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I prove that the Boolean Prime Ideal Theorem is equivalent, under some weak set-theoretic assumptions, to
what I will call the Cut-for-Formulas to Cut-for-Sets Theorem: for a set F and a binary relation � on P (F ),
if � is finitary, monotonic, and satisfies cut for formulas, then it also satisfies cut for sets. I deduce the CF/CS
Theorem from the Ultrafilter Theorem twice; each proof uses a different order-theoretic variant of the Tukey-
Teichmüller Lemma. I then discuss relationships between various cut-conditions in the absence of finitariness
or of monotonicity.
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1 Introduction

The Boolean Prime Ideal Theorem (BPI) is weaker than the Axiom of Choice (AC), and has been proved to be
equivalent (modulo weak set-theoretic assumptions) to various theorems from diverse corners of mathematics.1

The main result in this paper supplements that list with what I will call the Cut-for-Formulas to Cut-for-Sets
Theorem for multiple-alternative inferences, a version of which was proved by Shoesmith and Smiley [4, p. 37].

LetP be the power-set operation. For our purposes, an inference on a given set F has the form 〈�,�〉 ∈ P (F )2.
Heuristic: think of members of F as formulas; in an inference 〈�,�〉, members of � are the assumptions and
members of � are what I will call the alternatives. � should be understood “disjunctively”. In [4], Shoesmith and
Smiley call the members of � conclusions; this strikes me as misleading. (For a review of [4], cf. [2]. According
to [4, p. ix], this notion of inference was, in effect, first introduced by Gentzen in his work on his sequent calculi.)

Consider a set � of inferences on F . Following a standard notational convention, for �,� ⊆ F and ϕ ∈ F , let
�,� = � ∪ �, and �, ϕ = � ∪ {ϕ}, when they are considered as relata of �.

Definition 1.1 1. For� ⊆ F , let a splitting of� have the form {�0, �1} for�0 ∪ �1 = � and�0 ∩ �1 = {}.
Splt(�) is the set of splittings of �.2

2. For � ⊆ F , � satisfies cut for � iff: for every �,� ⊆ F , if

for every �0, �1, if {�0, �1} ∈ Splt(�) then �,�0 � �,�1,

then � � �.

3. � satisfies cut for sets iff for every � ⊆ F , � satisfies cut for �.

4. � satisfies cut for formulas iff for every ψ ∈ F , if �,ψ � � and � � �,ψ then � � �.

5. � satisfies overlap iff for every �,� ⊆ F , if � ∩ � 
= {} then � � �.

6. � is monotonic (satisfies dilution in the usage of [4]) iff for every �,�′,�,�′ ⊆ F , if � ⊆ �′, � ⊆ �′,
and � � �, then �′ � �′.

7. � is finitary (aka compact) iff for every �,� ⊆ F , if � � � then for some finite �0 ⊆ � and some finite
�0 ⊆ �, �0 � �0.3

∗ E-mail: harold.hodes@cornell.edu
1 For more on the variety of theorems from diverse corners of mathematics that are equivalent to the BPI, cf. the lists given in [1, 3] and

in several other articles cited in [3].
2 I have replaced Shoesmith’s and Smiley’s use of ‘partition’ by ‘splitting’, because cells of a partition are usually understood to be non-

empty.
3 For analogous use of ‘finitary’ regarding single-alternative sets of inferences, cf. [9].
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Theorem 1.2 (The Cut-for-Formulas to Cut-for-Sets Theorem; hereafter CF/CS) For any � ⊆ P (F )2, if � is
finitary, monotonic, and satisfies cut for formulas, then it satisfies cut for sets.

In [4, part of Theorem 2.10], Shoesmith and Smiley prove the following slight weakening of CF/CS, using the
Tukey-Teichmüller Lemma, which is equivalent to AC.4

Theorem 1.3 (CF/CS∗) For any � ⊆ P (F )2, if � is finitary, monotonic, and satisfies overlap and cut for for-
mulas, then it satisfies cut for sets.

