Cut-conditions on sets of multiple-alternative inferences

Harold T. Hodes* ${ }^{\text {(iD }}$
Sage School of Philosophy, Cornell University, 218 Goldwin Smith Hall Ithaca, New York 14853, United States of America

Received 30 April 2020, revised 28 November 2021, accepted 4 January 2022
Published online 3 February 2022

I prove that the Boolean Prime Ideal Theorem is equivalent, under some weak set-theoretic assumptions, to what I will call the Cut-for-Formulas to Cut-for-Sets Theorem: for a set F and a binary relation \vdash on $\mathcal{P}(F)$, if \vdash is finitary, monotonic, and satisfies cut for formulas, then it also satisfies cut for sets. I deduce the CF/CS Theorem from the Ultrafilter Theorem twice; each proof uses a different order-theoretic variant of the TukeyTeichmüller Lemma. I then discuss relationships between various cut-conditions in the absence of finitariness or of monotonicity.

1 Introduction

The Boolean Prime Ideal Theorem (BPI) is weaker than the Axiom of Choice (AC), and has been proved to be equivalent (modulo weak set-theoretic assumptions) to various theorems from diverse corners of mathematics. ${ }^{1}$ The main result in this paper supplements that list with what I will call the Cut-for-Formulas to Cut-for-Sets Theorem for multiple-alternative inferences, a version of which was proved by Shoesmith and Smiley [4, p. 37].

Let \mathcal{P} be the power-set operation. For our purposes, an inference on a given set F has the form $\langle\Gamma, \Delta\rangle \in \mathcal{P}(F)^{2}$. Heuristic: think of members of F as formulas; in an inference $\langle\Gamma, \Delta\rangle$, members of Γ are the assumptions and members of Δ are what I will call the alternatives. Δ should be understood "disjunctively". In [4], Shoesmith and Smiley call the members of Δ conclusions; this strikes me as misleading. (For a review of [4], cf. [2]. According to [4, p. ix], this notion of inference was, in effect, first introduced by Gentzen in his work on his sequent calculi.)

Consider a set \vdash of inferences on F. Following a standard notational convention, for $\Gamma, \Delta \subseteq F$ and $\varphi \in F$, let $\Gamma, \Delta=\Gamma \cup \Delta$, and $\Gamma, \varphi=\Gamma \cup\{\varphi\}$, when they are considered as relata of \vdash.

Definition 1.1 1. For $\Psi \subseteq F$, let a splitting of Ψ have the form $\left\{\Psi_{0}, \Psi_{1}\right\}$ for $\Psi_{0} \cup \Psi_{1}=\Psi$ and $\Psi_{0} \cap \Psi_{1}=\{ \}$. $\operatorname{Splt}(\Psi)$ is the set of splittings of $\Psi .{ }^{2}$
2. For $\Psi \subseteq F, \vdash$ satisfies cut for Ψ iff: for every $\Gamma, \Delta \subseteq F$, if

$$
\text { for every } \Psi_{0}, \Psi_{1} \text {, if }\left\{\Psi_{0}, \Psi_{1}\right\} \in \operatorname{Splt}(\Psi) \text { then } \Gamma, \Psi_{0} \vdash \Delta, \Psi_{1} \text {, }
$$

then $\Gamma \vdash \Delta$.
3. \vdash satisfies cut for sets iff for every $\Psi \subseteq F, \vdash$ satisfies cut for Ψ.
4. \vdash satisfies cut for formulas iff for every $\psi \in F$, if $\Gamma, \psi \vdash \Delta$ and $\Gamma \vdash \Delta, \psi$ then $\Gamma \vdash \Delta$.
5. \vdash satisfies overlap iff for every $\Gamma, \Delta \subseteq F$, if $\Gamma \cap \Delta \neq\{ \}$ then $\Gamma \vdash \Delta$.
6. \vdash is monotonic (satisfies dilution in the usage of [4]) iff for every $\Gamma, \Gamma^{\prime}, \Delta, \Delta^{\prime} \subseteq F$, if $\Gamma \subseteq \Gamma^{\prime}, \Delta \subseteq \Delta^{\prime}$, and $\Gamma \vdash \Delta$, then $\Gamma^{\prime} \vdash \Delta^{\prime}$.
7. \vdash is finitary (aka compact) iff for every $\Gamma, \Delta \subseteq F$, if $\Gamma \vdash \Delta$ then for some finite $\Gamma_{0} \subseteq \Gamma$ and some finite $\Delta_{0} \subseteq \Delta, \Gamma_{0} \vdash \Delta_{0}{ }^{3}$

[^0]Theorem 1.2 (The Cut-for-Formulas to Cut-for-Sets Theorem; hereafter CF/CS) For any $\vdash \subseteq \mathcal{P}(F)^{2}$, if \vdash is finitary, monotonic, and satisfies cut for formulas, then it satisfies cut for sets.

In [4, part of Theorem 2.10], Shoesmith and Smiley prove the following slight weakening of CF/CS, using the Tukey-Teichmüller Lemma, which is equivalent to $A C .{ }^{4}$

Theorem $1.3\left(\mathrm{CF} / \mathrm{CS}^{*}\right)$ For any $\vdash \subseteq \mathcal{P}(F)^{2}$, if \vdash is finitary, monotonic, and satisfies overlap and cut for formulas, then it satisfies cut for sets.

Clearly CF/CS entails CF/CS*; this entailment reverses, as we will see.
Notation. Natural numbers will be identified with finite von Neumann ordinals. For a set $A, \mathcal{P}^{\prime}(A)=\{X \subseteq A \mid X$ is finite but non-empty\}, and $\operatorname{card}(A)$ is the cardinality of A.

2 The main result

Consider a poset $P=\langle | P|, \preceq\rangle$ (i.e., \preceq is a partial ordering of $|P|$).
Definition 2.1 1. As is standard, let $x \in P$ mean $x \in|P|$ and $X \subseteq P$ mean $X \subseteq|P|$.
2. For $x \in P, \downarrow x=\{y \mid y \preceq x\}$.
3. For $x \in P$, let x be P-finite iff $\downarrow x$ is finite.
4. $\mathcal{F}_{P}=\{x \in P \mid x$ is P-finite $\}$.

Definition 2.2 1. For $X \subseteq|P|$, let x be special for X in P iff: for every P-finite $y \preceq x$, there is finite $X_{0} \subseteq X$ such that for every P-finite upper bound u on X_{0} we have $y \preceq u$.
2. P is special iff every non-empty subset of \mathcal{F}_{P} has an upper bound that is special for it in P.

Definition 2.3 A is of P-finite character iff: $A \subseteq P$ and for every $x \in P$,

$$
x \in A \text { iff for every } y \in \mathcal{F}_{P} \cap \downarrow x, \quad y \in A
$$

Definition 2.4 Consider a Z and T such that $Z: T \rightarrow \mathcal{F}_{P}$.

1. For $S \subseteq T$ and $x \in P, x$ makes S-choices from Z iff for every $t \in S$ there is a $z_{t} \preceq Z(t)$ such that $z_{t} \preceq x$.
2. For $A \subseteq P, A$ makes finite choices from Z iff for every finite $S \subseteq T$ some $x_{S} \in A \cap \mathcal{F}_{P}$ makes S-choices from Z.

Lemma 2.5 (The Restricted Tukey-Teichmüller Lemma for Posets; $\mathrm{rTT}_{p o}$) Consider any special poset P. For any Z as above and any $A \subseteq P$, if A is non-empty, of P-finite character, and makes finite choices from Z, then for some $b \in A$, b makes T-choices from Z (i.e., for every $t \in \operatorname{dom}(Z)$ there is $a z \preceq Z(t)$ so that $z \preceq b) .{ }^{5}$

Note $2.6 \mathrm{rTT}_{p o}$ is formulated in the second-order language based on one 2-place predicate-constant and 'is finite' as a primitive second-order predicate. It is a distant cousin of [3, Theorem 3.2], which is also a restricted version of the Tukey-Teichmüller Lemma, there called rTT^{++}.

Theorem 2.7 The Ultrafilter Theorem for power-sets (hereafter UT) entails rTTpo. ${ }^{6}$
Note 2.8 UT entails the Axiom of Choice From Finite Sets (for every set \mathcal{A} of finite non-empty sets there is a choice function on \mathcal{A}.) For a proof of this, cf. [3, end of § 3].

Proof. (A modification of an argument in [3].) Assume UT. Assume that P is an special poset, $Z: T \rightarrow$ \mathcal{F}_{P}, and $A \subseteq P$. Assume that A is non-empty, of P-finite character, and makes finite choices from Z. Let $Y=$

[^1]$\prod_{t \in T} \downarrow Z(t)$. Since $\downarrow Z(t)$ is finite for each $t \in T$, by AC from Finite Sets, $Y \neq\{ \}$. Fix $g \in \prod_{t \in T} \downarrow Z(t)$. For each finite $S \subseteq T$ let $H_{S}=\left\{f \in Y \mid\right.$ some $u \in A \cap \mathcal{F}_{P}$ is an upper bound on $\left.f[S]\right\}$.

Claim 1: for each finite $S \subseteq T, H_{S} \neq\{ \}$. Since A makes finite choices from Z, we may fix an $u_{S} \in A \cap \mathcal{F}_{P}$ that makes S-choices from Z. For each $t \in S$ fix a $z_{t} \preceq Z(t)$ such that $z_{t} \preceq u_{S}$. Let

$$
g^{\prime}(t)= \begin{cases}z_{t} & \text { if } t \in S \\ g(t) & \text { otherwise }\end{cases}
$$

So $g^{\prime} \in Y$. Since u_{S} is an upper bound on $g^{\prime}[S]=\left\{z_{t \in S}\right\}, u_{S}$ witnesses that $g^{\prime} \in H_{S}$, proving Claim 1 .
Claim 2: for any finite $S_{0}, S_{1} \subseteq T, H_{S_{0} \cup S_{1}} \subseteq H_{S_{0}} \cap H_{S_{1}}$. Consider an $f \in H_{S_{0} \cup S_{1}}$. Fix a u witnessing that $f \in$ $H_{S_{0} \cup S_{1}}$. Consider $i \in 2$. Since $f\left[S_{i}\right] \subseteq f\left[S_{0} \cup S_{1}\right], u$ also witnesses that $f \in H_{S_{i}}$. Claim 2 follows.

By Claims $1 \& 2,\left\{H_{S} \mid S \subseteq T, S\right.$ is finite $\}$ has the finite intersection property. By UT we may fix an ultrafilter U on Y such that for each finite $S \subseteq T H_{S} \in U$. For $t \in T$ and $z \preceq Z(t)$ let $X_{t}^{z}=\{f \in Y \mid f(t)=z\}$.

Claim 3: for each $t \in T$ there is a unique $z_{t} \preceq Z(t)$ so that $X_{t}^{z_{t}} \in U$. Consider a $t \in T$. $\left\{X_{t}^{z} \mid z \preceq Z(t)\right\}$ is a set of pairwise disjoint sets; also $\bigcup\left\{X_{t}^{z} \mid z \preceq Z(t)\right\}=Y$. Since U is an ultrafilter there is a unique $z \preceq Z(t)$ so that $X_{t}^{z} \in U$. Letting z_{t} be that z, Claim 3 follows.

