathscr{L}^{i, 2 k+4 *}(\underline{\text { exactly }},=) \stackrel{\kappa}{\prec} \mathscr{L}^{i, 2 k+2 *}(\underline{\text { exactly }},=), \\
& \mathscr{L}^{i, \omega}(\underline{\text { exactly }}) \stackrel{\kappa}{\hookrightarrow} \cdots \stackrel{\kappa}{\hookrightarrow} \mathscr{L}^{i, 2 k+4 *}(\underline{\text { exactly }}) \stackrel{\kappa}{\hookrightarrow} \mathscr{L}^{i, 2 k+2 *}(\underline{\text { exactly }}) .
\end{aligned}
$$

These observations will be strengthened in $\S 4.6$ and $\S 4.7$.
2.2. There is no fragment of the semantics for higher-order logic related to the semantics given in $\S 1.3$ as that from $\S 1.1$ is related to that sketched in $\S 1.2$. But the Axiom of Choice makes the semantics from both $\$ 1.1$ and $\S 1.3$ into fragments of the semantics of second-order logic. Fix a countable set $\operatorname{Var}((0,0))$ of type- $(0,0)$ variables. For $x \in\{2 k: k<\omega\} \cup\{\omega\} \cup\{2 k *: k>\omega\}$, we form $\mathscr{L}^{(0,0), x}($ exactly,$\leqslant)$ by adding $\operatorname{Var}((0,0))$ to the lexicon $\mathscr{L}^{i, x}($ exactly, $\leqslant)$ with the obvious new formation rules and the obvious semantics in which, relative to \mathscr{A}, type- $(0,0)$ variables range over $\mathscr{P}\left(|\mathscr{A}|^{2}\right)$. As in $\S 2.1$, all the languages from $\S 1.1$ and $\S 1.3$ are super-included in (i.e. bear $\stackrel{\text { s }}{ }$ to) $\mathscr{L}^{(0,0), 2 *}$ (exactly, \leqslant). In fact, these languages are no stronger than $\mathscr{L}^{(0,0)}$ in the following sense.

Observation. For $\varphi \in \operatorname{Sent}\left(\mathscr{L}^{(0,0), 2 *}(\right.$ exactly, $\left.\leqslant)\right)$ there is a $\varphi^{\prime} \in \operatorname{Fml}\left(\mathscr{L}^{(0,0)}\right)$ containing exactly one free type-1 variable so that for any model \mathscr{A} and $A \subseteq|\mathscr{A}|$ with $\operatorname{card}(A)=\kappa$:

$$
\mathscr{A} F_{\kappa} \varphi \text { iff } \quad \mathscr{A} \vDash \varphi^{\prime}(\mathbf{A}) .
$$

Thus $\mathscr{L}^{(0,0), 2^{*}}$ (exactly, $\left.\leqslant\right) \succ \mathscr{L}^{(0,0)}$, since where Y is the type- 1 variable free in φ^{\prime}, we may replace each subformula of φ^{\prime} of the form γv by ' $\neg \perp$ '.

Let a κ-standard for \mathscr{A} have the form $\left\langle R, a_{0}\right\rangle$ where $R \subseteq|\mathscr{A}|^{2}, a_{0} \in|\mathscr{A}|$, $a_{0} \notin \operatorname{RightFld}(R)$, and:

$$
\begin{aligned}
& \text { for each } n \in \bar{\kappa}-\{0\} \text { there is a unique } a_{n} \in|\mathscr{A}| \text { so that } \\
& \text { card }\left\{a:\left\langle a, a_{n}\right\rangle \in R\right\}=n \text {. }
\end{aligned}
$$

By choice, if $\operatorname{card}(\mathscr{A}) \geqslant \kappa$, then there is a κ-standard for \mathscr{A}. For $Y^{\prime} \in$ $\operatorname{Var}(0,0), v_{0} \in \operatorname{Var}(0)$ and $Y \in \operatorname{Var}(1)$ therc is a $\operatorname{Std}\left(Y^{\prime}, v_{0}, Y\right) \in \operatorname{Fml}\left(\mathscr{L}^{(0,0)}\right)$ so that for any \mathscr{A} and $A \subseteq|\mathscr{A}|$ with $\operatorname{card}(A)=\kappa$:

$$
\mathscr{A} \vDash \operatorname{Std}(\mathbf{R}, \mathbf{a}, \mathbf{A}) \text { iff }\langle R, a\rangle \text { is a } \kappa \text {-standard for } \mathscr{A} .
$$

Given $\varphi \in \operatorname{Sent}\left(\mathscr{L}^{(0,0), 2 *}\right.$ (exactly, $\left.\leqslant\right)$) not containing Y^{\prime}, v_{0} or Y, it is not hard to form $\hat{\varphi} \in \operatorname{Fml}\left(L^{(0,0)}\right)$ in which Y^{\prime}, v_{0} and Y are free and so that for any model \mathscr{A} :
if $\left\langle R, a_{0}\right\rangle$ is a κ-standard for \mathscr{A} :

$$
\mathscr{A} F_{K} \varphi \quad \text { iff } \quad \mathscr{A} \vDash \hat{\varphi}\left(\mathbf{R}, \mathbf{a}_{0}\right) .
$$

Let φ^{\prime} be $\left(\exists Y^{\prime}\right)\left(\exists v_{0}\right)\left(\operatorname{Std}\left(Y^{\prime}, v_{0}, Y\right) \& \hat{\varphi}\right)$.

As is well known, adding variables of type $(0,0)$ gives the expressive power of full second-order logic: any variables of type $(0, \ldots, 0)$, with $1<n$ occurrences of ' 0 ', can be replaced by variables of type 1 applied to n-tuples formed set-theoretically; then the ' ϵ ' used in specifying n-tuples can be quantified out by a type $(0,0)$ variable restricted by the axioms of pairs and extensionality; this preserves equivalence.
2.3. Type- 1 variables can render ' \leqslant ' superfluous.

Observation. (i) $\mathscr{L}^{1,2}(\underline{\text { exactly }}, \leqslant) \overbrace{s}^{s} \mathscr{L}^{1,2}$ (exactly),
(ii) $\mathscr{L}^{1,2 *}(\underline{\text { exactly }}, \leqslant) \stackrel{s}{s}_{\mathscr{L}^{1,2 *}}$ (exactly).

Furthermore, if κ is an aleph, then for $1<k<\omega$:
(iii) $\mathscr{L}^{1,2 k}(\underline{\text { exactly }}, \leqslant) \stackrel{\kappa}{\stackrel{\kappa}{\sim}} \mathscr{L}^{1,2 k}(\underline{\text { exactly }), ~}$
(iv) $\mathscr{L}^{1,2 k *}(\underline{\text { exactly }}, \leqslant) \upharpoonright^{\kappa} \mathscr{L}^{1,2 k}(\underline{\text { exactly })}$.

Proof. For $\mu, \rho \in \operatorname{Var}(2)$, replace $(\mu \leqslant \rho)$ by:

$$
\left(\exists Y_{0}\right)\left(\exists Y_{1}\right)\left((\underline{\text { exactly }} \mu v) Y_{0} v \&(\underline{\text { exactly }} \rho v) Y_{1} v \&(\forall v)\left(Y_{0} v \supset Y_{1} v\right)\right)
$$

where $Y_{0}, Y_{1} \in \operatorname{Var}(1)$ are distinct. This suffices for (i) and (ii). For $\mu, \rho \in$ $\operatorname{Var}(2 j+2), 0<j<\omega$, let $\left(\mu \leqslant{ }_{j} \rho\right)$ abbreviate:

$$
\left(\exists \mu^{\prime}\right)\left(\exists \rho^{\prime}\right)\left((\underline{\text { exactly }} \mu \eta) \eta \leqslant \mu^{\prime} \&(\underline{\text { exactly }} \rho \eta) \eta \leq \rho^{\prime} \& \mu^{\prime} \leqslant \rho^{\prime}\right)
$$

If κ is an aleph for any model \mathscr{A} and $n, m<\operatorname{ncb}^{j}(\kappa)$:

$$
\mathscr{A} F_{K} \mathbf{n} \leqslant_{j} \mathbf{m} \quad \text { if } n \leqslant m .
$$

Given $\varphi \in \operatorname{Sent}\left(\mathscr{L}^{1,2 k+2}\right.$ (exactly, $\left.\leqslant\right)$) for $0<k$, replace all subformulae of φ of the form $(\mu \leqslant \rho)$ for $\mu, \rho \in \operatorname{Var}(2 k+2)$ by $\left(\mu \leqslant_{k} \rho\right)$. If $1<k$, then replace subformulae of the form $(\mu \leqslant \rho)$ for $\mu, \rho \in \operatorname{Var}(2 k)$ by $\left(\mu \leqslant_{k-1} \rho\right)$; repeat until this for all subformulae of the form $(\mu \leqslant \rho), \mu, \rho \in \operatorname{Var}(2)$; replace these as we did for (i). This establishes (iii); the same construction also yields (iv).

This procedure is independent of κ; so the axiom of choice entails that for $1<k<\omega$:
(v) $\left.\mathscr{L}^{1,2 k}(\underline{\text { exactly }}, \leqslant)\right)^{\mathrm{s}} \mathscr{L}^{1,2 k}(\underline{\text { exactly }})$,
(vi) $\mathscr{L}^{1,2 k *}(\underline{\text { exactly }}, \leqslant) \stackrel{ }{ }^{\mathrm{s}} \mathscr{L}^{1,2 k *}(\underline{\text { exactly }})$.
2.4. For variables μ and μ^{\prime} of type $\geqslant 2$ let $\mu=\mu^{\prime}$ and $\mu<\mu^{\prime}$ abbreviate the obvious formulae. For $k<\omega$ it is easy to construct formulae $\operatorname{Lim}^{k}(\mu), G_{0}(\mu)$, $\boldsymbol{E}_{0}(\mu)$ and $\boldsymbol{F i n}(\mu)$ meeting these conditions for any model \mathscr{A}. For any aleph k and $n<K$:
$\mathscr{A} \vdash_{\kappa} \operatorname{Lim}^{k}(\mathbf{n})$ iff either $n=0$ or for some α and β,

$$
n=\aleph_{\alpha} \quad \text { and } \quad \alpha=\omega^{k} \cdot \beta
$$

$\mathscr{A} F_{K} G_{0}(\mathbf{n})$ iff $\aleph_{0} \leqslant n$ (iff n is Dedekind-infinite);
and if $\aleph_{0} \leqslant \kappa$, then:

$$
\begin{aligned}
& \mathscr{A} F_{K} \boldsymbol{E}_{0}(\mathbf{n}) \quad \text { iff } \quad \aleph_{0}=n ; \\
& \mathscr{A} F_{K} \operatorname{Fin}(\mathbf{n}) \quad \text { iff } \quad n \text { is finite. }
\end{aligned}
$$

For $k<\aleph_{0}$ we want a contextually defined quantifier-expression exactly k and a 'predicate' $k=$ so that:
$\mathscr{A} F_{k}(\underline{e x a c t l y} k v) \varphi \quad$ iff $\quad \operatorname{card}(\hat{v} \varphi)=k ;$
for any $n<\kappa, \quad \mathscr{A} F_{\kappa} k=\mathbf{n}$ iff $k=n$.
Here is one way to do this. Where $v, v^{\prime} \in \operatorname{Var}(2 j)$ and v^{\prime} does not occur free in φ, adopt these abbreviations:

$$
\text { (exactly } 0 v) \varphi: \quad \neg(\exists v) \varphi ;
$$

(exactly $k+1 v) \varphi: \quad\left(\exists v^{\prime}\right)\left(\varphi\left(v / v^{\prime}\right) \&(\underline{\text { exactly } k} v)\left(\varphi \& v \neq v^{\prime}\right)\right)$.
For $\mu \in \operatorname{Var}(2)$ and distinct $\nu, v_{0} \in \operatorname{Var}(0)$:

$$
\begin{array}{ll}
\underline{0=\mu}: & \underline{(\text { exactly } \mu v) \perp} \\
\underline{k+1}=\mu: & \left(\forall v_{0}\right) \cdots\left(\forall v_{k}\right)\left(\left(\bigwedge_{i<j \leqslant k} v_{i} \neq v_{j}\right) \supset(\underline{\text { exactly }} \mu v)\left(\bigvee_{i \leqslant k} v=v_{i}\right)\right)
\end{array}
$$

For $\mu \in \operatorname{Var}(2 j+2), \rho \in \operatorname{Var}(2 j)$ with $0<j<\omega$:

$$
\begin{array}{ll}
\underline{0}=\mu: & (\underline{\text { exactly }} \mu \rho) \perp \\
\underline{k+1}=\mu: & (\underline{\text { exactly }} \mu \rho)\left(\bigvee_{i \leqslant k} \underline{i=} \rho\right)
\end{array}
$$

Notice: if φ is a formula of $\mathscr{L}^{i, 2 j}$ (exactly, \leqslant), then (1) so is (exactly $\left.k v\right) \varphi$; but as just defined, (2) it uses ' $=$ ' between variables of type $\geqslant 2$ when v is of type $\geqslant 2$. Using these definitions, for $\mu \in \operatorname{Var}(2 j)$ with $j>0$, and $1 \leqslant k<\omega$, adopt this abbreviation:

$$
\boldsymbol{E}_{k}(\mu): \quad(\exists \eta)\left(\boldsymbol{G}_{0}(\eta) \&(\underline{\text { exactly } k} \rho)(\eta \leqslant \rho \& \rho<\mu)\right)
$$

Thus for $\kappa \geqslant \mathcal{K}_{0}$ and $n<\kappa: \mathscr{A} F_{\kappa} \boldsymbol{E}_{l}(\mathbf{n})$ iff $n=\aleph_{l}$.
Feature (2) of our definition of (exactly $k v$) φ may be avoided, provided we
consider only infinite κ, by adopting this abbreviation:
$(\underline{\text { exactly } k} v) \varphi: \quad(\exists \mu)(\underline{k=\mu} \&(\underline{\text { exactly }} \mu v) \varphi)$.
But for $v \in \operatorname{Var}(2 j)$, the right-hand side either requires $\mu \in \operatorname{Var}(2 j+2)$, making (exactly $k v) \varphi \notin \operatorname{Fml}\left(\mathscr{L}^{i, 2 j}(\right.$ exactly,$\left.\leqslant)\right)$, or else it requires $\mu \in \operatorname{Var}(2 j)$, making (exactly $k \mu) \varphi \notin \operatorname{Fml}\left(\mathscr{L}^{i, \omega}(\right.$ exactly,$\leqslant)$). The second kind of abbreviation, taking $\mu \in \operatorname{Var}(2 j+2)[\operatorname{var}(2 j)]$ will be used in $\$ 4.1$ [\$4.2].
2.5. Observation. If κ is finite, then $\mathscr{L}^{i, 2^{*}(}(\underline{\text { exactly }}, \leqslant) \stackrel{\kappa}{\prec} \mathscr{L}^{i}$.

Proof is left to the reader; the important thing to see is that if ρ is a variable of type $\geqslant 2$ and $k<\kappa$, then (exactly $k \rho) \psi$ is replaced by $\bigvee\{\theta(b): b \subseteq \bar{\kappa}, \operatorname{card}(b)=$ $k\}$, where $\theta(b)$ is:

$$
\bigwedge\{\varphi(\rho / \mathbf{k}): k \in b\} \& \bigwedge\{\neg \varphi(\rho / \mathbf{k}): \kappa \in \bar{\kappa}-b\} .
$$

Hereafter κ shall always be an infinite cardinal.
2.6. This section concerns assertion of identity across types. For $0<i<\omega$, $\rho \in \operatorname{Var}(2 i), \mu \in \operatorname{Var}(2 i+2)$ let:

$$
\rho={ }_{2 i} \mu: \quad(\underline{e x a c t l y} \mu v) v<\rho,
$$

where $v \in \operatorname{Var}(2 i)$ is distinct from ρ. If $\mathrm{ncc}^{i-1}(\kappa)=\kappa_{0}$ and either n or m is finite:

$$
\mathscr{A} F_{k} \mathbf{n}==_{2 i} \mathbf{m} \text { iff } n=m .
$$

This idea will now be pushed a little further. For $k<\omega$ let $\rho=_{2, k} \mu$ abbreviate:

$$
\begin{aligned}
& \left((\operatorname{Fin}(\rho) \vee \operatorname{Fin}(\mu)) \supset \rho=_{2 i} \mu\right) \\
& \&\left(\neg(\operatorname{Fin}(\rho) \vee \operatorname{Fin}(\mu)) \supset \bigvee_{l<k}\left(\boldsymbol{E}_{l}(\rho) \& \boldsymbol{E}_{l}(\mu)\right)\right.
\end{aligned}
$$

Thus: if $n c b^{i-1}(\kappa)=\kappa_{k}$ and either n or $m<\aleph_{k}$:

$$
\mathscr{A} F_{K} \mathbf{n}==_{2 i, k} \mathbf{m} \quad \text { iff } \quad n=m .
$$

Note that $\rho={ }_{2 i, 0} \mu$ is just $\rho={ }_{2 i} \mu$.
Where $\alpha<\omega^{\omega}$, let the Cantor-coefficient sequence for \aleph_{α} be $\left\langle n_{0}, \ldots, n_{q}\right\rangle$, where $\quad \alpha=\omega^{q} \cdot n_{q}+\cdots+\omega \cdot n_{1}+n_{0}$. For $\quad 0<j<\omega, \quad \rho \in \operatorname{Var}(2 j)$ and $\mu_{0}, \ldots, \mu_{q-1} \in \operatorname{Var}(2 j+2)$, there is a $\boldsymbol{C c}^{q}\left(\rho, \mu_{0}, \ldots, \mu_{q-1}\right) \in \operatorname{Fml}\left(\mathscr{L}^{0,2 j+2}\right.$ (exactly, \leqslant)) so that for any $n<\mathcal{K}_{\omega^{9}} \leqslant \kappa$ and $n_{0}, \ldots, n_{q-1}<\mathcal{K}_{0}$:
$\mathscr{A} F_{\kappa} \boldsymbol{C c}^{q}\left(\mathbf{n}, \mathbf{n}_{0}, \ldots, \mathbf{n}_{q-1}^{-1}\right)$ iff $\left\langle n_{0}, \ldots, n_{q-1}\right\rangle$ is the
Cantor-coefficient sequence for n.
For $\rho, \rho^{\prime} \in \operatorname{Var}(2 j)$ and $0<k<\omega$ let $M^{k}\left(\rho, \rho^{\prime}\right)$ say " ρ^{\prime} is the maximum cardinal
of the form $\aleph_{\omega^{k} \cdot \beta}$ that is $\leqslant \rho^{\prime \prime}$. Let $\boldsymbol{C}^{q}\left(\rho, \mu_{0}, \ldots, \mu_{q-1}\right)$ be:

$$
\left(\exists \rho_{1}\right) \cdots\left(\exists \rho_{q-1}\right)\left(\bigwedge_{u<k<q} M^{k}\left(\rho, \rho_{k}\right)\right.
$$

$\&\left(\right.$ exactly $\left.\mu_{q-1} v\right)\left(\operatorname{Lim}^{q-1}(v) \& 0<v \& v \leqslant \rho_{q-1}\right)$
$\&\left(\underline{\text { exactly }} \mu_{q-2} v\right)\left(\boldsymbol{L i m}^{q-2}(v) \& \rho_{q-1}<v \& v \leqslant \rho_{q-2}\right)$
$\& \cdots \&\left(\underline{\text { exactly }} \mu_{1} v\right)\left(\operatorname{Lim}^{1}(v) \& \rho_{2}<v \& v \leqslant \rho_{1}\right)$
$\&\left(\right.$ exactly $\left.\left.\mu_{0} v\right)\left(\rho_{1}<v \& v \leqslant \rho\right)\right)$,
where $v, \rho_{0}, \ldots, \rho_{q-1} \in \operatorname{Var}(2 j)$. It is easy to see that $\boldsymbol{C c}^{q}$ is as required. For $\rho \in \operatorname{Var}(2 j)$ and $\mu \in \operatorname{Var}(2 j+2)$, let $\rho=_{2 j, q}^{\prime} \mu$ abbreviate:

$$
\begin{aligned}
& \left(\exists \rho_{0}\right) \cdots\left(\exists \rho_{q-1}\right)\left(\exists \mu_{0}\right) \cdots\left(\exists \mu_{q-1}\right) \\
& \left(\bigwedge_{i<q} \operatorname{Fin}\left(\rho_{i}\right) \& \bigwedge_{i<q} \rho_{i}=_{2 j} \mu_{i} \& \boldsymbol{C c}^{q}(\rho, \vec{\rho}) \& \boldsymbol{C c}^{q}(\mu, \vec{\mu})\right),
\end{aligned}
$$

for $\rho_{0}, \ldots, \rho_{q-1} \in \operatorname{Var}(2 j+2), \mu_{0}, \ldots, \mu_{q-1} \in \operatorname{Var}(2 j+4)$. Then for any κ, any $n, m<\operatorname{ncb}^{j-1}(\kappa)$ and any model \mathscr{A}, if either n or $m<\aleph_{\omega^{q}}$:

$$
\mathscr{A} F_{K} \mathbf{n}={ }_{2 j, q}^{\prime} \mathbf{m} \quad \text { iff } \quad n=m
$$

2.7. This section describes cases in which final segments of the inclusionhierarchy described in $\S 2.1$ collapse (with respect to expressive power) to a lower language.

Collapsing Theorem. Suppose $\kappa \in$ Card is an aleph, $i \in 2$ and $1 \leqslant k<\omega$.
(i) If $\mathrm{ncb}^{k}(\kappa)<\mathcal{K}_{\omega}$, then $\mathscr{L}^{i, 2 k *}(\underline{\text { exactly }}, \leqslant) \stackrel{\kappa}{\mathscr{L}} \mathscr{L}^{i, 2 k+2}(\underline{\text { exactly }}, \leqslant)$.
(ii) If $\operatorname{ncb}^{k}(\kappa)<\mathcal{K}_{\omega^{\omega}}$, then $\mathscr{L}^{i, 2 k *}($ exactly,$\leqslant) \stackrel{\kappa}{\prec} \mathscr{L}^{i, 2 k+4}(\underline{\text { exactly }}, \leqslant)$.

So, for example, if $\kappa<\mathcal{N}_{\omega}$, then hierarchy of type $\omega+1+\omega^{*}$ going from $\mathscr{L}^{1,6}($ exactly,$\leqslant)$ through $\mathscr{L}^{1, \omega}($ exactly,$\leqslant)$ up to $\mathscr{L}^{1,2 *}($ exactly,$\leqslant)$ collapses down to $\mathscr{L}^{i, 4}$ (exactly, \leqslant): under F_{K} these languages have equal expressive power.

Proof. We will consider the case of $k=1$. Suppose $\operatorname{ncb}(\kappa)=\aleph_{q}$ for $q<\omega$. Given $\varphi \in \operatorname{Sent}\left(\mathscr{L}^{i, 2 *}(\underline{\text { exactly }}, \leqslant)\right)$ form φ^{\prime} by replacing each subformula of φ of the form (exactly $\mu \rho) \psi$ for $\mu, \rho \in \operatorname{Var}(2)$ by:
$\left(\exists \mu^{\prime}\right)\left(\left(\right.\right.$ exactly $\left.\left.\mu^{\prime} \rho\right) \psi^{\prime} \& \mu==_{2, q+1} \mu^{\prime}\right)$,
where $\mu^{\prime} \in \operatorname{Var}(4)$ does not occur free in ψ^{\prime}. To see that φ^{\prime} is as required, note the following. For (exactly $\mu \rho) \psi \in \operatorname{Fml}\left(\mathscr{L}^{i, 2^{*}}(\underline{\text { exactly }}, \leqslant)\right)$ with μ the only free variable, and for any \mathscr{A} and $n<\kappa$:

$$
\left.\mathscr{A} F_{K}(\underline{\text { exactly }} \mathbf{n} \rho) \psi \quad \text { iff } \quad \mathscr{A} F_{K}\left(\exists \mu^{\prime}\right)\left(\left(\underline{\text { exactly }} \mu^{\prime} \rho\right) \psi \& \mathbf{n}={ }_{2, q+1} \mu^{\prime}\right)\right)
$$

this is because the left-hand side implies that $n \leqslant \operatorname{ncb}(\kappa)$, since $\hat{\rho} \psi \subseteq \bar{\kappa}$, and so $\mathscr{A} F_{K} \mathbf{n}={ }_{2 i, q+1} \mathbf{n}$, yielding the right-hand side; to go from right to left, notice that for any $n, n^{\prime}<\kappa$: if $\mathscr{A} F_{K} \mathbf{n}={ }_{2 i, q+1} \mathbf{n}^{\prime}$, then $n=n^{\prime} \leqslant \mathcal{N}_{q}$.