Clearly CF/CS entails CF/CS∗; this entailment reverses, as we will see.

Notation. Natural numbers will be identified with finite von Neumann ordinals. For a setA,P ′(A) = {X ⊆ A | X
is finite but non-empty}, and card(A) is the cardinality of A.

2 The main result

Consider a poset P = 〈|P|,�〉 (i.e., � is a partial ordering of |P|).
Definition 2.1 1. As is standard, let x ∈ P mean x ∈ |P| and X ⊆ P mean X ⊆ |P|.
2. For x ∈ P, ↓x = {y | y � x}.
3. For x ∈ P, let x be P-finite iff ↓x is finite.
4. FP = {x ∈ P | x is P-finite}.
Definition 2.2 1. For X ⊆ |P|, let x be special for X in P iff: for every P-finite y � x, there is finite X0 ⊆ X

such that for every P-finite upper bound u on X0 we have y � u.

2. P is special iff every non-empty subset of FP has an upper bound that is special for it in P.

Definition 2.3 A is of P-finite character iff: A ⊆ P and for every x ∈ P,

x ∈ A iff for every y ∈ FP ∩ ↓x, y ∈ A.

Definition 2.4 Consider a Z and T such that Z : T → FP.

1. For S ⊆ T and x ∈ P, x makes S-choices from Z iff for every t ∈ S there is a zt � Z(t ) such that zt � x.

2. For A ⊆ P, A makes finite choices from Z iff for every finite S ⊆ T some xS ∈ A ∩ FP makes S-choices
from Z.

Lemma 2.5 (The Restricted Tukey-Teichmüller Lemma for Posets; rTTpo) Consider any special poset P. For
any Z as above and any A ⊆ P, if A is non-empty, of P-finite character, and makes finite choices from Z, then for
some b ∈ A, b makes T -choices from Z (i.e., for every t ∈ dom(Z) there is a z � Z(t ) so that z � b).5

Note 2.6 rTTpo is formulated in the second-order language based on one 2-place predicate-constant and ‘is
finite’ as a primitive second-order predicate. It is a distant cousin of [3, Theorem 3.2], which is also a restricted
version of the Tukey-Teichmüller Lemma, there called rTT++.

Theorem 2.7 The Ultrafilter Theorem for power-sets (hereafter UT) entails rTTpo.6

Note 2.8 UT entails the Axiom of Choice From Finite Sets (for every set A of finite non-empty sets there is a
choice function on A.) For a proof of this, cf. [3, end of § 3].

P r o o f . (A modification of an argument in [3].) Assume UT. Assume that P is an special poset, Z : T →
FP, and A ⊆ P. Assume that A is non-empty, of P-finite character, and makes finite choices from Z. Let Y =

4 The Tukey-Teichmüller Lemma: every non-empty set of sets of finite character has a maximal element with respect to subsethood. (A
set S of sets is of finite character iff for every a, a ∈ S iff every finite subset of a is in S.) For the original presentations of Tukey-Teichmüller
Lemma, cf. [6, 8].

5 This is trivially true if P has a least member. We will be applying rTTpo to posets without least members.
6 UT is this: for any set X and F ⊆ P (X ), if F has the finite intersection property (i.e., the intersection of any finite number of members

of F is non-empty) then there is an ultrafilterU on X (note: soU ⊆ P (X )) such that F ⊆ U .
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∏
t∈T↓Z(t ). Since ↓Z(t ) is finite for each t ∈ T , by AC from Finite Sets, Y 
= {}. Fix g ∈ ∏

t∈T↓Z(t ). For each
finite S ⊆ T let HS = { f ∈ Y | some u ∈ A ∩ FP is an upper bound on f [S]}.
Claim 1: for each finite S ⊆ T , HS 
= {}. Since A makes finite choices from Z, we may fix an uS ∈ A ∩ FP that

makes S-choices from Z. For each t ∈ S fix a zt � Z(t ) such that zt � uS. Let

g′(t ) =
{
zt if t ∈ S,

g(t ) otherwise.