Since P is special, we may fix an upper bound b on $\left\{z_{t \in T}\right\}$ that is special for $\left\{z_{t \in T}\right\}$.
Claim 4: for every $x \preceq b$, if $x \in \mathcal{F}_{P}$ then $x \in A$. Consider a P-finite $x \preceq b$. Since b is special for $\left\{z_{t \in T}\right\}$, we may fix a finite $S \subseteq T$ such that for every P-finite upper bound u on $\left\{z_{t \in S}\right\}, x \preceq u$. Since $H_{S} \in U$ and for each $t \in S$ $X_{t}^{z_{t}} \in U, H_{S} \cap \bigcap_{t \in S} X_{t}^{z_{t}} \in U$. So we may fix an $f \in H_{S} \cap \bigcap_{t \in S} X_{t}^{z_{t}}$. Fix a u witnessing that $f \in H_{S}$; so $u \in A \cap \mathcal{F}_{P}$ and $f(t) \preceq u$ for every $t \in S$. For every $t \in S, f \in X_{t}^{Z_{t}} ;$ so $f(t)=z_{t}$. Since u is an upper bound on $\left\{z_{t \in S}\right\}, x \preceq u$. We have $x \in \mathcal{F}_{P}, u \in A$ and A is of P-finite character; so $x \in A$. Claim 4 follows.

Since A has P-finite character, $b \in A$ by Claim 4. For each $t \in T z_{t} \preceq Z(t)$ and $z_{t} \preceq b$. So b is as required by $\mathrm{rTT}_{p o}$.

Lemma 2.9 ([4, Theorem 2.2]) If $\vdash \subseteq \mathcal{P}(F)^{2}$ is monotonic and satisfies cut for F then \vdash satisfies cut for sets.
Proof. Assume the if-clause. Given $\Psi, \Gamma, \Delta \subseteq F$, assume that for every splitting $\left\{\Psi_{0}, \Psi_{1}\right\}$ of Ψ we have $\Gamma, \Psi_{0} \vdash \Delta, \Psi_{1}$. Given a splitting $\left\{\Phi_{0}, \Phi_{1}\right\}$ of F, let $\Psi_{i}=\Psi \cap \Phi_{i}$ for $i \in 2$. Since $\left\{\Psi_{0}, \Psi_{1}\right\}$ is a splitting of Ψ, $\Gamma, \Psi_{0} \vdash \Delta, \Psi_{1}$. By monotonicity of $\vdash, \Gamma, \Phi_{0} \vdash \Delta, \Phi_{1}$. So for every splitting $\left\{\Phi_{0}, \Phi_{1}\right\}$ of $F, \Gamma, \Phi_{0} \vdash \Delta, \Phi_{1}$. Since \vdash satisfies cut for $F, \Gamma \vdash \Delta$.

Theorem $2.10 r T T_{p o}$ entails $C F / C S$.

Proof. Assume rTT po $_{p o}$. Let F be any set. Assume that $\vdash \subseteq \mathcal{P}(F)^{2}$ is finitary, monotonic and satisfies cut for formulas. By Lemma 2.9 it suffices to prove that \vdash satisfies cut for F. Consider any $\Gamma, \Delta \subseteq F$. Assume that
$(*)$ for every Ψ_{0} and Ψ_{1}, if $\left\{\Psi_{0}, \Psi_{1}\right\} \in \operatorname{Splt}(F)$ then $\Gamma, \Psi_{0} \vdash \Delta, \Psi_{1}$.
Assume that $F=\{ \}$. So $\Gamma=\Delta=\{ \}$; so $(*)$ yields that $\} \vdash\}$; so \vdash trivially satisfies cut for F.
Assume that $F \neq\{ \}$. If $\left\} \vdash\left\}\right.\right.$, by monotonicity $\vdash=\mathcal{P}(F)^{2}$, and so trivially \vdash satisfies cut for F. Assume that \{\} \nvdash \{ .

For $\Phi_{0}, \Phi_{1} \subseteq F$ let $\left\langle\Phi_{0}, \Phi_{1}\right\rangle \preceq\left\langle\Phi_{0}^{\prime}, \Phi_{1}^{\prime}\right\rangle$ iff (i) $\Phi_{i} \subseteq \Phi_{i}^{\prime}$ for both $i \in 2$, and (ii) $\Phi_{0} \cup \Phi_{1} \neq\{ \}$. Let $|P|=$ $\mathcal{P}(F)^{2}-\{\langle\{ \},\{ \}\rangle\}$ and $P=\langle | P|, \underline{,}\rangle$. So P is a poset. For any $\left\langle\Phi_{0}, \Phi_{1}\right\rangle \in P,\left\langle\Phi_{0}, \Phi_{1}\right\rangle$ is P-finite iff both Φ_{0} and Φ_{1} are finite. For any $X \subseteq \mathcal{P}(F)^{2}$, let $\bigvee X=\langle\bigcup \operatorname{dom}(X), \bigcup \operatorname{ran}(X)\rangle$; so $\bigvee X$ is the least upper bound on X with respect to \preceq. For a finite non-empty $X \subseteq \mathcal{F}_{P}, \bigvee X \in \mathcal{F}_{P}{ }^{7}$

Claim 1: P is special. Consider any non-empty $X \subseteq \mathcal{F}_{P}$. Consider a $\left\langle\Phi_{0}, \Phi_{1}\right\rangle \in \mathcal{F}_{P}$. Assume that $\left\langle\Phi_{0}, \Phi_{1}\right\rangle \preceq$ $\bigvee X$; so $\Phi_{0} \subseteq \bigcup \operatorname{dom}(X)$ and $\Phi_{1} \subseteq \bigcup \operatorname{ran}(X)$. For each $i \in 2$ and $\varphi \in \Phi_{i}$ select a $\left\langle\Psi_{\varphi, 0}^{i}, \Psi_{\varphi, 1}^{i}\right\rangle \in X$ so that $\varphi \in$ $\Psi_{\varphi, i}^{i} ;$ let $X_{0}=\left\{\left\langle\Psi_{\varphi, 0}^{i}, \Psi_{\varphi, 1}^{i}\right\rangle \mid i \in 2, \varphi \in \Phi_{i}\right\}$. Since $\Phi_{0} \cup \Phi_{1}$ is finite, X_{0} is finite. Also $X_{0} \subseteq X$ and $\left\langle\Phi_{0}, \Phi_{1}\right\rangle \preceq$ $\bigvee X_{0}$. Since $\bigvee X_{0}$ is the least upper bound on $X_{0}, \bigvee X$ is special for X. Claim 1 follows.
Assume for a contradiction that $\Gamma \nvdash \Delta$. Let

$$
A=\left\{\left\langle\Phi_{0}, \Phi_{1}\right\rangle \in|P| \mid \Phi_{0} \cap \Phi_{1}=\{ \} \text { and } \Gamma, \Phi_{0} \nvdash \Delta, \Phi_{1}\right\} .
$$

We will consider two cases.

[^2]Case 1: $\Gamma \cup \Delta \neq\{ \}$. So $\langle\Gamma, \Delta\rangle \in|P|$. So $\langle\Gamma, \Delta\rangle \in A$; so $A \neq\{ \}$.
Claim 2: for any $\Phi_{0}, \Phi_{1} \subseteq F$, if for every finite $\Phi_{i}^{\prime} \subseteq \Phi_{i}$ for both $i \in 2\left\langle\Phi_{0}^{\prime}, \Phi_{1}^{\prime}\right\rangle \in A$, then $\left\langle\Phi_{0}, \Phi_{1}\right\rangle \in A$. Given such Φ_{0} and Φ_{1}, assume the if-clause, and that $\left\langle\Phi_{0}, \Phi_{1}\right\rangle \notin A$. If $\Phi_{0} \cap \Phi_{1} \neq\{ \}$, fix $\varphi \in \Phi_{0} \cap \Phi_{1}$; then $\langle\{\varphi\},\{\varphi\}\rangle \notin A$ for a contradiction. Assume that $\Gamma, \Phi_{0} \vdash \Delta, \Phi_{1}$; since \vdash is finitary and monotonic there are finite $\Phi_{i}^{\prime} \subseteq \Phi_{i}$ for both $i \in 2$ such that $\Gamma, \Phi_{0}^{\prime} \vdash \Delta$, Φ_{1}^{\prime}, and so $\left\langle\Phi_{0}^{\prime}, \Phi_{1}^{\prime}\right\rangle \notin A$, for a contradiction. Claim 2 follows.

Claim 3: A is of P-finite character. Consider $\Phi_{0}, \Phi_{1} \subseteq F$. Assume that $\left\langle\Phi_{0}, \Phi_{1}\right\rangle \in A$. Since \vdash is monotonic, if $\Phi_{i}^{\prime} \subseteq \Phi_{i}$ for both $i \in 2$, then $\left\langle\Phi_{0}^{\prime}, \Phi_{1}^{\prime}\right\rangle \in A$. So for any P-finite $x \preceq\left\langle\Phi_{0}, \Phi_{1}\right\rangle, x \in A$ (regardless of x 's P-finitude). Assume that for every P-finite $x \preceq\left\langle\Phi_{0}, \Phi_{1}\right\rangle, x \in A$. By (2) $\left\langle\Phi_{0}, \Phi_{1}\right\rangle \in A$. Claim 3 follows.

For $\varphi \in F$, let $Z(\varphi)=\{\langle\{\varphi\},\{ \}\rangle,\langle\{ \},\{\varphi\}\rangle\}$. So $Z: F \rightarrow \mathcal{F}_{P}$. Fixing a $\varphi \in \Gamma \cup \Delta$, let

$$
x= \begin{cases}\langle\{\varphi\},\{ \}\rangle & \text { if } \varphi \in \Gamma \\ \langle\{ \},\{\varphi\}\rangle & \text { otherwise }\end{cases}
$$

So $x \in A \cap \mathcal{F}_{P}$; vacuously x makes $\left\}\right.$-choices from Z. Consider an $n \in \omega-\{0\}$ and distinct $\varphi_{1}, \ldots, \varphi_{n} \in F$. Since \vdash satisfies cut for formulas and $\Gamma \nvdash \Delta$, either $\Gamma, \varphi_{1} \nvdash \Delta$ or $\Gamma \nvdash \Delta, \varphi_{1}$. In the first case let $\Phi_{1,0}=\left\{\varphi_{1}\right\}, \Phi_{1,1}=\{ \}$, and $z_{1}=\left\langle\left\{\varphi_{1}\right\}\right.$, $\left.\{ \}\right\rangle$; in the second case let $\Phi_{1,0}=\{ \}, \Phi_{1,1}=\left\{\varphi_{1}\right\}$, and $z_{1}=\left\langle\{ \},\left\{\varphi_{1}\right\}\right\rangle$. So $\Gamma, \Phi_{1,0} \nvdash \Delta$, $\Phi_{1,1}$ and $z_{1} \in A$. Again using cut for formulas, either $\Gamma, \Phi_{1,0}, \varphi_{2} \nvdash \Delta, \Phi_{1,1}$ or $\Gamma, \Phi_{1,0} \nvdash \Delta, \Phi_{1,1}, \varphi_{2}$. In the first case let $\Phi_{2,0}=\Phi_{1,0} \cup\left\{\varphi_{2}\right\}, \Phi_{2,1}=\Phi_{1,1}$, and $z_{2}=\left\langle\left\{\varphi_{2}\right\},\{ \}\right\rangle$; in the second case let $\Phi_{2,0}=\Phi_{1,0}, \Phi_{2,1}=\Phi_{1,1} \cup\left\{\varphi_{2}\right\}$ and $z_{2}=\left\langle\{ \},\left\{\varphi_{2}\right\}\right\rangle$. So $\Gamma, \Phi_{2,0} \nvdash \Delta, \Phi_{2,1}$. Since $\varphi_{1} \neq \varphi_{2}, z_{2} \in A$. Iterate this. For each $i \in(n) z_{i} \preceq Z\left(\varphi_{i}\right)$; so $\bigvee\left\{z_{i} \mid\right.$ $i \in(n)\}$ makes $\left\{\varphi_{i \in(n)}\right\}$-choices from Z. Note that $\bigvee\left\{z_{i} \mid i \in(n)\right\}=\left\langle\Phi_{n, 0}, \Phi_{n, 1}\right\rangle$. Since $\varphi_{1}, \ldots, \varphi_{n}$ are distinct, $\Phi_{n, 0} \cap \Phi_{n, 1}=\{ \}$. So $\left\langle\Phi_{n, 0}, \Phi_{n, 1}\right\rangle \in A$. Clearly $\left\langle\Phi_{n, 0}, \Phi_{n, 1}\right\rangle \in \mathcal{F}_{P}$. So A makes finite choices from Z.

