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A connection between higher-order logics and the concept of cardinality has 
been long recognized; but (as far as I know) it has not been a subject of 
model-theoretic investigation. This paper begins such an investigation, which is 
continued in [3]. The philosophical motivation for this project may be culled from 
[2] and [4]; it seems related to ideas in [l]. 

To avoid reliance on the Axiom of Choice, we will take cardinals to be 
Scott-cardinals; that is, 

card(x) = {y : y c_ V, and x is equinumerous with y}, 

where (Y is the least ordinal such that the above set is non-empty. K is a cardinal 
iff for some x K = card(x); Card is the class of cardinals. Card is partially ordered 
by the injective ordering: for n,m E Card, IZ <miffforsomexEnandyEmthere 
is a one-one function from x into y. Let K E Card be infinite iff some (thus every) 
x E K is infinite. For K, K’ E Card, let: 

[K, K’) = {n E Card: K S Iz < K’}, 

(rc,~‘)={,ECard:~<n<~‘}, 

[K, K’] = {n E Card: K 6 n C K’}. 

Let K be an aleph iff K is infinite and some (thus every) x E K is well-orderable. 
Recall these facts: 

(1) If K’ 6 K and K is an aleph, then K’ is either finite or an aleph. 
(2) These are equivalent: Choice; all infinite cardinals are alephs; s linearly 

orders Card. 
(3) These are equivalent: all Dedekind-finite sets are finite; for any infinite 

K E Card, K 2 x0. 

For more on Scott-cardinals, see [5]. 
For K E Card, let L = {n E Card:n <K}, ncb(i-c) = card(f) = the Number 

Cardinals Below K. As usual, an ordinal is the set of its predecessors; 
ncb&) = card(c U w). 
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Remarks on notation. Where convenient, I will ignore the use/mention distinc- 
tion. Let x * y be the concatination of x and y in that order. Where Q, is a formula, 
Y a variable, and t a term of the same type as Y, q(v/r) is the result of replacing 
all free occurrences of Y in Q, by r, relettering bound variables in cp if necessary to 
insure substitutibility. Distinct Greek letters ranging over variables in our 
object-languages are always assumed to take distinct values: when I say 
“Consider variables pO, . . . , ,LA~_~, qo, . . . , qq_-l, Y” it is understood that these 
p + q + 1 variables are all distinct. 

1. Cardinality languages and their semantics 

Fix the basic logical lexicon {‘I’, ‘x’, ‘3’, ‘=‘} and for each i E {l} U (2n : n < 

w} fix a countable set Var(i) of type-i variables, all sets mutually disjoint. Let 
Pred and Funct be given disjoint sets of predicate-constants and function- 
constants respectively, both disjoint from the other lexical categories; for each 
n < o Pred(n) and Funct(n) are, respectively, the set of n-place members of Pred 
and Funct. The set of terms based on Funct, Term(Funct), is generated from 
Funct and Var(0) as usual. The class of models for Pred, Funct, is defined as 
usual. For t E Term(Funct), den(r) is defined as usual, relative to such a model. 

1.1. To form Z’ij”(exactly, c, Pred, Funct) add ‘exactly’ and ‘6’ to the basic 
logical lexicon, with ‘@ 4 Pred. Hereafter we will omit explicit mention of Pred 
and Funct. The formulae of E1,W(exactly, 6) are defined by the usual formation 
rules together with the following: 

(a) If t E Term(Funct) and YE Var(l), then Yr is a formula. 
(b) If (and only if) p, ,u E Var(2i) for i > 0, then p s p is a formula. 
(c) If Q, is a formula, p E Var(2i) and ~1 E Var(2i + 2), then (exactly ,u p)q is a 

formula. 
Note. Any free occurrence of p in (p is bound in (exactly y p)q by the 

indicated occurrence of p; the indicated occurrence of ~1 is free and binds 
nothing. Let Fml(Z’l’“(exactly, s)) and Sent(Z’13”(ea, 6)) be respectively 
the set of formulae and sentences of 3?,“(exactly, s). Standard abbreviations are 
in effect, e.g. TQ, for (q 3 I). 

For each n E Card, fix a distinct constant n not belonging to any of our lexical 
classes. Given a model .& for Pred, Funct, form the language Z’$K(exactly, s) by 
introducing: 

- a new individual constant a for each a E [&I, 
- a new l-place predicate-constant A for each A c (dl, 

and counting n as a constant of type 2i + 2 if n < ncb’(rc). For q E 
Sent(Z’$:(exactly, s)), we define dk, Q, as usual, with these novel clauses: 

&kKnSn’ iff nsn’, 

JZZ k, (exactly n Y)QI iff card(@) = it, 

& kK (3~)~1 iff for some n < ncbj(K) d bK &p/n), 
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where p E Vur(2j + 2) and: 

if Y E Vur(O), Opl= {a E IdI: drBK q(y/a)}, 

if Y E Vur(2j + 2), 9~ = {n < ncbj(k-): B kK q(Y/n)}. 

Let d k q iff A Lcardcd) QJ. 
Where the free variables in q of type-0 are among yo, . . . , v,_~, the free 

variables in q_~ of type ?=2 are among pot . . . , p/-l, ii E (~41” and Z E r?‘, we will 
write ~[a’, Z] for Q~(Y~/%, . . . , v,_,/a,_l, PO/n,,, . . . , ~r_lln,_l) provided that 
for ~j E Vur(2k + 2), nj -=L ncbk(K), for all j < 1. 

For k < co, let 9?1P2k(exactly, <) be the sublanguage of .ZIPw(exactly, G) result- 

ing from dropping all variables of type-2j for j > k. Let p’O(exactly, G) be the 
sublanguage of _9?1P”(exactly, G) formed by dropping use of type-l variables. For 
i < 2 and k < co, let -exactly, G) be the sublanguage of p’w(exactly, G) 

formed by dropping use of all variables of type >2k. Since ‘exactly’ and ‘s’ do 
not occur in formulae of .JG@‘(exactly, G), let that language be7 

1.2. The model-theoretic semantics just presented may be thought of as a 
fragment of higher-order logic in which, for a given model, variables of type 22 
range over certain quantifiers over that model. More precisely, we could have 
introduced languages in which formulae of the form (exactly ~1 p)~ were replaced 
by (p p)~, and defined satisfaction so that in &, variables of type 2i + 2 ranged 
over “+‘EXACTLY ( K), letting: 

2Q(n)K = {A E (dl: card(A) = n}, 

*EXACTLY(K) = {2Q(n)K: II <K and 2Q(n)K is non-empty}, 

2i+2Q(n)K = {Q E 2’EXACT(~): card(Q) = n}, 

2’+2EXACT(~) = {2i+2Q(n)K: II < ncb’(K) and 2i+2Q(n)K 

is non-empty}, 

,# b “+*Q(n) c “+‘Q(n’) iff n 4 II’, 

d b (‘j’*Q p)cp iff &J E 2i+2Q. 

(Here if i Z= 1 then /jq = {“‘Q: .& F ~(p/“‘Q)}.) 
If card(&) 3 K, then for every j > w the map it ~~j+*Q(n)~ is a l-l - 

correspondence between ncb’(rc) and 2’+2EXACT(~); therefore truth in ~4 under 
,tK for sentences of Z1jw(exactly, G) is an alternative representation of truth in J$ 
under the semantics just sketched. The semantics just presented carries a 
type-structure, since if 0 < i < j, and 2’Q(n)K and 2jQ(n)” are both non-empty, 
*‘Q@@ # “Q(n)“; this semantic typing is erased in the semantics for 
Z’,“(exactly, G), under which variables of type 2i are assigned simply to 
rz < ncb’-l(K), rather than to 2iQ(n)K. The semantic type-structure in the former 
semantics does no work; so it is more convenient to work with Z’S w(exactly, s). 

1.3. We will now consider another hierarchy of languages in which final parts of 
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the syntactic type-structure of LZ?“(exactly, 6) are collapsed. For 0 < k < w, the 
categories of variables for L!?1,2k* (exactly, c) shall be VU(~) and V~(2j) for j s k. 
The formation-rules for 3?32k*(exactly, s) are like those for Z1~2k(exactly, 6), 
with this addition: 

- if ,u, p E Vur(2k) and Q, is a formula, then (exactly ,U p)rp is a formula. 
Given z$ and K E Card, form L&~k*(exactly, <) as before. 
The definition of d LK Q, for q E Sent(L@~*(exactly, c)) proceeds as before. 
Notice that for p E Vur(2k), (exactly ,u p)q is well-formed; the semantics makes 
the two indicated occurrences of ,U function as if they were occurrences of distinct 
variables; the left-most occurrence of ~1 is free in (exactly ~1 ~)q,; the second 
occurrence is not free and binds all occurrences of p free in ~1. 

We form ?2k*(exactly, <) from 5?‘2k*(exactly, s) by dropping VU(~). 

1.4. For languages 6p,Z’ as above and Q, E Sent(Z), I/J E Sent(Z”), we adopt 
these definitions: 

(a) Q, is K-equivalent to I/ iff for all models J$ for Pred, Funct with 
card(&)a .YJ b, QJ iff d k, q. 

(b) q is equivalent to I/J iff for all infinite models a for Pred, Funct: &cp iff 
&I& 

(c) Q, is equivalent, to q iff for all models LA? for Pred, Funct of cardinality 
K: s&q, iff J&q. 

(d) Q, is super-equivalent to I/J iff for all infinite K, Q, is K-equivalent to I/I. 
We now define these inclusion relations: 

3 < 5” iff for each q E Sent(Z) there is a K-equivalent $J E Sent(Y); 

L?+ 3” iff for each Q, E Sent(Z) there is an equivalent 1~, E Sent(3”); 

3 2 9’ iff for each q E Sent(Z) there is an equivalent K ~9 E Sent(Y); 

5’3 3’ iff for each Q, E Sent(Z) there is a super-equivalent I/J E Sent(Y); 

J?AL!? iff 3~3” and Yq3’; 

similarly for 3’ H Z’, 3 >ii P, and 3 A 3’. Then: 

super-equivalent 

HK-equivalents . 

\ equivalent $3 equlva’entK; 

and so: 
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2. The basic inclusions 

2.1. For i < 2, clearly: 

(1) 3’ 4 LP*(exactly, c) 3 LP~4(exactly, s) 4 - * * 4 _Pw(exactly, s). 

This hierarchy of order-type o + 1 continues with order-type of converse(w) = 
w*: 

(2) L@~(exactly, s) 3 . . - 4 P4*(exactly, <) -s( - * . -3 P**(exactly, s). 

To see this, for 0 <k < o we adopt these abbreviations: 

ncb“ = p: (exactlyp n)l I , 

ncbk 3 (VP)(ncbkP 3 P GP>, p: 

for p, q, p E Vur(2k). If k = 1, we will omit the superscript. Clearly ncbk 2 p is a 
formula of p32k*(exactly, s), and for every it < ncbk-‘(K) and any model 
.#: &kKncbk 2 II iff n d ncbk(K). Claim: for 1s k < co: 

2% i~2k+2*(exactly, 6) i LPk*(exactly, C). 

Given q E Sent(Z’i’2k+2*(exactly, s)), for each p E Var(2k + 2) occurring in Q, 
introduce a distinct ,u’ E Vur(2k) not occurring in ~1; form rp’ as follows: first 
replace all occurrences of each ,u as above by p’; then restrict all prefexes binding 

,u’ by (ncbk> y’), i.e. replace subformulae of the form (3p’)q and 

exactlyp ~‘)v/.J by (3,u’)(ncbk3 p’ & I/J) and (exactlypp’) (ncbk>p’ & t/~) 
respectively. This establishes our claim. If q E Sa”(exactly, s)), fix k so 
that Q, E Sent(Y?*2k+2(exactly, s)). If 1 <j < k we have $ E Sent(L@2k+2* 

(exactly, s)); also: 

2 i*2k+2*(exactly, <) 4 . . - -3 LP~2i*(exactly, s). 

So Q, is expressible in Z@“* (exactly, s), yielding the desired inclusion hierarchy. 

Form J@2k(exactly) from LZ’e’P2k(exactly, 6) by dropping ‘@ from the logical 
lexicon. Form-exactly, =) from2k(exactly) by changing the formation- 
rule for formulae by permitting ‘=’ to occur between all variables of type-2i for 
i 3 k, giving such atomic formulae the obvious satisfaction conditions. Form 
Z’i~w(exactly), LZi’2k*(exactly), L@“(exactly, =), and 3?i32k*(exactly, =) in the same 
way. 

It should be obvious that an inclusion-hierarchy like (1) also holds for 
languages of-the form p32k(exactly, =) and LZi~2k(exactly). It seems that one like 
(2) does not hold for languages of the form 3?s2k*(exactly, =) and 3?*2k*(exactly). 
The rub is that ‘s’ is needed in ncbk > - p. However it should be clear that for any 
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k < o: if ncbk(K) = ncbk+‘(rc), then: 

J@O(exactly, =) 3 * . * i .JP~2k+4*(exactly, =) 4 ~~2k+2r(exaCfly, =), 

Z@(exactly) 4 - - - -7 LP,2k+4*(exactly) $ 232k+2*(exactly). 