So g′ ∈ Y . Since uS is an upper bound on g′[S] = {zt∈S}, uS witnesses that g′ ∈ HS, proving Claim 1.
Claim 2: for any finite S0, S1 ⊆ T , HS0∪S1 ⊆ HS0 ∩ HS1 . Consider an f ∈ HS0∪S1 . Fix a u witnessing that f ∈

HS0∪S1 . Consider i ∈ 2. Since f [Si] ⊆ f [S0 ∪ S1], u also witnesses that f ∈ HSi . Claim 2 follows.
By Claims 1 & 2, {HS | S ⊆ T , S is finite} has the finite intersection property. By UT we may fix an ultrafilter

U on Y such that for each finite S ⊆ T HS ∈ U . For t ∈ T and z � Z(t ) let Xz
t = { f ∈ Y | f (t ) = z}.

Claim 3: for each t ∈ T there is a unique zt � Z(t ) so that Xzt
t ∈ U . Consider a t ∈ T . {Xz

t | z � Z(t )} is a set
of pairwise disjoint sets; also

⋃{Xz
t | z � Z(t )} = Y . Since U is an ultrafilter there is a unique z � Z(t ) so that

Xz
t ∈ U . Letting zt be that z, Claim 3 follows.
Since P is special, we may fix an upper bound b on {zt∈T } that is special for {zt∈T }.
Claim 4: for every x � b, if x ∈ FP then x ∈ A. Consider a P-finite x � b. Since b is special for {zt∈T }, we may

fix a finite S ⊆ T such that for every P-finite upper bound u on {zt∈S}, x � u. Since HS ∈ U and for each t ∈ S
Xzt
t ∈ U , HS ∩ ⋂

t∈SX
zt
t ∈ U . So we may fix an f ∈ HS ∩ ⋂

t∈SX
zt
t . Fix a u witnessing that f ∈ HS; so u ∈ A ∩ FP

and f (t ) � u for every t ∈ S. For every t ∈ S, f ∈ Xzt
t ; so f (t ) = zt . Since u is an upper bound on {zt∈S}, x � u.

We have x ∈ FP, u ∈ A and A is of P-finite character; so x ∈ A. Claim 4 follows.
Since A has P-finite character, b ∈ A by Claim 4. For each t ∈ Tzt � Z(t ) and zt � b. So b is as required by

rTTpo. �
Lemma 2.9 ([4, Theorem 2.2]) If � ⊆ P (F )2 is monotonic and satisfies cut for F then � satisfies cut for sets.

P r o o f . Assume the if-clause. Given �,�,� ⊆ F , assume that for every splitting {�0, �1} of � we have
�,�0 � �,�1. Given a splitting {�0,�1} of F , let �i = � ∩ �i for i ∈ 2. Since {�0, �1} is a splitting of �,
�,�0 � �,�1. By monotonicity of �, �,�0 � �,�1. So for every splitting {�0,�1} of F , �,�0 � �,�1.
Since � satisfies cut for F , � � �. �

Theorem 2.10 rTTpo entails CF/CS.

P r o o f . Assume rTTpo. Let F be any set. Assume that � ⊆ P (F )2 is finitary, monotonic and satisfies cut for
formulas. By Lemma 2.9 it suffices to prove that � satisfies cut for F . Consider any �,� ⊆ F . Assume that

(∗) for every �0 and �1, if {�0, �1} ∈ Splt(F ) then �,�0 � �,�1.