By $\mathrm{rTT}_{p o}$, we may fix $\Phi_{0}, \Phi_{1} \subseteq F$ so that $\left\langle\Phi_{0}, \Phi_{1}\right\rangle \in A$ and $\left\langle\Phi_{0}, \Phi_{1}\right\rangle$ makes F-choices from Z, i.e., for every $\varphi \in F$ there is a $z \preceq Z(\varphi)$ so that $z \preceq\left\langle\Phi_{0}, \Phi_{1}\right\rangle$. Given $\varphi \in F$, fix such a z. Since $\langle\}$, $\}\rangle \notin|P|$, either $z=\langle\{\varphi\},\{ \}\rangle$, in which case $\varphi \in \Phi_{0}$, or $z=\langle\{ \},\{\varphi\}\rangle$, in which case $\varphi \in \Phi_{1}$. So $\varphi \in \Phi_{0} \cup \Phi_{1}$. So $\Phi_{0} \cup \Phi_{1}=F$. Since $\left\langle\Phi_{0}, \Phi_{1}\right\rangle \in A, \Phi_{0} \cap \Phi_{1}=\{ \}$. So $\left\{\Phi_{0}, \Phi_{1}\right\}$ is a splitting of F. Since $\Gamma, \Phi_{0} \nvdash \Delta, \Phi_{1}$, this contradicts (*).

Case $2: \Gamma=\Delta=\{ \} . F \neq\{ \}$; so fix any $\psi \in F$. Either $\} \nvdash \psi$ or $\psi \nvdash\}$, since otherwise by cut for formulas $\} \vdash$ $\left\}\right.$, contrary to assumptions. If $\left\} \nvdash \psi\right.$ let $\Delta^{\prime}=\{\psi\}$ and $\Gamma^{\prime}=\{ \}$. If otherwise let $\Gamma^{\prime}=\{\psi\}$ and $\Delta^{\prime}=\{ \}$. Either way, $\Gamma^{\prime} \nvdash \Delta^{\prime}$. Given a splitting $\left\{\Psi_{0}, \Psi_{1}\right\}$ of F, since $\Gamma, \Psi_{0} \vdash \Delta, \Psi_{1}$ we also have $\Gamma^{\prime}, \Psi_{0} \vdash \Delta^{\prime}, \Psi_{1}$, by the monotonicity of \vdash. The argument under Case 1 applies using Γ^{\prime} and Δ^{\prime} in place of Γ and Δ, yielding a contradiction.

So $\Gamma \vdash \Delta$. So \vdash satisfies cut for F.

Theorem $2.11 C F / C S^{*}$ entails BPI.

Proof. Assume CF/CS*. Consider a Boolean algebra $B=\langle | B|, \sqcap, \sqcup, c, \overline{0}, \overline{1}\rangle$. Understand $a \in B$ and $X \subseteq B$ as usual. Let \sqsubseteq be the usual Boolean ordering on B. Form the language L_{0} with logical constants $=, \supset$ and \perp, individual constants \underline{a} for each $a \in B$, two 2-place function constants $\underline{\square}$ and $\underline{\underline{D}}$, and a 1-place function-constant \underline{c} (for complementation). Let Trm is the set of closed terms of L_{0}. Form $\overline{L_{1}}$ by adding the 1-place predicate-constant \underline{I} to L_{0} (for membership in an ideal). Let F be the set of 0 th-order (i.e., propositional) formulas of L_{1}. Define $\bar{\vdash} \subseteq \mathcal{P}(F)^{2}$ using one's favorite classical sequent calculus, e.g., $\boldsymbol{G 1} \boldsymbol{c}$ from [7], applied to L_{1}; i.e., for $\Psi, \Phi \subseteq F$ let $\Psi \vdash \Phi$ iff for some finite multisets $\Psi^{\prime}, \Phi^{\prime}$ with $\operatorname{set}\left(\Psi^{\prime}\right) \subseteq \Psi$ and $\operatorname{set}\left(\Phi^{\prime}\right) \subseteq \Phi, \Psi^{\prime} \Rightarrow \Phi^{\prime}$ is a theorem of the sequent calculus. So \vdash is finitary, monotonic, and satisfies overlap and cut for formulas. By CF/CS* it satisfies cut for sets.

Relative to B, interpret these non-logical constants in the obvious ways. Define the designation function des: $\operatorname{Trm} \rightarrow B$ so that for each $a \in B$ we have $\operatorname{des}(\underline{a})=a$, and des is homomorphic with respect to \sqcap, \sqcup, c and $\underline{\square}, \underline{\Perp}, \underline{c}$ respectively. Let Γ_{0} be the positive atomic diagram for B in L_{0}, i.e., for any terms $\tau_{i \in 2}$ of $L_{0}, \tau_{0}=\tau_{1} \in \Gamma_{0}$ iff $B \models \tau_{0}=\tau_{1}$. Let $\Delta_{0}=\{\underline{a}=\underline{b} \mid a \neq b\}$. Let

$$
\begin{aligned}
\Gamma_{1}= & \{\underline{I}(\underline{0})\} \cup\{\underline{I}(\underline{a}) \supset \underline{I}(\underline{b}) \mid b \sqsubseteq a\} \cup \\
& \{\underline{I}(\underline{a}) \supset(\underline{I}(\underline{b}) \supset \underline{I}(\underline{a \sqcup b})) \mid a, b \in B\} \cup \\
& \{\underline{I}(\underline{a \sqcap b}) \supset(\neg \underline{I}(\underline{a}) \supset \underline{I}(\underline{b})) \mid a, b \in B\}
\end{aligned}
$$

Let Γ_{2} be the standard axioms for $=$ in L_{1}. Finally, let $\Gamma=\Gamma_{0} \cup \Gamma_{1} \cup \Gamma_{2}$ and $\Delta=\Delta_{0} \cup\{\underline{I}(\underline{1})\}$.

Claim : $\Gamma \nvdash \Delta$. Assume otherwise. Fix finite multisets $\Psi^{\prime}, \Phi^{\prime}$ with $\operatorname{set}\left(\Psi^{\prime}\right) \subseteq \Gamma$ and $\operatorname{set}\left(\Phi^{\prime}\right) \subseteq \Delta$, so that $\vdash_{G 1 c}$ $\Psi^{\prime} \Rightarrow \Phi^{\prime}$. Let $\Gamma^{\prime}=\operatorname{set}\left(\Psi^{\prime}\right)$ and $\Delta^{\prime}=\operatorname{set}\left(\Phi^{\prime}\right)$; so they are finite, and $\Gamma^{\prime} \vdash \Delta^{\prime}$. Let

$$
\begin{aligned}
\operatorname{Trm}^{\prime} & =\left\{\tau \in \operatorname{Trm} \mid \tau \text { occurs in } \Gamma^{\prime} \cup \Delta^{\prime}\right\} \\
C_{0} & =\left\{\operatorname{des}(\tau) \in B \mid \tau \in \operatorname{Trm}^{\prime}\right\}
\end{aligned}
$$

Let B_{0} be the smallest sub-algebra of B whose domain is a superset of C_{0}.
Subclaim 1: B_{0} is finite. Let C be the closure of C_{0} under disjunctive normal forms, i.e., let

$$
\begin{aligned}
C_{1} & =C_{0} \cup\left\{c(a) \mid a \in C_{0}\right\}, \\
C_{2} & =\left\{\sqcap D \mid D \subseteq C_{1}\right\} \\
C & =\left\{\sqcup D \mid D \subseteq C_{2}\right\}
\end{aligned}
$$

Since C_{0} is finite, so are C_{1}, C_{2} and C. Set $\Pi^{\prime}=\left.\Pi\right|_{C}, \sqcup^{\prime}=\left.\sqcup\right|_{C}$, and $c^{\prime}=\left.c\right|_{C}$. Note that $\left\langle C, \Pi^{\prime}, \sqcup^{\prime}, c^{\prime}, \overline{0}, \overline{1}\right\rangle$ is a Boolean algebra. Also, the domain of any sub-algebra of B whose domain is a superset of C_{0} is itself a superset of C. Thus $B_{0}=\left\langle C, \Pi^{\prime}, \sqcup^{\prime}, c^{\prime}, \overline{0}, \overline{1}\right\rangle$, proving Subclaim 1 .

Subclaim 2: B_{0} has a prime ideal. If B_{0} is the trivial 2-membered Boolean algebra, $\{\overline{0}\}$ is a prime ideal in B_{0}. Assume that B_{0} has at least three members. Since B_{0} is finite, some $b \in C-\{\overline{1}\}$ is maximal in B_{0}. Fix such a b. The principle ideal that b generates, $\downarrow b$, is an ideal in B_{0}; since b is maximal in B_{0}, that ideal is prime, proving Subclaim 2. Let $B_{1}=\left\langle B_{0}, I\right\rangle$ for I a prime ideal for B_{0}. Interpret \underline{I} by I, i.e., for every $a \in C B_{1} \models \underline{I}(\underline{a})$ iff $a \in I, B_{1} \models \Gamma$. Since $\boldsymbol{G 1} \boldsymbol{c}$ is sound (with respect to classical propositional logic), for some $\varphi \in \Delta_{0} B_{1}=\varphi$. Since $\Delta_{0} \subseteq \Delta$, every member of Δ_{0} is false in B_{1}, for a contradiction. The Claim follows.