These observations will be strengthened in 94.6 and 04.7. 

2.2. There is no fragment of the semantics for higher-order logic related to the 
semantics given in §1.3 as that from 01.1 is related to that sketched in 01.2. But 
the Axiom of Choice makes the semantics from both 91.1 and 91.3 into fragments 
of the semantics of second-order logic. Fix a countable set Vur((0, 0)) of 
type-(0, 0) variables. For xE{2k:k<o}U{w}U{2k*:k>w}, we form 
9’(“~o)~x(exactly, s) by adding Vur((0, 0)) to the lexicon Z’i,X(exactly, <) with the 
obvious new formation rules and the obvious semantics in which, relative to J.$ 
type-(0, 0) variables range over S(l&12). A s in 92.1, all the languages from 31.1 

and $1.3 are super-included in (i.e. bear 4 to) Z’(0J0)~2*(exactly, s). In fact, these 

languages are no stronger than Z(‘,‘) in the following sense. 

Observation. For Q, E Sent(J8°z0)*2*(exactly, s)) there is a q’ E Fml(Z(om) 
containing exactly one free type-l variable so that for any model ti and A E I&l 
with card(A) = K: 

di=,g, iff aLq,‘(A). 

Thus ZLo’0)‘2*(exactly, s) H Z(ozo), since where Y is the type-l variable free in 
cp’, we may replace each subformula of cp’ of the form Yv by ‘1 I ‘. 

Let a K-standard for ti have the form (R, ao) where R E l&j2, a0 E 1.541, 

a0 $ RightFld(R), and: 

for each n E t - (0) there is a unique u,, E l&l so that 
card{a: (a, a,) E R} = n. 

By choice, if card(d) 2 K, then there is a K-standard for &. For Y’ E 
Vur(0, 0), y. E Vu(O) and YE Vu(l) there is a Std( Y’, yo, Y) E Fml(ZcoXo)) so 
that for any .PZ and A G IdI with card(A) = K: 

d L Std(R, a, A) iff (R, a) is a K-standard for &. 

Given Q, E Sent(Z(090)‘2*(exactly, c)) not containing Y’, v. or Y, it is not hard to 
form @ E Fml(L’090’) in which Y’, v. and Y are free and so that for any model &: 

if (R, ao> is a K-standard for a: 

&k,pl iff dF@(R,%). 

Let q’ be (3 Y’)@Y,)(Std( Y’, yo, Y) & @I). 
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As is well known, adding variables of type (0,O) gives the expressive power of 
full second-order logic: any variables of type (0, . . . , 0), with 1 < IZ occurrences of 
‘O’, can be replaced by variables of type 1 applied to n-tuples formed 
set-theoretically; then the ‘E’ used in specifying n-tuples can be quantified out by 
a type (0,O) variable restricted by the axioms of pairs and extensionality; this 
preserves equivalence. 

2.3. Type-l variables can render ‘C superfluous. 

Observation. (i) L@*(exactly, C) fi .@*(exactly), 

(ii) P**(exactly, 6) fi P**(exactly). 

Furthermore, if K is an aleph, then for 1-C k < w : 

(iii) JP~2k(exactly, s) fi Z1,2k(exactly), 

(iv) LP~2k*(exactly, <) 7~ 3?‘2k(exactly). 

Proof. For ,u, p E Var(2), replace (p c p) by: 

(3 Y,)(3 Y,)((exactly p v) YOv & (exactly p y) Yly & (Vv)( YOv 1 Y1y)), 

where Y,, Yl E Var(1) are distinct. This suffices for (i) and (ii). For p, p E 
Var(2j + 2), 0 <j < o, let (p ~ jp) abbreviate: 

($‘)(Q’)((exactly p rj) rj C p’ & (exactly p rj) 7j 5 p’ &cl’ < p’). 

If K is an aleph for any model & and n, m < ncbj(rc): 

Given q E Sent(Z192k+2(exactly, <)) for 0 < k, replace all subformulae of Q, of the 
form (p d p) for p, p E Var(2k + 2) by (p skp). If 1 < k, then replace subfor- 
mulae of the form (p < p) for p, p E Var(2k) by (p ck_l p); repeat until this for 
all subformulae of the form (p < p), p, p E Var(2); replace these as we did for 
(i). This establishes (iii); the same construction also yields (iv). Cl 

This procedure is independent of K; so the axiom of choice entails that for 
l<k<w: 

(v) P2k(exactly, s) >s( LP9*‘(exactly), 

(vi) LP,*‘*(exactly, 6) 9? LP~2k*(exactly). 
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2.4. For variables p and ~1’ of type 32 let p = p’ and JA< ~1’ abbreviate the 
obvious formulae. For k < w it is easy to construct formulae Li&‘(~), G,(p), 
E,(y) and Fin(p) meeting these conditions for any model .&. For any aleph K and 
n<K: 

Oe kK Limk(n) iff either n = 0 or for some cy and 6, 

n = X, and a=mk.p; 

&kK Go(n) iff K, s n (iff n is Dedekind-infinite); 

and if K0 6 K, then: 

dk,E,(n) iff X,=n; 

s8k, Fin(n) iff n is finite. 

For k =C K, we want a contextually defined quantifier-expression exactly k and a 
‘predicate’ k= so that: 

~4 kK (exactly k Y) q~ iff card( 047) = k ; 

foranyn<K, dbK&n iff k=n. 

Here is one way to do this. Where Y, Y’ E Var(2j) and Y’ does not occur free in 
cp, adopt these abbreviations: 

(exactly 0 y)q: 1(3v)(P; 

(exactly k + 1 Y)Q): (~Y’)(~)(Y/Y’) & (exactly k v)(tp & Y # Y’)). 

For ,IJ E Var(2) and distinct Y, v. E Vat-(O): 

0=/l: - 

k+l=p: 

For p E Vur(2j + 2), 

0=/A: - 

k+l=p: 

(exactly p Y) _L ; 

(Vvo) * * * (Vv,)((i~kvi#v,)=(exactlyp ~)(Vk~=~i)). 
=z 

pEVur(2j)withO<j<w: 

(exactly p p) I ; 

bactlyPp)(~kp). 

Notice: if Q, is a formula of _9?~(exactly, c), then (1) so is (exactly k v)q; but as 
just defined, (2) it uses ‘=’ between variables of type 32 when Y is of type 32. 
Using these definitions, for p E Vur(2j) with j > 0, and 16 k < w, adopt this 
abbreviation: 

K(P): Prl)(Go(rl) & (exactly k p)(v =S P &P < P)). 

Thus for K 5 X0 and n < K: d FK El(n) iff n = 8,. 
Feature (2) of our definition of (exactly k v)cp may be avoided, provided we 
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consider only infinite K, by adopting this abbreviation: 

(exactly k v)cp: (3p)(kp & (exactly ,U Y)v). 

But for Y E Vur(2i), the right-hand side either requires p E Vur(2i + 2), making 
(exactly k v)q 4 Fml(L@2j(exactly, s)), or else it requires ,M E Vur(2i), making 
(exactly k ,u)Q, $ Fml(P?(exactly, s)). The second kind of abbreviation, taking 
~1 E Vur(2j + 2) [vur(2~)] will be used in $4.1 [§4.2]. 

2.5. Observation. Zf K is finite, then .Z@2*(exactly, 6) i 5”. 

Proof is left to the reader; the important thing to see is that if p is a variable of 
type a2 and k < K, then (exactly k p)q!~ is replaced by V {8(b): b c 1G-, card(b) = 
k}, where 8(b) is: 

A {q(p/k): k E b} &A {lq(p/k): K E i? - b}. 

Hereafter K shall always be an infinite cardinal. 

2.6. This section concerns assertion of identity across types. For O< i < co, 
p E Vur(2i), p E Vur(2i + 2) let: 

p =2i p: (exactly p v) Y < p, 

where Y E Vur(2i) is distinct from p. If n&l(K) = X0 and either II or m is finite: 

574bkn=2im iff n=m. 

This idea will now be pushed a little further. For k < o let p =2i,k ,u abbreviate: 

((Fin(P) ” Fin(P)) = P =2iP) 

& (l(FWP) ” J-W”)) = tyk (G(P) &J%(P)). 

Thus: if n&-l(K) = Kk and either IZ or m < Kk: 

Note that p z2i.o /A is just p =2i p. 
Where LX < w”, let the Cantor-coefficient sequence for X, be (no, . . . , nq), 

where a=w9*n,+.**+w*nl+no. For O<j<o, p E Vur(2j) and 

PO,..., P,_~ E Vur(2i + 2), there is a Cc9(p, ,u~, . . . , ,L+.~) E Fml(9’~2i+2 
(exactly , S)) so that for any IZ < K04 G K and no, . . . , nqml <HO: 

dkK Cc9(n, no, . . . , n,_‘1) iff (no, . . . , n,-l) is the 

Cantor-coefficient sequence for n. 

For p, p’ E Vur(2i) and 0 <k < o let Mk(p, p’) say “p’ is the maximum cardinal 
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of the form X,k.p that is so”. Let Cc4(p, pO, . . . , pcLq-J be: 

PPl) . . * (3P,-l)(o<~<q WPJ Pk) 

& (exactly ~+_r v)(Limq-l(v) & 0 < Y & Y < pq-i) 

& (exactly pq-2 v)(Lim q-‘(v) & pq-1 < Y & Y s pq-*) 

&* . - & (exactly p1 ~)(Liml(v) & pz < Y & Y S pJ 

& (exactly y. v)(pl < v 8~ v 1 -= P))J 

where Y, pa, . . . , pq_l E Vur(2j). It is easy to see that Cc4 is as required. For 
p E Var(2j) and /A E Vur(2j + 2), let p =~j,q ,U abbreviate: 

@PO) * . . (3P,-1)(3~0) * * . mq-1) 

(i$Fin(Pi)k& Pi=2jh&Ccq(P7 P)&ccq(Y9 Cl)> 

for pa, . . . , Pq-1 E VNa + 39 cl09 * * * , ,u~__~ E Vur(2j + 4). Then for any K, any 
n, m < nCbjwl(K) and any model &, if either IZ or m < Xo4: 

d~Kll=j,qIIl iff IZ=m. 

2.7. This section describes cases in which final segments of the inclusion- 
hierarchy described in $2.1 collapse (with respect to expressive power) to a lower 

language. 

Collapsing Theorem. Suppose K E Card is an uleph, i E 2 and 1 c k < w. 

(i) Zf ncbk(K) < K,, then 3e’j2k*(exactly, 6) 3 y32k+2(exactly, s). 

(ii) Zf ncbk(K) < K,,+ then 3’32k*(exactly, c) 3 J@2k+4(exactly, s). 

So, for example, if rc < X,, then hierarchy of type o + 1 + w* going from 

3?1J6(exactly, s) through 3?(exactly, s) up to 31’2*(exactly, 6) collapses down 
to ZGtly, s): under kK these languages have equal expressive power. 

Proof. We will consider the case of k = 1. Suppose ncb(K) = X, for 4 < o. Given 
q E Sent(P2*(exactly, s)) form q’ by replacing each subformula of Q, of the 
form (exactly p p)~ for p, p E Vur(2) by: 

($‘)((exactly c1’ PM &p =2,q+lP’), 

where p’ E Vur(4) does not occur free in W’. To see that q’ is as required, note 

the following. For (exactly ,u p)w E Fml(=!?X2*(exactly, s)) with +M the only free 
variable, and for any A$ and it < K: 

sr2 LK (exactly n p)v iff d LK @p’)((exactly p’ p)q &n =2,q+l cl’)); 
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this is because the left-hand side implies that II < ncb(K), since &I c 1, and so 

d LK n =2i,q+1 n, yielding the right-hand side; to go from right to left, notice that 
for any n, ?a'<~: if &k,n=2i,q+ln’, then II =n’SHq. 

Now suppose ncb(K) = K, for (Y < ww; let q < w be least so that a < wq. Given 

q E Sent(9?82*(exactly, c)), form q’ by replacing each subformula of Q, of the 
form (exactly p p)$~ for ,u, p E VU(%) by: 

(%‘)((exactly p’ PM’ & c1 =iq P’), 

where ~1’ E Vur(4) and does not occur free in r,!~‘. The reason why 9 works is as 
above, using the fact that for any n, n’ E K: if Sp k, n =;,qn’, then IZ = n’ < X,,. 

For 1 <k < o, replace types 2 and 4 by types 2k and 2k + 2 respectively in the 
preceding argument. 0 

3. The hierarchy problem 

3.1. A proof of the following conjecture would be the best possible complement 
to the Collapsing Theorem of §2.7. 

Conjecture. For any i E 2 and 1 G k < w there are Pred and Funct so that: 
(la) For every infinite K E Card, 

_P*4(exactly) y P*2(exactly, c). 

(lb) If k > 1, for every K with &,, s ncbk-l(K), 

Yr2k+2(exactly) y Y’2k(exactly, s). 