Assume that F = {}. So � = � = {}; so (∗) yields that {} � {}; so � trivially satisfies cut for F .
Assume that F 
= {}. If {} � {}, by monotonicity � = P (F )2, and so trivially � satisfies cut for F . Assume that

{} � {}.
For �0,�1 ⊆ F let 〈�0,�1〉 � 〈�′

0,�
′
1〉 iff (i) �i ⊆ �′

i for both i ∈ 2, and (ii) �0 ∪ �1 
= {}. Let |P| =
P (F )2 − {〈{}, {}〉} and P = 〈|P|,�〉. So P is a poset. For any 〈�0,�1〉 ∈ P, 〈�0,�1〉 is P-finite iff both �0 and
�1 are finite. For any X ⊆ P (F )2, let

∨
X = 〈⋃ dom(X ),

⋃
ran(X )〉; so ∨

X is the least upper bound on X with
respect to �. For a finite non-empty X ⊆ FP,

∨
X ∈ FP.7

Claim 1: P is special. Consider any non-empty X ⊆ FP. Consider a 〈�0,�1〉 ∈ FP. Assume that 〈�0,�1〉 �∨
X ; so �0 ⊆ ⋃

dom(X ) and �1 ⊆ ⋃
ran(X ). For each i ∈ 2 and ϕ ∈ �i select a 〈� i

ϕ,0, �
i
ϕ,1〉 ∈ X so that ϕ ∈

� i
ϕ,i; let X0 = {〈� i

ϕ,0, �
i
ϕ,1〉 | i ∈ 2, ϕ ∈ �i}. Since �0 ∪ �1 is finite, X0 is finite. Also X0 ⊆ X and 〈�0,�1〉 �∨

X0. Since
∨
X0 is the least upper bound on X0,

∨
X is special for X . Claim 1 follows.

Assume for a contradiction that � � �. Let

A = {〈�0,�1〉 ∈ |P| | �0 ∩ �1 = {} and �,�0 � �,�1}.
We will consider two cases.

7 In fact, with
∨

added, P becomes a complete join-semi-lattice.
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Case 1: � ∪ � 
= {}. So 〈�,�〉 ∈ |P|. So 〈�,�〉 ∈ A; so A 
= {}.
Claim 2: for any �0,�1 ⊆ F , if for every finite �′

i ⊆ �i for both i ∈ 2 〈�′
0,�

′
1〉 ∈ A, then 〈�0,�1〉 ∈ A.

Given such �0 and �1, assume the if-clause, and that 〈�0,�1〉 /∈ A. If �0 ∩ �1 
= {}, fix ϕ ∈ �0 ∩ �1; then
〈{ϕ}, {ϕ}〉 /∈ A for a contradiction. Assume that �,�0 � �,�1; since � is finitary and monotonic there are finite
�′
i ⊆ �i for both i ∈ 2 such that �,�′

0 � �,�′
1, and so 〈�′

0,�
′
1〉 /∈ A, for a contradiction. Claim 2 follows.

Claim 3: A is of P-finite character. Consider �0,�1 ⊆ F . Assume that 〈�0,�1〉 ∈ A. Since � is monotonic, if
�′
i ⊆ �i for both i ∈ 2, then 〈�′

0,�
′
1〉 ∈ A. So for any P-finite x � 〈�0,�1〉, x ∈ A (regardless of x’s P-finitude).

Assume that for every P-finite x � 〈�0,�1〉, x ∈ A. By (2) 〈�0,�1〉 ∈ A. Claim 3 follows.
For ϕ ∈ F , let Z(ϕ) = {〈{ϕ}, {}〉, 〈{}, {ϕ}〉}. So Z : F → FP. Fixing a ϕ ∈ � ∪ �, let

x =
{

〈{ϕ}, {}〉 if ϕ ∈ �,

〈{}, {ϕ}〉 otherwise.