Now suppose $\operatorname{ncb}(\kappa)=\aleph_{\alpha}$ for $\alpha<\omega^{\omega}$; let $q<\omega$ be least so that $\alpha<\omega^{q}$. Given $\varphi \in \operatorname{Sent}\left(\mathscr{L}^{i, 2 *}(\right.$ exactly,$\leqslant)$), form φ^{\prime} by replacing each subformula of φ of the form (exactly $\mu \rho) \psi$ for $\mu, \rho \in \operatorname{Var}(2)$ by:

$$
\left(\exists \mu^{\prime}\right)\left(\left(\text { exactly } \mu^{\prime} \rho\right) \psi^{\prime} \& \mu==_{2, q}^{\prime} \mu^{\prime}\right)
$$

where $\mu^{\prime} \in \operatorname{Var}(4)$ and does not occur free in ψ^{\prime}. The reason why φ^{\prime} works is as above, using the fact that for any $n, n^{\prime} \in \bar{K}$: if $\mathscr{A} F_{\kappa} \mathbf{n}={ }_{2, q}^{\prime} \mathbf{n}^{\prime}$, then $n=n^{\prime}<\mathcal{K}_{\omega^{q}}$.

For $1<k<\omega$, replace types 2 and 4 by types $2 k$ and $2 k+2$ respectively in the preceding argument.

3. The hierarchy problem

3.1. A proof of the following conjecture would be the best possible complement to the Collapsing Theorem of $\S 2.7$.

Conjecture. For any $i \in 2$ and $1 \leqslant k<\omega$ there are Pred and Funct so that:
(1a) For every infinite $k \in$ Card,

$$
\mathscr{L}^{i, 4}(\underline{\text { exactly })}) \nless \mathscr{L}^{i, 2}(\underline{\text { exactly }}, \leqslant) .
$$

(1b) If $k>1$, for every κ with $\aleph_{\omega} \leqslant \mathrm{ncb}^{k-1}(\kappa)$,

$$
\mathscr{L}^{i, 2 k+2}(\text { exactly }) \kappa_{\kappa} \mathscr{L}^{i, 2 k}(\underline{\text { exactly }}, \leqslant)
$$

(2) For every κ with $\aleph_{\omega^{\omega}} \leqslant \operatorname{ncb}^{k}(\kappa)$,

$$
\mathscr{L}^{i, 2 k *}(\underline{\text { exactly }}){ }_{\kappa}^{\kappa} \mathscr{L}^{i, 2 k+2 *}(\underline{\text { exactly }}, \leqslant)
$$

We will prove (1a) for $i=0$. Fix Pred $=\left\{\mathbf{R}_{0}, \mathbf{R}_{1}\right\}$, with \mathbf{R}_{0} and \mathbf{R}_{1} both 2-place, and let Funct be empty. Let $\varphi_{0,2}$ be:

$$
\begin{aligned}
& (\forall \mu)\left((\text { exactly } \mu \rho)\left(\exists v_{0}\right)(\underline{\text { exactly }} \rho v) \mathbf{R}_{0}\left(v_{0}, v\right)\right. \\
& \left.\quad \equiv(\underline{\text { exactly }} \mu \rho)\left(\exists v_{0}\right)(\text { exactly } \rho v) \mathbf{R}_{1}\left(v_{0}, v\right)\right) .
\end{aligned}
$$

Clearly $\varphi_{0,2} \in \operatorname{Sent}\left(\mathscr{L}^{0,4}(\underline{\text { exactly })})\right.$.
Theorem. For any infinite $\kappa \in \operatorname{Card}, \varphi_{0,2}$ is equivalent $\boldsymbol{\kappa}_{\kappa}$ to no sentence of $\mathscr{L}^{0,2}(\underline{\text { exactly }}, \leqslant)$.

Before the proof, some conjectures deserve mention.

Fix Pred $=\left(\mathbf{R}_{0}, \mathbf{R}_{1}, \mathbf{R}_{2}, \mathbf{R}_{3}\right\}$, all 2-place. Let $\varphi_{0,4}$ be:
$(\forall \mu)\left[(\underline{\text { exactly }} \mu \rho)\left(\exists v_{1}\right)(\underline{\text { exactly }} \rho \eta)\left(\exists v_{0}\right)\left(\mathbf{R}_{1}\left(v_{1}, v_{0}\right) \&(\underline{\text { exactly } \eta} \eta) \mathbf{R}_{0}\left(v_{0}, v\right)\right)\right.$
$\equiv(\underline{\text { exactly }} \mu \rho)\left(\exists v_{1}\right)(\underline{\text { exactly }} \rho \eta)\left(\exists v_{0}\right)\left(\mathbf{R}_{3}\left(v_{1}, v_{0}\right) \&\left(\underline{\left.\left.\text { exactly } \eta v) \mathbf{R}_{2}\left(v_{0}, v\right)\right)\right] . ~ . ~ . ~}\right.\right.$
(Here $\mu \in \operatorname{Var}(6), \rho \in \operatorname{Var}(4), \eta \in \operatorname{Var}(2), v, v_{0}, v_{1} \in \operatorname{Var}(0)$.)
Conjecture (A). This choice of $\varphi_{0,4}$ meets the conditions required in (1b) for $i=0, k=2$.

The sequence $\varphi_{0,2}, \varphi_{0,4}$, extends, following the obvious pattern, to include likely candidates for (1b) when $i=0$ and $k>2$.

Where Pred $=\{\mathbf{P}, \mathbf{R}\}, \mathbf{P}$ 1-place and $\mathbf{R} 2$-place, let $\varphi_{0,2}^{*}$ be:
$(\forall \mu)\left((\right.$ exactly $\left.\mu \rho)\left(\exists v_{0}\right)(\underline{\text { exactly }} \rho v) \mathbf{R}\left(v_{0}, v\right) \equiv(\underline{\text { exactly }} \mu v) \mathbf{P} v\right)$,
for $\mu, \rho \in \operatorname{Var}(2), v_{0}, v \in \operatorname{Var}(0)$ and distinct.
Conjecture (B). This choice of $\varphi_{0,2}^{*}$ meets the conditions required by (2) for $i=0, k=1$.

Similarly, let $\varphi_{0,4}^{*}$ be:

$$
\begin{aligned}
& (\forall \mu)\left[(\underline{\text { exactly }} \mu \rho)\left(\exists v_{1}\right)(\underline{\text { exactly }} \rho \eta)\left(\mathbf{R}_{1}\left(v, v_{0}\right) \&(\underline{\text { exactly }} \eta v) \mathbf{R}_{0}\left(v_{0}, v\right)\right)\right. \\
& \left.\quad \equiv(\underline{\text { exactly }} \mu \rho)\left(\exists v_{0}\right)(\underline{\text { exactly }} \rho v) \mathbf{R}_{2}\left(v_{0}, v\right)\right]
\end{aligned}
$$

it seems likely that this is as required by (2) for $i=0, k=2$. This pattern also extends to yield likely candidates for (2) when $i=0$ and $k>2$.

The $\varphi_{0,2}$ above is expressible in $\mathscr{L}^{1,2}$ (exactly). To see this, let $\psi_{i}(Y)$ be:

$$
\begin{aligned}
& (\forall \rho)\left(\left(\underline{\text { exactly } 1} v_{0}\right)\left(Y v_{0} \&(\underline{\text { exactly }} \rho v) \mathbf{R}_{i}\left(v_{0}, v\right)\right)\right. \\
& \quad \equiv\left(\exists v_{0}\right)\left(\underline{\text { exactly } \left.\rho v) \mathbf{R}_{i}\left(v_{0}, v\right)\right)}\right.
\end{aligned}
$$

where $Y \in \operatorname{Var}(1):$ then for any infinite $\kappa, n<\kappa$ and any model \mathscr{A} for $\left\{\mathbf{R}_{0}, \mathbf{R}_{1}\right\}$, $\mathscr{A} F_{\kappa}(\exists Y) \psi_{i}(Y)$; furthermore, if

$$
\mathscr{A} \mathfrak{F}_{\kappa}(\underline{\text { exactly }} \mathbf{n} \rho)\left(\exists v_{0}\right)(\underline{\text { exactly }} \rho v) \mathbf{R}_{i}\left(v_{0}, v\right),
$$

then for any $B \subseteq|\mathscr{A}|: \mathscr{A} F_{\kappa} \psi_{i}[B]$ iff $\operatorname{card}(B)=n$. Thus

$$
\begin{aligned}
& \left(\exists Y_{0}\right)\left(\exists Y_{1}\right)\left(\psi_{0}\left(Y_{0}\right) \& \psi_{1}\left(Y_{1}\right)\right. \\
& \&(\forall \mu)\left(\left(\underline{\text { exactly } \left.\left.\mu v) Y_{0} v \equiv(\underline{\text { exactly }} \mu v) Y_{1} v\right)\right)}\right.\right.
\end{aligned}
$$

is super-equivalent to $\varphi_{0,2}$. But the idea behind the construction of $\varphi_{0,2}$ suggests the following. Fix $\left(\mathbf{R}_{0}, \mathbf{R}_{1}, \mathbf{R}_{2}, \mathbf{R}_{3}\right\}$, all 2-place; let $\varphi_{1,2}$ be:
$(\forall \mu)\left[(\underline{e x a c t l y} \mu \rho)\left(\exists v_{0}\right)\left(\exists v_{1}\right)(\operatorname{exactly} \rho v)\left(\mathbf{R}_{0}\left(v_{0}, v\right) \& \mathbf{R}_{1}\left(v_{1}, v\right)\right)\right.$
$\left.\equiv(\underline{\text { exactly }} \mu \rho)\left(\exists v_{0}\right)\left(\exists v_{1}\right)(\underline{\operatorname{exactly}} \rho v)\left(\mathbf{R}_{2}\left(v_{0}, v\right) \& \mathbf{R}_{3}\left(v_{1}, v\right)\right)\right]$.

Conjecture (C). This $\varphi_{1,2}$ meet the requirements of (1a) for $i=1$.

The idea behind this suggestion extends to yield likely candidates to meet the requirements of (1) and (2) when $i>1$.
3.2. To prove Theorem 3.1, we will use Ehrenfeucht-games for languages of the form $\mathscr{L}^{0,2}$ (exactly, \leqslant, Pred, Funct). Given models $\mathscr{A}_{0}, \mathscr{A}_{1}$ for Pred, Funct, $q<\omega$ and $\kappa \in$ Card, we consider the game $G=G_{\kappa}^{0,2}$ (exactly, \leqslant, Pred, Funct, $\mathscr{A}_{0}, \mathscr{A}_{1}, q$). A position p in G is a finite sequence of 'exchanges, between players I and II with $|p| \leqslant q$; each such p is associated with a 'situation' $h(p)=$ $\left\langle h_{0}(p), h_{1}(p)\right\rangle$, where for $i \in 2$:

$$
h_{i}(p)=\left\langle\vec{a}_{i}, \vec{n}_{i}\right\rangle \quad \text { for } \vec{a}_{i} \in|\mathscr{A}|^{l(0)}, \quad \vec{n}_{i} \in \bar{\kappa}^{l(2)}, \quad|p|=l(0)+l(2) .
$$

Play of G begins at $\left\rangle\right.$, with $h_{i}(\langle \rangle)=\langle\langle \rangle,\langle \rangle\rangle$. Suppose that play of G has reached p, with $|p|=q^{\prime} \leqslant q$. Fix $v_{0}, \ldots, v_{l(0)-1} \in \operatorname{Var}(0), \mu_{0}, \ldots, \mu_{l(2)-1} \in$ $\operatorname{Var}(2)$. If $q^{\prime}=q$, play is over; II wins iff for every atomic formula φ of $\mathscr{L}^{0,2}$ (exactly, \leqslant) with free variables among those listed:

$$
\mathscr{A}_{0} F_{\kappa} \varphi\left[h_{0}(p)\right] \quad \text { iff } \quad \mathscr{A}_{1} F_{\kappa} \varphi\left[h_{1}(p)\right] .
$$

Now suppose $q^{\prime}<q$. I initiates an exchange of one of three sorts. In what follows, p^{\prime} shall be the position reached at the end of the exchange.
(1) I selects $i \in 2$ and $a_{i, l(0)} \in\left|\mathscr{A}_{i}\right|$; II must select an $a_{1-i, l(0)} \in\left|\mathscr{A}_{1-i}\right|$; then for $j \in 2, h_{j}\left(p^{\prime}\right)=\left\langle\vec{a}_{j} * a_{j, l(0)}, \vec{n}_{j}\right\rangle$.
(2) I selects $i \in 2$ and $n_{i, l(2)} \in \bar{\kappa}$; II must select an $n_{1-i, l(2)} \in \bar{\kappa}$; then for $j \in 2$, $h_{j}\left(p^{\prime}\right)=\left\langle\vec{a}_{j}, \vec{n}_{j} * n_{j, l(2)}\right\rangle$.
(3) I selects $i \in 2, w<l(2)$ and $B_{i} \subseteq\left|\mathscr{A}_{i}\right|$ with $\operatorname{card}\left(B_{i}\right)=n_{i, w}$; II must select $B_{1-i} \subseteq\left|\mathscr{A}_{1-i}\right|$ with $\operatorname{card}\left(B_{1-i}\right)=n_{1-i, w}$. I then selects an $a_{1-i, l(0)} \in\left|\mathscr{A}_{1-i}\right| ;$ II selects $a_{i, l(0)} \in\left|\mathscr{A}_{i}\right|$ so that $a_{0, l(0)} \in B_{0}$ iff $a_{1, l(0)} \in B_{1}$; if II can't do this, she loses; for $j \in 2$, $h_{j}\left(p^{\prime}\right)=\left\langle\vec{a}_{j} * a_{j, l(0)}, \vec{n}_{j}\right\rangle$.

Lemma 1. If II has a winning strategy for G, then for every $\varphi \in$ $\operatorname{Sent}\left(\mathscr{L}^{0,2}(\right.$ exactly,$\leqslant)$), if quantifier-depth $(\varphi) \leqslant q, \mathscr{A}_{0} F_{K} \varphi$ iff $\mathscr{A}_{1} F_{\kappa} \varphi$.

Before proving this, we will consider another sort of game.
Let \mathscr{A} be a model for Pred, Funct and $\varphi \in \operatorname{Fml}\left(\mathscr{L}^{0,2}(\right.$ exactly, $\left.\leqslant)\right)$ with free variables among $v_{0}, \ldots, v_{l(0)-1} \in \operatorname{Var}(0), \mu_{0}, \ldots, \mu_{l(2)-1} \in \operatorname{Var}(2)$. For convenience, suppose that each variable ρ occurring in φ is bound at at most one occurrence, i.e. occurs at most once in a prefex of the form ($\exists \rho$) or (exactly $\mu \rho$). Fix $\vec{a} \in|\mathscr{A}|^{l(0)}, \vec{n} \in \bar{\kappa}^{l(2)}$. We describe the game $\operatorname{SAT}_{\kappa}(\varphi, \mathscr{A}, \vec{a}, \vec{n})$ inductively. There are two players, I and II, and two hats, TRUE and FALSE. At any position, each player wears one hat, and the other the other; at a position, the players shall be referred to by the hats they wear.

If φ is atomic, play is over; TRUE wins iff $\mathscr{A} F_{\kappa} \varphi[\vec{a}, \vec{n}]$. If φ is $\left(\varphi_{0} \supset \varphi_{1}\right)$,

TRUE picks $i<2$; if $i=1$ they go on to play $\operatorname{SAT}_{\kappa}\left(\varphi_{1}, \mathscr{A}, \vec{a}, \vec{n}\right)$ with hats as they are; if $i=0$ they switch hats and go on to play $\operatorname{SAT}_{\kappa}\left(\varphi_{0}, \mathscr{A}, \vec{a}, \vec{n}\right)$. If φ is $\left(\exists v_{l(0)}\right) \varphi_{0}$, TRUE picks $a_{I(0)} \in|\mathscr{A}|$; with hats as they are, they go on to play $\operatorname{SAT}_{\kappa}\left(\varphi_{0}, \mathscr{A}, \vec{a} * a_{l(0)}, \vec{n}\right)$. If φ is $\left(\exists \mu_{l(2)}\right) \varphi_{0}$ TRUE picks $n_{l(2)} \in \bar{\kappa}$; they go on to play $\operatorname{SAT}_{\kappa}\left(\varphi_{0}, \mathscr{A}, \vec{a}, \vec{n} * n_{l(2)}\right)$. If φ is (exactly $\left.\mu_{w} v_{l(0)}\right) \varphi_{0}$, TRUE selects $B \subseteq|\mathscr{A}|$
 on to play $\operatorname{SAT}_{\kappa}\left(\varphi_{0}, \mathscr{A}, \vec{a} * a_{l(0)}, \vec{n}\right)$. Since this game is finite, it is determined.

Lemma 2. $\mathscr{A} F_{\kappa} \varphi[\vec{a}, \vec{n}]$ iff TRUE has a winning strategy for $\operatorname{SAT}_{\kappa}\left(\varphi_{0}, \mathscr{A}, \vec{a}, \vec{n}\right)$.
Proof is straightforward. Where φ is (exactly $\left.\mu_{w} v_{l(0)}\right) \varphi_{0}$, think of TRUE's choice of B as a claim that $B=\hat{v}_{l(0)} \varphi_{0}[\vec{a}, \vec{n}]$; so if FALSE takes $a_{l(0)} \in B$, TRUE must defend the claim that $a_{l(0)} \in \hat{v}_{l(0)} \varphi_{0}[\vec{a}, \vec{n}]$; otherwise TRUE must refute that claim-and so must put on the FALSE hat for $\operatorname{SAT}_{\kappa}\left(\varphi_{0}, \mathscr{A}, \vec{a}, \vec{n}\right)$.

We now describe I's strategy for G. Until I wins, I associates each position p in G with a formula φ_{p}, depth $\left(\varphi_{p}\right) \leqslant q-|p|$, so that for $h(p)$ as above:

$$
\mathscr{A}_{0} F_{\kappa} \varphi_{p}\left[\vec{a}_{0}, \vec{n}_{0}\right] \quad \text { iff } \quad \mathscr{A}_{1} \not \psi_{\kappa} \varphi_{p}\left[\vec{a}_{1}, \vec{n}_{1}\right] .
$$

Let $\varphi_{\langle \rangle}=\varphi$. Suppose p has been reached, $|p|=q^{\prime}$. If φ_{p} is truth-functionally compound I first finds a non-truth-functionally compound truth-functional component of $\varphi_{p}, \varphi_{p}^{\prime}$, so that:

$$
\mathscr{A}_{0} F_{K} \varphi_{p}^{\prime}\left[\vec{a}_{0}, \vec{n}_{0}\right] \quad \text { iff } \quad \mathscr{A} \not \forall_{K} \varphi_{p}^{\prime}\left[\vec{a}_{1}, \vec{n}_{1}\right] .
$$

Otherwise let $\varphi_{p}^{\prime}=\varphi_{p}$.
Suppose that no p^{*} with $\varphi_{p^{*}}$ of the form (exactly $\left.\mu v\right) \psi$ has yet been reached; I selects $i<2$ so that $\mathscr{A}_{\mathrm{i}} F_{\kappa} \varphi_{p}^{\prime}\left[\vec{a}_{i}, \vec{n}_{i}\right]$. If φ_{p}^{\prime} is $\left(\exists v_{l(0)}\right) \psi$ I selects $a_{i, l(0)}$ so that $\mathscr{A}_{i} F_{\kappa} \psi\left[\vec{a}_{i} * a_{i, l(0)}, \vec{n}_{i}\right]$ and sets $\varphi_{p^{\prime}}=\psi$. No matter what $a_{1-i, l(0)}$ II takes, $\mathscr{A}_{1-i} \forall_{\kappa} \psi\left[\vec{a}_{1-i} * a_{1-i, l(0)}, \vec{n}_{i}\right]$. If φ_{p}^{\prime} is $\left(\exists \mu_{l(2)}\right) \psi$, I again plays a witnessing $n_{i, l(2)}$; no matter what $n_{1-i, l(2)}$ II takes, $\mathscr{A}_{1-i} \#_{K} \psi\left[\vec{a}_{1-i}, \vec{n}_{1-i} * n_{1-i, l(2)}\right]$. If φ_{p}^{\prime} is (exactly $\left.\mu_{w} v_{l(0)}\right) \psi$, I plays $B_{i}=\hat{v}_{l(0)} \psi\left[\vec{a}_{i}, \vec{n}_{i}\right]^{\mathscr{A}_{i}}$ and $w ; \operatorname{card}\left(B_{i}\right)=n_{i, w}$; no matter what B_{1-i} II picks, if $\operatorname{card}\left(B_{1-i}\right)=n_{1-i, w}$ then $B_{1-i} \neq \hat{v}_{l(0)} \psi\left[\vec{a}_{1-i}, \vec{n}_{1-i}\right]^{\not \mathscr{A}_{1-i}}$; so I may select $a_{1-i, \ell(0)}$ in their symmetric difference. No matter what $a_{i, \mu(0)}$ II now takes, since II must have $a_{0, l(0)} \in B_{0}$ iff $a_{1, l(1)} \in B_{1}: \mathscr{A}_{0} F_{\kappa} \psi\left[\vec{a}_{0} * a_{0, l(0)}, \vec{n}_{0}\right]$ iff $\mathscr{A}_{1} \psi_{\kappa} \psi\left[\vec{a}_{1} * a_{1, l(0)}, \vec{n}_{1}\right]$. Let $\varphi_{P^{\prime}}=\psi$.

As soon as the above sort of exchange takes place, I changes his approach: he pretends to be playing both:

$$
\begin{aligned}
& \operatorname{SAT}_{0}=\operatorname{SAT}_{\kappa}\left(\psi, \mathscr{A}_{0}, \vec{a}_{0} * a_{0, l(0)}, \vec{n}_{0}\right) \\
& \operatorname{SAT}_{1}=\operatorname{SAT}_{\kappa}\left(\psi, \mathscr{A}_{1}, \vec{a}_{1} * a_{1, l(())}, \vec{n}_{1}\right)
\end{aligned}
$$

For $j \in 2$, let TRUE_{j} and FALSE_{j} be the hats from SAT_{j}. Fix $j \in 2$ so that $\mathscr{A}_{j} F_{\kappa} \psi\left[\vec{a}_{j} * a_{j, l(0)}, \vec{n}_{j}\right]$. I begins SAT_{j} wearing TRUE_{j} and SAT_{1-j} wearing the FALSE $_{1-j}$. By Lemma 2, I has winning strategies for SAT_{0} and SAT_{1}. At all subsequent positions, I wears TRUE $_{0}$ iff I wears FALSE $_{1}$. Suppose play has
reached p, where for some p^{*} an initial segment of p, p^{*} initiated I's change of approach. Suppose that I is wearing $\operatorname{TRUE}_{k_{0}}$ and $\operatorname{FALSE}_{1-k_{0}}$. If φ_{p} is not a conditional, in G I plays k_{0} and lets $\varphi_{p}^{\prime}=\varphi_{p}$. If φ_{p} is $\psi_{0} \supset \psi_{1}$, in his pretend play of $\mathrm{SAT}_{k_{0}}$, I chooses $i_{0} \in 2$ according to his strategy for $\mathrm{SAT}_{k_{0}}$. In the pretended play of $\mathrm{SAT}_{1-k_{0}}$, I pretends that TRUE $\mathrm{T}_{1-k_{0}}$ also plays i_{0}. Let $\theta_{1}=\psi_{i_{0}}$. Let k_{1} be such that after these moves, I wears $\operatorname{TRUE}_{k_{1}}$ and FALSE $_{1-k_{1}}$. Iterate this until a θ_{z} is reached which is not a conditional; I is, of course, wearing $\operatorname{TRUE}_{k_{z}}$ and FALSE $_{1-k_{z}}$. I plays $i=k_{z}$ in G and lets $\varphi_{p}^{\prime}=\theta_{z}$. Thus $\mathscr{A}_{i} F_{\kappa} \varphi_{p}^{\prime}\left[\vec{a}_{i}, \vec{n}_{i}\right]$ and $\mathscr{A}_{1-i} \#_{K}\left[\vec{a}_{1-i}, \vec{n}_{1-i}\right]$. I now moves in the pretended play of SAT_{i} as dictated by his strategy in that game; he makes the same move in G. II responds in G; then I pretends that this response is TRUE_{1-i} 's move in SAT_{1-i}. If φ_{p}^{\prime} was of the form (exactly $\left.\mu_{w} v\right) \psi$, we are not yet done; I responds in SAT_{1-i} according to his strategy there, and makes that move in G; II responds in G; I regards this as FALSE_{i} 's response in SAT_{i}. Thus we preserve the following at each such p :

I wears TRUE ${ }_{i}$ and $\mathscr{A}_{i} \vDash_{K} \varphi_{p}\left[\vec{a}_{i}, \vec{n}_{i}\right] ;$
I wears FALSE ${ }_{1-i}$ and $\mathscr{A}_{1-i} \forall_{\kappa} \varphi_{p}\left[\vec{a}_{1-i}, \vec{n}_{1-i}\right]$.
The last φ_{p} to be defined is atomic and witnesses I's victory in the play of G.
It is important to notice that in the proof of Lemma 2 nothing would be lost by requiring that in exchanges of the third sort, I select B_{i} of the form $\hat{v}_{l(0)} \varphi\left[\vec{a}_{i}, \vec{n}_{i}\right]^{x_{i}}$ for some φ with depth $(\varphi) \leqslant q-q^{\prime}$. Hereafter we take $G_{\kappa}^{0,2}\left(\mathscr{A}_{0}, \mathscr{A}_{1}, q\right)$ to involve this constraint on I's moves.