(2) For every K with x,, < ncbk(K), 

P~2k*(exactly) y 9i*2k+2*(exactly, c). 

We will prove (la) for i = 0. Fix Pred = {R,, R,}, with & and RI both 2-place, 
and let Funct be empty. Let 470,2 be: 

(VP)((exactly P p)(3vo)(exactly o v)&(yo, v) 

= (exactly P p)@v,)(exactly p v)R,(v,, Y)). 

Clearly 9)o,2 E Sent(J!?‘4(exactly)). 

Theorem. For any infinite K E Card, 4)o,2 i.r equivalent, to no sentence of 
JP(exactly, G). 

Before the proof, some conjectures deserve mention. 
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Fix Pred = (R, RI, R2, R3}, all 2-place. Let QIJ~,+ be: 

(VY)[(exactly ~1 p)(3v,)(exactly P ~)(%)(R1(vl, vO) & (exactly n v)R(%, v)) 

= (exactly p p)(%)(exactly P r1)(%)(R3(% %) & (exactly r v)R2(vo, y))l. 

(Here p E Vur(6), p E Vur(4), 7 E Vur(2), Y, yo, v1 E VU(O).) 

Conjecture (A). This choice of 4)o,4 meets the conditions required in (lb) for 
i = 0, k = 2. 

The sequence CPO,Z, 4)0,4, extends, following the obvious pattern, to include 
likely candidates for (lb) when i = 0 and k > 2. 

Where Pred = {P, R}, P l-place and R 2-place, let CJJ& be: 

(Vp)((exactly ,U p)@v,)(exactly p v)R(vO, Y) = (exactly y v)Pv), 

for p, p E Vur(2), vo,v E Vat-(O) and distinct. 

Conjecture (B). This choice of Q)& meets the conditions required by (2) for 
i = 0, k = 1. 

Similarly, let q~z,~ be: 

(Vp)[(exactlyp p)@J(exactly P r)(Rr(v, vo) & (exactly rl ~Po(~~, y>) 
= (exactly p p)(3vo)(exactly p v)R2(v0, Y)]; 

it seems likely that this is as required by (2) for i = 0, k = 2. This pattern also 
extends to yield likely candidates for (2) when i = 0 and k > 2. 

The qo,* above is expressible in 9?*(exactly). To see this, let vi(Y) be: 

(Vp)((exactly 1 vo)( Yvo & (exactly p V)Ri(YO, Y)) 

= (3v,)(exactly p v)Ri(vO, Y)). 

where Y E Vur(1): then for any infinite K, n < K and any model & for {R, R,}, 
d kK (3 Y)q,( Y); furthermore, if 

d k, (exactly n p)(3vo)(exactly p Y)Ri(YO, Y), 

then for any B E I&‘!: ~4 LK +,[B] iff card(B) = IZ. Thus 

(3 XJ)(3 r,)(qo(ro) & VI(K) 

& (Vp)((exactly p v) Yov = (exactly @ y) YIv)) 

is super-equivalent to 4)o,2. But the idea behind the construction of %2 suggests 

the following. Fix (R, RI, R2, R3}, all 2-place; let 4)1,2 be: 

(Vp)[(exactly P p)(3~o)(W(exactly P ~)Myo, y)& RI(YI, ~1) 

= (exactly p P)(3vo)(3vl)(exactly p v)(R2(vo, Y) & R3(v1, v))]. 
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Conjecture (C). This 97 1,2 meet the requirements of (la) for i = 1. 

The idea behind this suggestion extends to yield likely candidates to meet the 
requirements of (1) and (2) when i > 1. 

3.2. To prove Theorem 3.1, we will use Ehrenfeucht-games for languages of the 
form 9B2(exactly, c, Pred, Funct). Given models &,, &I for Pred, Funct, q < w 

and K E Card, we consider the game G = Gz2(exactly, s, Pred, Funct, 
d,,, dl, q). A position p in G is a finite sequence of ‘exchanges, between players 
I and II with Ip( s q; each such p is associated with a ‘situation’ h(p) = 

(h,,(p), h,(p)), where for i E 2: 

h,(p) = (iii, iij) for iii E I&pel’(O), $ E k’(2), IPI = I(O) + l(2). 

Play of G begins at ( ), with hi(( )) = (( ), ( ) ). Suppose that play of G has 
reached p, with IpI = q’ =S q. Fix vo, . . . , vlvI(o)_l E Vur(O), po, . . . , p1(2)--1 E 

Vur(2). If q’ = q, play is over; II wins iff for every atomic formula Q, of 
9?‘,2(exactly, s) with free variables among those listed: 

&O L Q@~(P)I iff 4 L dh(~)l. 

Now suppose q’ <q. I initiates an exchange of one of three sorts. In what 
follows, p’ shall be the position reached at the end of the exchange. 

(1) I selects i E 2 and ai,l(o) E I&ii; II must select an Ul_i,l(o) E Idl+l; then for 

j E 2, hj(P') = (;j *"j,l(0), iii>* 
(2) I selects i E 2 and ni,l(2) E I?; II must select an nl_i,/(z) E I?; then for j E 2, 

hj(P’) = tzj, 5 * nj,/(2)). 

(3) I selects i E 2, w < 1(2) and Bi c 1~4~1 with card(BJ = ni,w; II must select 
B1-i c Itil-il with card(B,_i) = nl-i,w. I then selects an al-i,/(o) E I&l-il; II selects 

ai,l(o) E I.4 ~0 that UOJ(O) E BO iff UIJ(O) E B1; if II can’t do this, she loses; for j E 2, 

hj(P') = (iii *"j,l(0), zj>. 

Lemma 1. If II has a winning strategy for G, then for every Q, E 
Sent(9s2(exactly, s)), if q uantifier-depth(q) < q, &lo LK ~1 iff s& LK q. 

Before proving this, we will consider another sort of game. 
Let ~4 be a model for Pred, Funct and pl E Fml(5!?,2(exactly, s)) with free 

variables among vo, . . . , Y~(~)_~ E Vur(O), ,LA~, . . . , ,LL~(~)_.~ E Vur(2). For con- 
venience, suppose that each variable p occurring in 97 is bound at at most one 
occurrence, i.e. occurs at most once in a prefex of the form (3~) or (exactly p p). 
Fix a’ E I&l’(o), Z E K’(~). We describe the game SAT,(q, &, d, n’) inductively. 
There are two players, I and II, and two hats, TRUE and FALSE. At any 
position, each player wears one hat, and the other the other; at a position, the 
players shall be referred to by the hats they wear. 

If Q, is atomic, play is over; TRUE wins iff d kK q[a’, Z]. If Q? is (p. 3 ql), 
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TRUE picks i < 2; if i = 1 they go on to play SAT,(q,, &, i;, Z) with hats as they 
are; if i = 0 they switch hats and go on to play SAT,(q,, Se, a’, Z). If Q, is 

(3~&%, TRUE picks alto) E Id]; with hats as they are, they go on to play 

SAT,(qo, 4 a’* al(o), Z). If 9, is (3,u,C,j)~o TRUE picks nlC2) et; they go on to 
play SAT,( qo, &, ii, Z * n&. If Q, is (exactly pw Y~&Q)~, TRUE selects B c Iti] 
with card(B) = n,; FALSE selects a E ]&I ; they exchange hats iff a 4 B, and go 

on to play SATK(qo, .% a’ *alto), 6). Since this game is finite, it is determined. 

Lemma 2. A? kK q,[ii, ii] ifl TRUE has a winning strategy for SATK(qo, &?, r7, Z). 

Proof is straightforward. Where 47 is (exactly p,+ Y~(~))~~, think of TRUE’s 
choice of B as a claim that B = Qlcopo[a’, n’]; so if FALSE takes ulCoj E B, TRUE 
must defend the claim that ulCo) E CICoj~o[Lz, Z]; otherwise TRUE must refute that 
claim-and so must put on the FALSE hat for SATK(qo, ~4, a’, Z). 

We now describe I’s strategy for G. Until I wins, I associates each position p in 
G with a formula Q, depth (Q+,) s q - IpI, so that for h(p) as above: 

dokK Q)J~o, soI iff 4 k Q~J&, &I. 

Let q() = q. Suppose p has been reached, IpI = q’. If Q+ is truth-functionally 
compound I first finds a non-truth-functionally compound truth-functional com- 
ponent of Q, cp;, so that: 

Suppose that no p* with Q+ of the form (exactly ,u Y)V has yet been reached; I 
selects i < 2 SO that &i kK ~,6[&, n-i]. If 9; is (3~~~~))~ I selects ai,l(o) SO that 

&i krc V[k * ui,l(0)t Zi] and sets alp. = q. No matter what ai_i,l(o) II takes, 

&l-i f~ V[a’l-i * ul-i,I(0), iii]* If 9; is (3p1(2JW, I again plays a witnessing ni,/(2); no 
matter what nl-i,/(z) II takes, dl-i #K 3[a’l-i7 cl-i* ltl-i,l(2)]* If CpL is 

(exactly p,+ v~(~))I#, I plays Bi = O,co,q[i;i, fii;ildz and w; card(Bi) = Ili,w; no matter 
what Bl-i II picks, if card(B,_i) =121-i,+, then Bl_i # O,(o)+[Zl_i, Zl_i]spl+t; SO I 
may select al-i,/(o) in their symmetric difference. No matter what u~,~(~) II now 
takes, since II must have u~,~(~) E B. iff u~,~(~) E B,: do LK ~[~o*uo,,(o), Zo] iff 

4 etK If% * aLI( 211. Let v~, = r/7. 
As soon as the above sort of exchange takes place, I changes his approach: he 

pretends to be playing both: 

SATo = SAT,(W, do, a’o * ao,r(o), Zo); 

SATI = SAT,(W, Se,, 6 * ~IJ(o), n-11. 

For j E 2, let TRUEi and FALSE, be the hats from SAT,. Fix i E 2 so that 

&j krc VLzj * uj,f(0), 51. I begins SAT, wearing TRUE, and SAT,_, wearing the 
FALSE,_,. By Lemma 2, I has winning strategies for SAT, and SATI. At all 
subsequent positions, I wears TRUE0 iff I wears FALSEI. Suppose play has 
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reached p, where for some p* an initial segment of p, p* initiated I’s change of 
approach. Suppose that I is wearing TRUEk, and FALSE1_k,. If qp is not a 
conditional, in G I plays k0 and lets q);, = Q+ If Q is I/J~ 3 $J~, in his pretend play 

of SATk,, I chooses i0 E 2 according to his strategy for SATk,. In the pretended 
play of SAT1_-ko, I pretends that TRUEI_,+ also plays iO. Let 0, = r&. Let k1 be 
such that after these moves, I wears TRUEk, and FALSEl_k,. Iterate this until a 
8, is reached which is not a conditional; I is, of course, wearing TRUEkz and 
FALSE1_kz. I plays i = k, in G and lets q; = 8,. Thus pi kK q; [iii, pi] and 
~l_i OK [~,_i, n-l-i]. I now moves in the pretended play of SATi as dictated by his 
strategy in that game; he makes the same move in G. II responds in G; then I 
pretends that this response is TRUE,_i’s move in SATI+. If q; was of the form 
(exactly p,,, v)v, we are not yet done; I responds in SATl-i according to his 
strategy there, and makes that move in G; II responds in G; I regards this as 
FALSEi’S response in SATi. Thus we preserve the following at each such p: 

I wears TRUEi and di kK qp[[iii, n’i]; 

I wears FALSEl-i and &I_; fK qp[Zl_i, Zl_i]. 

The last cpp to be defined is atomic and witnesses I’s victory in the play of G. 
It is important to notice that in the proof of Lemma 2 nothing would be lost by 

requiring that in exchanges of the third sort, I select Bi of the form 9,(o,q,[ii,, Zi]&’ 
for some Q, with depth(q) c q -9’. Hereafter we take G~2(&~,, .&,, q) to 
involve this constraint on I’s moves. 

One other sort of game needs to be mentioned. Where &,,, &I E IX’, & = 

(Cr,,O, . . . > CQ_~), let ((Y”, cu,) be O-congruent iff for all w, u < 1: a+ < cu,,, iff 

a1.w < a1.u. Let M(&,, &,, q) be the Ehrenfeucht game on (w, < rw) with 
‘situation’ function g, played as follows. Play starts at ( ), with g(( )) = 
(&, gl). Let p be a position with g(p) = (&, PI). If l&l = I + q, play is over; 
II wins if g(p) is O-congruent. If m = 1&J <I +q, I chooses i ~2 and 
IZ with O<n<q-(l+m), and Pi,m j..., P;,m+n-,EO; II selects /3_i,m ,..., 

PI-i,m+n--l E o; where p’ is the resulting position, let: 

$T(P’) = <P* ubn~ . . . J Po,m+n-IL is* m,m> . . . J PLm+n-1) >. 

For a, p, n E o, let: 

a--,/3 iff either a=p<n or (~,p>n. 

Let (&,, Ic,) be n-congruent iff it is O-congruent and for any w, u < 1: jag+ - 
ao,,,l -2n [qu - al,,l. The following is easy to prove: 

II has a winning strategy for M(&, sl, q) iff (go, gl) is q-congruent. 