So x ∈ A ∩ FP; vacuously xmakes {}-choices from Z. Consider an n ∈ ω − {0} and distinct ϕ1, . . . , ϕn ∈ F . Since
� satisfies cut for formulas and � � �, either �, ϕ1 � � or � � �,ϕ1. In the first case let �1,0 = {ϕ1}, �1,1 = {},
and z1 = 〈{ϕ1}, {}〉; in the second case let �1,0 = {}, �1,1 = {ϕ1}, and z1 = 〈{}, {ϕ1}〉. So �,�1,0 � �,�1,1 and
z1 ∈ A. Again using cut for formulas, either �,�1,0, ϕ2 � �,�1,1 or �,�1,0 � �,�1,1, ϕ2. In the first case let
�2,0 = �1,0 ∪ {ϕ2}, �2,1 = �1,1, and z2 = 〈{ϕ2}, {}〉; in the second case let �2,0 = �1,0, �2,1 = �1,1 ∪ {ϕ2} and
z2 = 〈{}, {ϕ2}〉. So �,�2,0 � �,�2,1. Since ϕ1 
= ϕ2, z2 ∈ A. Iterate this. For each i ∈ (n) zi � Z(ϕi); so

∨{zi |
i ∈ (n)} makes {ϕi∈(n)}-choices from Z. Note that

∨{zi | i ∈ (n)} = 〈�n,0,�n,1〉. Since ϕ1, . . . , ϕn are distinct,
�n,0 ∩ �n,1 = {}. So 〈�n,0,�n,1〉 ∈ A. Clearly 〈�n,0,�n,1〉 ∈ FP. So A makes finite choices from Z.

By rTTpo, we may fix �0,�1 ⊆ F so that 〈�0,�1〉 ∈ A and 〈�0,�1〉 makes F-choices from Z, i.e., for
every ϕ ∈ F there is a z � Z(ϕ) so that z � 〈�0,�1〉. Given ϕ ∈ F , fix such a z. Since 〈{}, {}〉 /∈ |P|, either
z = 〈{ϕ}, {}〉, in which case ϕ ∈ �0, or z = 〈{}, {ϕ}〉, in which case ϕ ∈ �1. So ϕ ∈ �0 ∪ �1. So �0 ∪ �1 = F .
Since 〈�0,�1〉 ∈ A, �0 ∩ �1 = {}. So {�0,�1} is a splitting of F . Since �,�0 � �,�1, this contradicts (∗).

Case 2:� = � = {}.F 
= {}; so fix anyψ ∈ F . Either {} � ψ orψ � {}, since otherwise by cut for formulas {} �
{}, contrary to assumptions. If {} � ψ let�′ = {ψ} and �′ = {}. If otherwise let �′ = {ψ} and�′ = {}. Either way,
�′ � �′. Given a splitting {�0, �1} of F , since �,�0 � �,�1 we also have �′, �0 � �′, �1, by the monotonicity
of �. The argument under Case 1 applies using �′ and �′ in place of � and �, yielding a contradiction.

So � � �. So � satisfies cut for F . �

Theorem 2.11 CF/CS∗ entails BPI.

P r o o f . Assume CF/CS∗. Consider a Boolean algebra B = 〈|B|,�,�, c, 0, 1〉. Understand a ∈ B and X ⊆ B
as usual. Let � be the usual Boolean ordering on B. Form the language L0 with logical constants =, ⊃ and ⊥,
individual constants a for each a ∈ B, two 2-place function constants � and �, and a 1-place function-constant c
(for complementation). Let Trm is the set of closed terms of L0. Form L1 by adding the 1-place predicate-constant
I to L0 (for membership in an ideal). Let F be the set of 0th-order (i.e., propositional) formulas of L1. Define
� ⊆ P (F )2 using one’s favorite classical sequent calculus, e.g., G1c from [7], applied to L1; i.e., for �,� ⊆ F
let � � � iff for some finite multisets � ′,�′ with set(� ′) ⊆ � and set(�′) ⊆ �, � ′ ⇒ �′ is a theorem of the
sequent calculus. So � is finitary, monotonic, and satisfies overlap and cut for formulas. By CF/CS∗ it satisfies cut
for sets.