One other sort of game needs to be mentioned. Where $\vec{\alpha}_{1}, \vec{\alpha}_{1} \in \omega^{l}, \overrightarrow{\boldsymbol{\alpha}}_{i}=$ $\left\langle\alpha_{i, 0}, \ldots, \alpha_{i, l-1}\right\rangle$, let $\left\langle\alpha_{0}, \alpha_{1}\right\rangle$ be 0 -congruent iff for all $w, u<l: \alpha_{0, w}<\alpha_{0, u}$ iff $\alpha_{1, w}<\alpha_{1, u}$. Let $M\left(\vec{\alpha}_{0}, \vec{\alpha}_{1}, q\right)$ be the Ehrenfeucht game on $\langle\omega,<\mid \omega\rangle$ with 'situation' function g, played as follows. Play starts at \rangle, with $g(\rangle)=$ $\left\langle\vec{\alpha}_{0}, \vec{\alpha}_{1}\right\rangle$. Let p be a position with $g(p)=\left\langle\vec{\beta}_{0}, \vec{\beta}_{1}\right\rangle$. If $\left|\vec{\beta}_{0}\right|=l+q$, play is over; II wins if $g(p)$ is 0 -congruent. If $m=\left|\vec{\beta}_{0}\right|<l+q$, I chooses $i \in 2$ and n with $0<n<q-(l+m)$, and $\beta_{i, m}, \ldots, \beta_{i, m+n-1} \in \omega$; II selects $\beta_{1-i, m}, \ldots$, $\beta_{1-i, m+n-1} \in \omega$; where p^{\prime} is the resulting position, let:

$$
g\left(p^{\prime}\right)=\left\langle\vec{\beta} *\left\langle\beta_{0, m}, \ldots, \beta_{0, m+n-1}\right\rangle, \vec{\beta}_{1} *\left\langle\beta_{1, m}, \ldots, \beta_{1, m+n-1}\right\rangle\right\rangle
$$

For $\alpha, \beta, n \in \omega$, let:

$$
\alpha \sim_{n} \beta \quad \text { iff either } \alpha=\beta<n \quad \text { or } \alpha, \beta \geqslant n .
$$

Let $\left\langle\vec{\alpha}_{0}, \vec{\alpha}_{1}\right\rangle$ be n-congruent iff it is 0 -congruent and for any $w, u<l: \mid \alpha_{0, u}-$ $\alpha_{0, w}\left|\sim_{2^{n}}\right| \alpha_{1, u}-\alpha_{1, w} \mid$. The following is easy to prove:

II has a winning strategy for $M\left(\vec{\alpha}_{0}, \vec{\alpha}_{1}, q\right)$ iff $\left\langle\vec{\alpha}_{0}, \vec{\alpha}_{1}\right\rangle$ is q-congruent.
3.3. Proof of Theorem 3.1. Fix a set I of cardinality κ. Consider $t_{0}, t_{1}<\omega, 0<t_{l}$ for $i \in 2$, and an increasing sequence $\left\langle y_{j}\right\rangle_{j<t_{0}+t_{1}}$ in ω with $0<y_{0}$. Letting
$W=\left\langle t_{0}, t_{1},\left\langle y_{j}\right\rangle_{j<t_{0}+t_{1}}\right\rangle$, an array for W has the form:

$$
\left\langle\left\langle Y_{\alpha, j}\right\rangle_{\alpha \in I, j<t_{0}+t_{1}},\left\langle Z_{\alpha, j}\right\rangle_{\alpha \in I, j<t_{0}+t_{1}}\right\rangle
$$

where any two sets in these sequences are disjoint in every possible way, i.e.:

- for all $\alpha, \alpha^{\prime} \in I$ and $j, j^{\prime}<t_{0}+t_{1}: Y_{\alpha, j} \cap Z_{\alpha^{\prime}, j}$ is empty;
- for all distinct $\alpha, \alpha^{\prime} \in I$ and distinct $j, j^{\prime}<t_{0}+t_{1}: Y_{\alpha, j} \cap Y_{\alpha, j^{\prime}}, \quad Y_{\alpha, j} \cap Y_{\alpha^{\prime}, j}$, $Y_{\alpha, j} \cap Y_{\alpha^{\prime}, j^{\prime}}, Z_{\alpha, j} \cap Z_{\alpha, j^{\prime}}, Z_{\alpha, j} \cap Z_{\alpha^{\prime}, j,}, Z_{\alpha, j} \cap Z_{\alpha^{\prime}, j^{\prime}}$ are empty; and
- for all $\alpha \in I$ and $j<t_{0}+t_{1}: \operatorname{card}\left(Y_{\alpha, j}\right)=\kappa, \operatorname{card}\left(Z_{\alpha, j}\right)=y_{j}$.

Such an array determines the sequence $\left\langle A, R_{0}, R_{1}, E_{0}, E_{1}, F_{0}, F_{1}, f\right\rangle$ where:

$$
\begin{aligned}
& A=\bigcup\left\{Y_{\alpha, j} \cup Z_{\alpha, j}: \alpha \in I, j<t_{0}+t_{1}\right\}, \\
& R_{0}=\bigcup\left\{Y_{\alpha, j} \times Z_{\alpha, j}: \alpha \in I, j<t_{0}\right\} \\
& R_{1}=\bigcup\left\{Y_{\alpha, j} \times Z_{\alpha, j}: \alpha \in I, t_{0} \leqslant j<t_{0}+t_{1}\right\}, \\
& E_{0}=\bigcup\left\{Y_{\alpha, j} \times Y_{\alpha, j}: \alpha \in I, j<t_{0}\right\}, \\
& E_{1}=\bigcup\left\{Y_{\alpha, j} \times Y_{\alpha, j}: \alpha \in I, t_{0} \leqslant j<t_{0}+t_{1}\right\}, \\
& F_{0}=\bigcup\left\{Z_{\alpha, j} \times Z_{\alpha, j}: \alpha \in I, j<t_{0}\right\}, \\
& F_{1}=\bigcup\left\{Z_{\alpha, j} \times Z_{\alpha, j}: \alpha \in I, t_{0} \leqslant j<t_{0}+t_{1}\right\}, \\
& f(a)=j \text { for } a \in Y_{\alpha, j} \cup Z_{\alpha, j} \text { for any } \alpha \in A .
\end{aligned}
$$

\mathscr{A} is a W-model if \mathscr{A} is a model for $\left\{\mathbf{R}_{0}, \mathbf{R}_{1}, \mathbf{E}_{0}, \mathbf{E}_{1}, \mathbf{F}_{0}, \mathbf{F}_{1}\right\}$, all 2-place, where an array for W determines the sequence:

$$
\langle | \mathscr{A}\left|, \mathbf{R}_{0}^{\mathscr{A}}, \mathbf{R}_{1}^{\mathscr{A}}, \mathbf{E}_{0}^{\mathscr{A}}, \mathbf{E}_{1}^{\mathscr{A}}, \mathbf{F}_{0}^{\mathscr{A}}, \mathbf{F}_{1}^{\mathscr{A}}, f_{\mathscr{A}}\right\rangle .
$$

Clearly for $l \in 2$:

$$
\mathscr{A} F_{K}(\underline{\text { exactly }} \mathbf{n} \rho)\left(\exists v_{1}\right)\left(\underline{\text { exactly }} \rho v_{0}\right) \mathbf{R}_{l}\left(v_{1}, v_{0}\right) \quad \text { iff } n=t_{l} .
$$

Thus $\mathscr{A} F_{\kappa} \varphi_{0,2}$ iff $t_{0}=t_{1}$. Our approach to Theorem 3.1 will be: given $q<\omega$, find W_{0} and W_{1} where $W_{1}=\left\langle t_{0}, t_{0}+1,\left\langle y_{j}\right\rangle_{j<2 t_{0}+1}\right\rangle$ and $W_{0}=\left\langle t_{0}, t_{0},\left\langle y_{j}\right\rangle_{j<2 t_{0}}\right\rangle$ so that where \mathscr{A}_{l} is a W_{l}-model for $l \in 2$, II has a winning strategy for $G=G_{\kappa}^{0,2}$ (exactly, \leqslant, $\mathscr{A}_{0}, \mathscr{A}_{1}, q$). Then $\mathscr{A}_{0} F_{\kappa} \varphi_{0,2}, \mathscr{A}_{1} \forall_{\kappa} \varphi_{0,2}$, and for every $\varphi \in \operatorname{Sent}\left(\mathscr{L}^{0,2}\right.$ (exactly, \leqslant)) with $\operatorname{depth}(\varphi) \leqslant q \mathscr{A}_{0} F_{\kappa} \varphi$ iff $\mathscr{A}_{1} F_{\kappa} \varphi$. Thus $\varphi_{0,2}$ cannot be equivalent ${ }_{k}$ to any such φ.

Lemma 1. Let \mathscr{A} be a W-model for $W=\left\langle t_{0}, t_{1},\left\langle y_{j}\right\rangle_{j<t_{0}+t_{1}}\right\rangle$. Let $\varphi \in$ $\operatorname{Fml}\left(\mathscr{L}^{0,2}(\underline{\text { exactly }}, \leqslant)\right)$ with free variables among $v, v_{0}, \ldots, v_{l(0)-1} \in \operatorname{Var}(0)$,
 $B-\left\{a_{0}, \ldots, a_{l(0)-1}\right\}$. For $j<t_{0}+t_{1}$ let $:$

$$
V_{j}=\left\{\alpha: \text { for some } w<l(0), a_{w} \in Y_{\alpha, j} \cup Z_{\alpha, j}\right\}
$$

For any $\alpha \in I$ and $j<\omega$:

- if $B^{\prime} \cap Y_{\alpha, j} \neq\{ \}$, then $Y_{\alpha, j}-\left\{a_{0}, \ldots, a_{l(0)-1}\right\} \subseteq B$;
- if $\alpha \notin V_{j}$ and $B^{\prime} \cap Z_{\alpha, j} \neq\{ \}$, then for any $\beta \in I-V_{j}$,

$$
Z_{\beta, i}-\left\{a_{0}, \ldots, a_{l(0)-1}\right\} \subseteq B
$$

Proof. Consider permutations: in the first case permute members of $Y_{\alpha, j}$ $\left\{a_{0}, \ldots, a_{l(0)-1}\right\} ;$ in the second case switch $Z_{\alpha, j}-\left\{a_{0}, \ldots, a_{l(0)-1}\right\}$ with $Z_{\beta, j}-\left\{a_{0}, \ldots, a_{l(0)-1}\right\}$.

Fix $q<\omega$. Let:

$$
\begin{aligned}
& S_{W}=\left\{v \in \omega^{t_{0}+t_{1}}: \sum_{j<t_{0}+t_{1}} v(j) \leqslant q\right\} \\
& Q_{W}=\left\{\left(\sum_{j<t_{0}+t_{1}} v(j) \cdot y_{j}\right)+e: v \in S_{W},-q \leqslant e \leqslant q\right\} .
\end{aligned}
$$

Lemma 2. For \mathscr{A}, φ, B, etc. as in Lemma 1 and $l(0) \leqslant q$: if $\operatorname{card}(B)<\kappa$, then $\operatorname{card}(B) \in Q_{W}$.

Proof. For $j<t_{0}+t_{1}$, let:

$$
v_{a}(j)=\operatorname{card}\left\{\alpha \in V_{j}: B^{\prime} \cap Z_{\alpha, j} \text { is non-empty }\right\}
$$

Since $\sum_{j<t_{0}+t_{1}} v_{\bar{a}}(j) \leqslant l(0) \leqslant q, v_{\vec{a}} \in S_{W}$. Suppose that $\operatorname{card}(B)<\kappa$. By Lemma 1 , for all $\alpha \in I$ and $j<t_{0}+t_{1}, B^{\prime} \cap Y_{\alpha, j}$ is empty; furthermore, if $\alpha \notin V_{j}$, then $B^{\prime} \cap Z_{\alpha, j}$ is empty. If $B^{\prime} \cap Z_{\alpha, j}$ is non-empty, then $\alpha \in V_{j}$ and $Z_{\alpha, j}-$ $\left\{a_{0}, \ldots, a_{l(0)-1}\right\} \subseteq B$; this follows by a permutation argument in which members of $Z_{\alpha, j}-\left\{a_{0}, \ldots, a_{l(0)-1}\right\}$ are permuted. There are $\leqslant l(0)$ many $\langle\alpha, j\rangle$'s with $\alpha \in V_{j}$; thus:

$$
\left[\sum_{j<t_{0}+t_{1}} v_{\vec{a}}(j) \cdot y_{j}\right]-l(0) \leqslant \operatorname{card}\left(B^{\prime}\right) \leqslant \sum_{j<t_{0}+t_{1}} v_{\vec{a}}(j) \cdot y_{j}
$$

so:

$$
\left[\sum_{j<t_{0}+t_{1}} v_{\vec{a}}(j) \cdot y_{j}\right]-l(0) \leqslant \operatorname{card}(B) \leqslant \sum_{j<t_{0}+t_{1}} v_{\vec{a}}(j) \cdot y_{j}+l(0)
$$

since $l(0) \leqslant q, \operatorname{card}(B) \in Q_{W}$.
Suppose that $y_{j}=\left(2^{3 q}+q^{2}+2 q\right)^{j+1}$ for all $j<t_{0}+t_{1}$; then given $\left[\sum_{j<t_{0}+t_{1}} v(j) \cdot y_{j}\right]+e \in Q_{W}$, we may uniquely recover v and e. This will make the cardinality of B when $\operatorname{card}(B)<\kappa$ carry information about membership in B.

Let $t_{0}=2^{\left(q^{2}\right)}+1, \quad t_{1}=t_{0}+1, \quad W_{0}=\left\langle t_{0}, t_{0},\left\langle y_{j}\right\rangle_{j<2 t_{0}}\right\rangle, \quad W_{1}=\left\langle t_{0}, t_{1},\left\langle y_{j}\right\rangle_{j<2 t_{0}+1}\right\rangle ;$ for $i<2$ let $f_{i}=f_{\mathscr{A}_{i}}, S_{i}=S_{W_{i}}, Q_{i}=Q_{W_{i}}$. A gap in Q_{i} is an interval (n_{i}, n_{i}^{\prime}) with $n_{i}, n_{i}^{\prime} \in Q_{i}$ and $\left(n_{i}, n_{i}^{\prime}\right) \cap Q_{i}$ empty. $0 \in Q_{i}$; so if $n \notin Q_{i}$ and n belongs to no gap in Q_{i}, for all $n^{\prime} \in Q_{i}: n^{\prime}<n$. We have chosen $\left\langle y_{j}\right\rangle_{j<2 t_{0}+1}$ so that if (n_{i}, n_{i}^{\prime}) is a gap in $Q_{i}, n_{i}^{\prime}-n_{i} \geqslant 2^{3 q}$. If $[n, m] \subseteq Q_{i}$ with $n-1, m+1 \notin Q_{i}$, call $[n, m]$ a block in Q_{i}; we have made sure that if $[n, m]$ is a block in Q_{i}, then $n-m=2 q$. As II plays G, she will 'match up' blocks of Q_{0} with blocks of Q_{1}, and gaps in Q_{0} with gaps in Q_{1}. As II plays G, she will pretend to also be playing:

$$
M_{2}=M\left(\left\langle 0, \ldots, t_{0}-1,2 t_{0}-1\right\rangle,\left\langle 0, \ldots, t_{0}-1,2 t_{0}\right\rangle, q^{2}\right)
$$

II has a winning strategy for M_{2}, by choice of t_{0}. The playing of members of $\bar{\kappa}$
in G shall be controlled by the pretended play of M_{2}, and may be viewed as involving play of:

$$
M_{2}^{\prime}=M\left(\left\langle y_{0}, \ldots, y_{t_{0}-1}, y_{2 t_{0}-1}\right\rangle,\left\langle y_{0}, \ldots, y_{t_{0}-1}, y_{2 t_{0}}\right\rangle, 3 q\right)
$$

within which the 'matching up' of blocks and gaps occurs. Of course II also has a winning strategy for M_{2}^{\prime}.

Where $i \in 2, \vec{a}_{i} \in|\mathscr{A}|^{l(0)}$, let $\left\langle\vec{a}_{0}, \vec{a}_{1}\right\rangle$ be a matched pair iff for every φ belonging to:

$$
\left\{\mathbf{R}_{j}\left(v_{w}, v_{u}\right), \mathbf{E}_{j}\left(v_{w}, v_{u}\right), \mathbf{F}_{j}\left(v_{w}, v_{u}\right), v_{w}=v_{u}: j \in 2, w, u<l(0)\right\}
$$

$\mathscr{A}_{0} \vDash \varphi\left[\vec{a}_{0}\right]$ iff $\mathscr{A}_{1} \vDash \varphi\left[\vec{a}_{1}\right]$.
Suppose $n \in Q_{i}$; fix $v \in S_{i}$ and e so that $-q \leqslant e \leqslant q$ and $n=\left[\sum_{j<t_{0}+t_{1}} v(j) \cdot y_{j}\right]+$ e; let $n^{*}=\left\langle k_{0}, \ldots, k_{z-1}\right\rangle$ where $k_{0}<\cdots<k_{z-1}$ is a list of exactly those $j<t_{0}+t_{i}$ with $v(j)>0$. Since $v \in S_{i}, z \leqslant q$. Given $\vec{n}_{i} \in \bar{\kappa}^{l(2)}$ for $i \in 2$, let $w_{0}<\cdots<w_{c-1}$ be a list of those $w<l(2)$ so that $n_{i, w} \in Q_{i}$; let $\left(\vec{n}_{i}\right)^{*}=n_{i, w_{0}}^{*} * \cdots * n_{i, w_{c-1}}^{*}$.

We may now describe II's strategy for G. each position p of G shall be associated with a position p_{2} of M_{2}. Suppose play of G has reached p with $|p|=q^{\prime} \leqslant q, h_{i}(p)=\left\langle\vec{a}_{i}, \vec{n}_{i}\right\rangle$ for $i \in 2,\left\langle\vec{a}_{0}, \vec{a}_{1}\right\rangle$ is a matched pair, and $\left\langle(\vec{n})^{*} *\right.$ $\left.f_{0}\left(\vec{a}_{n}\right),\left(\vec{n}_{1}\right)^{*} * f_{1}\left(\vec{a}_{1}\right)\right\rangle$ is a situation in II's winning subgame for M_{2}. (Here $f_{i}\left(\vec{a}_{1}\right)=\left\langle f_{i}\left(a_{0}\right), \ldots, f_{i}\left(a_{l(0)-1}\right\rangle.\right)$ Suppose that for $w<l(2), n_{0, w} \in Q_{0}$ iff $n_{1, w} \in Q_{1}$. If $n_{i, w} \in\left(n_{i}, n_{i}^{\prime}\right)$ where (n_{i}, n_{i}^{\prime}) is a gap in Q_{i}, then $n_{1-i, w} \in\left(n_{1-i}, n_{1-i}^{\prime}\right)$, where that is a gap in Q_{1-i}; we will say that as of p the gaps (n_{0}, n_{0}^{\prime}) and (n_{1}, n_{1}^{\prime}) have been matched. Similarly if $n_{i, w} \in\left[n_{i}, n_{i}^{\prime}\right]$, where $\left[n_{i}, n_{i}^{\prime}\right]$ is a block in Q_{i}, we will have $n_{1-i, w} \in\left[n_{1-i}, n_{1-i}^{\prime}\right]$, a block in Q_{1-i} with which as of $p,\left[n_{i}, n_{i}^{\prime}\right]$ has been matched. Suppose that $\left\langle\vec{n}_{0}, \vec{n}_{1}\right\rangle$ is a situation in II's winning subgame for M_{2}^{\prime} (i.e. it is q^{\prime}-congruent).

Suppose that $q^{\prime}<q$, and I picks $i \in 2$. If I now selects $a_{i, l(0)} \in\left|\mathscr{A}_{i}\right|$, II pretends that I plays i and $f_{i}\left(a_{i, l(0)}\right)$ in M_{2}; in the pretend-play of M_{2}, II follows her strategy and plays n; since $n<t_{0}+t_{1-i}$, II must find $a_{1-i, l(0)} \in\left|\mathscr{A}_{1-i}\right|$ so that $\left\langle\vec{a}_{0} *\right.$ $\left.a_{0, l(0)}, \vec{a}_{1} * a_{1, l(0)}\right\rangle$ is a matched-pair and $f_{1-i}\left(a_{1-i, l(0)}\right)=n$. This is easy to do.

Suppose I selects $n_{i, l(2)} \in \bar{\kappa}$. Letting $n_{i^{\prime}}=\max \left(Q_{i^{\prime}}\right)$ for $i^{\prime} \in 2$, suppose that $n_{i, l(2)}>n_{i}$; II plays $n_{1-i, l(2)}=n_{1-i}+\left(n_{i, l(2)}-n_{i}\right)$. Suppose $n_{i, l(2)} \in Q_{i}, n_{i, l(2)}=$ $\left[\sum_{j<t_{0}+t_{1}} v_{i}(j) \cdot y_{j}\right]+e$. II pretends that I plays i and $n_{i, l(2)}^{*}=\left\langle k_{i, 0}, \ldots, k_{i, z-1}\right\rangle$ in M_{2}; II follows her strategy for M_{2}, playing $\left\langle k_{1-i, 0}, \ldots, k_{1-i, z-1}\right\rangle$; clearly for all $w<z, k_{1-i, w}<t_{0}+t_{1-i}$. Let:

$$
\begin{aligned}
& v_{1-i}\left(k_{1-i, w}\right)=v_{i}\left(k_{i, w}\right) \text { for } w<z \\
& v_{1-i}(j)=0 \text { for } j \in\left(t_{0}+t_{i}\right)-\left\{k_{1-i, 0}, \ldots, k_{1-i, z-1}\right\} \\
& n_{1-i, l(2)}=\left[\sum_{j<t_{0}+t_{1-i}} v_{1-i}(j) \cdot y_{j}\right]+e
\end{aligned}
$$

II plays $n_{1-i, l(2)}$. Notice that $\left\langle\vec{n}_{0} * n_{0, l(2)}, \vec{n}_{1} * n_{1, l(2)}\right\rangle$ is now $q^{\prime}-1$-congruent. Suppose that $n_{i, l(2)} \in\left(m_{i}, m_{i}^{\prime}\right)$, a gap in Q_{i}. Where $m_{i}^{\prime}=\left[\sum_{j<t_{0}+t_{i}} v_{i}(j) \cdot y_{j}\right]-q$, II
computes $\left\langle k_{i, 0}, \ldots, k_{i, z-1}\right\rangle$ as above, pretends that I plays i and it in M_{2}, and obtains $\left\langle k_{1-i, 0}, \ldots, k_{1-i, z-1}\right\rangle$ and then v_{1-i} as above; let $m_{1-i}^{\prime}=$ [$\left.\sum_{j<t_{0}+t_{1-i}} v_{1-i}(j) \cdot y_{j}\right]-q$; fix m_{1-i} so that ($m_{1-i}, m_{1-i}^{\prime}$) is a gap in Q_{1-i}. II matches (m_{0}, m_{0}^{\prime}) with (m_{1}, m_{1}^{\prime}) by playing $n_{1-i, /(2)} \in\left(m_{1-i}, m_{1-i}^{\prime}\right)$ so as to keep $\left\langle\vec{n}_{0} *\left\langle m_{0}, n_{0, l(2)}, m_{0}^{\prime}\right\rangle, \vec{n}_{1} *\left\langle m_{1}, n_{1, l(2)}, m_{1}^{\prime}\right\rangle\right\rangle q^{\prime}-1$-congruent. Since $\left.m_{i}^{\prime}-m_{i}\right\rangle$ $2^{3 q}$, this may be done.