3.3. Proof of Theorem 3.1. Fix a set I of cardinality K. Consider to, t1 < o, 0 < tj 
for i E 2, and an increasing sequence (yj)j<ro+r, in o with 0 < yo. Letting 
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W = ttO, t19 (Yj>j-q+,>, an array for W has the form: 

( ( ycx,j> ad,j<tg+tlt (Zn,j)orel,j<to+rl > 

where any two sets in these sequences are disjoint in every possible way, i.e.: 
-for all (Y, a’EZandj,j’<tO+tl: Y,,ifU,,,jis empty; 
-for all distinct a, a’ E Z and distinct j, j’ < to + ti: Ye,j fl Ya,j,, Ym,j n Ya’,j, 

Y~,j n Ya’,j’, Z,,j n Z,,j,, Z,,j n Zar,j, Z,,j n Z,f,jr are empty; and 
- for all a E Z and j < to + ti: card(Y,,j) = K, card(Z,,j) = JJj. 
Such an array determines the sequence (A, Ro, RI, Eo, El, F,, F,, f) where: 

A = IJ{ Ya,j U Z,,j: CIC E I, j < to + tl}, 

Ro = IJ{ Ya,j X Z,,j: E E I, j < to}, 

RI = U{ Y~,j X Z,,j: LY E Z, to S j < to + tl}, 

Eo = lJ{ Ya,j X Ya,j: Cf E Z, j < to}, 

El = iJ{ Ym,j X Y,l,j: (Y E I, to 6 j < to + tl}, 

Fo = lJ{Z,,j X Z,,j: (Y E I, j < to}, 

F,=lJ{Z,,jXZ,,j: 0iEZ, t06j<t0+t,}, 

f(a) = j for u E Ya,j U Zm,j for any LX E A. 

d is a W-model if d is a model for {R,,, RI, Eo, El, F,,, F,}, all 2-place, where an 
array for W determines the sequence: 

(1.4, @, R?, &?, Et, FE, F?,f,). 

Clearly for 1 E 2: 

~4 kK (exactly n p)@v,)(exactly p vO)RI(vl, vo) n = tl. iff 

Thus .# LK qo,2 iff to = tl. Our approach to Theorem 3.1 will be: given 4 < w, find 

W. and WI where WI = (to, to + 1, (yj)j<zt,+l) and W,= (to, to, (yj)j<zr,> SO that 
where ~4, is a WI-model for 1 E 2, II has a winning strategy for G = G0,‘2(exactly, s, 

do, 4, 4). Then &O L 410,~ 4 fK 4)0,2, and for every Q, E Sent(6P0’2(exactly, s)) 

with depth(q) s q do kK Q, iff &I L, q. Thus 4)o,2 cannot be equivalent, to any 

such q. 

Lemma 1. Let s& be a W-model for W = (to, tl, (yj)j<t,,+r,)* Let ~1 E 
Fml(LE?,2(exactly, 6)) with free variables among Y, vo, . . . , v~(~)_~ E Vur(O), 

plc2)_-1 E Vur(2), and a’ E I,c#~), ii E r?‘(2), and B = ikp,[a’, ii]“. Let B’ = 

;“ia,: . . . , u~~~,-~}. For j < to + tl let: 

I$ = {a: for some W < Z(O), U, E Ya,j U Za,j}* 

Foray cxcZundj<w: 

- if B’ fl Ya,j # { }, then Ya,j - (~0, . . . , UQQ-~} c B; 
-ifa$l$undB’nZ,,j#{}, thenforuny/3EZ-_, 

Zp,j - {uo, . . * 9 u~~o,-I> C_ B* 
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Proof. Consider permutations: in the first case 

{&I, . * 1 J @(0)-l 1; in the second case switch 

&?,j- IaO, . * * ) al(0)-l>. 

Fix 4 < u. Let: 
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permute members of Ya,j - 
Za,j- (~0, . . . ,.~l(q-1} with 

Q,={( C v(j).y,)+e:ve&, -qGeSq}. 
j<r,+rl 

Lemma 2. For d, q, B, etc. us in Lemma 1 and l(0) =S q: if card(B) < K, then 

card(B) E Q,. 

Proof. For j < to + tl, let: 

u,-(j) = card{ a E y: B’ II Zm,j is non-empty}. 

Since Cj<to+tl v,(j) G l(0) S q, v,- E SW. Suppose that card(B) < K. By Lemma 1, 

for all FEZ and j<&+t,, B’ II Yn,j is empty; furthermore, if (Y 4 I$, then 

B’ n Zn,j is empty. If B’ rl Zn,j is non-empty, then (Y E 5 and Ze,j - 

{eo, . f . , u~~~,-~} E B; this foll ows by a permutation argument in which members 

Of Za,j - {Uo, f a * 9 u~~~,_~} are permuted. There are sZ(O) many (cy, j)‘s with 

a E I$; thus: 

[j<gf, %(j) *~j] - W scard (B') s c di) *yj; 
j<to+rl 

so: 

[ C vi;(j) * yj] - 1(O) c card(B) 6 C v;(j) . yj + Z(O); 
j<to+tl j<to+tl 

since f(0) 6 q, card(B) E Q,. 
Suppose that yj = (234 + q* + 2qy’+’ for all j < to + tl; then given 

]Cj<ro+rl 4j)-Yil+eEQWJ we may uniquely recover v and e. This will make the 
cardinality of B when card(B) < K carry information about membership in B. 

Let tO=2(42)+1, tl=tO+l, WI= (to7 to, (Yj)j<2to>, W,= (to, tl9 (Yj)j<*to+l); 

for i < 2 let 5 =f& Si = S,, Qi = Q,. A gap in Qi is an interval (ni, ni) with 
IZ~, n[ E Qi and (n,, nf) n Qi empty. 0 E Qi; so if n $ Qi and 12 belongs to no gap in 
Qi, for all n’ E Qi: ~1’ <n. We have chosen (yj)j<zr,+r SO that if (n,, ni) is a gap in 
Qi, n; - IZ~ 5 23q. If [ n, m] c Qi with in - 1, m + 1 $ Qi, call [n, m] a block in Qi; 
we have made sure that if [n, m] is a block in Qi, then n - m = 2q. As II plays G, 
she will ‘match up’ blocks of Q, with blocks of Q1, and gaps in Q, with gaps in 
Q,. As II plays G, she will pretend to also be playing: 

M*=M((O,. +. , to - 1, 2t, - l), (0, . . . ) to - 1, 2t,), 42). 

II has a winning strategy for M2, by choice of to. The playing of members of 17 
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in G shall be controlled by the pretended play of M2, and may be viewed as 
involving play of: 

M; = W(Yo, . . . > Yfo-l> Y*to-1)) (Yo, . . . ) YQ-1, Yd 3q) 

within which the ‘matching up’ of blocks and gaps occurs. Of course II also has a 
winning strategy for Mi. 

Where i E 2, iii E la]‘(“), let (Zio, Z1) be a matched pair iff for every Q? belonging 

to: 

{Rj(Y,, vu), Ej(Y,, vu), Fj(v,, vu), Y, = vu: j l 2, ~9 ~4 < l(O)} 

do F q7[Zo] iff &r k q[&]. 
Suppose IZ E Qi; fix u E Si and e SO that -q s e s q and it = [Cj<to+rl v(j) * Yj] + 

e; let n* = ( ko, . . . , k,_,) where k. < * * - < /c-l is a list of exactly those j < to + ti 
with u(j) > 0. Since u E Si, z < q. Given iii E ElC2) for i E 2, let w, < * * * < w,_~ be a 

list of those w < l(2) SO that ni,w E Qi; let (&)* = nz, * * - * * nzwc_l. 

We may now describe II’s strategy for G. each position p of G shall be 
associated with a position p2 of M2. Suppose play of G has reached p with 

IPI = 4’s 4, h,(p) = (6, 6) f or i E 2, (Zo, Zr) is a matched pair, and ((Z)* * 

fo(&)> (n-r)* *fi(&)) is a situation in II’s winning subgame for M2. (Here 

A(&) = UXao), . . . , J;(u~~~,_~).) Suppose that for w <l(2), IZ~,~ E Q, iff nl,, E Qr. 
If n,,,, E (IZ~, ni) where (nj, n:) is a gap in Qi, then nl_+ E (12~-~, n;_i), where that 
is a gap in Q,+; we will say that as of p the gaps (no, n$ and (IZ~, n;) have been 
matched. Similarly if qw E [n,, nil, where [ni, n:] is a block in Qi, we will have 
~tr_~,~ E [‘tl_i, n;_i], a block in Q,+ with which as of p, [Izi, ni] has been matched. 
Suppose that (Go, Zr) is a situation in II’s winning subgame for Mi (i.e. it is 

q ‘-congruent). 
Suppose that q’ < q, and I picks i E 2. If I now selects u~J(~) E I&i], II pretends 

that I plays i and~(~~,~(~)) in M2; in the pretend-play of M,, II follows her strategy 
and plays n; since it <to + fr-i, II must find CZ~_~,~(~) E I&r+1 SO that (&* 

ao,qo)> a’i * u~,~(~)) is a matched-pair and fi-i(u,_i,~~o~) = 12. This is easy to do. 
Suppose I selects ni,[(2) E F. Letting q, = max(Qi,) for i’ E 2, suppose that 

ni,1(2) > n,; 11 plays nl-i,1(2) = 121-i + (~2) - 4 Suppose ni,r(2) E Qi, ni,l(z) = 

[Cj<to+tl vi(i) . Yj] + e. II pretends that I plays i and n&21 = ( kLO, . . . , /c~,,_~) in 
M2; II follows her strategy for M2, playing (kl_i,o, . . . , kl_,,,_l); clearly for all 
w < 2, kl_i,, < to + tl_i. Let: 

ul_j(kr_i,,) = Vj(k,,,) for W < 2; 

VI-i(j) = 0 for j E (to + ti) - {k*_i,o, . . . , kl_i,*_l}; 

nl--i,1(2) = [ C v~-i(i) *Yj] + e; 
j<to+tl-t 

11 plays +-i,1(2). Notice that (go * no,1(2), Z1 * qlC2)) is now q’ - l-congruent. 
Suppose that ni,1(2) E (mi, m:), a gap in Qi. Where m[ = [Cj<r,,+t, vi(j) * Yj] - 4, II 
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computes (ki,o, . . . , ki,,_l) as above, pretends that I plays i and it in it&, and 

obtains (kl_i,o,. . . , kl_i,,_l) and then 211-i as above; let m;_i = 

[Cj<*o+t,_, vi--i(i) ‘Yjl-9; fix WZ_~ SO that (ml-i, m;_J is a gap in Ql-i. II 
matches (m,, rnh) with (m,, m;) by playing nl-i,l(z) E (ml-i, m;_J SO as to keep 

(&* (mO, nO.rg), m;), 21 * (ml, 4,1(2), m;)) q’ - l-congruent. Since ml - mi > 

23q, this may be done. 
Suppose I initiates the third sort of exchange, selecting w < l(2) and Bj = 

oQ& zi]“z with card(&) = n;,,,. Letting kj. =h,(a,,,,) for i’ E 2, u <I(O), and 

ai,@ l F.a.k, U Zi,a.k,, let U;,, = (Bi - ii,) fl Zi,n.k; By Lemma 1 either rli,, is empty 

or Zi.u,kl - Zi G Bi. Let: 

ul-i,u = 
1 

Zl-i,m,kl-, -a’,_i if Ui,,#{ }, 

0 otherwise. 

II plays: 

Br_i = {a,_i,u: Ui,u E Bi, U <I(O)} U IJ { Ul_i,u: L4 < l(O)}. 

By Lemma 2, ni,w E Qi. II has played SO that n,_i,w E Q,-i and card(B,_i) = 
nl_i,w. Whatever al-i,/(o) II now picks, I can find ai,! so that (Z. * u~,~(~), Z1 * 
u~,~(~)) is a matched-pair, and u,,~(,) E B. iff a l,[(oj E Br. Clearly when p with Ip( = q 
is reached, II wins G. 

3.4. Where P is a one-place predicate and Pred = {P}, there is a ~7~ E 
Sent(Yj4(exactly, s)) so that for any model ti for {P} : 

~4 ~~ q. iff card(P&) is finite and even. 

Theorem. For any infinite K E Card, q. is not equivalent, to any sentence 
JZ!?j*(exactly, c). 

This is weaker than the previous result, since q. contains ‘@; but its proof is 
much easier and is left to the reader. 

We can also construct a 4)* E Sent(J!?r6(exactly, s)) so that for any ti as 
above: 

db4)2 iff for some even q < w ncb(card(P&)) = X,. 

Let P’(p) be (VP)(( exactly p v)Pv 3 ~1 <p), for p, p E Var(2); P’(p) pins the 
value of ~1 to ncb(cardm, construction of cp *, using P’(p), is left to the reader. 

Let K=& for IX=X,. The previous result suggests that q2 is not equivalent, 
to a sentence of J??‘84(exactly, s). This turns out to be false! Since this shows 
something of the expressive power of Y.4(exactly, c), I will give details. 