By CF/CS, there is a splitting $\left\{\Phi_{0}, \Phi_{1}\right\}$ of F such that $\Gamma, \Phi_{0} \nvdash \Delta, \Phi_{1}$. Fix it; so $\Gamma \subseteq \Phi_{0}$ and $\Delta \subseteq \Phi_{1}$. Now let $I=\left\{a \in B \mid \underline{I}(\underline{a}) \in \Phi_{0}\right\}$. Check that $\langle B, I\rangle \models \Phi_{0}$. So $\langle B, I\rangle \models \Gamma_{1}$. So I is a prime ideal for B.

This proves the weak form of the BPI. The strong form of the BPI (for any Boolean algebra B, if I is an ideal for B and F is a filter for B and $I \cap F=\{ \}$, then some prime ideal for B is a superset of I and is disjoint from F) follows from the weak form by factoring B by I.

3 An alternative approach

In this section, I will present an alternative approach to the equivalence of $\mathrm{CF} / \mathrm{CS}$ and the BPI Theorem, one that uses a different restricted variation on the Tukey-Teichmüller Lemma. The idea: replace the class of posets by a class of slightly more complex structures; replace specialness for posets by a less complex specialness property that is defined for the latter structures.

Definition 3.1 Consider a poset P.

1. \bigvee is a finite-upper bound (hereafter a fub-) selector for P iff $\bigvee: \mathcal{P}^{\prime}\left(\mathcal{F}_{P}\right) \rightarrow \mathcal{F}_{P}$ such that, for every $X \in$ $\mathcal{P}^{\prime}\left(\mathcal{F}_{P}\right), \bigvee X$ is an upper bound on X.
2. A fub-selector \bigvee is monotonic iff for every $X, Y \in \mathcal{P}^{\prime}\left(\mathcal{F}_{P}\right)$ if $Y \subseteq X$ then $\bigvee Y \preceq \bigvee X$.
3. $\langle P, \bigvee\rangle$ is a fub-selector structure iff: P is a poset and \bigvee is a fub-selector for P. It is monotonic iff \bigvee is.

The following may clarify the previous definitions.
Theorem 3.2 For any poset P the following are equivalent:
(i) P has a monotonic fub-selector;
(ii) P has a fub-selector;
(iii) every member of $\mathcal{P}^{\prime}\left(\mathcal{F}_{P}\right)$ has an upper bound (with respect to \preceq) in \mathcal{F}_{P}.

Proof. From (i) to (ii) and from (ii) to (iii) are trivial. Going from (iii) to (i) will use the Axiom of Choice (repeatedly). ${ }^{8}$

[^3]Assume (iii). We define the "height" function $h: \mathcal{F}_{P} \rightarrow \omega$ as follows. If x is minimal in $P, h(x)=0$. If $x \in \mathcal{F}_{P}$ is not minimal, $\{y \mid y \prec x\}$ is finite and non-empty; let $h(x)=\max \{h(y) \mid y \prec x\}+1$. By induction on the maximum lengths of \prec-chains in \mathcal{F}_{P} that terminate at x, h is well-defined. We define a "level" function $L: \mathcal{P}^{\prime}\left(\mathcal{F}_{P}\right) \rightarrow \omega$ thus: for $X \in \mathcal{P}^{\prime}\left(\mathcal{F}_{P}\right), L(X)=\sup \{h(x) \mid x \in X\}$. Let $\mathcal{P}_{i}^{\prime}\left(\mathcal{F}_{P}\right)=\left\{X \in \mathcal{P}^{\prime}\left(\mathcal{F}_{P}\right) \mid L(X)=i\right\}$. Plan: by induction on the cardinality of its arguments, define $\bigvee_{i}: \mathcal{P}_{i}^{\prime}\left(\mathcal{F}_{P}\right) \rightarrow \mathcal{F}_{P}$ for each $i \in \omega$; we will then take $\bigvee=\bigcup_{i \in \omega} \bigvee_{i}$.

For x such that $h(x)=0$, let $\bigvee_{0}\{x\}=x$. Assume that for every $Z \in \mathcal{P}_{0}^{\prime}\left(\mathcal{F}_{P}\right)$ with $\operatorname{card}(Z) \leq n, \bigvee_{0} Z$ is defined. For $X \in \mathcal{P}_{0}^{\prime}\left(\mathcal{F}_{P}\right)$ such that $\operatorname{card}(X)=n+1$, set $Y_{X}=\left\{\bigvee_{0} Z \mid\{ \} \neq Z \subsetneq X\right\} . Y_{X} \in \mathcal{P}^{\prime}\left(\mathcal{F}_{P}\right)$, and thus has an upper bound in \mathcal{F}_{P}; using AC choose one (for each X as described) and let $\bigvee_{0} X$ be it. So $\operatorname{dom}\left(\bigvee_{0}\right)=\mathcal{P}_{0}^{\prime}\left(\mathcal{F}_{P}\right)$. Check that \bigvee_{0} is monotonic. Assume that \bigvee_{i} has been defined. For x such that $h(x)=i+1$, set

$$
Y_{\{x\}}=\left\{\bigvee_{j} Z \mid j<i, Z \in \mathcal{P}_{j}^{\prime}\left(\mathcal{F}_{P}\right), Z \subseteq \downarrow x\right\} .
$$

$Y_{\{x\}} \in \mathcal{P}^{\prime}\left(\mathcal{F}_{P}\right)$, and thus has an upper bound in \mathcal{F}_{P}; using AC choose one (for each x as described) and let $\bigvee_{i+1}\{x\}$ be it. Assume that for every $Z \in \mathcal{P}_{i+1}^{\prime}\left(\mathcal{F}_{P}\right)$ with $\operatorname{card}(Z) \leq n, \bigvee_{i+1} Z$ is defined. $X \in \mathcal{P}_{i+1}^{\prime}\left(\mathcal{F}_{P}\right)$ such that $\operatorname{card}(X)=$ $n+1$, define $\bigvee_{i+1} X$ by imitating the definition at the corresponding step for level 0 . So $\operatorname{dom}\left(\bigvee_{i+1}\right)=\mathcal{P}_{i+1}^{\prime}\left(\mathcal{F}_{P}\right)$. Check that \bigvee_{i+1} is monotonic. So \bigvee is a monotonic fub-selector for P, yielding (i).

Definition 3.3 Consider a fub-selector structure $\langle P, \bigvee\rangle$.

1. For a non-empty $X \subseteq \mathcal{F}_{P}$, let x be special for X in $\langle P, \bigvee\rangle$ iff: for every $y \in \mathcal{F}_{P}$, if $y \preceq x$ then there is a finite $X_{0} \subseteq X$ such that $y \leq \bigvee X_{0}$.
2. $\langle P, \bigvee\rangle$ is special iff every non-empty $X \subseteq \mathcal{F}_{P}$ has a upper bound x in P that is special for X in $\langle P, \bigvee\rangle$.

Definition 3.4 Consider a $Z: T \rightarrow \mathcal{F}_{P}$ and $A \subseteq P$.

1. For any $F \subseteq T$, let A make F-choices from Z using \bigvee iff: for every $t \in F$ there is a $z_{t} \preceq Z(t)$ such that $\bigvee\left\{z_{t \in F}\right\} \in A$.
2. A makes finite choices from Z using \bigvee iff for every finite $F \subseteq T, A$ make F-choices from Z using \bigvee.

Lemma 3.5 (The Restricted Tukey-Teichmüller Lemma for Fub-selector Structures ($\mathrm{rTT}_{\text {fubs }}$)) Consider a special monotonic fub-selector structure $\langle P, \bigvee\rangle$. For any $Z: T \rightarrow \mathcal{F}_{P}$ and any non-empty $A \subseteq P$, if A is of P-finite character, and makes finite choices from Z using \bigvee, then for some $b \in A, b$ makes T-choices from Z (as defined in Definition 2.4, i.e., for every $t \in \operatorname{dom}(Z)$ there is $a z \preceq Z(t)$ so that $z \preceq b)$.

Note that $\mathrm{rTT}_{\text {fubs }}$ is formulated in the second-order language of fub-selector structures, again taking 'is finite' as primitive. It is a cousin of rTT^{++}from [3], closer to it than was $\mathrm{rTT}_{p o}$.

Theorem 3.6 UT entails $r T T_{\text {fubs }}$.
Proof. (A slight modification of the proof of Theorem 2.7.) Given A, T and Z as above, assume that A is of P-finite character, and makes finite choices from Z using \bigvee. We proceed as in Theorem 2.7, with a few changes. For each finite $F \subseteq T$ let $H_{F}=\{f \in Y \mid \bigvee f[F] \in A\}$.

Claim 1: for each finite $F \subseteq T, H_{F} \neq\{ \}$. Since A makes finite choices from Z using \bigvee, for each $t \in F$ we can fix a $z_{t} \preceq Z(t)$ such that $\bigvee\left\{z_{t \in F}\right\} \in A$. Define g^{\prime} from g and $\left\{\left\langle t, z_{t}\right\rangle \mid t \in T\right\}$ as in Theorem 2.7. So $g^{\prime} \in Y$. Since $g^{\prime}[F]=\left\{z_{t \in F}\right\}, g^{\prime} \in H_{F}$. Claim 1 follows.

Claim 2: for any finite $F_{0}, F_{1} \subseteq T, H_{F_{0} \cup F_{1}} \subseteq H_{F_{0}} \cap H_{F_{1}}$. Consider an $f \in H_{F_{0} \cup F_{1}}$. So $\bigvee f\left[F_{0} \cup F_{1}\right] \in A$. Consider $i \in 2$. Since $f\left[F_{i}\right] \subseteq f\left[F_{0} \cup F_{1}\right]$ and \bigvee is monotonic, $\bigvee f\left[F_{i}\right] \preceq \bigvee f\left[F_{0} \cup F_{1}\right]$. Since $\bigvee f\left[F_{i}\right]$ is P-finite and A is of finite-character, $\bigvee f\left[F_{i}\right] \in A$. So $f \in H_{F_{i}}$.

By Claims $1 \& 2,\left\{H_{F} \mid F \subseteq T, F\right.$ is finite $\}$ has the finite intersection property. Using UT, fix an ultrafilter U on Y such that for each finite $F \subseteq T, H_{F} \in U$. For $t \in T$ and $z \preceq Z(t)$ let $X_{t}^{z}=\{f \in Y \mid f(t)=z\}$. By the argument in Theorem 2.7, we have Claim 3: for each $t \in T$ there is a unique $z_{t} \leq Z(t)$ so that $X_{t}^{z_{t}} \in U$.

Since $\langle P, \bigvee\rangle$ is special, we may fix an upper bound b on $\left\{z_{\epsilon \in T}\right\}$ that is special for $\left\{z_{t \in T}\right\}$ in $\langle P, \bigvee\rangle$.
Claim 4: for every $x \leq b$, if $x \in \mathcal{F}_{P}$ then $x \in A$. Consider a P-finite $x \preceq b$. By choice of b, we may fix a finite $F \subseteq T$ such that $x \preceq \bigvee\left\{z_{t \in F}\right\}$. Since $H_{F} \in U$ and for each $t \in F X_{t}^{z_{F}} \in U, H_{F} \cap \bigcap_{t \in F} X_{t}^{z_{i}} \in U$. So we may fix an $f \in H_{F} \cap \bigcap_{t \in F} X_{t}^{z_{t}}$. Since $f \in \bigcap_{t \in F} X_{t}^{z_{F}}, f[F]=\left\{z_{t \in F}\right\}$. Since $f \in H_{F}, \bigvee f[F] \in A$. So $x \preceq \bigvee\left\{z_{t \in F}\right\}=\bigvee f[F] \in$ A. Since $x \in \mathcal{F}_{P}$ and A has finite-character, $x \in A$. Claim 4 follows.