Suppose I initiates the third sort of exchange, selecting $w<l(2)$ and $B_{i}=$ $\hat{v} \varphi\left[\vec{a}_{i}, \vec{n}_{i}\right]^{\alpha_{i}}$ with $\operatorname{card}\left(B_{i}\right)=n_{i, w}$. Letting $k_{i^{\prime}}=f_{i^{\prime}}\left(a_{i^{\prime}, u}\right)$ for $i^{\prime} \in 2, u<l(0)$, and $a_{i, u} \in Y_{i, \alpha, k_{i}} \cup Z_{i, \alpha, k_{i}}$, let $U_{i, u}=\left(B_{i}-\vec{a}_{i}\right) \cap Z_{i, \alpha, k_{i}}$. By Lemma 1 either $U_{i, u}$ is empty or $Z_{i, u, k_{1}}-\vec{a}_{i} \subseteq B_{i}$. Let:

$$
U_{1-i, u}= \begin{cases}Z_{1-i, \alpha, k_{1-i}}-\dot{a}_{1-i} & \text { if } U_{i, w} \neq\{ \}, \\ \{ \} & \text { otherwise. }\end{cases}
$$

II plays:

$$
B_{1-i}=\left\{a_{1-i, u}: a_{i, u} \in B_{i}, u<l(0)\right\} \cup\left\{U_{1-i, u}: u<l(0)\right\} .
$$

By Lemma 2, $n_{i, w} \in Q_{i}$. II has played so that $n_{1-i, w} \in Q_{1-i}$ and $\operatorname{card}\left(B_{1-i}\right)=$ $n_{1-i, w}$. Whatever $a_{1-i, l(0)}$ II now picks, I can find $a_{i, l(0)}$ so that $\left\langle\vec{a}_{0} * a_{0, l(0)}, \vec{a}_{1} *\right.$ $\left.a_{1, \ell(0)}\right\rangle$ is a matched-pair, and $a_{0, \ell(0)} \in B_{0}$ iff $a_{1, \ell(0)} \in B_{1}$. Clearly when p with $|p|=q$ is reached, II wins G.
3.4. Where \mathbf{P} is a one-place predicate and $\operatorname{Pred}=\{\mathbf{P}\}$, there is a $\varphi_{0} \in$ $\operatorname{Sent}\left(\mathscr{L}^{0,4}(\underline{\text { exactly }}, \leqslant)\right)$ so that for any model \mathscr{A} for $\{\mathbf{P}\}$:
$\mathscr{A} E_{\kappa} \varphi_{0}$ iff $\operatorname{card}\left(\mathbf{P}^{\mathscr{A}}\right)$ is finite and even.
Theorem. For any infinite $\kappa \in \operatorname{Card}, \varphi_{0}$ is not equivalent ${ }_{\kappa}$ to any sentence $\mathscr{L}^{0,2}(\underline{\text { exactly }}, \leqslant)$.

This is weaker than the previous result, since φ_{0} contains ' \leqslant '; but its proof is much easier and is left to the reader.
We can also construct a $\varphi_{2} \in \operatorname{Sent}\left(\mathscr{L}^{0,6}(\right.$ exactly,$\left.\leqslant)\right)$ so that for any \mathscr{A} as above:

$$
\mathscr{A} \vDash_{\kappa} \varphi_{2} \quad \text { iff for some even } q<\omega \quad \operatorname{ncb}\left(\operatorname{card}\left(\mathbf{P}^{\star A}\right)\right)=\kappa_{q} .
$$

Let $\mathbf{P}^{2}(\mu)$ be $(\forall \rho)((\underline{\operatorname{exactly}} \rho v) \mathbf{P} v \supset \mu<\rho)$, for $\mu, \rho \in \operatorname{Var}(2) ; \mathbf{P}^{2}(\mu)$ pins the value of μ to ncb $\left(\operatorname{card}\left(\mathbf{P}^{\alpha x}\right)\right)$; construction of φ_{2}, using $\mathbf{P}^{2}(\mu)$, is left to the reader.

Let $\kappa=\mathcal{\aleph}_{\alpha}$ for $\alpha=\mathcal{\aleph}_{\omega}$. The previous result suggests that φ_{2} is not equivalent ${ }_{\kappa}$ to a sentence of $\mathscr{L}^{0,4}$ (exactly, \leqslant). This turns out to be false! Since this shows something of the expressive power of $\mathscr{L}^{0,4}$ (exactly, \leqslant), I will give details.
For $n<\kappa$ let:

$$
\operatorname{code}(n)=\left\{q<\omega: \text { for some } m<n, \aleph_{q}=\operatorname{card}[m, n)\right\} .
$$

For any finite $A \subset \omega$ there is an $n<\kappa$ with $A=\operatorname{code}(n)$. Clearly, if $\operatorname{ncb}(n)=\kappa_{q}$,
then $q=\max (\operatorname{code}(n))$. The key to expressing φ_{2} is that $\mathscr{A} F_{k} \varphi$ iff for some $n<\kappa$:
(i) $\operatorname{ncb}\left(\operatorname{card}\left(P^{\sqrt{x}}\right)\right)=\operatorname{ncb}(n)$;
(ii) $0 \in \operatorname{code}(n)$;
(iii) if $\operatorname{ncb}(n)=\aleph_{q}$ and $r+1 \leqslant q$, then:

$$
r \in \operatorname{code}(n) \quad \text { iff } \quad r+1 \notin \operatorname{code}(n)
$$

Let φ^{\prime} be:

$$
\begin{aligned}
& \text { (exactly } \left.\left.\rho_{0} \rho^{\prime}\right) \mathbf{P}^{2} \rho^{\prime} \& \text { (exactly } \rho_{0} \rho^{\prime}\right) \rho^{\prime}<\mu \\
& \&\left(\exists \mu^{\prime}\right)(\exists \rho)\left(\boldsymbol{E}_{0}(\rho) \&(\underline{\text { exactly }} \rho v)\left(\mu^{\prime} \leqslant v \& v<\mu\right)\right. \\
& \&(\forall \rho)\left(\forall \rho^{\prime}\right)\left(\left[\rho<\rho^{\prime} \& \neg\left(\exists \rho^{\prime \prime}\right)\left(\rho<\rho^{\prime \prime} \& \rho^{\prime \prime}<\rho^{\prime}\right) \& G_{0}(\rho) \& \rho^{\prime} \leqslant \rho_{0}\right]\right. \\
& \supset\left[\left(\exists \mu^{\prime}\right)(\underline{\text { exactly }} \rho v)\left(\mu^{\prime} \leqslant v \& v<\mu\right)\right. \\
& \left.\left.\equiv \neg\left(\exists \mu^{\prime}\right)\left(\underline{\text { exactly }} \rho^{\prime} v\right)\left(\mu^{\prime} \leqslant v \& v<\mu\right)\right]\right) .
\end{aligned}
$$

Then $(\exists \mu)\left(\exists \rho_{0}\right) \varphi^{\prime}$ expresses φ_{1}. (Help: the value of μ will be the abovementioned n.)

Proving the following may be easier than proving (A).
Conjecture (D). For $\mathbf{P}, \mathbf{Q} 1$-place, and $\kappa=\kappa_{\chi_{w}}$, no sentence of $\mathscr{L}^{0,4}$ (exactly, \leqslant) is equivalent ${ }_{\kappa}$ to the easily constructed sentence of $\mathscr{L}^{0,6}$ (exactly, \leqslant) expressing the following:
for some $q<\omega, \quad \operatorname{ncb}\left(\operatorname{card}\left(\mathbf{P}^{\mathscr{L}}\right)\right)=\kappa_{q} \quad$ and $\quad \operatorname{ncb}\left(\operatorname{card}\left(\mathbf{Q}^{\mathscr{q}}\right)\right)=\aleph_{q \cdot 2}$.
3.5. Let a weak language be one introduced in $\S 1$ without type- 1 variables and without ' \leqslant ' in its logical lexicon. We will now show that such languages really are weak, i.e. cannot express ' \leqslant '. Let \mathbf{P}, \mathbf{Q} be 1-place, Pred $=\{\mathbf{P}, \mathbf{Q}\}$ and Funct be empty.

Observation. For $0<k<\omega$ and any infinite $\kappa \in$ Card:
(i) $\mathscr{L}^{0,2}(\underline{\text { exactly }}, \leqslant) \kappa_{\kappa} \mathscr{L}^{0,2 k}(\underline{\text { exactly }},=)$,
(ii) $\mathscr{L}^{0,2}(\underline{\text { exactly }}, \leqslant) \kappa_{\kappa} \mathscr{L}^{0,2 k *}(\underline{\text { exactly }},=)$.

Indeed, the following sentence witnesses both (i) and (ii) for all choices of k and K :
$(\exists \mu)\left(\exists \mu^{\prime}\right)\left(\mu \leqslant \mu^{\prime} \&(\underline{e x a c t l y} \mu v) \mathbf{P} v \&\left(\underline{e x a c t l y} \mu^{\prime} v\right) \mathbf{Q} v\right)$.
To prove (ii) it suffices to show that for every $q<\omega$ there are models \mathscr{A}_{0} and \mathscr{A}_{1} of cardinality κ with $\operatorname{card}\left(\mathbf{P}^{\mathcal{A}_{0}}\right)<\operatorname{card}\left(\mathbf{Q}^{s \mathscr{A}_{0}}\right), \operatorname{card}\left(\mathbf{Q}^{s d_{1}}\right)<\operatorname{card}\left(\mathbf{P}^{\infty A_{1}}\right)$, and such that
for all $\psi \in \operatorname{Sent}\left(\mathscr{L}^{0,2 k *}(\underline{\text { exactly }})\right)$:

$$
\text { if } \operatorname{depth}(\psi) \leqslant q, \quad \text { then } \quad \mathscr{A}_{0} F_{\kappa} \psi \quad \text { iff } \quad \mathscr{A}_{1} F_{\kappa} \psi
$$

A similar sufficient condition applies to (i).
We will discuss the case in which $k=1$; generalizing the argument to $k>1$ is straightforward. For $v_{0}, \ldots, v_{l(0)-1} \in \operatorname{Var}(0), \mu_{0}, \ldots, \mu_{l(2)-1} \in \operatorname{Var}(2)$, let Φ be a 0 -profile for $\vec{v}, \vec{\mu}$ iff Φ is a minimal consistent set so that:

- for any $j<j^{\prime}<l(0): v_{j}=v_{j^{\prime}} \in \Phi$ or $v_{j} \neq v_{j^{\prime}} \in \Phi ;$
- for any $j<l(0): \mathbf{P} v_{j} \in \Phi$ or $\neg \mathbf{P} v_{j} \in \Phi$; and similarly for $\mathbf{Q} v_{j}$;
- for any $j<j^{\prime}<l(2): \mu_{j}=\mu_{j^{\prime}} \in \Phi$ or $\mu_{j} \neq \mu_{j^{\prime}} \in \Phi$;
if $\operatorname{ncb}(\kappa)<\kappa$ we also require:
- for any $j<l(2):\left(\underline{n c b}=\mu_{j}\right) \in \Phi$ or $\left(\mathrm{ncb} \neq \mu_{j}\right) \in \Phi$.

For $\rho_{0}, \ldots, \rho_{l-1}, v_{0}, \ldots, v_{n-1} \in \operatorname{Var}(0)$ and $n<\omega$ let $\theta\left(\mathbf{P}, \mathbf{n}, \rho_{0}, \ldots, \rho_{l-1}\right)$ abbreviate:

$$
\left(\exists v_{0} \cdots \exists v_{n-1}\right)\left(\bigwedge_{j<j^{\prime}<n} v_{j} \neq v_{j^{\prime}} \& \bigwedge_{\substack{j<n \\ j^{\prime}<l}} v_{j} \neq \rho_{j^{\prime}} \& \bigwedge_{i<n} \mathbf{P} v_{j}\right) .
$$

We will also use these abbreviations, for $\mu \in \operatorname{Var}(2)$:

$$
\begin{aligned}
& \underline{\operatorname{card}(\mathbf{P})+n=\mu: \quad\left(\exists v_{0} \cdots \exists v_{n-1}\right)\left(\bigwedge_{j<j^{\prime}<n} v_{j} \neq v_{j^{\prime}} \& \bigwedge_{j<n} \neg \mathbf{P} v_{j},{ }^{\prime}\right)} \\
& \left.\&(\underline{\operatorname{exactly}} \mu v)\left(\mathbf{P} v \vee \bigvee_{j<n} v=v_{j}\right)\right),
\end{aligned}
$$

$$
\begin{aligned}
& \left.\&(\underline{(\text { exactly }} \mu v)\left(\mathbf{P} v \& \bigwedge_{j<n} v \neq v_{j}\right)\right) ;
\end{aligned}
$$

Similar abbreviations are in force with ' \mathbf{Q} ' and ' \mathbf{P} ' switched.
Where $B \subseteq \bar{\aleph}_{0}$ is finite, let Φ be a 1-profile for $\vec{v}, \vec{\mu}$ relative to B iff Φ is a minimal set so that for any $n \in B$ and $j<l(2)$:
either $n=\mu_{j} \in \Phi$ or $n \neq \mu_{j} \in \Phi$;
either $\theta\left(\mathbf{P}, \mathbf{n}, v_{0}, \ldots, v_{l(0)-1}\right) \in \Phi \quad$ or $\neg \theta\left(\mathbf{P}, \mathbf{n}, v_{0}, \ldots, v_{l(0)-1}\right) \in \Phi$;

either $\quad \underline{\operatorname{card}(\mathbf{P})+n=\operatorname{card}(\mathbf{Q}) \in \Phi \quad \text { or } \quad \underline{\operatorname{card}(\mathbf{P})+n \neq \operatorname{card}(\mathbf{Q})} \in \Phi ; ~ ; ~ ; ~}$
and similarly with ' \mathbf{Q}^{\prime} and ' \mathbf{P} ' switched. Let \mathscr{A} be a nice model iff $\mathbf{P}^{\mathscr{A}} \cap \mathbf{Q}^{\mathscr{A}}$ is
empty and $\operatorname{card}\left(\mathbf{P}^{\infty x}\right), \operatorname{card}\left(\mathbf{Q}^{s x}\right)<\kappa$. Let a B-profile for $\vec{v}, \vec{\mu}$ be a union of a 0 -profile and a 1 -profile for $\vec{v}, \vec{\mu}$ relative to B which is κ-satisfiable in a nice model. Let ψ be κ-equivalent ${ }^{*}$ to ψ^{\prime} iff they are κ-equivalent restricted to nice models.

Lemma. For any formula ψ of $\mathscr{L}^{0,2 *}(\underline{e x a c t l y},=)$ with free variables among $\vec{v}, \vec{\mu}$ there is a finite $B_{\psi} \subseteq \bar{\aleph}_{0}$ so that ψ is κ-equivalent ${ }^{*}$ to a disjunction of B_{ψ}-profiles for $\vec{v}, \vec{\mu}$.

Proof is by induction on the construction of ψ. Details are left to the reader.
Let $B_{q}=\bigcup\left\{B_{\psi}: \operatorname{depth}(\psi) \leqslant q\right\} ; B_{q}$ is finite; suppose $n=\max \left(B_{q}\right)$. Let \mathscr{A}_{0} and \mathscr{A}_{1} be nice models with:

$$
\begin{array}{ll}
n<\operatorname{card}\left(\mathbf{P}^{\alpha_{0}}\right), & \operatorname{card}\left(\mathbf{P}^{s_{0}}\right)+n<\operatorname{card}\left(\mathbf{Q}^{\alpha_{0}}\right) \\
n<\operatorname{card}\left(\mathbf{Q}^{\alpha_{1}}\right), & \operatorname{card}\left(\mathbf{Q}^{\alpha_{1}}\right)+n<\operatorname{card}\left(\mathbf{P}^{s_{1}}\right) .
\end{array}
$$

\mathscr{A}_{0} and \mathscr{A}_{1} are then as required; details are left to the reader.

4. Inclusions between weak languages

Even in weak languages we may define a prefex ($\propto \rho$) so that for any model $\mathscr{A}, \mathscr{A} F_{\kappa}(\underline{\infty} \rho) \varphi$ iff $\hat{\rho} \varphi^{\mathscr{A}}$ is Dedekind-infinite. Let ($(\underline{\rho}) \varphi$ be:

$$
\begin{aligned}
& \text { if } \rho, \rho^{\prime} \in \operatorname{Var}(0), \rho^{\prime} \text { not occurring in } \varphi: \quad\left(\exists \rho^{\prime}\right)\left(\varphi\left(\rho / \rho^{\prime}\right)\right. \\
& \left.\quad \&(\forall \mu)\left[(\underline{e x a c t l y} \mu \rho) \varphi \equiv(\underline{\text { exactly }} \mu \rho)\left(\varphi \& \rho \neq \rho^{\prime}\right)\right]\right) ; \\
& \text { if } \rho \notin \operatorname{Var}(0) \text { : } \\
& \quad\left(\varphi(\rho / \mathbf{0})^{*} \supset(\forall \mu)[(\underline{\text { exactly }} \mu \rho) \varphi \equiv(\underline{\text { exactly }} \mu \rho)(\varphi \& \neg \underline{0=\rho})]\right) \\
& \&\left(\neg \varphi(\rho / \mathbf{0})^{*} \supset(\forall \mu)[(\underline{\text { exactly }} \mu \rho) \varphi \equiv(\underline{\text { exactly }} \mu \rho)(\varphi \vee \underline{0=\rho)]),}\right.
\end{aligned}
$$

where $\varphi(\rho / \mathbf{0})^{*}$ is formed from $\varphi(\rho / \mathbf{0})$ by replacing all subformulae of the forms (exactly $\mathbf{0} v) \psi, \quad \mathbf{0}=v, \quad v=\mathbf{0}$ and $\mathbf{0}=\mathbf{0}$ by $\neg(\exists v) \psi, \quad \underline{0}=v, \underline{0=v}$ and ' $\neg \perp$ ' respectively. In this section we assume that all Dedekind-finite sets are finite.
4.1. Observation. $\mathscr{L}^{0,2}(\underline{\text { exactly }},=) \stackrel{s}{\mathscr{L}^{0,4}}(\underline{\text { exactly }})$.

Proof. A profile for $\mu_{0}, \ldots, \mu_{p-1} \in \operatorname{Var}(2)$ is a consistent formula of the form $\wedge_{j^{\prime}<j<r}\left(\mu_{i^{\prime}}=\mu_{j}\right)^{a\left(j^{\prime}, j\right)}$, for $a\left(j^{\prime}, j\right) \in 2$. (Notation: for any formula θ, θ^{0} is $\theta ; \theta^{1}$ is $\neg \theta$.) Suppose $\varphi \in \operatorname{Fml}\left(\mathscr{L}^{0,2}(\underline{\text { exactly }},=)\right)$ has free variables among $v_{0}, \ldots, v_{l-1} \in$ $\operatorname{Var}(0)$ and $\mu_{0}, \ldots, \mu_{p-1} \in \operatorname{Var}(2)$. Call these the 'distinguished' variables. For each profile Φ for $\mu_{0}, \ldots, \mu_{p-1}$ we will construct $\varphi_{\Phi} \in \operatorname{Fml}\left(\mathscr{L}^{0,4}(\underline{\text { exactly })})\right.$, so that for any $\kappa \in$ Card, any model $\mathscr{A}, \vec{a} \in|\mathscr{A}|^{l}$, and $\vec{n} \in \bar{K}$:

$$
\begin{equation*}
\text { if } \mathscr{A} \vDash \Phi[\vec{n}], \quad \mathscr{A} \vDash_{\kappa} \varphi_{\Phi}[\vec{a}, \vec{n}] \quad \text { iff } \quad \mathscr{A} F_{\kappa} \varphi[\vec{a}, \vec{n}] . \tag{*}
\end{equation*}
$$

For $p=0$ this yields our observation. Without loss of generality, suppose that no distinguished variable occurs bound in φ, and that all conjuncts of Φ are inequalities; if the latter is not the case, substitute one equated variable for another, decreasing the number of type- 2 variables free in φ until it is the case. We construct φ_{Φ} by induction on the construction of φ. If φ is $\mu_{j}=\mu_{j^{\prime}}$, let:

$$
\varphi_{\Phi}=\left\{\begin{aligned}
\neg \perp & \text { if } \varphi \text { is a conjunct of } \Phi \\
\perp & \text { if } \neg \varphi \text { is a conjunct of } \Phi
\end{aligned}\right.
$$

The only other case worth discussing is where φ is $(\exists \mu) \varphi_{0}$, for μ of type 2 , and Φ is $\bigwedge_{j^{\prime}<j<p} \mu_{i^{\prime}} \neq \mu_{j}$. For $i<p$, let Φ_{i} be:

$$
\Phi \& \mu=\mu_{i} \& \bigwedge\left\{\mu \neq \mu_{i^{\prime}}: i^{\prime}<l, i^{\prime} \neq i\right\}
$$

Let $\varphi_{0, i}$ be $\varphi_{0, \Phi_{i}}\left(\mu / \mu_{i}\right)$. Clearly for $\kappa, \mathscr{A}, \vec{a}, \vec{n}$ as above and $n<\kappa$, if $\mathscr{A} F_{\kappa} \Phi_{i}[\vec{n}, n]$ then:

$$
\mathscr{A} F_{K} \varphi_{0, \Phi_{i}}[\vec{a}, \vec{n}, n] \quad \text { iff } \quad \mathscr{A} F_{K} \varphi_{0, i}[\vec{a}, \vec{n}] .
$$

Let Φ^{\prime} be $\Phi \& \bigwedge_{i<p} \mu \neq \mu_{i}$. For each $b \subseteq p$, let ψ_{b} be:

$$
\bigwedge_{i \in b} \varphi_{0, \Phi^{\prime}}\left(\mu / \mu_{i}\right) \& \bigwedge_{i \in p-b} \neg \varphi_{0, \Phi^{\prime}}\left(\mu / \mu_{i}\right)
$$

let φ_{b} be $\psi_{b} \& \neg($ exactly $m \rho) \varphi_{0, \Phi^{\prime}}$, where $m=\operatorname{card}(b)$ and where the second conjunct is expressed in $\mathscr{L}^{0,4}$ (exactly, \leqslant) without use of ' $=$ ' between variables of type 2 , as described at the end of $\S 2.4$; this clause introduces the variables of type 4. Note that if $\mathscr{A} F_{\kappa} \psi_{b}[\vec{a}, \vec{n}]$ then:

$$
\hat{\mu} \varphi_{0}[\vec{a}, \vec{n}]^{\mathscr{A}}-\left\{n_{i}: i<p\right\} \neq\{ \} \quad \text { iff } \quad \operatorname{card}\left(\hat{\mu} \varphi_{0, \Phi^{\prime}} \cdot[\vec{a}, \vec{n}]^{s \mathcal{L}}\right) \neq m .
$$

Furthermore for a unique $b \subseteq p, \mathscr{A} F_{\kappa} \psi_{b}[\vec{a}, \vec{n}]$. Let φ_{Φ} be $V_{i<p} \varphi_{0, i} \vee \vee_{b \subseteq p} \varphi_{b}$. This proves (i).
4.2. Observation. $\mathscr{L}^{0,2^{*}}(\underline{\text { exactly }},=) \stackrel{s}{s}_{\mathscr{L}^{0,2^{*}}}$ (exactly).

Proof. Given $\varphi \in \operatorname{Fml}\left(\mathscr{L}^{0,2 *}(\right.$ exactly, $\left.=)\right)$, with free variables among $v_{0}, \ldots, v_{l-1}, \mu_{0}, \ldots, \mu_{p-1}$ as in §4.1, and given a profile Φ for $\mu_{0}, \ldots, \mu_{p-1}$ we will construct $\varphi_{\Phi} \in \operatorname{Fml}\left(L^{0,2 *}\right.$ (exactly)) so that for any $\mathscr{A}, \vec{a}, \vec{n},(*)$ of $\S 4.1$ holds. We use induction on the structure of φ as in the proof from $\S 4.1$; the notation and assumptions of $\S 4.1$ are in force. The cases worth discussing are where φ is $(\exists \mu) \varphi_{0}$ or (exactly $\left.\mu_{i} \mu\right) \varphi_{0}$ for μ of type 2 , with Φ as above. The former case is handled as in §4.1, except that in forming φ_{b}, (exactly $m \rho$) $\varphi_{0, \Phi^{\prime}}$ is expressed in $\mathscr{L}^{0,2 *}$ (exactly), as described at the end of $\S 2.4$.