For n <K let: 

code(n) = {q < w: for some m <n, K, = card[m, n)}. 

For any finite A c w there is an n <K with A = code(n). Clearly, if ncb(n) = X,, 
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then 4 = max(code(n)). The key to expressing QJ~ is that _&k, 9 iff for some 
n<K: 

(i) ncb(card(P&)) = ncb(n); 
(ii) 0 E code(n); 

(iii) if ncb(n) = X, and r + 1 G q, then: 

r E code(n) iff r + 1 $ code(n). 

Let q’ be: 

(exactly p. p’)P’p’ & (exactly p. p’) p’ < p 

& (3~')(3p)(Eo(p)&(exactlyp ~)(P'G y&y<4 

~(VP)(VP')([P<P'&~(~P")(P<P"&P"<P')&GO(P)&P'~POI 

3 [(3p’)(exactly p Y)(P) S Y& v < p) 

=+p’)(exactly p’ ~)(y’ S Y& Y < cl)]). 

Then (3p)(3po)q’ expresses ql. (Help: the value of ~1 will be the above- 

mentioned n.) 
Proving the following may be easier than proving (A). 

Conjecture (D). For P, Q l-place, and K = X,, no sentence of pS4(exactly, S) 
is equivalent, to the easily constructed sentence of 2?j(exactly, S) expressing 
the following: 

for some q < w, ncb(card(P&)) = K, and ncb(card(Q&)) = Kq.*. 

3.5. Let a weak language be one introduced in 91 without type-l variables and 
without ‘s’ in its logical lexicon. We will now show that such languages really are 
weak, i.e. cannot express ‘s’. Let P, Q be l-place, Pred = {P, Q} and Funct be 

empty. 

Observation. For 0 < k < w and any infinite K E Card: 

(i) S2(exactly, 6) y 912k(exactly, =), 

(ii) 9s2(exactly, S) y LP,2k*(exactly, =). 

Indeed, the following sentence witnesses both (i) and (ii) for all choices of k 
and K: 

(~PPPXP s P’ 6% ( exactly ,U Y)PY & (exactly ,u’ v)Qy). 

To prove (ii) it suffices to show that for every q < w there are models ~4~ and d, 
of cardinality K with card(P&“) < card(Q&O), card(Q&l) < card(P&‘), and such that 
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for all 1+9 E Sent(5?‘“*(exactly)): 

if depth(q) 6 4, then &kK I/J iff dI t=, W. 

A similar sufficient condition applies to (i). 
We will discuss the case in which k = 1; generalizing the argument to k > 1 is 

straightforward. For vo, . . . , Y~(~)_~ E Vu(O), y,, . . . , pl(2)-1 E VU(~), let @ be a 
O-profile for 9, ,C iff Qi is a minimal consistent set so that: 

- for any j <j’ < Z(0): Yj = Yjr E @ or Yj # Yj’ E CD; 
- for any j < 1(O): PVj E Qi or 1Pvj E CD; and similarly for Qvj; 
- for any j <j’ < I(2): pj = pj, E @ or pi # pj, E @; 

if ncb(K) < K we dS0 require: 
- for any j < l(2): (ncb = ,Uj) E @ or (ncb # pji) E CD. 

For po, . . . , P!-~, yo, . . . , vn_l E Var(0) and n < w let 8(P, n, po, . . . , P~_~) 

abbreviate: 

(3vo. .‘3Vn_1) 
( 

/J Vj#Vj’&A VjZpj’&/\PVj . 
j<j’<n j<n j<n ) 

j’4 
We will also use these abbreviations, for ,U E VU(~): 

card(P) + TZ =p: (3~0 * * * 3vn-J A Yj # Yj, & A ~Pv, 
j<j’<n j<n 

&(exactlypv) Pyv V3f=vj 
( 

, 
j<n 1) 

card(P)-n=p: (3~o***3~,_1) A Vj#Vj*&r\ PVj 
j<j'<n j<n 

&(exactlypv) PY& /J Y#Vj 
( 

; 
j<n >> 

card(P) + n = card(Q): ($)(card(P) + n = p& (exactly ,U v)Qv). 

Similar abbreviations are in force with ‘Q’ and ‘P’ switched. 
Where B G Ef, is finite, let @ be a l-profile for P, ,G relative to B iff Qi is a 

minimal set so that for any II E B and j < Z(2): 

either n=pjE@ or n#pje@; 

either O(P, n, vo, . . . , Y,~,~_,) E @ or lB(P, n, yo, . . . , v,~~)_~) E @; 

either card(P) + IZ = pj E @ or card(P) + it # ,uj E @; 

either card(P) - n = pj E CD or card(P) - II # pj E @; 

either card(P) + TZ = card(Q) E @ or card(P) + n #card(Q) E ~3’; 

and similarly with ‘Q’ and ‘P’ switched. Let d be a nice model iff Pd fl Qd is 
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empty and card(P&), card(Q&) < K. Let a B-profile for ?, fi be a union of a 
O-profile and a l-profile for ?, ,6 relative to B which is K-satisfiable in a nice 
model. Let IJJ be K-equivalent* to I/J,’ iff they are K-equivalent restricted to nice 
models. 

Lemma. For any formula 
there is a finite Bq G R, so 

for t, ji. 

IJJ of J??“*(exactly, =) with free variables among P, ji 
that $J is K-equivalent* to a disjunction of Bw-profiles 

Proof is by induction on the construction of 3. Details are left to the reader. 
Let B4 = U {B,,,: depth(q) G q}; B4 is finite; suppose II = max(B,). Let do and 

,r& be nice models with: 

it < card(PdO), card(P&O) + IZ < card( Q&O), 

II < card(Qdl), card(Q&l) + n < card(P&‘). 

.G& and Se, are then as required; details are left to the reader. 

4. Inclusions between weak languages 

Even in weak languages we may define a prefex (zp) so that for any model 
a, & LK (~p)q iff j3cp” is Dedekind-infinite. Let (oop)g, be: 

if p, p’ l Var(O), p’ not occurring in q: (3p’)(&3/p’) 

& (WKexactly p P )T = (exactly p P)(T &P + @)I); 

if p 4 Var(0): 

(&JlO)* = (W(exactly P p)q = (exactly P p)b &?!!i!dl) 
& (T(PN* = (VP)[( exactly P p)q = (exactly P p>(q v OJp)l), 

where q(p/O)* is formed from q(p/O) by replacing all subformulae of the forms 
(exactly0 Y)V, 0= Y, Y = 0 and 0= 0 by ~(~Y)I+!J, OZY, 0= Y and ‘1 I ’ 

respectively. In this section we assume that all Dedekind-finite sets are finite. 

4.1. Observation. 3?*(exactly, =) 4 pj4(exactly). 

Proof. A profile for pO, . . . , pp_l E Var(2) is a consistent formula of the form 

Aj'<j<r(Pj'= Pj) a(j'sj), for a(j’, j) E 2. (Notation: for any formula 8, 8’ is 8; 8* is 
10.) Suppose p, E Fml(?6?**(exactly, =)) has free variables among Y(,, . . . , TJ-, E 

Var(0) and ,u~, . . . , ,up-, E Var(2). Call these the ‘distinguished’ variables. For 
each profile @ for po, . . . , c~p-~ we will construct q@ E Fml(=Y?V4(exactly)), so 
that for any K E Card, any model &, a’ E I.&f, and ii E K: 
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For p = 0 this yields our observation. Without loss of generality, suppose that no 
distinguished variable occurs bound in q, and that all conjuncts of Qi are 
inequalities; if the latter is not the case, substitute one equated variable for 
another, decreasing the number of type-2 variables free in Q, until it is the case. 
We construct ~1~ by induction on the construction of q. If Q, is pj = pj,, let: 

1 I 
q*= 

1 

if Q, is a conjunct of @, 

I if 1~1 is a conjunct of @. 

The only other case worth discussing is where rp is (3p)q0, for p of type 2, and 

@ is &~j+~j~ # pj. For i <p, let Qi be: 

Qi&~=~i&/\ {,U#fir: i’<I, i’#i}. 

Let v,,~ be %,&A/~~). Clearly for K, d, ii, ii as above and IZ <K, if &LK @;[n’, n] 
then: 

dk, (Jk~,,[z, 6, n] iff d bK T0,i[a’7 n-1. 

Let @’ be @ & /& p #pi. For each b cp, let qlb be: 

let 4)b be & &i(exactly m p)q~+),~,, where m = card(b) and where the second 

conjunct is expressed in .3?P4(exactly, <) without use of ‘=’ between variables of 
type 2, as described at the end of 92.4; this clause introduces the variables of type 
4. Note that if & kK ~~[a’, 6] then: 

/&[a’, Z]” - {n,: i <p} # { } iff card(P~O,,Jii, Z]“) # m. 

Furthermore for a unique b EP, ~4 kK I/J~[~‘, n-1. Let q@ be VicP qo,i v VbGp Q)b. 
This proves (i). 

4.2. Observation. .3?.2*(exactly, =) A 3?‘s2*(exactly). 

Proof. Given Q, E Fml(5?~**(exactly, =)), with free variables among 

. . > ,L+-~ as in 44.1, and given a profile @ for ,u~, . . . , pP_-l we 
&‘constY:u$ ti ; &k(L”*2”( exactly)) so that for any &, a’, Z, (*) of 94.1 holds. 
We use induction on the structure of 47 as in the proof from 04.1; the notation 
and assumptions of 04.1 are in force. The cases worth discussing are where Q, is 
(3p)qo or (exactly~i~)~o for ,M of type 2, with @ as above. The former case is 
handled as in 04.1, except that in forming 476, (exactly m p)qo,@, is expressed in 
p82*(exactly), as described at the end of 02.4. 

Suppose Q, is (exactly pi p)qO. Given a model .J$, a’ E ]A!]‘, n’ E I?‘, let 

A = fiq,[Z, Z]“, B={nj:nj~A and j<p}, 

A’ = fig?,,,.[a’, n-l”, B’={n,:njEA’ and j<p}, 

r = card(B - B’) - card(B’ - B). 
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By our induction hypothesis, for any n E r? - {no, . . . , n,_,}: II EA iff n EA’. q?@ 
must say that the value of pLi is card(A), using card(A’) and r. In two cases 
card(A) = card(A’), making this easy: 

Casel: r=O. 
Case 2: A’ is infinite. 

If A’ is finite and r # 0, we will want a formula that looks at sets D of cardinality r 
so that: 

-ifr<O, thenDcA’;socard(A)=card(A’-D); 
- if r > 0, then D G i? - A’; so card(A) = card(A’ fl 0). 

For j E 2 let 

x2j={(e, P>: ( exactly r] p)8 is a subformula of qo,@, 

and P E Var(2j), P E Var(2)) u { ( 1, p > >, 

where p is a selected new variable of type 2j. Let: 

Nzj(d, 6, n’) = {n <K: d bK 2(exactly n p)O[ii, ii] for some (8, P) E Xzj}, 

where ‘2’ binds all non-distinguished variables free in its scope. Let: 

Nzi = N&Q& a’, Z), x=x,ux,, N=N,UN,, 

i$ = {n <K: for some (8, p) E X1 and assignments a”, n” for 
non-distinguished variables other than p free in 
8, @[G, a”, Z, Z”]& c N and has cardinality n}. 

N is important because its members can be defined by formulae from a finite set; 
so members of i? can be distinguished from members of N without use of ‘=‘. 
Notice that 0 E N. Further facts: (1) For any n, n’ E i? - N: n E A’ iff n’ E A’. This 
follows by induction on the construction of qo,@,. (2) For any n E N2 either n E Z$ 
or card(E - N) s n. For n E N2, fix (8,p)EXandZ’,Z’sothat 

ti k, (exactly n p)e[ii, a”, n’, ii”]; 

by fact (1) either pe[G, a”, ri, Z”]& G N, putting n into Z$, or else K -NE 
pe[Z, a”, Z, Z”]&, yielding card(R - N) s n. 

If r # 0 and A’ is finite, we consider these cases: 
Case 3: A’GN, r<O. 
Case4: A’sN, r>O, Ninfinite. 
Case 5: A’ EN, r > 0, N is infinite. 
Case6: notA’sN, r>O. 
Case7: notA’&N, r<O. 

Some further facts: (3) In case 6 and 7, N is infinite, since by fact (1) I? - N GA’, 
making i? - N finite. (4) In case 4, ti, tl N2 c &; for if n E Nz - &, then by fact 
(2) card(P - N) . en; since in this case N is finite, E - N is infinite. 
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For any b, b’ up let Q)~,~, be: 

Thus: ti kK Q)b,b’ [a-, i?] iff 

B={nj:jEb} and B’={nj:j~b’}. 

We will construct q&! E Fml(~~2*(exactly)) so that if &k, qb,b,[a’, Z] then: 

dk, Q)&‘[& n’] iff rzi = card(A). 

We will then let q0 be 

v h-$6’: bUb’=p, bnb’isempty}. 