Relative to B, interpret these non-logical constants in the obvious ways. Define the designation function des :
Trm → B so that for each a ∈ Bwe have des(a) = a, and des is homomorphic with respect to �, �, c and �, �, c
respectively. Let �0 be the positive atomic diagram for B in L0, i.e., for any terms τi∈2 of L0, τ0 = τ1 ∈ �0 iff
B |= τ0 = τ1. Let �0 = {a = b | a 
= b}. Let

�1 ={I(0)} ∪ {I(a) ⊃ I(b) | b � a} ∪
{I(a) ⊃ (I(b) ⊃ I(a � b)) | a, b ∈ B} ∪
{I(a � b) ⊃ (¬I(a) ⊃ I(b)) | a, b ∈ B}

Let �2 be the standard axioms for = in L1. Finally, let � = �0 ∪ �1 ∪ �2 and � = �0 ∪ {I(1)}.

© 2022 Wiley-VCH GmbH www.mlq-journal.org
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Claim : � � �. Assume otherwise. Fix finite multisets � ′,�′ with set(� ′) ⊆ � and set(�′) ⊆ �, so that �G1c

� ′ ⇒ �′. Let �′ = set(� ′) and �′ = set(�′); so they are finite, and �′ � �′. Let

Trm′ = {τ ∈ Trm | τ occurs in �′ ∪ �′},
C0 = {des(τ ) ∈ B | τ ∈ Trm′}.

Let B0 be the smallest sub-algebra of B whose domain is a superset ofC0.
Subclaim 1: B0 is finite. Let C be the closure of C0 under disjunctive normal forms, i.e., let

C1 = C0 ∪ {c(a) | a ∈ C0},
C2 = {�D | D ⊆ C1},
C = {�D | D ⊆ C2}.

Since C0 is finite, so are C1,C2 and C. Set �′ = �|C, �′ = �|C, and c′ = c|C. Note that 〈C,�′,�′, c′, 0, 1〉 is a
Boolean algebra. Also, the domain of any sub-algebra of B whose domain is a superset of C0 is itself a superset
of C. Thus B0 = 〈C,�′,�′, c′, 0, 1〉, proving Subclaim 1.
Subclaim 2: B0 has a prime ideal. If B0 is the trivial 2-membered Boolean algebra, {0} is a prime ideal in B0.

Assume that B0 has at least three members. Since B0 is finite, some b ∈ C − {1} is maximal in B0. Fix such a b. The
principle ideal that b generates, ↓b, is an ideal in B0; since b is maximal in B0, that ideal is prime, proving Subclaim
2. Let B1 = 〈B0, I〉 for I a prime ideal for B0. Interpret I by I, i.e., for every a ∈ C B1 |= I(a) iff a ∈ I, B1 |= �.
Since G1c is sound (with respect to classical propositional logic), for some ϕ ∈ �0 B1 |= ϕ. Since �0 ⊆ �, every
member of �0 is false in B1, for a contradiction. The Claim follows.

By CF/CS, there is a splitting {�0,�1} of F such that �,�0 � �,�1. Fix it; so � ⊆ �0 and � ⊆ �1. Now let
I = {a ∈ B | I(a) ∈ �0}. Check that 〈B, I〉 |= �0. So 〈B, I〉 |= �1. So I is a prime ideal for B.

This proves the weak form of the BPI. The strong form of the BPI (for any Boolean algebra B, if I is an ideal
for B and F is a filter for B and I ∩ F = {}, then some prime ideal for B is a superset of I and is disjoint from F )
follows from the weak form by factoring B by I. �

3 An alternative approach

In this section, I will present an alternative approach to the equivalence of CF/CS and the BPI Theorem, one that
uses a different restricted variation on the Tukey-Teichmüller Lemma. The idea: replace the class of posets by a
class of slightly more complex structures; replace specialness for posets by a less complex specialness property
that is defined for the latter structures.

Definition 3.1 Consider a poset P.

1.
∨

is a finite-upper bound (hereafter a fub-) selector for P iff
∨

: P ′(FP) → FP such that, for every X ∈
P ′(FP),

∨
X is an upper bound on X .

2. A fub-selector
∨

is monotonic iff for every X,Y ∈ P ′(FP) if Y ⊆ X then
∨
Y � ∨

X .