Suppose φ is (exactly $\left.\mu_{i} \mu\right) \varphi_{0}$. Given a model $\mathscr{A}, \vec{a} \in|\mathscr{A}|^{l}, \vec{n} \in \bar{\kappa}^{p}$, let

$$
\begin{array}{lr}
A=\hat{\mu} \varphi_{0}[\vec{a}, \vec{n}]^{\mathscr{A}}, & B=\left\{n_{j}: n_{j} \in A \text { and } j<p\right\}, \\
A^{\prime}=\hat{\mu} \varphi_{0, \Phi}[\vec{a}, \vec{n}]^{\mathscr{A}}, & B^{\prime}=\left\{n_{j}: n_{j} \in A^{\prime} \text { and } j<p\right\}, \\
r=\operatorname{card}\left(B-B^{\prime}\right)-\operatorname{card}\left(B^{\prime}-B\right) .
\end{array}
$$

By our induction hypothesis, for any $n \in \bar{\kappa}-\left\{n_{0}, \ldots, n_{p-1}\right\}: n \in A$ iff $n \in A^{\prime} . \varphi_{\Phi}$ must say that the value of μ_{i} is $\operatorname{card}(A)$, using $\operatorname{card}\left(A^{\prime}\right)$ and r. In two cases $\operatorname{card}(A)=\operatorname{card}\left(A^{\prime}\right)$, making this easy:

Case 1: $r=0$.
Case 2: A^{\prime} is infinite.
If A^{\prime} is finite and $r \neq 0$, we will want a formula that looks at sets D of cardinality r so that:

- if $r<0$, then $D \subseteq A^{\prime}$; so $\operatorname{card}(A)=\operatorname{card}\left(A^{\prime}-D\right)$;
- if $r>0$, then $D \subseteq \bar{\kappa}-A^{\prime}$; so $\operatorname{card}(A)=\operatorname{card}\left(A^{\prime} \cap D\right)$.

For $j \in 2$ let

$$
\begin{aligned}
X_{2 j}=\{\langle\theta, \rho\rangle: & \underline{(\operatorname{exactly} \eta \rho) \theta \text { is a subformula of } \varphi_{0, \Phi^{\prime}}} \\
& \text { and } \rho \in \operatorname{Var}(2 j), \mu \in \operatorname{Var}(2)\} \cup\{\langle\perp, \rho\rangle\},
\end{aligned}
$$

where ρ is a selected new variable of type $2 j$. Let:

$$
N_{2 j}(\mathscr{A}, \vec{a}, \vec{n})=\left\{n<\kappa: \mathscr{A} F_{\kappa} \vec{\exists}\left(\underline{\text { exactly } \mathbf{n} \rho)} \theta[\vec{a}, \vec{n}] \text { for some }\langle\theta, \rho\rangle \in X_{2 j}\right\}\right.
$$

where ' $\vec{\exists}$ ' binds all non-distinguished variables free in its scope. Let:

$$
\begin{array}{ll}
N_{2 j}=N_{2 j}(\mathscr{A}, \vec{a}, \vec{n}), \quad X=X_{0} \cup X_{2}, \quad N=N_{0} \cup N_{2}, \\
\bar{N}_{2}=\{n<K: & \text { for some }\langle\theta, \rho\rangle \in X_{1} \text { and assignments } \vec{a}^{0}, \vec{n}^{0} \text { for } \\
& \text { non-distinguished variables other than } \rho \text { free in } \\
& \left.\theta, \hat{\rho} \theta\left[\vec{a}, \vec{a}^{0}, \vec{n}, \vec{n}^{0}\right]^{\mathscr{A}} \subseteq N \text { and has cardinality } n\right\} .
\end{array}
$$

N is important because its members can be defined by formulae from a finite set; so members of $\vec{\kappa}$ can be distinguished from members of N without use of ' $=$ '. Notice that $0 \in N$. Further facts: (1) For any $n, n^{\prime} \in \bar{\kappa}-N: n \in A^{\prime}$ iff $n^{\prime} \in A^{\prime}$. This follows by induction on the construction of $\varphi_{0, \Phi^{\prime}}$. (2) For any $n \in N_{2}$ either $n \in \bar{N}_{2}$ or $\operatorname{card}(\bar{\kappa}-N) \leqslant n$. For $n \in N_{2}$, fix $\langle\theta, \rho\rangle \in X$ and \vec{a}^{0}, \vec{n}^{0} so that

$$
\mathscr{A} F_{K}(\underline{\text { exactly }} \mathbf{n} \rho) \theta\left[\vec{a}, \vec{a}^{0}, \vec{n}, \vec{n}^{0}\right]
$$

by fact (1) either $\hat{\rho} \theta\left[\vec{a}, \vec{a}^{0}, \vec{n}, \vec{n}^{0}\right]^{\mathscr{A}} \subseteq N$, putting n into \bar{N}_{2}, or else $\bar{\kappa}-N \subseteq$ $\hat{\rho} \theta\left[\vec{a}, \vec{a}^{0}, \vec{n}, \vec{n}^{0}\right]^{\mathscr{A}}$, yielding $\operatorname{card}(\bar{\kappa}-N) \leqslant n$.

If $r \neq 0$ and A^{\prime} is finite, we consider these cases:
Case 3: $A^{\prime} \subseteq N, r<0$.
Case 4: $A^{\prime} \subseteq N, r>0, N$ in finite.
Case 5: $\quad A^{\prime} \subseteq N, r>0, N$ is infinite.
Case 6: not $A^{\prime} \subseteq N, r>0$.
Case 7: not $A^{\prime} \subseteq N, r<0$.
Some further facts: (3) In case 6 and $7, N$ is infinite, since by fact (1) $\bar{\kappa}-N \subseteq A^{\prime}$, making $\bar{\kappa}-N$ finite. (4) In case $4, \bar{\kappa}_{0} \cap N_{2} \subseteq \bar{N}_{2}$; for if $n \in N_{2}-\bar{N}_{2}$, then by fact (2) $\operatorname{card}(\bar{\kappa}-N) \leqslant n$; since in this case N is finite, $\bar{\kappa}-N$ is infinite.

For any $b, b^{\prime} \subseteq p$ let $\varphi_{b, b^{\prime}}$ be:

$$
\bigwedge_{j \in b} \varphi_{0, \Phi}\left(\mu / \mu_{j}\right) \& \bigwedge_{j \in p-b} \neg \varphi_{0, \Phi}\left(\mu / \mu_{j}\right) \& \bigwedge_{j \in b^{\prime}} \varphi_{0, \Phi^{\prime}}\left(\mu / \mu_{j}\right) \& \bigwedge_{j \in p-b^{\prime}} \neg \varphi_{0, \Phi^{\prime}}\left(\mu / \mu_{j}\right) .
$$

Thus: $\mathscr{A} F_{K} \varphi_{b, b^{\prime}}[\vec{a}, \vec{n}]$ iff

$$
B=\left\{n_{j}: j \in b\right\} \quad \text { and } \quad B^{\prime}=\left\{n_{j}: j \in b^{\prime}\right\} .
$$

Wc will construct $\varphi_{b, b^{\prime}}^{*} \in \operatorname{Fml}\left(\mathscr{L}^{0,2^{*}}(\underline{\text { exactly })})\right.$ so that if $\mathscr{A} F_{\kappa} \varphi_{b, b}[\vec{a}, \vec{n}]$ then:

$$
\mathscr{A} F_{\kappa} \varphi_{b, b^{\prime}}^{*}[\vec{a}, \vec{n}] \quad \text { iff } \quad n_{i}=\operatorname{card}(A)
$$

We will then let φ_{Φ} be

$$
\vee\left\{\varphi_{b, b^{\prime}}^{*}: b \cup b^{\prime}=p, b \cap b^{\prime} \text { is empty }\right\}
$$

Let $r=\operatorname{card}\left(b-b^{\prime}\right)-\operatorname{card}\left(b^{\prime}-b\right)$. If $r=0$, then we are in case 1 ; so let $\varphi_{b, b^{\prime}}^{*}$ be (exactly $\left.\mu_{i} \mu\right) \varphi_{0, \Phi^{\prime}}$. Suppose $r \neq 0$; we will let $\varphi_{b, b}^{*}$, be:

$$
\begin{array}{ll}
V\left\{\alpha_{j} \& \varphi_{j}^{*}: j \in\{2,3,7\}\right\} & \text { if } r<0 \\
V\left\{\alpha_{j} \& \varphi_{j}^{*}: j \in\{2,4,5,6\}\right\} & \text { if } r>0,
\end{array}
$$

where each α_{j} says that case j holds and φ_{j}^{*} fixes the value of μ_{i} in case j.
Let α_{2} be $(\underline{\infty} \mu) \varphi_{0, \Phi^{\prime}}$ and φ_{2}^{*} be (exactly $\left.\mu_{i} \mu\right) \varphi_{0, \Phi^{\prime}}$. For $\eta \in \operatorname{Var}(2)$ let $\operatorname{Def}(\eta)$ be $\bigvee\{\vec{\exists}(\underline{\text { exactly }} \eta \bar{\rho}) \bar{\theta}:\langle\theta, \rho\rangle \in X\}$, where $\bar{\theta}, \bar{\rho}$ are formed from θ, ρ by replacing any free occurrences of η by some new variable. Since X is finite, this is well-defined. Clearly for any $n<\kappa, \mathscr{A} F_{\kappa} \operatorname{Def}(\mathbf{n})[\vec{a}, \vec{n}]$ iff $n \in N$. Thus the construction of α_{j} for $j \in\{3,4,5,6,7\}$ is easy. For example, let α_{4} be:

$$
\neg \alpha_{2} \&(\forall \mu)\left(\varphi_{0, \Phi^{\prime}} \supset \operatorname{Def}(\eta)\right) \& \neg(\propto \eta) \operatorname{Def}(\eta)
$$

Cases 3, 5 and 6 are easy, since we may then take $D \subseteq N$. Fix $\eta_{0}, \ldots, \eta_{s-1} \in$ $\operatorname{Var}(2)$ and not occurring free in left-components of members of X. Suppose $Y \in X^{s}, Y=\left\langle\left\langle\theta_{0}, \rho_{0}\right\rangle, \ldots,\left\langle\theta_{s-1}, \rho_{s-1}\right\rangle\right\rangle$. Form $\bar{Y}=\left\langle\left\langle\bar{\theta}_{0}, \bar{\rho}_{0}\right\rangle, \ldots\right.$, $\left.\left\langle\bar{\theta}_{s-1}, \bar{\rho}_{s-1}\right\rangle\right\rangle$ by replacing the free variables in the θ_{j} 's by new free variables as needed to insure that for all $j^{\prime}<j<s$ all non-distinguished free variables in $\bar{\theta}_{j}$ do not occur free in $\bar{\theta}_{j^{\prime}}$, and vice-versa, are not μ, and where if ρ_{j} is replaced in θ_{j} it is replaccd by $\bar{\rho}_{j}$ which is not among $\eta_{0}, \ldots, \eta_{s-1}, \mu$. Let $\operatorname{Distinct}_{Y}\left(\eta_{0}, \ldots, \eta_{s-1}\right)$ be

$$
\bigwedge_{j<s}\left(\underline{\text { exactly }} \eta_{j} \bar{\rho}_{j}\right) \bar{\theta}_{j} \& \bigwedge_{j^{\prime}<j<s} \neg\left(\underline{\text { exactly }} \eta_{j^{\prime}} \bar{\rho}_{j}\right) \bar{\theta}_{j} .
$$

Let ψ_{Y}^{+}be

$$
\begin{aligned}
& \vec{\exists}\left(\operatorname{Distinct}_{Y}\left(\eta_{0}, \ldots, \eta_{s-1}\right) \& \bigwedge_{j<r} \neg \varphi_{0, \Phi^{\prime}}\left(\mu / \eta_{j}\right)\right. \\
& \left.\&\left(\underline{\text { exactly }} \mu_{i} \mu\right)\left(\varphi_{0, \Phi^{\prime} \vee} \vee \bigvee_{j<s}\left(\underline{\text { exactly }} \mu \bar{\rho}_{j}\right) \bar{\theta}_{j}\right)\right)
\end{aligned}
$$

where ' $\vec{\exists}$ ' binds all non-distinguished variables free in its scope. Suppose $r>0$. Let φ_{5}^{*} and φ_{6}^{*} be $V\left\{\psi_{Y}^{+}: Y \in X^{r}\right\}$. This formula looks for $D \subseteq \bar{\kappa}-A^{\prime}$ and says that the value of μ_{i} is card $\left(A^{\prime} \cup D\right)$. Using fact (3), in cascs 5 and $6 N-A^{\prime}$ is infinite; so such a D exists.

Similarly, for $Y \in X^{s}$ let ψ_{Y}^{-}be:

$$
\begin{aligned}
& \vec{\exists}\left(\operatorname{Distinct}_{Y}\left(\eta_{0}, \ldots, \eta_{s-1}\right) \& \bigwedge_{j<\mathrm{s}} \varphi_{0, \Phi^{\prime}}\right. \\
& \left.\&\left(\underline{(\text { exactly }} \mu_{i} \mu\right)\left(\varphi_{0, \Phi^{\prime}} \& \bigwedge_{\mathrm{j}<\mathrm{s}} \neg\left(\underline{\text { exactly }} \mu \bar{\rho}_{j}\right) \bar{\theta}_{j}\right)\right) .
\end{aligned}
$$

Where $r<0$ and $s=|r|$ let φ_{3}^{*} be $\bigvee\left\{\psi_{Y}^{-}: Y \in X^{s}\right\}$. This formula looks for $D \subseteq A^{\prime} \cap N$ and says that the value of μ_{i} is card $\left(A^{\prime}-D\right)$. Cases 4 and 7 require more work.

Let a filling be a set $\left\{\left\langle p_{0}, q_{0}\right\rangle, \ldots,\left\langle p_{k-1}, q_{k-1}\right\rangle\right\}$ such that for any $j<k$, $q_{j} \in N \cap \bar{\aleph}_{0}$ and $\left\} \neq\left(p_{j}, q_{j}\right) \subseteq \bar{\aleph}_{0}-N\right.$. Where F is a filling, let:

$$
\bigcup F=\bigcup_{j \in k}\left(p_{j}, q_{j}\right), \quad \tilde{F}=\left\langle q_{0}-p_{0}-1, \ldots, q_{k-1}-p_{k-1}-1\right\rangle
$$

the ordering does not matter, but we do not just want a set because we want to have $\operatorname{card}(\bigcup F)=\sum \tilde{F}$. Let $t=\max \left(\overline{\mathcal{N}}_{0} \cap N\right)$; since $0 \in N, t$ exists. F is the maximum filling iff $\cup F=\bar{t}-N$.

Suppose case 4 holds. Consider $S=\left\langle s_{0}, \ldots, s_{k-1}\right\rangle \in\left(\bar{\aleph}_{0}-\{0\}\right)^{k}$ and $r_{0}<\mathcal{K}_{0}$. If $r \geqslant r_{0}+\sum S$, let subcase $\left\langle r_{0}, S\right\rangle$ hold iff:

$$
r_{0}=\min \left\{r, \operatorname{card}\left(N-A^{\prime}\right)\right\}, \quad \sum S=\min \left\{r-r_{0}, \operatorname{card}(\bar{t}-N)\right\}
$$

Let $r_{1}=\sum S ; r_{2}=r-\left(r_{0}+r_{1}\right)$. For each such $\left\langle r_{0}, S\right\rangle$ we will construct $\varphi_{r_{0}, s}$ so that if $\mathscr{A}, \vec{a}, \vec{n}$ fall under case 4 then:

$$
\mathscr{A} F_{\kappa} \varphi_{r_{0}, S}[\vec{a}, \vec{n}] \quad \text { iff } \quad\left\langle r_{0}, S\right\rangle \text { holds and } n_{i}=\operatorname{card}\left(A^{\prime}\right)+r
$$

This formula will look for $D=D_{0} \cup D_{1} \cup D_{2} \subseteq \bar{\kappa}-A^{\prime}$, with D_{0}, D_{1}, D_{2} pairwise disjoint and $\operatorname{card}\left(D_{j}\right)=r_{j}$ for $j \in 3$, and say that the value of μ_{i} is $\operatorname{card}\left(A^{\prime} \cup D\right)$. More precisely, we will have:

$$
\begin{aligned}
& D_{0} \subseteq N-A^{\prime} ; \text { thus } D_{0}=N-A^{\prime} \text { iff } r \geqslant r_{0} ; \\
& \text { if } r_{i} \neq 0 \text {, then } D_{1}=\bigcup F \text { for some filling } F \text { with } \tilde{F}=S \text {; } \\
& \text { so } F \text { is the maximum filling iff } r>r_{0}+\operatorname{card}(\bar{t}-N)>0 \text {; } \\
& D_{2}=\left(t, t+r_{2}+1\right) \text {. }
\end{aligned}
$$

This fact will permit us to describe D_{2} if it is non-empty: (5) if F is the maximum filling, then $\left(\aleph_{0} \cap N\right) \cup \bigcup F=\overline{t+1}$. Thus:

$$
\operatorname{card}\left(\left(\bar{\aleph}_{0} \cap N\right) \cup \bigcup F\right)=t+1 \notin N \cup \bigcup F
$$

$\varphi_{r,\{ \}}$ is easy to construct. For $Y \in X^{s}$ form \bar{Y} as before and let $\gamma_{Y}(\vec{\eta})$ be:

$$
\operatorname{Distinct}_{Y}\left(\eta_{0}, \ldots, \eta_{s-1}\right) \& \bigwedge_{j<s} \neg \varphi_{0, \Phi}\left(\mu / \eta_{j}\right)
$$

For $s=r$, let β_{Y} be:

$$
\vec{\exists}\left(\gamma_{Y} \&\left(\underline{\operatorname{exactly}} \mu_{i} \mu\right)\left(\varphi_{0, \Phi^{\prime} \vee} \bigvee_{j<r}\left(\underline{\text { exactly }} \mu \bar{\rho}_{j}\right) \bar{\theta}_{j}\right)\right)
$$

where ' $\vec{\exists}$ ' binds all non-distinguished variables free in its scope. Let $\varphi_{r,(}$) be $V\left\{\beta_{Y}: Y \in X^{r}\right\}$.

Now suppose that $r_{0} \neq r$ but $r=r_{0}+r_{1}$. We must 'pin down' $N-A$ ' and $\cup F$ for a filling F. We must first describe how to 'pin down' a block $(p, q) \subseteq \bar{\aleph}_{0}-N$ for $q \in N$. For $\langle\theta, \rho\rangle \in X$ and variables $\mu^{*}, \eta_{0}, \ldots, \eta_{s} \in \operatorname{Var}(2)$ and $v_{0}^{\prime}, \ldots, v_{s}^{\prime}$ of the same type as ρ, we will construct a formula $\operatorname{Block}_{\theta, \rho}\left(\mu^{*}, \vec{\eta}, \vec{v}^{\prime}\right)$ that will describe such a block. Change θ, ρ to $\bar{\theta}, \bar{\rho}$ to make sure that none of the non-distinguished variables in $\bar{\theta}$ are among those we have fixed. Suppose that $\rho \in \operatorname{Var}(0)$. For $j \leqslant s$ let θ_{j}^{\wedge} be $\bar{\theta} \& \bigwedge_{j^{\prime} \leqslant j} \rho \neq v_{j^{\prime}}^{\prime}$. Let $\operatorname{Block}_{\theta, \rho,\langle \rangle}\left(\mu^{*}, \vec{\eta}, \vec{v}^{\prime}\right)$ be:

$$
\neg(\propto \bar{\rho}) \bar{\theta} \& \bigwedge_{j<s} \theta\left(\bar{\rho} / v_{j}^{\prime}\right) \& \bigwedge_{j^{\prime}<j<s} v_{j^{\prime}}^{\prime} \neq v_{j}^{\prime} \& \bigwedge_{j<s} \neg \operatorname{Def}\left(\eta_{j}\right)
$$

$\left.\&\left(\underline{\text { exactly }} \mu^{*} \bar{\rho}\right) \bar{\theta} \& \bigwedge_{j \leqslant s} \underline{(\text { exactly }} \eta_{j} \bar{\rho}\right) \theta_{j}^{\wedge}$.
For $\rho \in \operatorname{Var}(2)$ we would like to do the same thing; but there is a problem: ' $=$ ' was used in the above formula. Here we rely on fact (4). For $Z \in X^{s}$, form \bar{Z} as before; let θ_{j}^{\wedge} be $\bar{\theta} \& \bigwedge_{j^{\prime} \leqslant j} \neg\left(\underline{\text { exactly }} \bar{\rho} \bar{\rho}_{j^{\prime}}\right) \bar{\theta}_{j^{\prime}}$. Let $\operatorname{Block}_{\theta, \rho, Z}\left(\mu^{*}, \vec{\eta}, \vec{v}^{\prime}\right)$ be:

$$
\begin{aligned}
& \neg(\underline{\infty}) \bar{\theta} \& \bigwedge_{j<s} \theta\left(\bar{\rho} / v_{j}^{\prime}\right) \& \operatorname{Distinct}_{Z}\left(\vec{v}^{\prime}\right) \& \bigwedge_{j<s} \neg \operatorname{Def}\left(\eta_{j}\right) \\
& \&\left(\underline{\text { exactly }} \mu^{*} \bar{\rho}\right) \bar{\theta} \& \bigwedge_{j \leqslant s}\left(\underline{\text { exactly }} \eta_{j} \bar{\rho}\right) \theta_{j}^{\hat{j}}
\end{aligned}
$$

Now fix variables $\eta_{0}, \ldots, \mu_{r_{0}-1}, \mu_{0}^{*}, \ldots, \mu_{k-1}^{*} \in \operatorname{Var}(2), \quad Y=\left\langle\left\langle\theta_{0}^{*}, \rho_{0}^{*}\right\rangle, \ldots\right.$, $\left.\left\langle\theta_{r_{0}-1}^{*}, \rho_{r_{0}-1}^{*}\right\rangle\right\rangle \in X^{r_{0}}, U=\left\langle\left\langle\theta_{0}, \rho_{0}\right\rangle, \ldots,\left\langle\theta_{k-1}, \rho_{k-1}\right\rangle\right\rangle \in X^{k}$, and for each $j \in k$ fix $\eta_{j, 0}, \ldots, \eta_{j, s_{j}} \in \operatorname{Var}(2)$ and:

- if $\rho_{j} \in \operatorname{Var}(0)$, then $Z_{j}=\langle \rangle$ and $v_{j, 0}, \ldots, v_{j, s_{j}} \in \operatorname{Var}(0)$;
- if $\rho_{j} \in \operatorname{Var}(2)$, then $Z_{j}=\left\langle\left\langle\theta_{j, 0}, \rho_{j, 0}\right\rangle, \ldots,\left\langle\theta_{j, s_{j}}, \rho_{j, s_{j}}\right\rangle\right\rangle \in X^{s_{j}+1}$ and $v_{j, 0}, \ldots$, $v_{j, s_{j}} \in \operatorname{Var}(2)$.
Transform $Y, U, Z_{0}, \ldots, Z_{k-1}$ to $\bar{Y}, \bar{U}, \bar{Z}_{0}, \ldots, \bar{Z}_{k-1}$ so that no two formulae in any of the latter sequences have a non-distinguished variable in common, and so that all variables in such formulae are distinct from those fixed so far. We will use $\vec{\mu}^{*}$ to 'pin down' $\operatorname{RFld}(F)$ and then variables of the form $\eta_{j, j}$ for $j<k$ and $j^{\prime}<s_{j}$ will 'pin down' the elements of $\bigcup F$ for a filling F. Let Filling $_{U, \vec{z}}\left(\vec{\mu}^{*}, \vec{\eta}_{0}, \ldots, \vec{\eta}_{k-1}, \vec{v}_{o}, \ldots, \vec{v}_{k-1}\right)$ be:

$$
\operatorname{Distinct}_{U}\left(\vec{\mu}^{*}\right) \& \bigwedge_{j<k} \operatorname{Block}_{\theta_{j}, \rho_{j}, z_{j}}\left(\mu_{j}^{*}, \eta_{j, 0}, \ldots, \eta_{j, s_{j}}, v_{j, 0}, \ldots, v_{j, s_{j}}\right)
$$

Let $\beta_{Y, U, \vec{Z}}$ be:

$$
\begin{aligned}
& \vec{\exists}\left(\gamma_{Y} \&(\forall \mu)\left(\varphi_{0, \Phi^{\prime}} \supset \bigvee_{j<r_{0}}\left(\underline{\text { exactly }} \mu \rho_{j}^{*}\right) \theta_{j}^{*}\right)\right. \\
& \& \text { Filling }_{U, \vec{z}}\left(\vec{\eta}^{*}, \vec{\eta}_{0}, \ldots, \vec{\eta}_{k-1}, \vec{v}_{0}, \ldots, \vec{v}_{k-1}\right) \\
& \&\left(\underline{\text { exactly }} \mu_{i} \mu\right)\left[\varphi_{0, \Phi^{\prime}} \vee \bigvee_{j<n_{j}}\left(\underline{\text { exactly }} \mu \bar{\rho}_{j}^{*}\right) \bar{\theta}_{j}^{*}\right. \\
& \left.\left.\vee \vee\left\{\left(\underline{\text { exactly }} \mu \rho_{j}\right) \bar{\theta}_{j, j^{\prime}}^{\wedge} ; j<k \text { and } j^{\prime}<s_{j}\right\}\right]\right)
\end{aligned}
$$

where ' \exists ' binds as usual. This formula looks at $D_{0}=N-A^{\prime}$ and $D_{1}=U F$ for a filling F with $\tilde{F}=S$ and then says that the value of μ_{i} is $\operatorname{card}\left(A^{\prime} \cup D_{0} \cup D_{1}\right)$. Let $\varphi_{r_{0}, S}$ be $\vee\left\{\beta_{Y, U, \vec{Z}}: Y, U, \vec{Z}\right.$ as above $\}$.