Let r = card(b - b’) - card(b’ - b). If r = 0, then we are in case 1; so let Q)&’ 

be (exactly pi P)VO, @,. Suppose r # 0; we will let Q)z,b’ be: 

V {ajaVT:iE{2, 3, 7}} if r <O, 

V{~~j&cpi*: je{2,4,5,6}} ifr>O, 

where each ~j says that case j holds and q,. fixes the value of pFLi in case j. 

Let a~2 be (COP) %, 9, and r~$ be (exactly ,u~ p)qO,@,. For r,~ E Var(2) let Def(q) be 

V {a(exactly 7 p)g: (8, p) E X}, w h ere 8, p are formed from 8, p by replacing 

any free occurrences of r] by some new variable. Since X is finite, this is 

well-defined. Clearly for any n <K, sdLK Def(n)[& n’] iff rz EN. Thus the 
construction of ~j for j E (3, 4, 5, 6, 7) is easy. For example, let a4 be: 

1% & (VP)(%,@,’ 3 Def( q)) & -@q)Def( q). 

Cases 3, 5 and 6 are easy, since we may then take D EN. Fix qo, . . . , Q__~ E 

Var(2) and not occurring free in left-components of members of X. 
Suppose YeXS, Y= ((e,, po), . . . , (es-,, Lo>>. Form y= ((ao, PO>, . . . , 
( 6s_l, ~s-l)) by replacing the free variables in the eji’S by new free variables 
as needed to insure that for all j’ <j <s all non-distinguished free variables in 
8, do not occur free in e,., and vice-versa, are not cl, and where if pi is replaced 
in 0, it is replaced by pj which is not among qo, . . , , v,_~, p. Let 
Distinct,(q,, . . . , qs-J be 

,4’ exactly qjpj)ej &j,<Qcs7(exactlY Vj' Pj)gj* 

Let Q: be 

a(Distinct,(q,, . . . , a-l)&,~~l~O,,'(~/ll,) 

&(exacWi~~(~o,,~ v ,y (exactly P Pji>aj))> 
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where ‘2’ binds all non-distinguished variables free in its scope. Suppose r > 0. 
Let q,5* and ~,6* be V {q;: Y E Xr}. This formula looks for D E r? -A’ and says 
that the value of ,ui is card(A’ U D). Using fact (3), in cases 5 and 6 N -A’ is 
infinite; so such a D exists. 

Similarly, for Y l XS let q; be: 

& (exactly Pi P) V ( O,~,&,~sl(eXaCtlY PP,)B,)). 

Where r < 0 and s = Irl let & be V {w;: YE X’}. This formula looks for 
D GA’ fl N and says that the value of ,ui is card(A’ - 0). Cases 4 and 7 require 
more work. 

Let a filling be a set { (po, qo), . . . , &_I, qk--l)} such that for any i < k, 
qj EN n R. and { } # (pi, qj) E X0 - N. Where F is a filling, let: 

U F = ,g (Pj7 4j)9 E=(qo-po-l,...,q,_,-p,_,-1); 

the ordering does not matter, but we do not just want a set because we want to 
have card(lJ F) = c p. Let t =max(gofl N); since 0 EN, t exists. F is the 
maximum filling iff IJ F = i - N. 

Suppose case 4 holds. Consider S = (so, . . . , s~_~) E @, - {O})k and r, < X0. If 
r 3 r. + C S, let subcase ( ro, S) hold iff: 

r. = min{r, card(N -A’)}, 2 S = min{r - r,, card@ - N)}. 

Let r, = C S; r, = r - (r. + r-J. For each such (r,, S) we will construct Q+ so that 
if d, 6, Z fall under case 4 then: 

J& kK (p&a’, n’] iff ( ro, S) holds and ni = card(A’) + r. 

This formula will look for D = Do U Dl U D2 _c k - A ‘, with Do, Di, D2 pairwise 
disjoint and card(Dj) = rj for i E 3, and say that the value of ,ni is card(A’ U II). 
More precisely, we will have: 

DocN-A’; thus D,=N-A’ iff rar,; 

if ri # 0, then D1 = LJ F for some filling F with E = S; 
so F is the maximum filling iff r > r. + card(? - N) > 0; 
D2 = (t, t + r, + 1). 

This fact will permit us to describe D2 if it is non-empty: (5) if F is the maximum 
filling, then (X0 fl N) U iJ F = t + 1. Thus: 

card((R, rl N) U U F) = t + 1 $ N u lJ F. 
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qr,{) is easy to construct. For YE X” form Y as before and let yy(jj) be: 

Distinct,(q,, . . . , %I> w~~To.@~w?j). 

For s = I, let py be: 

3 Yy & (exactly pi p) %,a, V V (exactly p pj)ej 

( i j<r >I 

where ‘i’ binds all non-distinguished variables free in its scope. Let qr,( ) be 
v {Py: YE X}. 

Now suppose that r. f r but r = r, + rr. We must ‘pin down’ N - A' and IJ F for 
a filling F. We must first describe how to ‘pin down’ a block (p, 9) c ti, - N for 
4 E N. For ( 6, p) E X and variables k*, qo, . . . , r], E VU(~) and Y& . . . , vj of 
the same type as p, we will construct a formula Block,,&*, ij, 7) that will 
describe such a block. Change 13, p to 6, p to make sure that none of the 
non-distinguished variables in 6 are among those we have fixed. Suppose that 
p E Vat(O). For j c s let 0; be I? & Aj,sj p f vi’,. Let Block,,,,( ,(p*, 3, G’) be: 

82 (exactly p * P) 6 & A (exactly qj P) 0;. 

jss 

For p E VU(~) we would like to do the same thing; but there is a problem: ‘=’ 
was used in the above formula. Here we rely on fact (4). For Z E X”, form Z as 
before; let 0; be 8&~j,,jl(exactlyPpj,)ej,. Let Block,,,,,(k*, e, t’) be: 

-@p)t? & A Q/Y,!) & Distinct,(?) & A lDef(nj) 
j-3 j-3 

& (exactly p * 0) 6 & A (exactly rli 0) 6;. 

jss 

Now fix variables qo, . . . , pro_l, ,u:, . . . , pz-I E VU(~), Y = ((e,*, pl), . . . , 
(O&r, pc_,)) EX’O, U= ((e,, po), . . . , (Ok--l, pk_r)) eXk, and for each jek 

hx Vj,O, . . . , qj,s, E VU(~) and: 

-if pj E Vat(O), then Zj = ( ) and vj,o, . . . , Yj,s, E V~r(0); 
-if pj E VU(~), then Zj = (( 8j,o, pj,o), . . . , ( ej,,,, pi,,,)) E X”,” and vj,o, . . . , 

Vj,si E VUr(2). 
Transform Y, u, &, . . . , Z&r to Y, I?, Zo, . . . , Z&r so that no two formulae in 
any of the latter sequences have a non-distinguished variable in common, and so 
that all variables in such formulae are distinct from those fixed so far. We will use 

@* to ‘pin down’ RFld(F) and then variables of the form qj,j, for j < k and j’ < sj 
will ‘pin down’ the elements of UF for a filling F. Let 
Filling,g(,G*, GO, . . . , jjk__l, ;;,, . . . , i$-_l) be: 

Distinct&*) & A Block+,,.zj(pf, qj.0, . . . , qj,s,, vj.0, . . . , vj,,)* 
j<k 
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Let pr,U,z be: 

&Filling,g(ij*, fiO,. . . , $-I, qo, . . . , tk-l) 

& (exactly pi p) qo,@, V V (exactly p pi*)Q,” 
[ i<Q 

v V {(exactly p pi)6$: j < k and j’ <si} I) , 
where ‘2’ binds as usual. This formula looks at Do = N -A’ and D1 = IJ F for a 
filling F with fl= S and then says that the value of ,uFli is card(A’ U Do U Dl). Let 
q~~,,~ be V {/3y,U,z: Y, U, 2 as above}. 

Now suppose that r > r. and r, # 0. We must ‘pin down’ t + 1. First we must pin 
down the maximum filling. For U, 2 as above, a new p*, ek = Q~, qk,r and 

qk = vk,O, yk,l, let MaxFilling&@*, Go, . . . , jjk-l, to, . . . , ?k-l) be: 

Filling&F*, 60, . . . , Gk-1, to, . . . , qk-l)&jokDef(qj,s,) 

8~ A (l(3~k*)(3~k)(3tk)Filling~*(e,,p,),Z*z,(Li*, &, 30, . . . , qk-1, 

?jk, PO, . * * , 4-1, pk): ( ek, Pk) E x, 2, E xz>* 

The second conjunct shows the reason for including the variables Q, for j < k: 
that clause ‘stretches’ each j-th block down to pi + 1 for pi E N; such blocks exist, 
since 0 E N; qk,1 and vk,r do no work in the third conjunct, but are included for 
the notational convenience of the second. Let FinDef(q) be: 

V {a((exactly q p)8 &i(tco)0): (0, V> E X}, 

where ‘3’ binds as usual and q is as in our definition of Def(q); this formula says 
that the value of q is in R. f~ N. Let 6~,~(. . . , p) be: 

(exactly p q)(FinDef(v) v V {(exactly q oj,j,)CJ,$,: j < k, j’ <Sj}); 

for q < w let ~?~,~,~+r(. . . , ,u) be: 

(exactly p n)(FinDef(q) v V {(exactly q oi,i,)8j,j,:j s k, j’ < Sj} 

VS u,z.o v - . . 6 > u2.q . 

Then hLI,z,J. . . , p) ‘pins down’ the value of p to be t + q + 1, using fact (5) for 
q = 0 and iterating. Let Pu,U,d be: 

q YY & (VP)(pio/P = jyrO (exactly CL 4 ) “r ) ~ 

&MaxFillingU,i(fi*, 30,. . . , Gk-,, 30,. . * , +,-I) 

& (exactly pi P) qo, es v jyo (exactly p pi*>87 

V iy72 bu,Z,j V V {(exactly /J pi) G,Tj,: j < k and j’ < Sj} I> . 
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This formula looks at Do = N - A’, D1 = U F where F is the maximum filling, and 
at Dz = (t, t + r2 + l), and says that the value of cli is card(A’ U Da U D1 U D2). Let 
qa,s be V {py,,,g: Y, U, .?! as above}. We let q4 be: 

V {q~~“,~: (rO, S) is a subcase of case 4). 

We now tackle case 7. Let t = card(E -N). Since A’ -N = r? -N and r < 0, 
t > 0. Let t’ < t be the greatest such that t’ E N. By fact (2), t’ E No U fi2. For 
r,, u < &, let subcase (r,,, u) hold iff r, = min{]rj, card(A’ fl N)} and u = 
min{ Irl - r,, t - t’ - 1). We will construct qrO+ so that if &, a’, Z fall under case 7, 
then: 

d k, cp,,Ja’, n’] iff (ro, u) holds and )2i = card(A’) - Jr!. 

If subcase ( Irl, 0) holds, then we can look at D E A’ with card(D) = IrI and pin 
pi to card(A’ - 0). For Y = (( &, pO), . . . , (19,~,_~, p,,,_,>) EX” let ,& be: 

Distinct,(r],, . . . , Vrl-1) & jQ, %,W(PlVj> 

& (exactly PiPI Q, ( o,w&j$r,l(exactlY Pi+)~j)G 

let ~p,,,,~ be V {j&: YE Xl”}. 

Suppose that subcase (ro, u) holds for r, = card(A’ n N) < Irl and u = Irl - ro. 
Then go - N contains an interval with at least u members; since N is cofinite, 
there then is a filling F = { (po, qo)} with u = q. -p. - 1; ~l(~~,~) will say that the 
value of pi is card(A’ - (N U IJF)) f or such an F. For (~,P)EX, Y= 

MO, PO), . * * > (%-,, L+) > EX’O and rloy . . . , Q-~, Y*, d, . . . , L E 
Var(2) and v& . . . , Y:_~ of the same type as p, let j3y,B,P be: 

Distinct,(G) & BlockO,p(y*, ii’, ?‘) & (exactly pi CL) 

this looks for D = (A’ II N) U lJ F for a filling F as described above, and pins pi 
to card(A’ - D). Let 4pr0+ be: 

V {@y,B,P: (8, p) E X and Y E X0}. 

Now suppose that ro< Irl and u < Irl - r,; so t = t’ + u + 1. Set r, = Irl - r,. 