Since A has P-finite character, by Claim 4 we have $b \in A$. For each $t \in T z_{t} \preceq Z(t)$ and $z_{t} \preceq b$. So b is as required by $\mathrm{rTT}_{\text {fubs }}$.

Theorem $3.7 r T T_{\text {fubs }}$ entails $C F / C S$.
Pro of. Assume $\mathrm{rTT}_{\text {fubs }}$. Let F be any set. Assume that $\vdash \subseteq \mathcal{P}(F)^{2}$ is finitary, monotonic and satisfies overlap and cut for formulas. Again, it suffices to prove that \vdash satisfies cut for F. As in Theorem 2.10, we may assume that $F \neq\{ \}$ and $\left\} \nvdash\left\}\right.\right.$. Define $\preceq,|P|, P$, and \bigvee as in Theorem 2.10 , let $\bigvee^{\prime}=\bigvee \mid \mathcal{P}^{\prime}\left(\mathcal{F}_{P}\right) . \bigvee^{\prime}$ is a monotonic fub-selector for P. Check that $\left\langle P, \bigvee^{\prime}\right\rangle$ is special. The rest of the proof is a straightforward modification of the argument in Theorem 2.10.

So $\mathrm{rTT}_{p o}$ and $\mathrm{rTT}_{f u b s}$ are equivalent modulo a weak set-theoretic background.
Observation 3.8 We can assess the complexity of definitions in Definitions 2.2 \& 3.3 by prenexing, taking 'is finite' as a primitive 2 nd-order predicate, and counting alternations of second-order quantifiers. Being special in a poset P for an $X \subseteq|P|$ is Π_{3}^{1}; so being special is a Π_{3}^{1} property of posets. Being special in a fub-selector structure $\langle P, \bigvee\rangle$ for $X \subseteq|P|$ is Σ_{1}^{1}; so being special is a Π_{2}^{1} property of fub-selector structure. So by considering $\langle P, \bigvee\rangle$ in place of P, we gain a simpler notion of specialness.

Next, we have a brief look at relationships between the concepts defined in Definitions 2.2 to 2.4 and those defined in Definitions 3.1 to 3.4.

Observation 3.9 If P is a special poset and \bigvee is a fub-selector for P then $\langle P, \bigvee\rangle$ is special.
Proof. Assume the if-clause. Consider a non-empty $X \subseteq \mathcal{F}_{P}$; fix an upper bound x on X that is special for X in P. Consider any $y \in \mathcal{F}_{P}$ such that $y \preceq x$; fix a finite $X_{0} \subseteq X$ such that for every upper bound u on $X_{0}, y \preceq u$. In particular, $y \preceq \bigvee X_{0}$. So x is special for X in $\langle P, \bigvee\rangle$. Note: this did not require that \bigvee be monotonic.

Observation 3.10 A special poset need not have a fub-selector. Example: let $|P|=\omega$; let $m \preceq n$ iff $m, n \in \omega$ and either (i) $m=n$ or (ii) $m \in 2$ and $n \notin 2$ or (iii) $m, n \notin 2$ and $n<m$; let $P=\langle | P|, \preceq\rangle .\{0,1\}=\mathcal{F}_{P}$ has no P-finite upper bound in P. For $m \in 2$, trivially m is special for $\{m\}$ in $P ; 2$ is special for $\{0,1\}$, since if $y \preceq 2$ is P-finite, $y \in\{0,1\}$, and y is an upper bound on $\{y\}$. So P is special, but $\{0,1\}$ has no P-finite upper bound in P.

Observation 3.11 A special fub-selector structure need not be based on a special poset. Example: let $|P|=7$, and let \preceq be the reflexive transitive closure of

$$
\{\langle i, 4\rangle \mid i \in 3\} \cup\{\langle i+1,5\rangle \mid i \in 3\} \cup\{\langle 4,6\rangle,\langle 5,6\rangle\}
$$

So $\mathcal{F}_{P}=7 ; \bigvee=\{\langle X, 6\rangle \mid X \subseteq 7\}$ is a fub-selector for P; check that $\langle P, \bigvee\rangle$ is special. The upper bounds on $\{1,2\}$ in P are 4,5, and 6. But 4 and 6 are not special for $\{1,2\}$ in P, since $0 \preceq 4$ but $0 \npreceq 5$ and 5 is not special for $\{1,2\}$ in P, since $3 \preceq 5$ but $3 \npreceq 4$.

4 Further information about cut-conditions

In what follows, let Even be the set of even natural numbers, $\operatorname{Odd}=\omega-$ Even.
We will start by considering sets of single-alternative inferences.
Definition 4.1 Consider $\mathrm{a} \vdash \subseteq \mathcal{P}(F) \times F$. The following concepts have been much studied. ${ }^{9}$

1. \vdash satisfies cut for formulas iff for every $\Gamma \subseteq F$ and $\varphi, \delta \in F$, if $\Gamma \vdash \varphi$ and $\Gamma, \varphi \vdash \delta$ then $\Gamma \vdash \delta$.
2. For $\Phi \subseteq F, \vdash$ satisfies cut for Φ iff for every $\Gamma \subseteq F$ and $\delta \in F$, if $\Gamma, \Phi \vdash \delta$ and for every $\varphi \in \Phi \Gamma \vdash \varphi$, then $\Gamma \vdash \delta$.
3. \vdash satisfies cut for sets iff for every $\Phi \subseteq F$ it satisfies cut for Φ.
4. \vdash satisfies cut for finite sets iff for every finite $\Phi \subseteq F$ it satisfies cut for Φ.
5. \vdash is monotonic (aka satisfies dilution) iff for every $\Gamma, \Gamma^{\prime} \subseteq F$ and $\delta \in F$, if $\Gamma \subseteq \Gamma^{\prime}$ and $\Gamma \vdash \delta$ then $\Gamma^{\prime} \vdash \delta$.
6. \vdash is finitary (aka compact) iff for every $\Gamma \subseteq F$ and $\delta \in F$, if $\Gamma \vdash \delta$ then for some finite $\Gamma_{0} \subseteq \Gamma \Gamma_{0} \vdash \delta$.

[^4]7. \vdash satisfies overlap iff for every $\Gamma \subseteq F$ and $\delta \in F$, if $\delta \in \Gamma$ then $\Gamma \vdash \delta$.

Observation 4.2 We continue with $\vdash \subseteq \mathcal{P}(F) \times F$.

1. If \vdash is monotonic and satisfies cut for formulas, then it satisfies cut for finite sets. (This is Theorem 1.2 in [4, p. 17].)
2. If \vdash is monotonic, finitary, and satisfies cut for formulas, then it satisfies cut for sets. (This is the "singlealternative" analog of CF/CS.)

Proof. For (1), assume the if-clause. It suffices to prove this: for every $n \in \omega$,
(*) for every $\Phi, \Gamma \subseteq F$ and $\delta \in F$, if $\operatorname{card}(\Phi)=n, \Gamma, \Phi \vdash \delta$, and for every $\varphi \in \Phi \Gamma \vdash \varphi$, then $\Gamma \vdash \delta$.
If $n=0,(*)$ is obvious. Given $n \in \omega$, assume $(*)$. Consider any $\Phi, \Gamma \subseteq F$ and $\delta \in F$; assume that $\operatorname{card}(\Phi)=$ $n+1$ and for every $\varphi \in \Phi \Gamma \vdash \varphi$. Fix $\varphi_{0} \in \Phi$ and let $\Phi^{\prime}=\Phi-\left\{\varphi_{0}\right\}$ and $\Gamma^{\prime}=\Gamma \cup\left\{\varphi_{0}\right\}$. So $\Gamma^{\prime}, \Phi^{\prime} \vdash \delta$. By monotonicity, for every $\varphi \in \Phi^{\prime} \Gamma^{\prime} \vdash \varphi$. By the induction hypothesis, $\Gamma^{\prime} \vdash \delta$. Since $\Gamma \vdash \varphi_{0}$ and \vdash satisfies cut for formulas, $\Gamma \vdash \delta$. By induction, for every $n \in \omega(*)$ is true.

For (2), assume the if-clause. First prove that for every $n \in \omega$,
$(* *)$ for every finite $\Phi, \Gamma \subseteq F$ and $\delta \in F$, if $\operatorname{card}(\Phi)=n, \Gamma, \Phi \vdash \delta, \Gamma \cap \Phi=\{ \}$, and for every $\varphi \in \Phi \Gamma \vdash \varphi$, then $\Gamma \vdash \delta$.

The argument is like that for (1). Then we can use the assumption that \vdash is finitary to complete the argument.
Remark 4.3 The induction formula for (1) is Π_{1}^{1} in this sense: taking F as the domain and taking union and \vdash as primitive, it starts with a two second-order universal quantifiers prefixed to a first-order formula. For (2) the induction-formula is finite- Π_{1}^{1} in \vdash, since the initial two second-order universal quantifiers are restricted to finite subsets of the domain.

I found it somewhat surprising that, in contrast to the CF/CS Theorem, Observation 4.2(2) required merely induction on ω, and a rather simple form at that.

Observation 4.2(1) required use of monotonicity: that $\vdash \subseteq \mathcal{P}(F) \times F$ is finitary and satisfies cut for formulas does not suffice to ensure that \vdash satisfies cut for finite sets.

Example 4.4 Assume that $3 \subseteq F$. For $\Gamma \subseteq F$ and $\delta \in F$, let $\Gamma \vdash \delta$ iff either (i) $\Gamma=2$ and $\delta=2$, or (ii) $\Gamma=\{ \}$ and $\delta \in 2 .{ }^{10}$ Clearly \vdash is finitary.

Claim: \vdash vacuously satisfies cut for formulas. Assume that (a) $\Gamma, \varphi \vdash \delta$, (b) $\Gamma \vdash \varphi$, and (c) $\varphi \notin \Gamma$. Condition (ii) does not make (a) true; so condition (i) does; so $\Gamma \cup\{\varphi\}=2$. Fix $i \in 2$ so that $\Gamma=\{i\}$ and $\varphi=1-i$. By (b), $i \vdash 1-i$. But neither (i) nor (ii) makes that true. The claim follows. Since $\nvdash 2$, \vdash does not satisfy cut for finite sets.

We now return to sets of multiple-alternative inferences. For what follows, consider any $\vdash \subseteq \mathcal{P}(F)^{2}$.
Observation 4.5 If \vdash satisfies cut for formulas, it satisfies cut for finite sets. ${ }^{11}$ Note: this avoids using monotonicity, in contrast to Observation 4.2(1).