Now suppose that $r>r_{0}$ and $r_{2} \neq 0$. We must 'pin down' $t+1$. First we must pin down the maximum filling. For U, \vec{Z} as above, a new $\mu^{*}, \vec{\eta}_{k}=\eta_{k, 0}, \eta_{k, 1}$ and $\vec{v}_{k}=v_{k, 0}, v_{k, 1}$, let MaxFilling ${ }_{U, \vec{z}}\left(\vec{\mu}^{*}, \vec{\eta}_{0}, \ldots, \vec{\eta}_{k-1}, \vec{v}_{0}, \ldots, \vec{v}_{k-1}\right)$ be:

$$
\begin{aligned}
& \text { Filling }_{U, \vec{z}}\left(\vec{\mu}^{*}, \vec{\eta}_{0}, \ldots, \vec{\eta}_{k-1}, \vec{v}_{0}, \ldots, \vec{v}_{k-1}\right) \& \bigwedge_{j<k} \operatorname{Def}\left(\eta_{j, s_{j}}\right) \\
& \begin{aligned}
\& \wedge\left\{\neg (\exists \mu _ { k } ^ { * }) (\exists \vec { \eta } _ { k }) (\exists \vec { v } _ { k }) \text { Filling } _ { U * \langle \theta _ { k } , \rho _ { k } \rangle , \vec { z } * Z _ { k } } \left(\vec{\mu}^{*}, \mu_{k}^{*}, \vec{\eta}_{0}, \ldots, \vec{\eta}_{k-1}\right.\right. \\
\left.\left.\qquad \vec{\eta}_{k}, \vec{v}_{0}, \ldots, \vec{v}_{k-1}, \vec{v}_{k}\right):\left\langle\theta_{k}, \rho_{k}\right\rangle \in X, Z_{k} \in X^{2}\right\}
\end{aligned}
\end{aligned}
$$

The second conjunct shows the reason for including the variables $\eta_{j, s_{j}}$ for $j<k$: that clause 'stretches' each j-th block down to $p_{j}+1$ for $p_{j} \in N$; such blocks exist, since $0 \in N ; \eta_{k, 1}$ and $v_{k, 1}$ do no work in the third conjunct, but are included for the notational convenience of the second. Let $\operatorname{Fin} \operatorname{Def}(\eta)$ be:
$\vee\{\vec{\exists}((\underline{e x a c t l y} \eta \rho) \theta \& \neg(\underline{\infty} \rho) \theta):\langle\theta, v\rangle \in X\}$,
where ' $\vec{\exists}$ ' binds as usual and η is as in our definition of $\operatorname{Def}(\eta)$; this formula says that the value of η is in $\bar{\kappa}_{0} \cap N$. Let $\delta_{U, \vec{Z}, 0}(\ldots, \mu)$ be:
(exactly $\mu \eta)\left(\operatorname{FinDef}(\eta) \vee \vee\left\{\left(\underline{\operatorname{exactly}} \eta \bar{\rho}_{j, j^{\prime}}\right) \theta_{j, j^{\prime}}^{\wedge}: j<k, j^{\prime}<s_{j}\right\}\right) ;$
for $q<\omega$ let $\delta_{U, \vec{Z}, q+1}(\ldots, \mu)$ be:
(exactly $\mu \eta)\left(\operatorname{FinDef}(\eta) \vee \vee\left\{\left(\underline{\text { exactly }} \eta \bar{\rho}_{j, j^{\prime}}\right) \bar{\theta}_{j, j^{\prime}} ; j \leqslant k, j^{\prime}<s_{j}\right\}\right.$

$$
\left.\vee \delta_{U, \vec{Z}, 0} \vee \cdots \delta_{U, \vec{Z}, q}\right)
$$

Then $\delta_{U, \bar{z}, q}(\ldots, \mu)$ 'pins down' the value of μ to be $t+q+1$, using fact (5) for $q=0$ and iterating. Let $\beta_{Y, U, \vec{Z}}$ be:

$$
\begin{aligned}
& \vec{\exists}\left(\gamma_{Y} \&(\forall \mu)\left(\varphi_{0, \Phi^{\prime}} \supset \bigvee_{j<r_{0}}^{\bigvee}\left(\underline{\text { exactly }} \mu \rho_{j}^{*}\right) \theta_{j}^{*}\right)\right. \\
& \& \text { MaxFilling }_{u, \vec{z}}\left(\vec{\mu}^{*}, \vec{\eta}_{0}, \ldots, \vec{\eta}_{k-1}, \vec{v}_{0}, \ldots, \vec{v}_{k-1}\right) \\
& \&\left(\underline{\text { exactly }} \mu_{i} \mu\right)\left[\varphi_{0, \Phi^{\prime} \vee} \vee \bigvee_{j<r_{0}}\left(\underline{\text { exactly }} \mu \bar{\rho}_{j}^{*}\right) \bar{\theta}_{j}^{*}\right. \\
& \left.\left.\vee \bigvee_{j<r_{2}} \delta_{U, \vec{z}_{, j}} \vee \vee\left\{\left(\underline{\text { exactly }} \mu \rho_{j}\right) \bar{\theta}_{j, j^{\prime}}: j<k \text { and } j^{\prime}<s_{j}\right\}\right]\right) .
\end{aligned}
$$

This formula looks at $D_{0}=N-A^{\prime}, D_{1}=\bigcup F$ where F is the maximum filling, and at $D_{2}=\left(t, t+r_{2}+1\right)$, and says that the value of μ_{i} is $\operatorname{card}\left(A^{\prime} \cup D_{0} \cup D_{1} \cup D_{2}\right)$. Let $\varphi_{r_{0}, S}$ be $V\left\{\beta_{Y, U, \vec{Z}}: Y, U, \vec{Z}\right.$ as above $\}$. We let φ_{4} be:
$V\left\{\varphi_{r_{0}, s}:\left\langle r_{0}, S\right\rangle\right.$ is a subcase of case 4$\}$.
We now tackle case 7. Let $t=\operatorname{card}(\bar{\kappa}-N)$. Since $A^{\prime}-N=\bar{\kappa}-N$ and $r<0$, $t>0$. Let $t^{\prime}<t$ be the greatest such that $t^{\prime} \in N$. By fact (2), $t^{\prime} \in N_{0} \cup \bar{N}_{2}$. For $r_{0}, u<\mathcal{K}_{0}$ let subcase $\left\langle r_{0}, u\right\rangle$ hold iff $r_{0}=\min \left\{|r|, \operatorname{card}\left(A^{\prime} \cap N\right)\right\}$ and $u=$ $\min \left\{|r|-r_{0}, t-t^{\prime}-1\right\}$. We will construct $\varphi_{r_{0}, u}$ so that if $\mathscr{A}, \vec{a}, \vec{n}$ fall under case 7, then:

$$
\mathscr{A} F_{K} \varphi_{r_{0}, u}[\vec{a}, \vec{n}] \quad \text { iff } \quad\left\langle r_{0}, u\right\rangle \text { holds and } n_{i}=\operatorname{card}\left(A^{\prime}\right)-|r| .
$$

If subcase $\langle | r|, 0\rangle$ holds, then we can look at $D \subseteq A^{\prime}$ with $\operatorname{card}(D)=|r|$ and pin μ_{i} to $\operatorname{card}\left(A^{\prime}-D\right)$. For $Y=\left\langle\left\langle\theta_{0}, \rho_{0}\right\rangle, \ldots,\left\langle\theta_{|r|-1}, \rho_{|r|-1}\right\rangle\right\rangle \in X^{|r|}$ let β_{Y} be:

$$
\begin{aligned}
& \operatorname{Distinct}_{Y}\left(\eta_{0}, \ldots, \eta_{|r|-1}\right) \& \bigwedge_{j<|r|} \varphi_{0, \Phi^{\prime}}\left(\mu / \eta_{j}\right) \\
& \&\left(\underline{\text { exactly }} \mu_{i} \mu\right)\left(\varphi_{0, \Phi^{\prime}} \& \bigwedge_{j<|r|} \neg\left(\underline{\text { exactly }} \mu \bar{\rho}_{j}\right) \bar{\theta}_{j}\right) ;
\end{aligned}
$$

let $\varphi_{|r|, 0}$ be $V\left\{\vec{\exists} \beta_{Y}: Y \in X^{|r|}\right\}$.
Suppose that subcase $\left\langle r_{0}, u\right\rangle$ holds for $r_{0}=\operatorname{card}\left(A^{\prime} \cap N\right)<|r|$ and $u=|r|-r_{0}$. Then $\bar{\aleph}_{0}-N$ contains an interval with at least u members; since N is cofinite, there then is a filling $F=\left\{\left\langle p_{0}, q_{0}\right\rangle\right\}$ with $u=q_{0}-p_{0}-1 ; \varphi_{\left\langle r_{0}, u\right\rangle}$ will say that the value of μ_{i} is $\operatorname{card}\left(A^{\prime}-(N \cup \bigcup F)\right)$ for such an F. For $\langle\theta, \rho\rangle \in X, Y=$ $\left\langle\left\langle\theta_{0}, \rho_{0}\right\rangle, \ldots,\left\langle\theta_{r_{0}-1}, \rho_{r_{0}-1}\right\rangle\right\rangle \in X^{r_{0}} \quad$ and $\quad \eta_{0}, \ldots, \eta_{r_{0}-1}, \quad \mu^{*}, \eta_{0}^{\prime}, \ldots, \eta_{u-1}^{\prime} \in$ $\operatorname{Var}(2)$ and $v_{0}^{\prime}, \ldots, v_{u-1}^{\prime}$ of the same type as ρ, let $\beta_{Y, \beta, \rho}$ be:

$$
\begin{aligned}
& \operatorname{Distinct}_{Y}(\vec{\eta}) \& \operatorname{Block}_{\theta, \rho}\left(\mu^{*}, \vec{\eta}^{\prime}, \vec{v}^{\prime}\right) \&\left(\underline{\operatorname{exactly}} \mu_{i} \mu\right) \\
& \left.\left.\left(\varphi_{0, \Phi^{\prime}} \& \bigwedge_{j<r_{0}} \neg\left(\underline{\operatorname{exactly}} \mu \bar{\rho}_{j}\right) \bar{\theta}_{j} \& \bigwedge_{j<u} \neg \underline{(\operatorname{exactly}} \mu \rho_{j}\right) \theta_{j}^{\wedge}\right)\right) ;
\end{aligned}
$$

this looks for $D=\left(A^{\prime} \cap N\right) \cup \bigcup F$ for a filling F as described above, and pins μ_{i} to $\operatorname{card}\left(A^{\prime}-D\right)$. Let $\varphi_{r_{0}, u}$ be:

$$
V\left\{\vec{\exists} \beta_{Y, \theta, \rho}:\langle\theta, \rho\rangle \in X \quad \text { and } \quad Y \in X^{r_{0}}\right\} .
$$

Now suppose that $r_{0}<|r|$ and $u<|r|-r_{0}$; so $t=t^{\prime}+u+1$. Set $r_{1}=|r|-r_{0}$. Fixing $\vec{\eta}=\eta_{0}, \ldots, \eta_{r_{1}-1}$ and $\vec{v}^{\prime}=v_{0}^{\prime}, \ldots, v_{r_{1}-1}^{\prime}$, let α be:

$$
\neg \bigvee\left\{\exists \text { Block }_{\theta, \rho}\left(\mu^{*}, \vec{\eta}, \vec{v}^{\prime}\right):\langle\theta, \rho\rangle \in X\right\} ;
$$

α entails that $t-t^{\prime} \leqslant r_{1}$. We will construct a $\varphi_{\left\langle r_{1}, u\right\rangle}$ to look for sets C and $D \subseteq C$, with $\operatorname{card}(C)=t^{\prime}$ and $\operatorname{card}(D)=r_{1}-u-1$, and to say that the value of μ_{i} is $\operatorname{card}(C-D)$. Let $s=r_{1}-u-1$. Fix $\mu^{*}, \eta_{0}, \ldots, \eta_{u} \in \operatorname{Var}(2)$. For $\langle\theta, \rho\rangle \in X$:

- if $\rho \in \operatorname{Var}(0)$ fix $v_{0}^{*}, \ldots, v_{u}^{*}, v_{0}^{\prime}, \ldots, v_{s-1}^{\prime} \in \operatorname{Var}(0)$ and $Z=U=\langle \rangle$;

$$
\begin{aligned}
& \text { - if } \quad \rho \in \operatorname{Var}(2) \quad \text { fix } \quad v_{0}^{*}, \ldots, v_{u}^{*}, \quad v_{0}^{\prime}, \ldots, v_{s-1}^{\prime} \in \operatorname{Var}(2) \quad \text { and } \quad Z= \\
& \quad\left\langle\left\langle\theta_{0}, \rho_{0}\right\rangle, \ldots,\left\langle\theta_{u}, \rho_{u}\right\rangle\right\rangle \in X^{u+1}, U=\left\langle\left\langle\theta_{0}^{*}, \rho_{0}^{*}\right\rangle, \ldots,\left\langle\theta_{s-1}^{*}, \rho_{s-1}^{*}\right\rangle\right\rangle \in X^{s} .
\end{aligned}
$$

Form $\theta, \rho, \bar{Z}, \bar{U}$ as usual to avoid collisions of non-distinguished variables. Say $\rho \in \operatorname{Var}(0)$. For $j \leqslant u$ let θ_{j}^{\vee} be $\theta \vee \bigvee_{j^{\prime} \leqslant j} \rho=v_{j^{\prime}}^{*}$; let $\xi_{\theta, \rho, Z}\left(\mu^{*}, \vec{\eta}, \vec{v}^{*}\right)$ be:
$\neg(\underline{\infty} \rho) \theta \&\left(\underline{\text { exactly }} \mu^{*} \rho\right) \theta \& \bigwedge_{j \leqslant u}\left(\underline{\text { exactly }} \eta_{j}\right) \theta_{j}^{\vee}$
$\& \bigwedge_{j<u} \neg \operatorname{Def}\left(\eta_{j}\right) \&\left(\underline{\operatorname{exactly}} \eta_{u} \eta\right) \neg \operatorname{Def}(\eta)$.
If $\rho \in \operatorname{Var}(2)$ for $j \leqslant u$ let θ_{j}^{\vee} be $\theta \vee \bigvee_{j^{\prime} \leqslant j}$ (exactly $\left.\rho \bar{\rho}_{j^{\prime}}\right) \bar{\theta}_{j^{\prime}}^{\vee}$; let $\xi_{\theta, \rho, Z}\left(\mu^{*}, \vec{\eta}, \vec{v}^{*}\right)$ be:

$$
\begin{aligned}
& \neg(\underline{\infty} \rho) \theta \&\left(\underline{\text { exactly }} \mu^{*} \rho\right) \theta \& \operatorname{Distinct}_{Z}\left(\vec{v}^{*}\right) \\
& \& \bigwedge_{j \leqslant u}^{\left(\underline{\operatorname{exactly}} \eta_{j}\right) \theta_{j}^{\vee} \& \bigwedge_{j<u} \neg \operatorname{Def}\left(\eta_{j}\right) \&\left(\underline{\text { exactly }} \eta_{u} \eta\right) \neg \operatorname{Def}(\eta) .}
\end{aligned}
$$

In both situations, $\xi_{\xi, \rho, Z}\left(\mu^{*}, \vec{\eta}, \vec{v}^{*}\right)$ pins η_{u} to t and η^{*} to t^{\prime}. If $\rho \in \operatorname{Var}(0)$ let $\beta_{\theta, \rho,\langle \rangle,\langle \rangle}$ be:

$$
\begin{aligned}
& \xi_{\theta, \rho, z}\left(\mu^{*}, \vec{\eta}, \vec{v}^{*}\right) \& \bigwedge_{j<s} \theta\left(\rho / v_{j}^{\prime}\right) \& \bigwedge_{j^{\prime}<j<s} v_{j^{\prime}}^{\prime} \neq v_{j}^{\prime} \\
& \&\left(\underline{\text { exactly }} \mu_{i} \rho\right)\left(\theta \& \bigwedge_{j<s} \rho \neq v_{j}^{\prime}\right) .
\end{aligned}
$$

If $\rho \in \operatorname{Var}(2)$ let $\beta_{\theta, \rho, Z, U}$ be:

$$
\begin{aligned}
& \xi_{\theta, \rho, Z}\left(\mu^{*}, \vec{\eta}, \vec{v}^{*}\right) \& \bigwedge_{j<s} \theta\left(\rho / v_{j}^{\prime}\right) \& \operatorname{Distinct}_{U}\left(\vec{v}^{\prime}\right) \\
& \&\left(\underline{\text { exactly }} \mu_{i} \rho\right)\left(\theta \& \bigwedge_{j<s} \neg\left(\underline{\text { exactly }} \rho \rho_{j}^{*}\right) \theta_{j}^{*}\right)
\end{aligned}
$$

this formula handles the casc of $t^{\prime} \in N_{2}$; since then $t^{\prime} \in \bar{N}_{2}$, the desired values for the v_{j}^{\prime} 's exist in N as required. Let $\varphi_{r_{0}, u}$ be:

$$
\alpha \& \bigvee\left\{\vec{\exists} \beta_{\theta, \rho, Z, U}:\langle\theta, \rho\rangle, Z, U \text { as described above }\right\}
$$

Let φ_{7} be:

$$
\bigvee\left\{\varphi_{r_{0}, u}:\left\langle r_{0}, u\right\rangle \text { is a subcase of case } 7\right\} .
$$

4.3. Theorems 4.1 and 4.2 suggest the following:

Conjecture (E). For any $\kappa \in$ Card:
(1) $\mathscr{L}^{0,4}(\underline{\text { exactly }},=) \stackrel{K}{\prec} \mathscr{L}^{0,6}(\underline{\text { exactly }})$,
(2) $\mathscr{L}^{0,4 *}(\underline{\text { exactly }},=) \stackrel{\kappa}{\prec} \mathscr{L}^{0,4 *}(\underline{\text { exactly }})$.

Given $\varphi \in \operatorname{Sent}\left(\mathscr{L}^{0,4}((\right.$ exactly,$=))\left[\operatorname{Scnt}\left(\mathscr{L}^{0,4 *}(\underline{\text { exactly }},=)\right)\right]$, we may apply the procedures used in $\S 4.1$ [84.2] to eliminate all equations between variables of type 4; but I can't see how to eliminate equations between variables of type 2 the scope of a prefex of the form (exactly $\mu_{i} \mu$) for $\mu \in \operatorname{Var}(2)$ and $\mu_{i} \in \operatorname{Var}(4)$. However for $\kappa<\mathcal{\chi}_{\omega}$ this obstacle can be avoided, even improving on (E.1).

Theorem. For $\kappa<\aleph_{\omega}$ and $1 \leqslant k<\omega$:
(i) $\mathscr{L}^{0,2 k}(\underline{\text { exactly }},=) \stackrel{\kappa}{\kappa} \mathscr{L}^{0,2 k}(\underline{\text { exactly })}$,
(ii) $\mathscr{L}^{0,2 k^{*}}(\underline{\text { exactly }},=) \stackrel{\rightharpoonup}{\kappa}^{\kappa} \mathscr{L}^{0,2 k *}(\underline{\text { exactly }})$.

In this section we will prove (i) for $k=1$; in the next section we will consider (i) and (ii) with $k>1$.