Fixing 4 = qo, . . . , q,,_, and 3’ = v& . . . , v&~, let (Y be: 

+/ {2Blocke,p (p*, 3, t’): (8, p) E X}; 

(Y entails that t - t’ S r,. We will construct a qcrl, uj to look for sets C and D c C, 

with card(C) = t’ and card(D) = r, - u - 1, and to say that the value of pi is 
card(C - D). Let s = rl - u - 1. Fix p*, qo, . . . , qu E Vur(2). For (8, p) E X: 

-ifpeVar(O)fixv,*,...,vu*, v&...,vi_leVur(0)andZ=U=( ); 
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if p E Vur(2) fix 

- U&l~ PO), * * 

Yo*, . . . ) vu*, VA, . . . ) $1 E Vur(2) and z= 

. , (e,, pJ> EX”+l, u= ((~& PO*>>. . .9 w-17 d-1)) EXS* 
Form 8, p, Z, U as usual to avoid collisions of non-distinguished variables. Say 

p E Vur(0). For j < u let 07 be 8 v Vircj p = ~,i; let Es,,&*, 3, ?*) be: 

-1(cap)8 & (exactly p* p)e 82 jou (exactly r]j)ey 

& A lDef( qj) & (exactly q, q)lDef( r]). 
j<u 

If p E Vur(2) for j G u let 0,” be 8 v Vj,sj(exactly ppj,)fiT; let ~~,,&*, e, t*) 
be: 

l(Ep) 8 & (exactly ,U * p) 8 & Distinct,( O*) 

& A (exactly qj)Oy & joU lDef(qj) & (exactly Q, q)-Def(r). 
jsu 

In both situations, gE,P,z p ( *, 3, ?*) pins vu to t and r]* to t’. If p E Vur(0) let 

&PA ),( ) be: 

,5d~*, a, q*w,b ew;)& A I++; 
j'<j<s 

& (exactly pip) 8 & A p # vi’ . 
( j's ) 

If p E Vur(2) let Pe,p,z,U be: 

E&,,&*, 3, q*) 62;bs e(plv;) &Distinct@) 

& (exactly pi p) 
( 

e & ,(J i(exactly p p;) e;) ; 

this formula handles the case of t’ E N2; since then t’ E &, the desired values for 
the Y;‘S exist in N as required. Let qrO+ be: 

a & v @Pe,p,z,u: ( 8, p ), Z, U as described above}. 

Let 4), be: 

V {Q)~“,~: (rO, u) is a subcase of case 7). 

4.3. Theorems 4.1 and 4.2 suggest the following: 

Conjecture (E). For any K E Card: 

(1) Pp4(exactly, =) J? 9j6(exactly), 

(2) 9*4*(exactly, =) 4 ZP’4*(exactly). 
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Given ~1 E Sent(pv4(( exactly, =)) [Sent(p74*(exactly, =))I, we may apply the 
procedures used in 04.1 [§4.2] to eliminate all equations between variables of type 
4; but I can’t see how to eliminate equations between variables of type 2 the 
scope of a prefex of the form (exactly pi cl) for p E Vur(2) and pi E VU(~). 
However for K < X, this obstacle can be avoided, even improving on (E.l). 

Theorem. For K < X, and 1 s k < co: 

(i) Ps2k(exactly, =) k P*2k(exactly), 

(ii) 9’2k*(exactly, =) fi Px2k*(exactly). 

In this section we will prove (i) for k = 1; in the next section we will consider (i) 
and (ii) with k > 1. 

Let Q, E Fml(3?r2(exactly, =)) with free variables among vo, . . . , Y[_~ E Var(O), 

PO, . ’ * 3 pp_l E Vur(2), the ‘distinguished’ variables. Let @ be a profile for 

PO, . . . 1 P~-~. We will construct Q)@ meeting the conditions met in 04.1 and 4.2. 
Only the case in which 47 is (3y)qo, p E Var(2), needs discussion. As in 44.1 we 
may suppose that Qi is Aj,<j<p ,Uj, # pj> and that no distinguished variable occurs 
bound in Q, or in QJ~,*,. Let qj be qo,Q,(p/pj) for i <p. We will construct 
v’ E Fml(3?92(exactly)) so that for any model ti, a’ E /&I’ and Z E 3 with 
&4 F, @[fi]: 

Then we will take q@ to be Vi<, hi v tp’. 

Let X0 and No = N,(&, 2, Z) be as in 94.2, C = {no, . . . , TZ,_~} - No. Let 

Defo(q) be V {a( exactly rl Y)6: (8, v) E X0}, for rl E Var(2) as in 94.2 and ‘3’ 

binding all non-distinguished variables other than n free in its scope: clearly Def, 
defines NO. Let cp* be: 

V/3((exactly~~)B&&l(exactly~j~)8&yo,,.): (0, v) EXo}, 
I’P 

where 8, Y are transformed into 6, Y as usual to avoid collisions of variables, and 
where ‘2’ binds all non-distinguished variables in its scope, including ,M. Thus for 
Sp, a’, Z as above: 

ti bK ~*[a-, Z] iff for some II E NO - {no, . . . , r~,_~} .d kK ~?~,~,[a’, ii]. 

For & Z, Z and NO as above and n, n’ E i? - No: 

sJpPK tpo,&a’, ii, n] iff &kK vo,@,[Z, Z, n’]. 

This follows by induction on the construction of qo.@,. Thus for some n E K - 
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(N,, U C): 
d kK fpo,~~[ii, ii, n] iff 

ti i=K (3p)(lDef&) & qO,QP)[a’, G] and card(rT- - N) > card(C). 

For c up let Def, be 

Thus ti F, Def,[& G] iff C = {nj: j E c}. We will construct a formula r/~= saying that 

card(t - N,) > card(c). Letting q** be: 

we may then let 91’ be q* v q**. 
Suppose K = x,, z < co. If y = card(NO fl (t - &,)), then card(l - N,) > card(c) 

iff card& - N,,) > card(c) - (z - y). For each y 6 z we will construct 15, and yY so 
that: 

.~4 k, S,[G, G] iff y = card(N,, n (K - RO)), 

SB k, ~,,[a’, Z] iff card($ - N,) > card(c) - (z - y). 

Then we may let I+!J~ be VyGr (6, & yY). The construction of 6, relies on ideas 

used in 04.2, and so is left to the reader. The construction of yY uses a modified 
notion of a filling. Let I; be an upward-filling iff F = { (po, q,,), . . . , 
(pk_1, qk-I))} where pj E No tI Ko, pj < qj and (pi, qj + 1) c rC, - No for all j <k. 
Let: 

UF=U{(pj, qj+l):j<k), E= (40--PO,. .*, qk-1-Pk-1); 

again order is unimportant; we only need that card(lJ F) = C p. For each 
S E (i$, - (0))“ with C S = card(c) + y + 1 - z we construct ys saying that there is 
an upward-filling F with P = S. We then take y,, to be V { ys : S as above}. 
Construction of ys resembles constructions in 34.2 and is left to the reader. 

But the following deserves mention. In this construction we could not use 
fillings; fillings would be formed by counting downward from elements of No rl R,; 
but if No is finite, there might not be enough elements of No rl ti,, to yield an F 
with lJ F sufficiently large. On the other hand, in case 4 of 04.2 we could not use 
upward-fillings; for in counting upward from an element of Nz tl& we must 
‘count with’ members of N; since in case 4 N is finite, we might not be able to 
count high enough. 

4.4. We will now prove Theorem 4.3 for k = 2. Suppose that Q, E 
Fml(~~4(exactly, =)) [Fml(~~4*(exactly, =))] with free variables among vO, 
. . . ) vl_l E Vur(O), pot . . . , pp-l E Var(2), I;,,, . . . , &_1 E Vur(4); these are the 
distinguished variables. As indicated at the start of 94.3, it suffices to trans- 
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form 91 to a K-equivalent @ E Sent(JP,4(exactly, =)) [Sent(9?*4*(exactly, =))] 
with the same free variables such that I$ contains no equations between 
variables of type 2. As usual, let distinctly bound variables be distinct from each 

other and from the distinguished variables. Let @ be a profile for po, . . . , P~_~. 
We will construct qQ E Sent (P’j4(exactly)) [Sent(fi”*(exactly))] so that for any 
model ~2, a’ E Id]‘, Z E kp, & E %J, if & L @[Z] then: 

d LK ~~[a’, Z, &] iff d kK c&j, n’, &I. 

The only cases worth discussing are where Q, is (3p)qo or (exactly & p)cpo for 
p E Vur(2). The first case in handled as in §4.1; thus the assumption that K < X, is 
not used. Suppose that 47 has the second form. We will try to mimic the 
construction from $4.2, with X0 and No playing the role that X and N played in 
$4.2. In cases 1 through 6 the construction is straightforward, not requiring use of 
the assumption that K < X,. But case 7 poses a problem. Suppose subcase (ro, u) 
obtains for r,< Ir] and u < ]r] - ro= r,, and for (0, Y) E X0 and appropriate a”, 

n +O, Go we have C = Of@, a”, t?, Go, &, Gz”]&“9c I&] with card(C) = t’. For any 
CL’ E Vur(2) we can produce a formula that pins the value of p’ to t’ - (1. - u - 
l)=card(C-D) for any D c C with card(D) =r,-u - 1. But this will not 
enable us to produce a formula pinning ci to t’ - (rr - u - l), since ci E Var(4)! 
This is the obstacle to the naive approach to proving conjecture (E). 

The hypothesis that K = X, for z < w makes possible a different approach to 
case 7. Under case 7 one of the following subcases holds: 

(1) card(Ro - No) 2 r, 

(2) card(A’ n No) 5 r, 

(3) card(A’) = card(A’ fl No) + card(t - No) < z + 2r. 

For each S such that S E (Ho - (0))“ for some k and C S = r, we may construct 
a formula cu, asserting the existence of a filling F with P = S and such that the 
value of pLi is card(A’ - lJ F). In subcase (1) there is such an S and F. It is easy to 
construct a y that ‘looks for’ D E A’ II No with card(D) = r and says that the value 

of P~ is card(A’ - D); in subcase (2) such a D exists. For each u with 
r S u < z + 2r it is easy to construct a formula yu saying that card(A’) = u and the 
value of pi is u - r. Let the disjunction of all of these formulae be q,; details are 
left to the reader. 

This construction easily generalizes for k > 2. 

4.5. We now show Theorem 4.3(i) is best-possible for k = 1. Let R be 2-place, 
Pred = {R}, Funct = { }. For P E Var(2) let e(p) be (3Yo)(exactlyp Y)R(Y~, Y); 
let Q, be: 

Observation. For K 3 X,, q2 is not xc-equivalent to any sentence of Pj2(exactly). 
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Proof. We construct models &, and dr as follows. 
X,, and Y, with card(X,J = K and card(Y,) = IZ, all 
Let: 

Rd”=U{X,xY,: n/K,}, 

Rdl = U {Xn x Y,: II 4 {K,, X,}}. 

For each it < ncb(K) fix sets 
these sets pairwise disjoint. 

The members of IJ X,, are X-objects, and the members of U Y,, are Y-objects. 
For a E X, U Y, let f(a) = n. For n, IZ’ < K let IZ match n’ iff: 

if n or n’ is finite or 3X,, then it =n’; 

n =x,+1 iff it’ = K,,, for all t< 0; 

It = x0 iff 11’ E {X0, XI}. 

For i;i E JdiJ’,Z E i? let (&,, ZO) match (&, ZI) iff: 

for all i <i’ < 1: ao,j = U,j, iff U,,j = U,,j’; 

f(@O,j> =f(aO,j’) iff fCal,j) =f(“l,j’>; 

for all j < 1: Uo,j is an X-object iff Ul,j is an X-object; 

uo,i is a Y-object iff u,,~ is a Y-object; 

f(a,j) matchesf(arJ; 

for all i <p: ~o,j matches nl,j. 

Then for any formula I/J of pP2(exactly) with free variables among 

vo, . . . , q-l E Vur(O), po, . . . , ,L+-~ E Vur(2): if (Zo, Zo) matches (&, ZI), then: 

Se0 k, +[Go, Go] iff &I k, V[&, &I. 

This is easy to show. So for any 11, E Sent(9?‘(exactly)), do kK q9 iff dI EK I/I,, 
proving the observation. 

4.6. We will now slightly improve the last remarks of 82.1. 

Observation. For 1 G k < w and K an uleph, if either ncbk(K) < Kao or ncbk(K) is 
a limit cardinal, then: 

(i) 3?,2k+2(exactly, =) i .JP’2k*(eXaCtly, =), 

(ii) 3?‘2k+2(exactly) 3 Pj2k*(exactly). 

To prove this, we will introduce another satisfaction relation. For a model d 
and K E Card, we define d bzk Q, so that variables of type S2k + 2 range over 
n&-‘(K) rather than over ncbk(~). That is, let Sent2k(p&Tt+2*(exactly, =)) be 
the set of sentences formed from formulae of P&T?Kkf2*(exactly, =) by replacing 
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variables of type-2j by terms of the form n, where: 

if 1 sj < k, then n < ncb-‘(K); 

if j = k + 1, then IZ < ncbk-l(K). 

For Q, E Sent2k(~~~~+2* (exactly, =)) define & L”,” Q, as in 01.1 except that for 
p E Vur(2k + 2): 

d Ftk (3p)~ iff for some II < ncbk-l(K) &L”, q(p/n); 

sd kzk (exactly m p)$~ card({n < ncbk-‘(rc): ti L$k q(,u/n)}) = m. iff 

(The reader might wonder why this paper investigates kK rather than L$ The 
remarks of $1.2 only apply to the latter satisfaction relation if ncb(rc) = K (when 
the relations coincide); also Theorem 2.7 fails for the latter relation.) 