Proof. Assume that \vdash satisfies cut for formulas. It suffices to prove by induction that
(*) for every $n \in \omega$ for every $\Phi \subseteq F$, if $\operatorname{card}(\Phi)=n+1$ then \vdash satisfies cut for Φ.
For $n=0$, this is trivial. Given n, assume the obvious induction hypothesis. Given $\Gamma, \Delta \subseteq F$, assume that for every Φ_{0} and Φ_{1}, if $\left\{\Phi_{0}, \Phi_{1}\right\} \in \operatorname{Splt}(\Phi)$ then $\Gamma, \Phi_{0} \vdash \Delta, \Phi_{1}$. Fix $\varphi \in \Phi$ and set $\Phi^{\prime}=\Phi-\{\varphi\}$. For every Ψ_{0} and Ψ_{1}, if $\left\{\Psi_{0}, \Psi_{1}\right\} \in \operatorname{Splt}\left(\Phi^{\prime}\right)$ then $\Gamma, \Psi_{0}, \varphi \vdash \Delta, \Psi_{1}$ since $\left\{\Psi_{0} \cup\{\varphi\}, \Psi_{1}\right\} \in \operatorname{Splt}(\Phi)$; so by the induction hypothesis, $\Gamma, \varphi \vdash \Delta$. Similarly, for every Ψ_{0} and Ψ_{1}, if $\left\{\Psi_{0}, \Psi_{1}\right\} \in \operatorname{Splt}\left(\Phi^{\prime}\right)$ then $\Gamma, \Psi_{0} \vdash \Delta, \Psi_{1}, \varphi$; so $\Gamma \vdash \Delta, \varphi$. By one use of cut for formulas, $\Gamma \vdash \Delta$. Hence ($*$) follows. So \vdash satisfies cut for Φ.

Corollary 4.6 If F is finite and \vdash satisfies cut for formulas, it satisfies cut for sets.
Definition 4.7 Consider a set \vdash of inferences on $\mathcal{P}(F)$, and any $\Phi, \Psi \subseteq F$. These definitions are from [4].

[^5]1. \vdash satisfies cut ${ }_{1}$ for Φ iff: for every $\Gamma, \Delta \subseteq F$, if $\Gamma, \Phi \vdash \Delta$ and for every $\varphi \in \Phi \Gamma \vdash \Delta$, φ, then $\Gamma \vdash \Delta$.
2. \vdash satisfies cut ${ }_{2}$ for Ψ iff: for every $\Gamma, \Delta \subseteq F$, if $\Gamma \vdash \Delta, \Psi$ and for every $\psi \in \Psi \Gamma, \psi \vdash \Delta$, then $\Gamma \vdash \Delta$.
3. \vdash satisfies cut ${ }_{1}$ [cut ${ }_{2}$] iff for every $\Phi \subseteq F, \vdash$ satisfies cut $_{1}\left[\right.$ cut $\left._{2}\right]$ for Φ.
4. \vdash satisfies cut ${ }_{3}$ for $\langle\Phi, \Psi\rangle$ iff: for every $\Gamma, \Delta \subseteq F$, if (a) $\Gamma, \Phi \vdash \Delta$, Ψ, (b) for every $\psi \in \Psi \Gamma, \psi \vdash \Delta$, and (c) for every $\varphi \in \Phi \Gamma \vdash \Delta, \varphi$, then $\Gamma \vdash \Delta$.
5. \vdash satisfies cut ${ }_{3}$ iff for every $\Phi, \Psi \subseteq F \vdash$ satisfies cut $_{3}$ for $\langle\Phi, \Psi\rangle$.

Observation 4.8

1. These are trivially equivalent:
(a) \vdash satisfies cut for formulas;
(b) for every $\varphi \in F, \vdash$ satisfies cut for $\{\varphi\}$;
(c) similarly for cut $_{2}$;
(d) \vdash satisfies cut $_{3}$ for $\langle\{\varphi\}$, $\}\rangle$;
(e) \vdash satisfies cut $_{3}$ for $\langle\},\{\varphi\}\rangle$.

The following are trivial:
2. \vdash satisfies cut $_{3}$ for $\langle\Phi,\{ \}\rangle$ iff \vdash satisfies cut t_{1} for Φ;
3. \vdash satisfies cut $_{3}$ for $\left\langle\}, \Psi\rangle\right.$ iff \vdash satisfies cut t_{2} for Ψ. Somewhat less trivially, if \vdash is monotonic then:
4. if \vdash satisfies cut $_{1}$ and cut t $_{2}$ then it satisfies cut $_{3}$;
5. if \vdash satisfies cut for sets then it satisfies cut $_{3}$.

These follow from [4, Theorems $2.6 \& 2.7$ (p. 32)]. So assuming just monotonicity, cut $_{1}$ or cut $_{2}$, and then cut ${ }_{3}$, are stepping-stones towards cut for sets.

Observation 4.9 Assume that F is infinite.

1. That \vdash is monotonic and satisfies overlap and cut ${ }_{3}$ does not suffice to ensure that \vdash satisfies cut for sets. (So in the statements of $C F / C S$ and $C F / C S^{*}$, we need the condition that \vdash be finitary.)
2. That \vdash is monotonic and satisfies overlap and cut for formulas does not suffice to ensure that \vdash satisfies either cut ${ }_{1}$ or cut $_{2}$.

Example 4.10 Let $\omega \subseteq F$.
(1) For Γ, $\Delta \subseteq F$, let $\Gamma \vdash \Delta$ iff: either (i) $\Gamma \cap \Delta \neq\{ \}$, or (ii) $F-(\Gamma \cup \Delta)$ is finite. So \vdash is monotonic and satisfies overlap.

Claim: \vdash satisfies cut ${ }_{3}$. Consider $\Gamma, \Delta, \Phi, \Psi \subseteq F$. Assume that (a) $\Gamma, \Phi \vdash \Delta, \Psi$, (b1) for every $\varphi \in \Phi\left(\mathrm{b} 1_{\varphi}\right)$ $\Gamma \vdash \Delta, \varphi$, and (b2) for every $\psi \in \Psi\left(\mathrm{b} 2_{\psi}\right) \Gamma, \psi \vdash \Delta$. Assume for a contradiction that $\Gamma \nvdash \Delta$. So (c.i) $\Gamma \cap \Delta=\{ \}$ and (c.ii) $F-(\Gamma \cup \Delta)$ is infinite. By (a), either $\Phi \nsubseteq \Gamma$ or $\Psi \nsubseteq \Delta$. Case $1: \Phi \nsubseteq \Gamma$. Fix a $\varphi \in \Phi-\Gamma$. By (c.i) and choice of φ, clause (i) does not make ($\mathrm{b} 1_{\varphi}$) true; so (ii) does; so $F-(\Gamma \cup\{\varphi\} \cup \Delta$) is finite; so $F-(\Gamma \cup \Delta)$ is finite, contrary to (c.ii). Case $2: \Psi \nsubseteq \Delta$. Fix a $\psi \in \Psi-\Delta$. An argument symmetric with the preceding one yields a contradiction. So $\Gamma \vdash \Delta$, proving the claim. Consider any splitting $\left\{\Psi_{0}, \Psi_{1}\right\}$ of F. By clause (ii), $\Psi_{0} \vdash \Psi_{1}, 0$. But $\} \nvdash 0$. So \vdash does not satisfy cut for sets.
(2) For $\Gamma, \Delta \subseteq F$, let $\Gamma \vdash \Delta$ iff: either (i) $\Gamma \cap \Delta \neq\{ \}$, or (ii) $F-\Gamma$ is finite, or (iii) $\Delta \cap$ Even $\neq\{ \}$, or (iv) $F-\Delta$ is finite, or (v) $\Gamma \cap O d d \neq\{ \}$. So \vdash is monotonic and satisfies overlap.

Claim: \vdash satisfies cut for formulas. Consider $\Gamma, \Delta \subseteq F$ and $\vartheta \in F$. Assume that (a) $\Gamma, \vartheta \vdash \Delta$ and (b) $\Gamma \vdash$ Δ, ϑ. For a contradiction, assume that $\Gamma \nvdash \Delta$. So (c.i) $\Gamma \cap \Delta=\{ \}$, (c.ii) $F-\Gamma$ is infinite, (c.iii) $\Delta \cap$ Even $=\{ \}$, (c.iv) $F-\Delta$ is infinite, and (c.v) $\Gamma \cap O d d=\{ \}$. By (a), $\vartheta \notin \Gamma$; by (b) $\vartheta \notin \Delta$. So by (c.i), clause (i) makes neither (a) nor (b) true. By (c.ii) and (c.iv), neither clause (ii) nor clause (iv) makes (a) true; similarly for (b). By (c.iii), (iii) does not make (a) true; so (v) does; by (c.v), $\vartheta \notin$ Even. But by (c.v), clause (v) does not make (b) true; so (iii) does; by (c.iii), $\vartheta \in$ Even, a contradiction. So $\Gamma \vdash \Delta$. The claim follows. By clause (v), $F \vdash\}$, and for every
$n \in \omega$ by clause (iii) Even $\vdash 2 n$; but since Even $\nvdash\left\}, \vdash\right.$ does not satisfy cut ${ }_{1}$. By clause (iii), $\} \vdash F$, and for every $\varphi \in$ Odd by clause (v) $\varphi \vdash$ Even; but since $\left\} \nvdash\right.$ Even, \vdash does not satisfy cut ${ }_{2}$.

Observation 4.11 For any infinite $\Theta \subseteq F$, that \vdash is finitary and satisfies overlap and cut ${ }_{3}$ does not suffice to ensure that \vdash satisfies cut for Θ.

Example 4.12 For $\Gamma, \Delta \subseteq F$, let $\Gamma \vdash \Delta$ iff: either (i) $\Gamma \cap \Delta \neq\{ \}$, or (ii) $\Gamma=\Delta=\{ \}$, or (iii) $\Gamma \cup \Delta$ is infinite. Since $\} \vdash\}$, \vdash is finitary. (i) ensures that \vdash satisfies overlap. Consider $\Phi, \Psi \subseteq F$. To show that \vdash satisfies cut_{3} for $\langle\Phi, \Psi\rangle$, consider any $\Gamma, \Delta \subseteq F$, and assume that (a) $\Gamma, \Phi \vdash \Delta, \Psi$, (b1) for every $\varphi \in \Phi\left(\mathrm{b} 1_{\varphi}\right) \Gamma \vdash \Delta, \varphi$, and (b2) for every $\psi \in \Psi\left(\mathrm{b} 2_{\psi}\right) \Gamma, \psi \vdash \Delta$.

Claim: $\Gamma \vdash \Delta$. Assume otherwise. So (c.i) $\Gamma \cap \Delta=\{ \}$, (c.ii) either $\Gamma \neq\{ \}$ or $\Delta \neq\{ \}$, and (c.iii) $\Gamma \cup \Delta$ is finite. By (a), either $\Phi \nsubseteq \Gamma$ or $\Psi \nsubseteq \Delta$. Assume that $\Phi \nsubseteq \Gamma$. Consider $\varphi \in \Phi-\Gamma$. By (c.i) and choice of φ, clause (i) does not make ($\mathrm{b} 1_{\varphi}$) true; by (c.iii) clause (iii) does not make ($\mathrm{b} 1_{\varphi}$) true; trivially clause (ii) does not either; thus a contradiction. By a symmetric argument, the assumption that $\Psi \nsubseteq \Delta$ also yields a contradiction. The claim follows; so \vdash satisfies cut ${ }_{3}$ for $\langle\Phi, \Psi\rangle$. So it satisfies cut ${ }_{3}$. Consider any infinite $\Theta \subseteq F$. For every $\left\{\Theta_{0}, \Theta_{1}\right\} \in \operatorname{Splt}(\Theta), \Theta_{0} \vdash \Theta_{1}, 0$ by clause (iii); but $\} \nvdash 0$. So \vdash does not satisfy cut for Θ.