Let $\varphi \in \operatorname{Fml}\left(\mathscr{L}^{0,2}(\underline{\text { exactly }},=)\right)$ with free variables among $v_{0}, \ldots, v_{t-1} \in \operatorname{Var}(0)$, $\mu_{0}, \ldots, \mu_{p-1} \in \operatorname{Var}(2)$, the 'distinguished' variables. Let Φ be a profilc for $\mu_{0}, \ldots, \mu_{p-1}$. We will construct φ_{Φ} meeting the conditions met in $\S 4.1$ and 4.2. Only the case in which φ is $(\exists \mu) \varphi_{0}, \mu \in \operatorname{Var}(2)$, needs discussion. As in $\S 4.1$ we may suppose that Φ is $\wedge_{j^{\prime}<j<p} \mu_{j^{\prime}} \neq \mu_{j}$, and that no distinguished variable occurs bound in φ or in $\varphi_{0, \Phi^{\prime}}$ Let φ_{j} be $\varphi_{0, \Phi^{\prime}}\left(\mu / \mu_{j}\right)$ for $j<p$. We will construct $\varphi^{\prime} \in \operatorname{Fml}\left(\mathscr{L}^{0,2}(\underline{\text { exactly })})\right.$ so that for any model $\mathscr{A}, \vec{a} \in|\mathscr{A}|^{l}$ and $\vec{n} \in \bar{\kappa}^{p}$ with $\mathscr{A} \vDash_{\kappa} \Phi[\vec{n}]:$

$$
\mathscr{A} F_{\kappa}(\exists \mu)\left(\bigwedge_{i<p} \mu \neq \mu_{i} \otimes \varphi_{0, \Phi^{\prime}}\right)[\vec{a}, \vec{n}] \quad \text { iff } \quad \mathscr{A} \vDash \varphi^{\prime}[\vec{a}, \vec{n}] .
$$

Then we will take φ_{Φ} to bc $\bigvee_{i<p} \varphi_{i} \vee \varphi^{\prime}$.
Let X_{0} and $N_{0}=N_{0}(\mathscr{A}, \vec{a}, \vec{n})$ be as in $\S 4.2, C=\left\{n_{0}, \ldots, n_{p-1}\right\}-N_{0}$. Let $\operatorname{Def}_{0}(\eta)$ be $\bigvee\left\{\exists \vec{\exists}(\operatorname{exactly} \eta \bar{v}) \bar{\theta}:\langle\theta, v\rangle \in X_{0}\right\}$, for $\eta \in \operatorname{Var}(2)$ as in $\S 4.2$ and ${ }^{\prime} \overline{3}$ ’ binding all non-distinguished variables other than η free in its scope: clearly Def_{0} defines N_{0}. Let φ^{*} be:

$$
\left.\bigvee\left\{\left\{\left((\underline{\text { exactly }} \mu \bar{v}) \bar{\theta} \& \&_{i<p}^{\&}\right\urcorner \underline{(\text { exactly }} \mu_{j} \bar{v}\right) \bar{\theta} \& \varphi_{0, \Phi^{\prime}}\right):\langle\theta, v\rangle \in X_{0}\right\},
$$

where θ, v are transformed into $\bar{\theta}, \bar{v}$ as usual to avoid collisions of variables, and where ‘’’ binds all non-distinguished variables in its scope, including μ. Thus for $\mathscr{A}, \vec{a}, \vec{n}$ as above:

$$
\mathscr{A} F_{\kappa} \varphi^{*}[\vec{a}, \vec{n}] \quad \text { iff for some } n \in N_{0}-\left\{n_{0}, \ldots, n_{p-1}\right\} \quad \mathscr{A} F_{\kappa} \varphi_{0, \Phi}[\vec{a}, \vec{n}] .
$$

For $\mathscr{A}, \vec{a}, \vec{n}$ and N_{0} as above and $n, n^{\prime} \in \bar{\kappa}-N_{0}$:

$$
\mathscr{A} F_{\kappa} \varphi_{0, \Phi}[\vec{a}, \vec{n}, n] \quad \text { iff } \quad \mathscr{A} F_{K} \varphi_{0, \Phi}\left[\vec{a}, \vec{n}, n^{\prime}\right] .
$$

This follows by induction on the construction of $\varphi_{0, \Phi}$. Thus for some $n \in \bar{\kappa}-$
$\left(N_{0} \cup C\right):$

$$
\begin{aligned}
& \mathscr{A} F_{\kappa} \varphi_{0, \Phi}[\vec{a}, \vec{n}, n] \quad \text { iff } \\
& \mathscr{A} F_{\kappa}(\exists \mu)\left(\neg \operatorname{Def}_{0}(\mu) \& \varphi_{U, \Phi}\right)[\vec{a}, \vec{n}] \text { and } \operatorname{card}(\bar{\kappa}-N)>\operatorname{card}(C) .
\end{aligned}
$$

For $c \subseteq p$ let Def_{c} be

$$
\bigwedge_{j \in c} \neg \operatorname{Def}\left(\mu_{j}\right) \& \bigwedge_{j \in p-c} \operatorname{Def}\left(\mu_{j}\right) .
$$

Thus $\mathscr{A} F_{\kappa} \operatorname{Def}_{c}[\vec{a}, \vec{n}]$ iff $C=\left\{n_{j}: j \in c\right\}$. We will construct a formula ψ_{c} saying that $\operatorname{card}\left(\bar{\kappa}-N_{0}\right)>\operatorname{card}(c)$. Letting $\varphi^{* *}$ be:

$$
(\exists \mu)\left(\neg \operatorname{Def}_{0}(\mu) \& \varphi_{0, \Phi^{\prime}}\right) \&\left(\bigvee_{c \subseteq p}\left(\operatorname{Def}_{c} \& \psi_{c}\right)\right)
$$

we may then let φ^{\prime} be $\varphi^{*} \vee \varphi^{* *}$.
Suppose $\kappa=\mathcal{K}_{z}, z<\omega$. If $y=\operatorname{card}\left(N_{0} \cap\left(\bar{\kappa}-\bar{\kappa}_{0}\right)\right)$, then $\operatorname{card}\left(\bar{\kappa}-N_{0}\right)>\operatorname{card}(c)$ iff $\operatorname{card}\left(\bar{\aleph}_{0}-N_{0}\right)>\operatorname{card}(c)-(z-y)$. For each $y \leqslant z$ we will construct δ_{y} and γ_{y} so that:

$$
\begin{array}{lll}
\mathscr{A} F_{\kappa} \delta_{y}[\vec{a}, \vec{n}] & \text { iff } & y=\operatorname{card}\left(N_{0} \cap\left(\bar{\kappa}-\bar{\aleph}_{0}\right)\right) \\
\mathscr{A} F_{\kappa} \gamma_{y}[\vec{a}, \vec{n}] & \text { iff } & \operatorname{card}\left(\bar{\aleph}_{0}-N_{0}\right)>\operatorname{card}(c)-(z-y) .
\end{array}
$$

Then we may let ψ_{c} be $V_{y \leqslant z}\left(\delta_{y} \& \gamma_{y}\right)$. The construction of δ_{y} relies on ideas used in $\S 4.2$, and so is left to the reader. The construction of γ_{y} uses a modified notion of a filling. Let F be an upward-filling iff $F=\left\{\left\langle p_{0}, q_{0}\right\rangle, \ldots\right.$, $\left.\left.\left\langle p_{k-1}, q_{k-1}\right\rangle\right\rangle\right\}$ where $p_{j} \in N_{0} \cap \bar{\aleph}_{0}, p_{j}<q_{j}$ and $\left(p_{j}, q_{j}+1\right) \subseteq \bar{\aleph}_{0}-N_{0}$ for all $j<k$. Let:

$$
\cup F=\bigcup\left\{\left(p_{j}, q_{j}+1\right): j<k\right\}, \quad \bar{F}=\left\langle q_{0}-p_{0}, \ldots, q_{k-1}-p_{k-1}\right\rangle
$$

again order is unimportant; we only need that $\operatorname{card}(\cup F)=\sum \tilde{F}$. For each $S \in\left(\bar{\aleph}_{0}-\{0\}\right)^{k}$ with $\sum S=\operatorname{card}(c)+y+1-z$ we construct γ_{S} saying that there is an upward-filling F with $\tilde{F}=S$. We then take γ_{y} to be $\bigvee\left\{\gamma_{S}: S\right.$ as above $\}$. Construction of γ_{S} resembles constructions in $\S 4.2$ and is left to the reader.

But the following deserves mention. In this construction we could not use fillings; fillings would be formed by counting downward from elements of $N_{0} \cap \bar{\aleph}_{0}$; but if N_{0} is finite, there might not be enough elements of $N_{0} \cap \bar{\aleph}_{0}$ to yield an F with $\cup F$ sufficiently large. On the other hand, in case 4 of $\S 4.2$ we could not use upward-fillings; for in counting upward from an element of $N_{2} \cap \bar{\aleph}_{0}$ we must 'count with' members of N; since in case $4 N$ is finite, we might not be able to count high enough.
4.4. We will now prove Theorem 4.3 for $k=2$. Suppose that $\varphi \in$ $\operatorname{Fml}\left(\mathscr{L}^{0,4}(\right.$ exactly,$\left.=)\right)\left[\operatorname{Fml}\left(\mathscr{L}^{0,4^{*}}(\right.\right.$ exactly, $\left.\left.=)\right)\right]$ with free variables among \boldsymbol{v}_{0}, $\ldots, v_{l-1} \in \operatorname{Var}(0), \mu_{0}, \ldots, \mu_{p-1} \in \operatorname{Var}(2), \zeta_{0}, \ldots, \zeta_{q-1} \in \operatorname{Var}(4)$; these are the distinguished variables. As indicated at the start of $\S 4.3$, it suffices to trans-
form φ to a K-equivalent $\hat{\varphi} \in \operatorname{Sent}\left(\mathscr{L}^{0,4}(\right.$ exactly, $\left.=)\right)$ [$\operatorname{Sent}\left(\mathscr{L}^{0,4 *}(\right.$ exactly, $\left.\left.=)\right)\right]$ with the same free variables such that $\hat{\varphi}$ contains no equations between variables of type 2. As usual, let distinctly bound variables be distinct from each other and from the distinguished variables. Let Φ be a profile for $\mu_{0}, \ldots, \mu_{p-1}$. We will construct $\varphi_{\Phi} \in \operatorname{Sent}\left(\mathscr{L}^{0,4}(\right.$ exactly $\left.)\right)$ [$\operatorname{Sent}\left(\mathscr{L}^{0,4 *}(\right.$ exactly $\left.)\right)$] so that for any model $\mathscr{A}, \vec{a} \in|\mathscr{A}|^{l}, \vec{n} \in \bar{\kappa}^{p}, \vec{m} \in \bar{\aleph}_{0}^{q}$, if $\mathscr{A} \vDash \Phi[\vec{n}]$ then:

$$
\mathscr{A} F_{\kappa} \varphi_{\Phi}[\vec{a}, \vec{n}, \vec{m}] \quad \text { iff } \quad \mathscr{A} F_{K} \varphi[\vec{a}, \vec{n}, \vec{m}]
$$

The only cases worth discussing are where φ is $(\exists \mu) \varphi_{0}$ or (exactly $\left.\zeta_{i} \mu\right) \varphi_{0}$ for $\mu \in \operatorname{Var}(2)$. The first case in handled as in $\S 4.1$; thus the assumption that $\kappa<\mathcal{N}_{\omega}$ is not used. Suppose that φ has the second form. We will try to mimic the construction from $\S 4.2$, with X_{0} and N_{0} playing the role that X and N played in §4.2. In cases 1 through 6 the construction is straightforward, not requiring use of the assumption that $\kappa<\mathcal{\aleph}_{\omega}$. But case 7 poses a problem. Suppose subcase $\left\langle r_{0}, u\right\rangle$ obtains for $r_{0}<|r|$ and $u<|r|-r_{0}=r_{1}$, and for $\langle\theta, v\rangle \in X_{0}$ and appropriate \vec{a}^{0}, \vec{n}^{0}, \vec{m}^{0} we have $C=\hat{v} \theta\left[\vec{a}, \vec{a}^{0}, \vec{n}, \vec{n}^{0}, \vec{m}, \vec{m}^{0}\right]^{\mathscr{A}} \subseteq|\mathscr{A}|$ with $\operatorname{card}(C)=t^{\prime}$. For any $\mu^{\prime} \in \operatorname{Var}(2)$ we can produce a formula that pins the value of μ^{\prime} to $t^{\prime}-(r-u-$ $1)=\operatorname{card}(C-D)$ for any $D \subseteq C$ with $\operatorname{card}(D)=r_{1}-u-1$. But this will not enable us to produce a formula pinning ζ_{i} to $t^{\prime}-\left(r_{1}-u-1\right)$, since $\zeta_{i} \in \operatorname{Var}(4)$! This is the obstacle to the naive approach to proving conjecture (E).

The hypothesis that $\kappa=\kappa_{z}$ for $z<\omega$ makes possible a different approach to case 7. Under case 7 one of the following subcases holds:
(1) $\operatorname{card}\left(\bar{\aleph}_{0}-N_{0}\right) \geqslant r$,
(2) $\operatorname{card}\left(A^{\prime} \cap N_{0}\right) \geqslant r$,
(3) $\operatorname{card}\left(A^{\prime}\right)=\operatorname{card}\left(A^{\prime} \cap N_{0}\right)+\operatorname{card}\left(\bar{\kappa}-N_{0}\right)<z+2 r$.

For each S such that $S \in\left(\aleph_{0}-\{0\}\right)^{k}$ for some k and $\sum S=r$, we may construct a formula α_{S} asscrting the existence of a filling F with $\tilde{F}=S$ and such that the value of μ_{i} is card $\left(A^{\prime}-\bigcup F\right)$. In subcase (1) there is such an S and F. It is easy to construct a γ that 'looks for' $D \subseteq A^{\prime} \cap N_{0}$ with $\operatorname{card}(D)=r$ and says that the value of μ_{i} is $\operatorname{card}\left(A^{\prime}-D\right)$; in subcase (2) such a D exists. For each u with $r \leqslant u<z+2 r$ it is easy to construct a formula γ_{u} saying that $\operatorname{card}\left(A^{\prime}\right)=u$ and the value of μ_{i} is $u-r$. Let the disjunction of all of these formulae be φ_{7}; details are left to the reader.

This construction easily generalizes for $k>2$.
4.5. We now show Theorem $4.3(\mathrm{i})$ is best-possible for $k=1$. Let \mathbf{R} be 2-place,
 let φ be:

$$
\left(\exists \mu_{0}\right)\left(\exists \mu_{1}\right)\left(\neg \theta\left(\mu_{0}\right) \& \neg \theta\left(\mu_{1}\right) \& \mu_{0} \neq \mu_{1}\right)
$$

Observation. For $\kappa \geqslant \kappa_{\omega}, \varphi$ is not κ-equivalent to any sentence of $\mathscr{L}^{0,2}$ (exactly).

Proof. We construct models \mathscr{A}_{0} and \mathscr{A}_{1} as follows. For each $n<\operatorname{ncb}(\kappa)$ fix sets X_{n} and Y_{n} with $\operatorname{card}\left(X_{n}\right)=\kappa$ and $\operatorname{card}\left(Y_{n}\right)=n$, all these sets pairwise disjoint. Let:

$$
\begin{aligned}
& \mathbf{R}^{\mathscr{A}_{0}}=\bigcup\left\{X_{n} \times Y_{n}: n \neq \aleph_{0}\right\}, \\
& \mathbf{R}^{\mathscr{A}_{1}}=\bigcup\left\{X_{n} \times Y_{n}: n \notin\left\{\aleph_{0}, \aleph_{1}\right\}\right\}
\end{aligned}
$$

The members of $\bigcup X_{n}$ are X-objects, and the members of $\bigcup Y_{n}$ are Y-objects. For $a \in X_{n} \cup Y_{n}$ let $f(a)=n$. For $n, n^{\prime}<\kappa$ let n match n^{\prime} iff:
if n or n^{\prime} is finite or $\geqslant \mathcal{K}_{\omega}$, then $n=n^{\prime}$;
$n=\aleph_{t+1} \quad$ iff $\quad n^{\prime}=\kappa_{t+2} \quad$ for all $t<\omega ;$
$n=\aleph_{0} \quad$ iff $\quad n^{\prime} \in\left\{\aleph_{0}, \aleph_{1}\right\}$.
For $\vec{a}_{i} \in\left|\mathscr{A}_{i}\right|^{\prime}, \vec{n} \in \bar{\kappa}^{p}$ let $\left\langle\vec{a}_{0}, \vec{n}_{0}\right\rangle$ match $\left\langle\vec{a}_{1}, \vec{n}_{1}\right\rangle$ iff:

$$
\begin{array}{ll}
\text { for all } j<j^{\prime}<l: & a_{0, j}=a_{0, j^{\prime}} \quad \text { iff } \quad a_{1, j}=a_{1, j^{\prime}} \\
& f\left(a_{0, j}\right)=f\left(a_{0, j^{\prime}}\right) \text { iff } f\left(a_{1, j}\right)=f\left(a_{1, j^{\prime}}\right)
\end{array}
$$

for all $j<l: \quad a_{0, j}$ is an X-object iff $a_{1, j}$ is an X-object;
$a_{0, j}$ is a Y-object iff $a_{1, j}$ is a Y-object;
$f\left(a_{0, j}\right)$ matches $f\left(a_{1, j}\right) ;$
for all $j<p$: $\quad n_{0, j}$ matches $n_{1, j}$.
Then for any formula ψ of $\mathscr{L}^{0,2}$ (exactly) with free variables among $v_{0}, \ldots, v_{l-1} \in \operatorname{Var}(0), \mu_{0}, \ldots, \mu_{p-1} \in \operatorname{Var}(2):$ if $\left\langle\vec{a}_{0}, \vec{n}_{0}\right\rangle$ matches $\left\langle\vec{a}_{1}, \vec{n}_{1}\right\rangle$, then:

$$
\mathscr{A}_{0} F_{\kappa} \psi\left[\vec{a}_{0}, \vec{n}_{0}\right] \quad \text { iff } \quad \mathscr{A}_{1} F_{\kappa} \psi\left[\vec{a}_{1}, \vec{n}_{1}\right] .
$$

This is easy to show. So for any $\psi \in \operatorname{Sent}\left(\mathscr{L}^{0,2}(\underline{\text { exactly })}), \mathscr{A}_{0} F_{\kappa} \psi\right.$ iff $\mathscr{A}_{1} F_{\kappa} \psi$, proving the observation.
4.6. We will now slightly improve the last remarks of $\S 2.1$.

Observation. For $1 \leqslant k<\omega$ and κ an aleph, if either $\operatorname{ncb}^{k}(\kappa)<\kappa_{\omega^{\omega}}$ or $\operatorname{ncb}^{k}(\kappa)$ is a limit cardinal, then:
(i) $\mathscr{L}^{0,2 k+2}(\underline{\text { exactly }},=) \kappa \mathscr{L}^{0,2 k *}(\underline{\text { exactly }},=)$,
(ii) $\mathscr{L}^{0,2 k+2}$ (exactly) $\stackrel{\kappa}{\hookrightarrow} \mathscr{L}^{0,2 k *}$ (exactly).

To prove this, we will introduce another satisfaction relation. For a model \mathscr{A} and $\kappa \in$ Card, we define $\mathscr{A} \xi_{\kappa}^{2 k} \varphi$ so that variables of type $\geqslant 2 k+2$ range over $\overline{n c b^{k-1}(\kappa)}$ rather than over $\overline{n c b^{k}(\kappa)}$. That is, let $\operatorname{Sent}^{2 k}\left(\mathscr{L}_{\mathscr{A}, \kappa}^{0,2 k+2 *}\right.$ (exactly, $=$)) be the set of sentences formed from formulae of $\mathscr{L}_{\mathscr{a l k}}^{0,2 k+2 *}$ (exactly, $=$) by replacing
variables of type- $2 j$ by terms of the form \mathbf{n}, where:

$$
\begin{aligned}
& \text { if } 1 \leqslant j \leqslant k \text {, then } \quad n<\operatorname{ncb}^{j-1}(\kappa) \\
& \text { if } j=k+1 \text {, then } \quad n<\mathrm{ncb}^{k-1}(\kappa) .
\end{aligned}
$$

For $\varphi \in \operatorname{Sent}^{2 k}\left(\mathscr{L}_{a, k}^{0,2 k+2 *}(\underline{\text { exactly }},=)\right)$ define $\mathscr{A} \vDash_{\kappa}^{2 k} \varphi$ as in $\S 1.1$ except that for $\mu \in \operatorname{Var}(2 k+2)$:

$$
\begin{aligned}
& \mathscr{A} F_{\kappa}^{2 k}(\exists \mu) \psi \quad \text { iff } \quad \text { for some } n<\operatorname{ncb}^{k-1}(\kappa) \quad \mathscr{A} F_{\kappa}^{2 k} \psi(\mu / \mathbf{n}) ; \\
& \mathscr{A} F_{\kappa}^{2 k}\left(\underline{\text { exactly } \mathbf{m} \mu) \psi \quad \text { iff } \quad \operatorname{card}\left(\left\{n<\mathbf{n c b}^{k-1}(\kappa): \mathscr{A} F_{\kappa}^{2 k} \psi(\mu / \mathbf{n})\right\}\right)=m .}\right.
\end{aligned}
$$

(The reader might wonder why this paper investigates F_{κ} rather than \vdash_{K}^{2}. The remarks of $\S 1.2$ only apply to the latter satisfaction relation if ncb $(\kappa)=\kappa$ (when the relations coincide); also Theorem 2.7 fails for the latter relation.)

Given K and $\varphi \in \operatorname{Sent}\left(\mathscr{L}^{0,2 k+2 *}\right.$ (exactly, $\left.=\right)$), we will construct $\varphi^{\prime} \in$ $\operatorname{Sent}\left(\mathscr{L}^{0,2 k+2 *}(\right.$ exactly, $\left.=)\right)$ so that for any model $\mathscr{A}: \mathscr{A} F_{\kappa} \varphi$ iff $\mathscr{A} F_{\kappa}^{2 k} \varphi^{\prime}$. Form $\varphi^{\prime \prime} \in \operatorname{Sent}\left(\mathscr{L}^{0,2 \overline{k *}}\right.$ (exactly, $\left.=\right)$) from φ^{\prime} by replacing all variables of type $2 k+2$ by new variables of type $2 k$; for any model $\mathscr{A}, \mathscr{A} F_{\kappa}^{2 k} \varphi^{\prime}$ iff $\mathscr{A} F_{\kappa}^{2 k} \varphi^{\prime \prime}$; but clearly $\mathscr{A} F_{K}^{2 k} \varphi^{\prime \prime}$ iff $\mathscr{A} F_{\kappa} \varphi^{\prime \prime}$; so $\varphi^{\prime \prime}$ is as required by (i). If $\varphi \in \operatorname{Sent}\left(\mathscr{L}^{0,2 k+2 *}\right.$ (exactly)), we will make sure that $\varphi^{\prime} \in \operatorname{Sent}\left(\mathscr{L}^{0,2 k+2 *}\right.$ (exactly) $) ; \varphi^{\prime \prime}$ will be as required by (ii).

Suppose that $k=1$. Suppose $\varphi \in \operatorname{Fml}\left(\mathscr{L}^{0,4}(\underline{\text { exactly }})\right)$ with free variables among $v_{0}, \ldots, v_{l(0)-1} \in \operatorname{Var}(0), \rho_{0}, \ldots, \rho_{l(2)-1} \subset \operatorname{Var}(2), \mu_{0}, \ldots, \mu_{l(4)-1} \in \operatorname{Var}(4)$, these to be called 'distinguished'. We will construct $\varphi^{\prime} \in \operatorname{Fml}\left(\mathscr{L}^{0,4}\right.$ (exactly)) with free variables among the distinguished ones, and so that for any model $\mathscr{A}, \vec{a} \in|\mathscr{A}|^{l(0)}$, $\vec{m} \in \bar{K}^{l(2)}, \vec{n} \in \overline{\operatorname{ncb}(\kappa)^{\prime(4)}}$:

$$
\mathscr{A} F_{\kappa} \varphi[\vec{a}, \vec{m}, \vec{n}] \quad \text { iff } \quad \mathscr{A} F_{\kappa}^{2} \varphi^{\prime}[\vec{a}, \vec{m}, \vec{n}] .
$$

φ^{\prime} is constructed by induction on the contraction of φ; the only case worth discussing is where φ is $(\exists \mu) \varphi_{0}$ for μ a non-distinguished type- 4 variable. Suppose that φ_{0}^{\prime} has been constructed as desired.

We will transform the apparatus of $\S 4.2$ to use with ${F_{\kappa}^{2}}_{2}$. For $i \in 2$ and a fixed $\rho^{\prime} \in \operatorname{Var}(2 i)$ let

$$
\begin{aligned}
& X_{2 i}=\{\langle\theta, \rho\rangle: \text { for some } \eta \in \operatorname{Var}(2 i+2),(\underline{\text { exactly } \eta \rho) \theta} \\
&\text { is a subformula of } \left.\varphi_{0}^{\prime}\right\} \cup\left\{\left\langle\perp, \rho^{\prime}\right\rangle\right\} \\
& N_{2 i}(\mathscr{A}, \vec{a}, \vec{m}, \vec{n})=\left\{n: \mathscr{A} F_{K}^{2} \vec{\exists}\left(\underline{\text { exactly } \left.\mathbf{n} \rho) \theta \text { for some }\langle\theta, \rho\rangle \in X_{2 i}\right\},}\right.\right.
\end{aligned}
$$

' $\vec{\exists}$ ' binding all non-distinguished variables in its scope. Where $\mathscr{A}, \vec{a}, \vec{m}$, and \vec{n} are fixed, let $N_{2 i}=N_{2 i}(\mathscr{A}, \vec{a}, \vec{m}, \vec{n})$. Notice these facts. (1) If $n, n^{\prime} \in \bar{\kappa}-N_{2}$ then:

$$
\mathscr{A} F_{\kappa}^{2} \varphi_{0}^{\prime}[\mathscr{A}, \vec{a}, \vec{m}, \vec{n}, n] \quad \text { iff } \quad \mathscr{A} F_{\kappa}^{2} \varphi_{0}^{\prime}\left[\mathscr{A}, \vec{a}, \vec{m}, \vec{n}, n^{\prime}\right] .
$$

(2) For any $n \in N_{2}$ either $n \leqslant \operatorname{card}\left(N_{0}\right)$ or $\operatorname{card}\left(\bar{\kappa}-N_{0}\right) \leqslant n$. For suppose that $\langle\theta, \rho\rangle \in X_{2}$ and $\mathscr{A} F_{\kappa}^{2}$ (exactly n ρ) $\theta\left[\vec{a}, \vec{a}^{0}, \vec{m}, \vec{m}^{0}, \vec{n}, \vec{n}^{0}\right], \vec{a}^{0}, \vec{m}^{0}$ and \vec{n}^{0} assigning values to the non-distinguished variables other than ρ free in θ; then for any m,
$m^{\prime} \in \bar{K}-N_{0}:$

$$
\mathscr{A} F_{\kappa}^{2} \theta\left[\vec{a}, \vec{a}^{0}, \vec{m}, \vec{m}^{0}, m, \vec{n}, \vec{n}^{0}\right] \quad \text { iff } \quad \mathscr{A} F_{\kappa}^{2} \theta\left[\vec{a}, \vec{a}^{0}, \vec{m}, \vec{m}^{0}, m^{\prime}, \vec{n}, \vec{n}^{0}\right] ;
$$

so either ${ }^{2} \hat{\rho} \theta[\cdots]^{\mathscr{A}} \subseteq N_{0}$ or $\bar{\kappa}-N_{0} \subseteq{ }^{2} \hat{\rho} \theta[\cdots]^{\mathscr{A}}$. (Here ${ }^{2} \hat{\rho} \theta[\cdots]=\left\{m<\kappa: \mathscr{A} F_{\kappa}^{2}\right.$ $\theta[\ldots, m, \ldots]\}$.) (3) If $n \in N_{2}$, then $n \leqslant \operatorname{ncb}(\kappa)$.