Given K and 91 E Sent(~‘2k+2*(exactly, =)), we will COnStruCt q’ E 

Sent(LP,2k+2* (exactly, =)) so that for any model d: &LK ~1 iff a L=“, q’. Form 
q” E Sent(L!?r2k*( exactly, =)) from q’ by replacing all variables of type 2k + 2 by 
new variables of type 2k; for any model d, &L’, 47’ iff &k”, q”; but clearly 
A? ktk 9” iff a LK QJ”; so q” is as required by (i). If q E Sent(~9”k”*(exactly)), we 
will make sure that CJJ’ E Sent(L!?‘2k+2* (exactly)); q” will be as required by (ii). 

Suppose that k = 1. Suppose Q, E Fmmexactly)) with free variables among 

yo, . * * f VI(O)-1 E V40), po, . . . , P[(~)-~ E V42L po, . . . , I+-~ E Vd4), these 
to be called ‘distinguished’. We will construct q’ E Fml(ps4(exactly)) with free 
variables among the distinguished ones, and so that for any model &, a’ E /~41’(‘), 
r?r E K’(2), n’ E ncb(K)‘(4): 

q’ is constructed by induction on the contraction of q; the only case worth 
discussing is where q is (~P)QJ, for ~1 a non-distinguished type-4 variable. 
Suppose that ~6 has been constructed as desired. 

We will transform the apparatus of §4.2 to use with l=$ For i E 2 and a fixed 
p’ E Vur(2i) let 

X2; = { (8, p): for some q E Vur(2i + 2), (exactly q p)B 

is a subformula of I$,} U {( I, p’)}; 

N2i(4 a’, 62, ii) = {n: d k’, Zi(exactly n p)8 for some (8, p) E Xzi}, 

‘a7 binding all non-distinguished variables in its scope. Where &, at, &, and n’ are 
fixed, let N2i = Nzi(&ae, a’, &, Z). Notice these facts. (1) If IZ, IZ’ E i? - Nz then: 

aL”,&[ti, r7, &, n’, n] iff .&Lz r&[.& 2, $i, Z, n’]. 

(2) For any IZ E N2 either IZ ~card(l\r,) or card(r? - No) <PZ. For suppose that 
( 0, p) E X2 and & k’, (exactly n p)O[ii, a”, &, Go, 6, ii”], a”, iGo and n” assigning 
values to the non-distinguished variables other than p free in 8; then for any m, 
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~‘EI?-No: 

54 b”, O[Z, a”, 6, Go, m, ii, ii”] iff .&b’, e[Z, a”, 62, Go, m', ii, ii"]; 

so either ‘/%3[* * -1” c No or rT_ - No G ‘i%[* - a]“. (Here “@3[. . -I= {m < K: d i=“, 
e[. . . , m, . . .I}.) (3) If n EN,, then n ~ncb(~). 

It is easy to construct a formula Def&) for p E Var(2i + 2) so that for any 
&, a’, &, n’ as above and n < K: 

d L’,Defij(n)[Z, fi, n’] iff n E N2i. 

Suppose we can construct a formula @ of 5!?P4*(exactly) so that for any &, G, &, Z 
as usual: 

d ki @[ii, fi, n’] iff ncb(rc) - N2 is non-empty. 

Then we may take q’ to be: 

(3~)(6&incb~ & (Def2(p) v @)). 

Clearly if .G+J i=K cpo[G, Gi, Z, n] for n < ncb(k-), & k”, q’[. . .I. Suppose that 

dk~((~;)(p/n)&-mcb=n&(Def,(n) v @))[a--]. 

If n E N2, then by fact (3) n < ncb(rc), yielding ti kK pl[. * *I. Otherwise there is an 
n’ E ncb(K) - N2; by fact (1) ti !=“, &,(p/n’)[. * -1, again yielding s8 kK q[* . -1. So it 
suffices to construct @. 

First we construct Q. saying that R, - N2 # { }. For (8, p) E X2 and (8’, Y’) E 
X0 form 8, p, 0’, 7’ as usual to avoid collisions of non-distinguished free 
variables; let /3B,P,B,,v~ be: 

(exactly p p)G &%(plp*) & (exactly p* V’)O’ 

& (exactly q * p)( 6 v (exactly p ?)a’) 

& l(exactly q* p)8 & lDef2( 7 *), 

where n, n* E Vur(4), p* E VU(~), all new. This will fix the values of r] and r]* to 
beannandn+1withnet;“oflNzandn+1$N2. Let @,be: 

v GMtQ,e*,Y,: (0, P> E x2, (c y’> E Xo> ” 3%WefoWj 

where ‘2’ binds all non-distinguished variables in its scope. If No is infinite, then 
R, - Nz # { } iff the first disjunct holds. The second disjunct says that No is finite, 
in which case by fact (2) card(N,) + 1 E go - N2 and Q. is satisfied. 

Case 1: ncb(K) = x0. Let @ be ao. 
Case 2: ncb(rc) = EE,. If N2 is finite, x0 - N2 f { }; 

otherwise card(Nz) = X0 E N2 iff R1 - N2 # { }. Let @ be: 

e. v ($)((exactly P rl)Defz(rl) &iDef2(p)). 

This says “Either R. - N2 f { } or card(N,) 4 N2”. 
Case 3: ncb(rc) = X6+i for 1 =z 6 < ow. Suppose we can construct qo, vi, qj2 so 
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that: 

&k”, &[a * -1 iff card(NO - i$,) < X6 ; 

sdk’, I)~[. * a] iff for some IZ $ N2, n < X6 and IZ < card(N, - &,); 

&k’, I&J. * -1 iff card(N, - i?) 4 Nz and card(NO - &) #X6+1. 

Thus: 
dkz(ql v &)[a . e] iff for some II E N2, II < K6 

and n G card(l\r, - &J. 

We may let qc, v IJJ~ v v, be @. For, if a #z&,[. . *I, then card(N, - K,) 3 X6; 
and if ti#i(r/~~ v I&,)[.. -1, then for any nsX6 it EN*; so xs+l-Nz= { }. 
Clearly, if &kt(~/~r v r&J[...], then tis+1-N2#{ }. If &ki~&,[...], then 
card(l\r, - i?,) < X6 ; since 6 > 0, card(NO) < Ks ; so X6 4 N2, since otherwise 
X6+i = card(k - N,) G X6 by fact (2). 

Since K is assumed to be an aleph, it is convenient to identify cardinals with 
initial ordinals let ((~g)~<~,, be the listing of No - k, in increasing order; clearly 
card(l\r, - &,) G &,. Let: 

M= {aE: g<card(NO-tiO)}, k = {ncb(cu): (Y EM}. 

We will use these facts to construct q!~~ and ql: 

card(l\r, - &) < X6 iff order-type(&) = lJ fi < u + 6; 
for some 12 4 N,: n 6 X6 and n < card(NO - i$,) iff 

for some (Y E M - N2 ncb(cy) G cc) + 6. 

For non-distinguished p, p’ E Vur(2) and (8, Y), (O’, Y’) E X0, form 8, 0, 
a’, v’ as usual to avoid collisions of non-distinguished free variables. Let 
p ~~,~,~,,~,p’ abbreviate: 

(exactly p v)Q & (exactly p’ P)6’ & (mti)g & ($@’ 

& (exactly p’ G’)(e’ v @Y/Y’)). 

Let p<*p’ be: 

where ‘2’ binds non-distinguished free variables other than p and p’. Then for 
any m, m’ < K: 

.d~~m~*m’[a’,Gz,ii] iff m,m’eNo-&, and msm’. 

Let M(p) be: 

p<* p &1(3p)((exactly p p’)(p’ s* p) & (exactly p p’)(p’ G* p’)); 

Thus .dL’,M(m)[- . -1 iff m E M. For p,,, ,~i E VU(~) let cl0 G** p1 abbreviate: 

(%%J(%MPll s* Pl & WPo) &WA 

& (exactly PO P)(P <* PO) & (exactly PI PI@ <* pd), 
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where p<*pi is p<*pi&l(pi~*p). For II, n'<K: 

dk”,nS*n’[-0.1 iff non’ and ~t,n’~fi. 

Using cardinality coefficients and the apparatus of 42.6 with ‘<**’ replacing ‘s’ 
we can construct & saying “the order-type of &l < w + 8”. Similarly we can 
construct q1 saying “for some a E M - N,, ncb(cu) c o + 6”. Details are left to 
the reader. Let & be: 

i(W((exactly P P)(P s* P) & (Def&) v ncb = P)). 

Case 4: ncb(K) is an uncountable limit cardinal. If card(l\r,) #ncb(K), then 
ncb(K) - N2 is non-empty. For suppose that card(N,)# ncb(w); by the case 
assumption and fact (3) fi x an n with card(l\r,) < IZ < ncb(x); by fact (2) if n E N2, 
then card(E - No) 6 n; but card(l - N,) = ncb(K), a contradiction; so n 4 Nz. Let 
& be: 

l($)(ncb = p & (exactly p p)Def,(p)). 

On the other-hand, if card(NO) = ncb(K), then ncb(K) = card(l\r, - &,). Let 

W(P) be: 

WW(d & (exactly P P’W 

then &k”, q(n)[. * -1 iff n < ncb(rc). Let 

q3 v (W(VW &iDefW). 

By the preceding remarks, this works. 
It is easy to modify this construction 

<*PI); 

CD be: 

to handle Q, E Sent(9?‘p4(exactly, =)). For 
k > 1 simply replace types 2 and 4 by types 2k + 2 and 2k. 

For K as above, part (i) of this Theorem with Theorem 4.2 yields the surprising 
inclusion: 

5P4(exactly, =) J% P,‘*(exactly). 

4.7. Here is another slight improvement on the concluding remarks of 02.1. 

Observation. For 1 Sk < o, if ncbk-‘(K) < &,, then: 

5!?, 2k+2*(exactly) 4 .JP.2k*(exactly). 

Suppose k = 1. Let K = K, for z < o. If z = 0, then K = ncb(K), and the above 
inclusion holds trivially. Suppose that z 3 1. Let 91 be a formula of pX4*(exactly) 
with free variables among vO, . . . , Y~(,+~ E Var(O), pO, . . . , p1(2)_-1 E Var(2), 
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PO, . . . > p1(4j_1 E VU(~), the ‘distinguished’ variables. We will construct a for- 
mula q’ of 9?‘~4*(exactly) meeting the conditions on q’ from 44.6; as there, this 

suffices to prove the observation. q’ is constructed by induction on the 

construction of q. If Q, is (3p)qo for ,U E VU(~), 9’ is constructed as in 04.6. Let 
q be (exactly pi ~)~o, for i G l(4), ,U E VU(~). Suppose ql, has been constructed, 
and no distinguished variables occur bound in Q, or VA. Define X, and 
N(&, c7, 6, n’) as in $4.6. Let Def2(p) and FinDef&) be the natural analogues of 
Def(p) and FinDef(p) from 04.2. For &, G, &, Z, let A = {n < K: SQL: 

qh[ii, fi, ii, n]}; we will pin pi to card(A n go). Let I/I be (Vp)(q,l, =I Def,(p)) 
and W’ be (3p)(ncb’ = ,U & &); q’ says “X0 E A”. We will take 47’ to be: 

(r/j & 971) ” (3 & 3’ & %) ” (?J &TV,’ & cp3). 

To handle the case in which A E N2 c R. let q1 be: 

(VP)(& = Def&)) & ( exactly pi, /J)(& & FinDef&)). 

As usual, if n, 12’ E r? - N2: II EA iff 12’ EA. So if A - N2 is non-empty, then 
K-N2cA; since N2~R1, X ,,..., K,_i E A. For j E 2, if card(A n K,) 3 z -j, 

then we want a formula qz+j,z_j that looks for D E A n ii, such that card(D) = 
z - j and ‘pins’ the value of pi to card(A - D). For each u <z - j we construct 
972+j,U saying that card(A rl K,) = u and the value of pi is u. These constructions 
use easy ideas from $4.2; details are left to the reader. We let qPZfj be 

V OP~+~,~: u d z -iI. 

4.8. Here are some further questions, stated as conjectures in order of decreasing 
confidence. 

Conjecture (F). For 0 < k < w, if ncbk(K) 2 X,, then: 

P,2k+2(exactly, =) $ ZP,2k+2(exactly). 

Conjecture (G). If K = Xow+I, then p94(exactly) 2 P,**(exactly). 

The following sentence is a possible witness: 

(3p)l(W(exactly CL p)(~yo)(S(yl, vo) 8~ (exactly P v)R(yoj v)), 

with ~1 E Var(4), p E Var(2), and Y, vo, v1 E Vur(0). 

Conjecture (H). For K = X,, P.6(exactly) c J&?.**(exactly). 
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The following sentence is a possible witness: 

(W((exactly r d(W(exactly P P)(SJ 

(%(~Ij ~3) & (exactly P ~)Ro(vh y)> 

& (exactly r ~PJ(exactly P p)(WJ 

@1(~19 VI)& (exactly P Y)R~(%, y))), 

where 7 E VW(~), y E VU(~), p E Vur(2), Y, vo, v1 E Vur(0). 
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