Corollary 4.13 1. That \vdash is finitary and satisfies overlap as well as cut t_{1}, cut t_{2} or both, does not suffice to ensure that it satisfies cut for sets.
2. That \vdash is finitary and satisfies overlap as well as cut for formulas does not suffice to ensure that it satisfies cut for sets. (So in the statements of $C F / C S$ and $C F / C S^{*}$, we need the condition that \vdash be monotonic.)
Proof. For (1), note that if it sufficed to ensure satisfaction of cut for sets that \vdash be finitary and satisfy overlap as well as cut ${ }_{1}$, cut $_{2}$ or both, then, by Observation 4.8(2), adding satisfaction of cut ${ }_{3}$ also would suffice, contrary to Observation 4.11.

For (2), note that if that \vdash is finitary and satisfies overlap as well as cut for formulas sufficed to ensure satisfaction of cut for sets, then by Observation 4.8(1) adding satisfaction of cut or cut $_{2}$ also would suffice, contrary to (1).

Observation 4.14 That \vdash is finitary and satisfies overlap, cut $_{1}$ and cut t_{2} does not suffice to ensure that \vdash satisfies cut $_{3}$.

Example 4.15 Consider any infinite set F, and non-empty Φ and Ψ subsets of F such that $\Phi \cap \Psi=\{ \}$. We will define \vdash to be finitary and satisfy overlap, cut ${ }_{1}$ and cut ${ }_{2}$, but not satisfy cut ${ }_{3}$ for $\langle\Phi, \Psi\rangle$.

For $\Gamma, \Delta \subseteq F$, let $\Gamma \vdash \Delta$ iff either (i) $\Gamma \cap \Delta \neq\{ \}$, or (ii) $\Delta \cap \Phi \neq\{ \}$ and $(\Gamma \cup \Delta) \cap \Psi=\{ \}$, or (iii) $\Gamma \cap \Psi \neq\{ \}$ and $(\Gamma \cup \Delta) \cap \Phi=\{ \}$, or (iv) $\Gamma \cap \Phi \neq\{ \}$ and $\Delta \cap \Psi \neq\{ \}$.

Check that \vdash is finitary and satisfies overlap. To show that \vdash satisfies cut ${ }_{1}$, given $\Gamma, \Delta, \Theta \subseteq F$ assume that (a) $\Gamma, \Theta \vdash \Delta$ and (b) for every $\varphi \in \Theta\left(\mathrm{b}_{\varphi}\right) \Gamma \vdash \Delta$, φ. Assume that $\Gamma \nvdash \Delta$. Thus: (c.i) $\Gamma \cap \Delta=\{ \}$; (c.ii) either $\Delta \cap \Phi=\{ \}$ or $(\Gamma \cup \Delta) \cap \Psi \neq\{ \}$; (c.iii) either $\Gamma \cap \Psi=\{ \}$ or $(\Gamma \cup \Delta) \cap \Phi \neq\{ \}$; (c.iv) either $\Gamma \cap \Phi=\{ \}$ or $\Delta \cap$ $\Psi=\{ \}$. By (b), (d) $\Delta \cap \Theta=\{ \}$. By (c.i) and (d), clause (i) does not make (a) true. By (a), $\Theta \nsubseteq \Gamma$. Fix a $\varphi \in \Theta-\Gamma$. By (c.i), clause (i) does not make (b_{φ}) true. We now go through the remaining combinations.

Assume that clause (ii) makes $\left(\mathrm{b}_{\varphi}\right)$ true, i.e., $(\Delta \cup\{\varphi\}) \cap \Phi \neq\{ \}$ and $(\Gamma \cup \Delta \cup\{\varphi\}) \cap \Psi=\{ \}$. So $(\Gamma \cup \Delta) \cap$ $\Psi=\{ \}$; by (c.ii), $\Delta \cap \Phi=\{ \}$. So $\varphi \in \Phi$. Assume that clause (ii) makes (a) true; so $\Delta \cap \Phi \neq\{ \}$, a contradiction. Assume that clause (iii) makes (a) true; so $(\Gamma \cup \Theta \cup \Delta) \cap \Phi=\{ \}$; since $\varphi \in \Theta \cap \Phi$, this is a contradiction. Assume that clause (iv) makes (a) true; so $\Delta \cap \Psi \neq\{ \}$, contrary to ($\Gamma \cup \Delta$) $\cap \Psi=\{ \}$.

Assume that clause (iii) makes $\left(\mathrm{b}_{\varphi}\right)$ true, i.e., $\Gamma \cap \Psi \neq\{ \}$ and $(\Gamma \cup \Delta \cup\{\varphi\}) \cap \Phi=\{ \}$. But, by (c.iii), ($\Gamma \cup$ $\Delta) \cap \Phi \neq\{ \}$, a contradiction.

Assume that clause (iv) makes (b_{φ}) true, i.e., $\Gamma \cap \Phi \neq\{ \}$ and $(\Delta \cup\{\varphi\}) \cap \Psi \neq\{ \}$. By (c.iv), $\Delta \cap \Psi=\{ \}$. So $\varphi \in \Psi$. Assume that clause (ii) makes (a) true; so $(\Gamma \cup \Theta \cup \Delta) \cap \Psi=\{ \} ;$ so $\varphi \in \Theta \cap \Psi=\{ \}$, a contradiction. Assume that clause (iii) makes (a) true; so $(\Gamma \cup \Theta \cup \Delta) \cap \Phi=\{ \}$; so $\Gamma \cap \Phi=\{ \}$, a contradiction. Assume that clause (iv) makes (a) true; so $\Delta \cap \Psi \neq\{ \}$, a contradiction.

Having exhausted the cases, we have shown that $\Gamma \vdash \Delta$. So \vdash satisfies cut ${ }_{1}$. A symmetric argument shows that \vdash satisfies cut ${ }_{2}$. But: for each $\varphi \in \Phi$, by clause (ii) $\} \vdash \varphi$; for each $\psi \in \Psi$, by clause (iii) $\psi \vdash\}$; since $\Phi \neq\{ \}$ and $\Psi \neq\{ \}$, by clause (iv) $\Phi \vdash \Psi$. Check that $\left\} \nvdash\left\}\right.\right.$. So \vdash does not satisfy cut ${ }_{3}$ for $\langle\Phi, \Psi\rangle$.

Observation 4.16 That \vdash is finitary and satisfies overlap and cut for formulas does not suffice to ensure that \vdash satisfies cut $_{1}{\text { or } \text { cut }_{2} \text {. }}^{\text {. }}$

Example 4.17 Let $4 \subseteq F$. For $\Gamma, \Delta \subseteq F$, let $\Gamma \vdash \Delta$ iff either (i) $\Gamma \cap \Delta \neq\{ \}$, or (ii) $\Gamma \cup \Delta \subseteq$ Even and either (ii.i) $\operatorname{card}(\Gamma)+2=\operatorname{card}(\Delta)$ or (ii.ii) $\operatorname{card}(\Gamma)=\operatorname{card}(\Delta)+1$, or (iii) $\Gamma \cup \Delta \subseteq \operatorname{Odd}$ and either (iii.i) $\operatorname{card}(\Gamma)=$ $\operatorname{card}(\Delta)+2$ or $\operatorname{card}(\Gamma)+1=\operatorname{card}(\Delta)$, or (iv) $\Gamma \cup \Delta$ is infinite.
(i) ensures that \vdash satisfies overlap.

Claim: \vdash is finitary. Assume that $\Gamma \vdash \Delta$. Without loss of generality we may assume that $\Gamma \cup \Delta$ is infinite. So either Γ is infinite or Δ is. Assume that Γ is infinite. Either $\Gamma \cap E v e n$ or $\Gamma \cap O d d$ is infinite. Assume the former; let $\Delta=\{ \}$, and fixing a $\gamma \in \Gamma \cap$ Even let $\Gamma^{\prime}=\{\gamma\}$; by (ii.ii) $\Gamma^{\prime} \vdash \Delta^{\prime}$. Assume the latter; let $\Delta=\{ \}$, and fixing distinct $\gamma_{0}, \gamma_{1} \in \Gamma \cap O d d$ let $\Gamma^{\prime}=\left\{\gamma_{0}, \gamma_{1}\right\}$; by (iii.i) $\Gamma^{\prime} \vdash \Delta^{\prime}$. Assuming that Δ is infinite, the choices of Γ^{\prime} and Δ^{\prime} are symmetric, proving the claim.

Given $\Gamma, \Delta \subseteq F$ and $\vartheta \in F$, assume that (a) Γ, $\vartheta \vdash \Delta$, and (b) $\Gamma \vdash \Delta$, ϑ.
Claim: $\Gamma \vdash \Delta$. Assume otherwise; so:
(c.i) $\Gamma \cap \Delta=\{ \} ;$
(c.ii) either $\Gamma \cup \Delta \nsubseteq$ Even or
both $\operatorname{card}(\Gamma)+2 \neq \operatorname{card}(\Delta)$ and $\operatorname{card}(\Gamma) \neq \operatorname{card}(\Delta)+1$;
(c.iii) either $\Gamma \cup \Delta \nsubseteq O d d$ or
both $\operatorname{card}(\Gamma) \neq \operatorname{card}(\Delta)+2$ and $\operatorname{card}(\Gamma)+1 \neq \operatorname{card}(\Delta) ;$
(c.iv) $\Gamma \cup \Delta$ is finite.

By (a) and (b), $\vartheta \notin \Gamma \cup \Delta$. Neither clause (i) nor clause (iv) make (a) true; so (a) is made true by either (ii) or (iii). So either (d1) $\Gamma \cup \Delta \cup\{\vartheta\} \subseteq E v e n ~ o r ~(d 2) ~ \Gamma \cup \Delta \cup\{\vartheta\} \subseteq O d d$. Assume (d1). So clause (ii) makes (a) true, and by (c.ii), (e1) $\operatorname{card}(\Gamma)+2 \neq \operatorname{card}(\Delta)$ and $(\mathrm{e} 2) \operatorname{card}(\Gamma) \neq \operatorname{card}(\Delta)+1$. Assume that (ii.i) makes (a) true, i.e.,
$(*) \operatorname{card}(\Gamma)+3=\operatorname{card}(\Gamma \cup\{\vartheta\})+2=\operatorname{card}(\Delta)$.
Clause (iii) does not make (b) true; so either (ii.i) or (ii.ii) does. If clause (ii.i) makes (b) true, then

$$
\operatorname{card}(\Gamma)+2=\operatorname{card}(\Delta \cup\{\vartheta\})=\operatorname{card}(\Delta)+1
$$

contradicting $(*)$. If clause (ii.ii) does,

$$
\operatorname{card}(\Gamma)=\operatorname{card}(\Delta \cup\{\vartheta\})+1=\operatorname{card}(\Delta)+2
$$

contradicting (*). Assume that clause (ii.ii) makes (a) true, i.e.,
$(* *) \operatorname{card}(\Gamma)+1=\operatorname{card}(\Gamma \cup\{\vartheta\})=\operatorname{card}(\Delta)+1$.
So $\operatorname{card}(\Gamma)=\operatorname{card}(\Delta)$. Again, either clauses (ii.i) or (ii.ii) makes (b) true, and both cases yield contradictions. Assuming (d2) yields a contradiction by symmetric arguments. The claim follows. So \vdash satisfies cut for formulas. Clearly $\} \nvdash\}$. Since $\{0,2\} \vdash\}$, $\} \vdash 0$ and $\} \vdash 2, \vdash$ does not satisfy cut for $\{0,2\}$. Since $\} \vdash\{1,3\},\{1\} \vdash\{ \}$ and $\{3\} \vdash\left\}, \vdash\right.$ does not satisfy cut ${ }_{2}$ for $\{1,3\}$.