It is easy to construct a formula $\operatorname{Def}_{2 i}(\rho)$ for $\rho \in \operatorname{Var}(2 i+2)$ so that for any $\mathscr{A}, \vec{a}, \vec{m}, \vec{n}$ as above and $n<\kappa$:

$$
\mathscr{A} F_{K}^{2} \operatorname{Def}_{2 i}(\mathbf{n})[\vec{a}, \vec{m}, \vec{n}] \quad \text { iff } \quad n \in N_{2 i} .
$$

Suppose we can construct a formula Φ of $\mathscr{L}^{0,4 *}$ (exactly) so that for any $\mathscr{A}, \vec{a}, \vec{m}, \vec{n}$ as usual:

$$
\mathscr{A} F_{\kappa}^{2} \Phi[\vec{a}, \vec{m}, \vec{n}] \quad \text { iff } \overline{\mathrm{ncb}(\kappa)}-N_{2} \text { is non-empty. }
$$

Then we may take φ^{\prime} to be:

$$
(\exists \mu)\left(\varphi_{0}^{\prime} \& \neg \underline{\mathrm{ncb}} \equiv \mu \&\left(\operatorname{Def}_{2}(\mu) \vee \Phi\right)\right) .
$$

Clearly if $\mathscr{A} F_{\kappa} \varphi_{0}[\vec{a}, \vec{m}, \vec{n}, n]$ for $n<\operatorname{ncb}(\kappa), \mathscr{A} F_{\kappa}^{2} \varphi^{\prime}[\cdots]$. Suppose that

$$
\mathscr{A} F_{\kappa}^{2}\left(\varphi_{0}^{\prime}(\mu / \mathbf{n}) \& \neg \operatorname{ncb}=\mathbf{n} \&\left(\operatorname{Def}_{2}(\mathbf{n}) \vee \Phi\right)\right)[\cdots] .
$$

If $n \in N_{2}$, then by fact (3) $n<\operatorname{ncb}(\kappa)$, yielding $\mathscr{A} F_{\kappa} \varphi[\cdots]$. Otherwise there is an $n^{\prime} \in \overline{\operatorname{ncb}(\kappa)}-N_{2}$; by fact (1) $\mathscr{A} F_{\kappa}^{2} \varphi_{0}^{\prime}\left(\mu / n^{\prime}\right)[\cdots]$, again yielding $\mathscr{A} F_{\kappa} \varphi[\cdots]$. So it suffices to construct Φ.

First we construct Φ_{0} saying that $\bar{\kappa}_{0}-N_{2} \neq\{ \}$. For $\langle\theta, \rho\rangle \in X_{2}$ and $\left\langle\theta^{\prime}, v^{\prime}\right\rangle \in$ X_{0} form $\bar{\theta}, \bar{\rho}, \bar{\theta}^{\prime}, \quad \bar{v}^{\prime}$ as usual to avoid collisions of non-distinguished free variables; let $\beta_{\theta, \rho, \theta^{\prime}, \nu^{\prime}}$ be:
(exactly $\mu \bar{\rho}) \bar{\theta} \& \neg \bar{\theta}\left(\bar{\rho} / \rho^{*}\right) \&\left(\underline{\text { exactly }} \rho^{*} \bar{v}^{\prime}\right) \bar{\theta}^{\prime}$
$\&\left(\underline{\text { exactly }} \eta^{*} \bar{\rho}\right)\left(\bar{\theta} \vee\left(\underline{\text { exactly }} \rho \bar{v}^{\prime}\right) \bar{\theta}^{\prime}\right)$
$\& \neg\left(\right.$ exactly $\left.\eta^{*} \bar{\rho}\right) \bar{\theta} \& \neg \operatorname{Def}_{2}\left(\eta^{*}\right)$,
where $\eta, \eta^{*} \in \operatorname{Var}(4), \rho^{*} \in \operatorname{Var}(2)$, all new. This will fix the values of η and η^{*} to be an n and $n+1$ with $n \in \overline{\mathcal{K}}_{0} \cap N_{2}$ and $n+1 \notin N_{2}$. Let Φ_{0} be:

$$
\vee\left\{\vec{\exists} \beta_{\theta, \rho, \theta^{\prime}, v^{\prime}}:\langle\theta, \rho\rangle \in X_{2},\left\langle\theta^{\prime}, v^{\prime}\right\rangle \in X_{0}\right\} \vee \neg(\underline{\infty} \rho) \operatorname{Def}_{0}(\rho),
$$

where ' \exists ' binds all non-distinguished variables in its scope. If N_{0} is infinite, then $\bar{\aleph}_{0}-N_{2} \neq\{ \}$ iff the first disjunct holds. The second disjunct says that N_{0} is finite, in which case by fact (2) $\operatorname{card}\left(N_{0}\right)+1 \in \bar{\aleph}_{0}-N_{2}$ and Φ_{0} is satisfied.

Case 1: $\operatorname{ncb}(\kappa)=\kappa_{0}$. Let Φ be Φ_{0}.
Case 2: $\operatorname{ncb}(\kappa)=\kappa_{1}$. If N_{2} is finite, $\bar{\aleph}_{0}-N_{2} \neq\{ \} ;$
otherwise card $\left(N_{2}\right)=\aleph_{0} \in N_{2}$ iff $\bar{\aleph}_{1}-N_{2} \neq\{ \}$. Let Φ be:

$$
\Phi_{0} \vee(\exists \mu)\left((\text { exactly } \mu \eta) \operatorname{Def}_{2}(\eta) \& \neg \operatorname{Def}_{2}(\mu)\right)
$$

This says "Either $\bar{\aleph}_{0}-N_{2} \neq\{ \}$ or $\operatorname{card}\left(N_{2}\right) \notin N_{2}$ ".
Case 3: $\operatorname{ncb}(\kappa)=\aleph_{\delta+1}$ for $1 \leqslant \delta<\omega^{\omega}$. Suppose we can construct $\psi_{0}, \psi_{1}, \psi_{2}$ so
that:

$$
\begin{array}{rll}
\mathscr{A} \mathrm{F}_{\kappa}^{2} \psi_{0}[\cdots] & \text { iff } & \operatorname{card}\left(N_{0}-\bar{\aleph}_{0}\right)<\mathcal{\aleph}_{\delta} ; \\
\mathscr{A} \mathrm{F}_{\kappa}^{2} \psi_{1}[\cdots] & \text { iff } & \text { for some } n \notin N_{2}, n \leqslant \aleph_{\delta} \text { and } n<\operatorname{card}\left(N_{0}-\bar{\aleph}_{0}\right) ; \\
\mathscr{A} \mathrm{F}_{\kappa}^{2} \psi_{2}[\cdots] & \text { iff } & \operatorname{card}\left(N_{0}-\bar{\aleph}\right) \notin N_{2} \text { and } \operatorname{card}\left(N_{0}-\bar{\aleph}_{0}\right) \neq \aleph_{\delta+1} .
\end{array}
$$

Thus:

$$
\begin{aligned}
\mathscr{A} F_{\kappa}^{2}\left(\psi_{1} \vee \psi_{2}\right)[\cdots] \quad \text { iff } & \text { for some } n \in N_{2}, \quad n \leqslant \mathcal{N}_{\delta} \\
& \text { and } n \leqslant \operatorname{card}\left(N_{0}-\bar{\aleph}_{0}\right) .
\end{aligned}
$$

We may let $\psi_{0} \vee \psi_{1} \vee \psi_{2}$ be Φ. For, if $\mathscr{A} \psi^{2}{ }_{\kappa} \psi_{0}[\cdots]$, then $\operatorname{card}\left(N_{0}-\overline{\mathcal{X}}_{0}\right) \geqslant \mathcal{K}_{\delta}$; and if $\mathscr{A} \not \psi_{\kappa}^{2}\left(\psi_{1} \vee \psi_{2}\right)[\cdots]$, then for any $n \leqslant \mathcal{N}_{\delta} n \in N_{2}$; so $\bar{\aleph}_{\delta+1}-N_{2}=\{ \}$. Clearly, if $\mathscr{A} F_{\kappa}^{2}\left(\psi_{1} \vee \psi_{2}\right)[\cdots]$, then $\bar{\aleph}_{\delta+1}-N_{2} \neq\{ \}$. If $\mathscr{A} F_{\kappa}^{2} \psi_{0}[\cdots]$, then $\operatorname{card}\left(N_{0}-\bar{\aleph}_{0}\right)<\mathcal{N}_{\delta} ;$ since $\delta>0, \quad \operatorname{card}\left(N_{0}\right)<\mathcal{N}_{\delta} ;$ so $\mathcal{N}_{\delta} \notin N_{2}$, since otherwise $\aleph_{\delta+1}=\operatorname{card}\left(\bar{\kappa}-N_{0}\right) \leqslant \aleph_{\delta}$ by fact (2).

Since κ is assumed to be an aleph, it is convenient to identify cardinals with initial ordinals let $\left\langle\alpha_{\xi}\right\rangle_{\xi<\xi_{0}}$ be the listing of $N_{0}-\bar{\aleph}_{0}$ in increasing order; clearly $\operatorname{card}\left(N_{0}-\bar{\aleph}_{0}\right) \leqslant \xi_{0}$. Let:

$$
M=\left\{\alpha_{\xi}: \xi<\operatorname{card}\left(N_{0}-\bar{\aleph}_{0}\right)\right\}, \quad \hat{M}=\{\operatorname{ncb}(\alpha): \alpha \in M\} .
$$

We will use these facts to construct ψ_{0} and ψ_{1} :

$$
\operatorname{card}\left(N_{0}-\bar{K}_{0}\right)<\aleph_{\delta} \quad \text { iff } \quad \text { order-type }(\hat{M})=\bigcup \hat{M}<\omega+\delta ;
$$

for some $n \notin N_{2}: \quad n \leqslant \mathcal{N}_{\delta} \quad$ and $\quad n<\operatorname{card}\left(N_{0}-\bar{\aleph}_{0}\right) \quad$ iff for some $\alpha \in M-N_{2} \quad \operatorname{ncb}(\alpha) \leqslant \omega+\delta$.

For non-distinguished $\rho, \rho^{\prime} \in \operatorname{Var}(2)$ and $\langle\theta, v\rangle,\left\langle\theta^{\prime}, v^{\prime}\right\rangle \in X_{0}$, form $\bar{\theta}, \bar{v}$, $\bar{\theta}^{\prime}, \bar{v}^{\prime}$ as usual to avoid collisions of non-distinguished free variables. Let $\rho \leqslant_{\theta, v, \theta^{\prime}, v^{\prime}} \rho^{\prime}$ abbreviate:
(exactly $\rho \bar{v}) \bar{\theta} \&\left(\underline{\text { exactly }} \rho^{\prime} \bar{v}\right) \bar{\theta}^{\prime} \&(\underline{\infty} \bar{v}) \bar{\theta} \&\left(\underline{\infty} \bar{v}^{\prime}\right) \bar{\theta}^{\prime}$
$\&\left(\underline{\text { exactly }} \rho^{\prime} \bar{v}^{\prime}\right)\left(\bar{\theta}^{\prime} \vee \bar{\theta}\left(\bar{v} / \bar{v}^{\prime}\right)\right)$.
Let $\rho \leqslant{ }^{*} \rho^{\prime}$ be:

$$
\bigvee\left\{\vec{\exists}\left(\rho \leqslant_{\theta, v, \theta^{\prime}, v^{\prime}} \rho^{\prime}\right):\langle\theta, v\rangle,\left\langle\theta^{\prime}, v^{\prime}\right\rangle \in X_{0}\right\}
$$

where ' \exists ' binds non-distinguished free variables other than ρ and ρ^{\prime}. Then for any $m, m^{\prime}<\kappa$:

$$
\mathscr{A} F_{\kappa}^{2} \mathbf{m} \leqslant \mathbf{m}^{*}[\vec{a}, \vec{m}, \vec{n}] \quad \text { iff } \quad m, m^{\prime} \in N_{0}-\bar{\aleph}_{0} \quad \text { and } \quad m \leqslant m^{\prime} .
$$

Let $\boldsymbol{M}(\rho)$ be:
$\left.\rho \leqslant^{*} \rho \& \neg(\exists \mu)\left(\underline{(\operatorname{exactly}} \mu \rho^{\prime}\right)\left(\rho^{\prime} \leqslant^{*} \rho\right) \&\left(\underline{\text { exactly }} \mu \rho^{\prime}\right)\left(\rho^{\prime} \leqslant^{*} \rho^{\prime}\right)\right) ;$
Thus $\mathscr{A} F_{\kappa}^{2} \boldsymbol{M}(\mathbf{m})[\cdots]$ iff $m \in M$. For $\mu_{0}, \mu_{1} \in \operatorname{Var}(4)$ let $\mu_{0} \leqslant{ }^{* *} \mu_{1}$ abbreviate:
$\left(\exists \rho_{0}\right)\left(\exists \rho_{1}\right)\left(\rho_{0} \leqslant \rho_{1} \& \boldsymbol{M}\left(\rho_{0}\right) \& \boldsymbol{M}\left(\rho_{1}\right)\right.$
$\left.\&\left(\underline{\text { exactly }} \mu_{0} \rho\right)\left(\rho<^{*} \rho_{0}\right) \&\left(\underline{e x a c t l y} \mu_{1} \rho\right)\left(\rho<^{*} \rho_{1}\right)\right)$,
where $\rho<^{*} \rho_{i}$ is $\rho<^{*} \rho_{i} \& \neg\left(\rho_{i} \leqslant^{*} \rho\right)$. For $n, n^{\prime}<\kappa$:

$$
\mathscr{A} F_{K}^{2} \mathbf{n} \leqslant{ }^{*} \mathbf{n}^{\prime}[\cdots] \text { iff } n \leqslant n^{\prime} \text { and } n, n^{\prime} \in \hat{M} .
$$

Using cardinality coefficients and the apparatus of $\$ 2.6$ with ' \leqslant **' replacing ' \leqslant ' we can construct ψ_{0} saying "the order-type of $\hat{M}<\omega+\delta$ ". Similarly we can construct ψ_{1} saying "for some $\alpha \in M-N_{2}, \operatorname{ncb}(\alpha) \leqslant \omega+\delta$ ". Details are left to the reader. Let ψ_{2} be:

$$
\neg(\exists \mu)\left((\underline{\operatorname{exactly}} \mu \rho)(\rho \leqslant * \rho) \&\left(\operatorname{Def}_{2}(\mu) \vee \underline{\mathrm{ncb}}=\mu\right)\right) .
$$

Case 4: $\operatorname{ncb}(\kappa)$ is an uncountable limit cardinal. If $\operatorname{card}\left(N_{0}\right) \neq \operatorname{ncb}(\kappa)$, then $\overline{\mathrm{ncb}(\kappa)}-N_{2}$ is non-empty. For suppose that $\operatorname{card}\left(N_{0}\right) \neq \mathrm{ncb}(\kappa)$; by the case assumption and fact (3) fix an n with $\operatorname{card}\left(N_{0}\right)<n<\operatorname{ncb}(\kappa)$; by fact (2) if $n \in N_{2}$, then $\operatorname{card}\left(\bar{\kappa}-N_{0}\right) \leqslant n$; but $\operatorname{card}\left(\bar{\kappa}-N_{0}\right)=n \operatorname{cb}(\kappa)$, a contradiction; so $n \notin N_{2}$. Let ψ_{3} be:

$$
\neg(\exists \mu)\left(\underline{\mathrm{ncb}}=\mu \&(\underline{\operatorname{exactly}} \mu \rho) \operatorname{Def}_{0}(\rho)\right) .
$$

On the other-hand, if $\operatorname{card}\left(N_{0}\right)=\operatorname{ncb}(\kappa)$, then $\operatorname{ncb}(\kappa)=\operatorname{card}\left(N_{0}-\bar{\aleph}_{0}\right)$. Let $\psi(\mu)$ be:

$$
(\exists \rho)\left(M(\rho) \&\left(\underline{e x a c t l y} \mu \rho^{\prime}\right)\left(\rho^{\prime}<^{*} \rho\right)\right)
$$

then $\mathscr{A} F_{\kappa}^{2} \psi(\mathbf{n})[\cdots]$ iff $n<\operatorname{ncb}(\kappa)$. Let Φ be:

$$
\psi_{3} \vee(\exists \mu)\left(\psi(\mu) \& \neg \operatorname{Def}_{2}(\mu)\right)
$$

By the preceding remarks, this works.
It is easy to modify this construction to handle $\varphi \in \operatorname{Sent}\left(\mathscr{L}^{0,4}\right.$ (exactly, $\left.=\right)$). For $k>1$ simply replace types 2 and 4 by types $2 k+2$ and $2 k$.

For κ as above, part (i) of this Theorem with Theorem 4.2 yields the surprising inclusion:

$$
\mathscr{L}^{0,4}(\underline{\text { exactly }},=) \kappa \mathscr{L}^{0,2 *}(\underline{\text { exactly }}) .
$$

4.7. Here is another slight improvement on the concluding remarks of $\S 2.1$.

Observation. For $1 \leqslant k<\omega$, if $\operatorname{ncb}^{k-1}(\kappa)<\aleph_{\omega}$, then:

$$
\mathscr{L}^{0,2 k+2 *}(\underline{\text { exactly }}){ }^{\kappa} \mathscr{L}^{0,2 k *}(\underline{\text { exactly }}) .
$$

Suppose $k=1$. Let $\kappa=\aleph_{z}$ for $z<\omega$. If $z=0$, then $\kappa=\operatorname{ncb}(\kappa)$, and the above inclusion holds trivially. Suppose that $z \geqslant 1$. Let φ be a formula of $\mathscr{L}^{0,4 *}$ (exactly) with free variables among $v_{0}, \ldots, v_{l(0)-1} \in \operatorname{Var}(0), \rho_{0}, \ldots, \rho_{l(2)-1} \in \overline{\operatorname{Var}(2)}$,
$\mu_{0}, \ldots, \mu_{l(4)-1} \in \operatorname{Var}(4)$, the 'distinguished' variables. We will construct a formula φ^{\prime} of $\mathscr{L}^{0,4^{*}}$ (exactly) meeting the conditions on φ^{\prime} from $\S 4.6$; as there, this suffices to prove the observation. φ^{\prime} is constructed by induction on the construction of φ. If φ is $(\exists \mu) \varphi_{0}$ for $\mu \in \operatorname{Var}(4), \varphi^{\prime}$ is constructed as in $\S 4.6$. Let φ be (exactly $\left.\mu_{i} \mu\right) \varphi_{0}$, for $i \leqslant l(4), \mu \in \operatorname{Var}(4)$. Suppose φ_{0}^{\prime} has been constructed, and no distinguished variables occur bound in ψ or φ_{0}^{\prime}. Define X_{2} and $N(\mathscr{A}, \vec{a}, \vec{m}, \vec{n})$ as in $\S 4.6$. Let $\operatorname{Def}_{2}(\mu)$ and $\operatorname{FinDef}_{2}(\mu)$ be the natural analogues of $\operatorname{Def}(\mu)$ and $\operatorname{FinDef}(\mu)$ from §4.2. For $\mathscr{A}, \vec{a}, \vec{m}, \vec{n}$, let $A=\left\{n<\kappa\right.$: $\mathscr{A} F_{\kappa}^{2}$ $\left.\varphi_{0}^{\prime}[\vec{a}, \vec{m}, \vec{n}, n]\right\}$; we will pin μ_{i} to $\operatorname{card}\left(A \cap \bar{\aleph}_{0}\right)$. Let ψ be $(\forall \mu)\left(\varphi_{0}^{\prime} \supset \operatorname{Def}_{2}(\mu)\right)$ and ψ ' be $(\exists \mu)\left(\right.$ ncb $\left.^{1}=\mu \& \varphi_{0}^{\prime}\right) ; \psi$ ' says ' $\aleph_{0} \in A$ ". We will take φ ' to be:
$\left(\psi \& \varphi_{1}\right) \vee\left(\neg \psi \& \psi^{\prime} \& \varphi_{2}\right) \vee\left(\neg \psi \& \neg \psi^{\prime} \& \varphi_{3}\right)$.
To handle the case in which $A \subseteq N_{2} \subseteq \bar{\aleph}_{0}$ let φ_{1} be:

$$
(\forall \mu)\left(\varphi_{0}^{\prime} \supset \operatorname{Def}_{2}(\mu)\right) \&\left(\underline{\text { exactly }} \mu_{i_{0}} \mu\right)\left(\varphi_{0}^{\prime} \& \operatorname{FinDef}_{2}(\mu)\right)
$$

As usual, if $n, n^{\prime} \in \bar{\kappa}-N_{2}: n \in A$ iff $n^{\prime} \in A$. So if $A-N_{2}$ is non-empty, then $\bar{\kappa}-N_{2} \subseteq A$; since $N_{2} \subseteq \bar{\aleph}_{1}, \aleph_{1}, \ldots, \aleph_{z-1} \in A$. For $j \in 2$, if $\operatorname{card}\left(A \cap \bar{\aleph}_{0}\right) \geqslant z-j$, then we want a formula $\varphi_{2+j, z-j}$ that looks for $D \subseteq A \cap \bar{\aleph}_{0}$ such that $\operatorname{card}(D)=$ $z-j$ and 'pins' the value of μ_{i} to $\operatorname{card}(A-D)$. For each $u<z-j$ we construct $\varphi_{2+j, u}$ saying that $\operatorname{card}\left(A \cap \bar{\aleph}_{0}\right)=u$ and the value of μ_{i} is u. These constructions use easy ideas from $\S 4.2$; details are left to the reader. We let φ_{2+j} be $\bigvee\left\{\varphi_{2+j, u}: u \leqslant z-j\right\}$.
4.8. Here are some further questions, stated as conjectures in order of decreasing confidence.

Conjecture (F). For $0<k<\omega$, if $\mathrm{ncb}^{k}(\kappa) \geqslant \boldsymbol{\kappa}_{\omega}$, then:

$$
\mathscr{L}^{0,2 k+2}(\underline{\text { exactly }},=) \kappa_{\kappa} \mathscr{L}^{0,2 k+2}(\underline{\text { exactly }}) .
$$

Conjecture (G). If $\kappa=\mathcal{K}_{\omega^{\omega+1}}$, then $\mathscr{L}^{0,4}(\underline{\text { exactly }}) \not \kappa_{\kappa} \mathscr{L}^{0,2 *}$ (exactly).

The following sentence is a possible witness:

$$
(\exists \mu) \neg\left(\exists v_{1}\right)(\underline{\text { exactly }} \mu \rho)\left(\exists v_{0}\right)\left(\mathbf{S}\left(v_{1}, v_{0}\right) \&(\text { exactly } \rho v) \mathbf{R}\left(v_{0}, v\right)\right),
$$

with $\mu \in \operatorname{Var}(4), \rho \in \operatorname{Var}(2)$, and $v, v_{0}, v_{1} \in \operatorname{Var}(0)$.

Conjecture (H). For $K=\mathcal{K}_{\omega}, \mathscr{L}^{0,6}\left(\underline{\text { exactly })} \underset{\kappa}{\kappa} \mathscr{L}^{0,2 *}(\underline{\text { exactly }})\right.$.

The following sentence is a possible witness:
$(\exists \eta)\left((\underline{\text { exactly }} \eta \mu)\left(\exists v_{1}\right)(\underline{\text { exactly }} \mu \rho)\left(\exists v_{0}\right)\right.$
$\left(\mathbf{S}_{0}\left(v_{1}, v_{0}\right) \&(\right.$ exactly $\left.\rho v) \mathbf{R}_{0}\left(v_{0}, v\right)\right)$
\& (exactly $\eta \mu)\left(\exists v_{1}\right)(\underline{\text { exactly }} \mu \rho)\left(\exists v_{0}\right)$
$\left.\left(\mathbf{S}_{1}\left(v_{1}, v_{0}\right) \&(\underline{\text { exactly }} \rho v) \mathbf{R}_{1}\left(v_{0}, v\right)\right)\right)$,
where $\eta \in \operatorname{Var}(6), \mu \in \operatorname{Var}(4), \rho \in \operatorname{Var}(2), v, v_{0}, v_{1} \in \operatorname{Var}(0)$.

References

[1] D. Bostock, Logic and Arithmetic, Vol. I (Oxford University Press, 1974).
[2] H. Hodes, Logicism and the ontological commitments of arithmetic, J. Philosophy 81 (3) (1984) 123-149.
[3] H. Hodes, Cardinality Logics, part II: Definability, J. Symbolic Logic, to appear.
[4] H. Hodes, Where do the Natural Numbers come from?, Synthèse, to appear.
[5] A. Levy, Basic Set Theory (Springer, Berlin, 1979).