Observation 4.18 That \vdash is finitary and satisfies overlap, cut ${ }_{3}$ and cut for F is not sufficient to ensure that it satisfies cut for sets. (Thus for Lemma 2.9 above, i.e., [4, Theorem 2.2, p. 31], we needed that \vdash be monotonic.)

Example 4.19 Let F be such that $\omega \subseteq F$. For $\Gamma, \Delta \subseteq F$ let $\Gamma \vdash \Delta$ iff either (i) $\Gamma \cap \Delta \neq\{ \}$, or (ii) $\Gamma=\Delta=\{ \}$, or (iii) $\Gamma \cup \Delta \subseteq$ Even and $\Gamma \cup \Delta$ is infinite.

Clearly \vdash is finitary and satisfies overlap. Consider $\Gamma, \Delta, \Phi, \Psi \subseteq F$. Assume that (a) $\Gamma, \Phi \vdash \Delta, \Psi$, (b1) for every $\varphi \in \Phi\left(\mathrm{b}_{\varphi}\right) \Gamma \vdash \Delta, \varphi$, and (b2) for every $\psi \in \Psi\left(\mathrm{b} 2_{\psi}\right) \Gamma, \psi \vdash \Delta$.

Claim: $\Gamma \vdash \Delta$. Assume otherwise. So (c.i) $\Gamma \cap \Delta=\{ \}$, (c.ii) $\Gamma \cup \Delta \neq\{ \}$, and (c.iii) either $\Gamma \cup \Delta$ is finite or $\Gamma \cup \Delta \nsubseteq$ Even. Also (d1) $\Phi \cap \Gamma=\{ \}$, (d2) $\Psi \cap \Delta=\{ \}$, and (e) either $\Phi \nsubseteq \Gamma$ or $\Psi \nsubseteq \Delta$. Assume that $\Phi \nsubseteq \Gamma$. Fix a $\varphi \in \Phi-\Gamma$. By (c.i) and (d1), clause (i) does not make (b1 ${ }_{\varphi}$) true; clearly clause (ii) does not. So clause (iii) does; so $\Gamma \cup \Delta \cup\{\varphi\}$ is an infinite subset of Even; but then $\Gamma \cup \Delta$ is infinite, contradicting (c.iii). A symmetric argument applies assuming that $\Psi \nsubseteq \Delta$, using (d2). The claim follows. So \vdash satisfies cut ${ }_{3}$. Assume that for every Θ_{0} and Θ_{1}, if $\left\{\Theta_{0}, \Theta_{1}\right\} \in \operatorname{Splt}(F)$ then $\Gamma, \Theta_{0} \vdash \Delta, \Theta_{1}$. If $\Gamma \cap \Delta=\{ \}$ then for any such Θ_{0} and Θ_{1} neither clauses (i), (ii) nor (iii) can make true $\Gamma, \Theta_{0} \vdash \Delta$, Θ_{1}; so $\Gamma \cap \Delta \neq\{ \}$; so $\Gamma \vdash \Delta$. So \vdash satisfies cut for F.

Clearly $\left\} \nvdash\{0\}\right.$. But for any Θ_{0} and Θ_{1}, if $\left\{\Theta_{0}, \Theta_{1}\right\} \in \operatorname{Splt}($ Even $)$ then $\Gamma, \Theta_{0} \vdash \Delta, \Theta_{1}$ by case (iii). So \vdash does not satisfy cut for Even.

5 Appendix

The proof of $\mathrm{rTT}_{p o}$ made no essential use of the anti-symmetry of partial orderings. So it generalizes from posets to prosets. But the obvious straightforward generalization-simply applying it to prosets which as posets are special-is not the most general generalization. We will not need any such generalization; but the optimal one may be of interest.

Consider a proset $P=\langle | P|, \preceq\rangle$ (i.e., \preceq is a pre-ordering of $|P|$). ${ }^{12}$ Let $x \sim y$ iff $x \preceq y \preceq x$. So \sim is an equivalence relation on $|P|$ with respect to which \preceq is compatible. So P / \sim is well-defined, and is a poset.

For readability, let $\preceq_{*}=(\preceq / \sim)$.
For $X \in P / \sim$ and $y \in P$, let $X \preceq^{*} y$ iff for every (equivalently, some) $x \in X, x \preceq y$.
For an $y \in P,\{x \mid x \preceq y\}$ might be infinite even though $\left\{X \mid X \preceq^{*} y\right\}$ is finite; we shall rely on the latter set rather than the former.

Let y be P-finite $_{\text {pro }}$ iff: for every $f: \omega \rightarrow P$, if for every $i \in \omega f(i+1) \preceq f(i)$ then for some $n \in \omega$ for every $i \in \omega-n f(i) \preceq f(i+1)$. Note: y is P-finite ${ }_{\text {pro }}$ iff $\left\{X \mid X \preceq^{*} y\right\}$ is finite. Furthermore $\bigcup \mathcal{F}_{P / \sim}=\{x \in P \mid x$ is $P-$ finite ${ }_{p r o}$ \}.

Let A be of A is of P-finite character ${ }_{p r o}$ iff $A \subseteq P$ and for every $x \in P$,

$$
x \in A \text { iff for every } P \text {-finite }{ }_{p r o} y \text {, if } y \preceq x \text { then } y \in A \text {. }
$$

So A is of P-finite character ${ }_{\text {pro }}$ iff for some (equivalantly, any) $A^{\prime} \subseteq P / \sim$ such that $A=\bigcup A^{\prime}, A^{\prime}$ is of P / \sim _ finite character.

Let P be special ${ }_{\text {pro }}$ iff P / \sim is special.
Consider a Z and T such that $Z: T \rightarrow \mathcal{F}_{P / \sim}$. For $S \subseteq T$ and $x \in P, x$ makes S-choices from Z iff for every $t \in S$ there is a $X_{t} \preceq_{*} Z(t)$ such that $X_{t} \preceq^{*} x$. For $A \subseteq P, A$ makes finite choices from Z iff for every finite $S \subseteq T$ some $x_{S} \in A$ makes S-choices from Z and is P-finite ${ }_{p r o}$.

Lemma 5.1 (The Restricted Tukey-Teichmüller Lemma for Prosets; $\mathrm{rTT}_{\text {pro }}$) Assume that P is a special ${ }_{\text {pro }}$ proset, and $Z: T \rightarrow \mathcal{F}_{P / \sim}$. For any $A \subseteq P$, if A is non-empty, of P-finite character ${ }_{p r o}$, and makes finite choices from Z, then for some $b \in A, b$ makes T-choices from Z (i.e., for every $t \in \operatorname{dom}(Z)$ there is an $X \preceq_{*} Z(t)$ so that $X \preceq^{*} b$).

Proof. Apply $\mathrm{rTT}_{p o}$ to P / \sim.

Acknowledgements Thanks to Philip Sink for proof-reading an early draft of this paper, and to a referee for catching many errors.

References

[1] A. Blass, Prime ideals yield almost maximal ideals, Fund. Math. 127, 57-66 (1987).
[2] A. Blass, Review: D. J. Shoesmith and T. J. Smiley, Multiple-Conclusion Logic, Bull. Amer. Math. Soc. (N.S.) 2(1), 242-246 (1980).
[3] R. E. Hodel, Restricted versions of the Tukey-Tiechmüller Theorem that are equivalent to the Boolean Prime Ideal Theorem, Arch. Math. Log. 44(4), 459-472 (2005).
[4] D. J. Shoesmith and T. J. Smiley, Multiple-Conclusion Logic (Cambridge University Press, 1978).
[5] P. Suppes, Axiomatic Set Theory (Van Nostrand, Princeton, 1960).
[6] O. Teichmüller, Braucht der Algebraiker das Auswahlaxiom?, Deutsche Math. 4, 567-577 (1939).
[7] A. S. Troelstra and H. Schwichtenberg, Basic Proof Theory, 2nd ed. (Cambridge University Press, 2000).
[8] J. Tukey, Convergence and Uniformity in Topology, Annals of Mathematics Studies Vol. 2 (Princeton University Press, 1940).
[9] R. Wojcicki, Theory of Logical Calculi (Kluwer, Dordrecht, 1988).

[^6]
[^0]: * E-mail: harold.hodes@cornell.edu
 ${ }_{1}$ For more on the variety of theorems from diverse corners of mathematics that are equivalent to the BPI, cf. the lists given in $[1,3]$ and in several other articles cited in [3].
 ${ }_{2}$ I have replaced Shoesmith's and Smiley's use of 'partition' by 'splitting', because cells of a partition are usually understood to be nonempty.

 For analogous use of 'finitary' regarding single-alternative sets of inferences, cf. [9].

[^1]: 4 The Tukey-Teichmüller Lemma: every non-empty set of sets of finite character has a maximal element with respect to subsethood. (A set S of sets is of finite character iff for every $a, a \in S$ iff every finite subset of a is in S.) For the original presentations of Tukey-Teichmüller Lemma, cf. $[6,8]$.

 5 This is trivially true if P has a least member. We will be applying $\mathrm{rTT}_{p o}$ to posets without least members.
 ${ }^{6}$ UT is this: for any set X and $F \subseteq \mathcal{P}(X)$, if F has the finite intersection property (i.e., the intersection of any finite number of members of F is non-empty) then there is an ultrafilter U on X (note: so $U \subseteq \mathcal{P}(X)$) such that $F \subseteq U$.

[^2]: ${ }^{7}$ In fact, with \bigvee added, P becomes a complete join-semi-lattice.

[^3]: ${ }^{8}$ In fact, the proposition that if (iii) then (i) is equivalent to AC .

[^4]: ${ }^{9}$ For a survey cf. [9]. Such a \vdash is usually called a consequence relation on F iff it is reflexive on F, satisfies cut for sets, and is monotonic.

[^5]: 10 Reminder: $2=\{0,1\}$.
 11 [4, Theorem 2.3] reads thus: "Cut for formulas is equivalent (granted dilution) to cut for finite sets". Recall: dilution is monotonicity. This might create the impression (well, it did for me) that monotonicity is needed from left to right.

[^6]: 12 Pre-orderings were called quasi-orderings in older publications of the recent past; cf. [5], for example.