3. 〈P,∨〉 is a fub-selector structure iff: P is a poset and
∨

is a fub-selector for P. It is monotonic iff
∨

is.

The following may clarify the previous definitions.

Theorem 3.2 For any poset P the following are equivalent:

(i) P has a monotonic fub-selector;

(ii) P has a fub-selector;

(iii) every member of P ′(FP) has an upper bound (with respect to �) in FP.

P r o o f . From (i) to (ii) and from (ii) to (iii) are trivial. Going from (iii) to (i) will use the Axiom of Choice
(repeatedly).8

8 In fact, the proposition that if (iii) then (i) is equivalent to AC.
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Assume (iii).We define the “height” function h : FP → ω as follows. If x is minimal in P, h(x) = 0. If x ∈ FP is
not minimal, {y | y ≺ x} is finite and non-empty; let h(x) = max{h(y) | y ≺ x} + 1. By induction on the maximum
lengths of ≺-chains in FP that terminate at x, h is well-defined. We define a “level” function L : P ′(FP) → ω

thus: for X ∈ P ′(FP), L(X ) = sup{h(x) | x ∈ X}. Let P ′
i (FP) = {X ∈ P ′(FP) | L(X ) = i}. Plan: by induction on

the cardinality of its arguments, define
∨

i : P ′
i (FP) → FP for each i ∈ ω; we will then take

∨ = ⋃
i∈ω

∨
i.

For x such that h(x) = 0, let
∨

0{x} = x. Assume that for every Z ∈ P ′
0(FP) with card(Z) ≤ n,

∨
0Z is defined.

For X ∈ P ′
0(FP) such that card(X ) = n+ 1, set YX = {∨0Z | {} 
= Z � X}. YX ∈ P ′(FP), and thus has an upper

bound in FP; using AC choose one (for each X as described) and let
∨

0X be it. So dom(
∨

0) = P ′
0(FP). Check

that
∨

0 is monotonic. Assume that
∨

i has been defined. For x such that h(x) = i+ 1, set

Y{x} = {∨ jZ | j < i, Z ∈ P ′
j(FP), Z ⊆ ↓x}.

Y{x} ∈ P ′(FP), and thus has an upper bound in FP; using AC choose one (for each x as described) and let
∨

i+1{x}
be it. Assume that for every Z ∈ P ′

i+1(FP) with card(Z) ≤ n,
∨

i+1Z is defined.X ∈ P ′
i+1(FP) such that card(X ) =

n+ 1, define
∨

i+1X by imitating the definition at the corresponding step for level 0. So dom(
∨

i+1) = P ′
i+1(FP).

Check that
∨

i+1 is monotonic. So
∨

is a monotonic fub-selector for P, yielding (i). �

Definition 3.3 Consider a fub-selector structure 〈P,∨〉.
1. For a non-empty X ⊆ FP, let x be special for X in 〈P,∨〉 iff: for every y ∈ FP, if y � x then there is a finite

X0 ⊆ X such that y � ∨
X0.

2. 〈P,∨〉 is special iff every non-empty X ⊆ FP has a upper bound x in P that is special for X in 〈P,∨〉.
Definition 3.4 Consider a Z : T → FP and A ⊆ P.

1. For any F ⊆ T , let A make F-choices from Z using
∨

iff: for every t ∈ F there is a zt � Z(t ) such that∨{zt∈F} ∈ A.

2. A makes finite choices from Z using
∨

iff for every finite F ⊆ T , A make F-choices from Z using
∨
.

Lemma 3.5 (The Restricted Tukey-Teichmüller Lemma for Fub-selector Structures (rTT fubs)) Consider a spe-
cial monotonic fub-selector structure 〈P,∨〉. For any Z : T → FP and any non-empty A ⊆ P, if A is of P-finite
character, and makes finite choices from Z using

∨
, then for some b ∈ A, b makes T -choices from Z (as defined

in Definition 2.4, i.e., for every t ∈ dom(Z) there is a z � Z(t ) so that z � b).

Note that rTT fubs is formulated in the second-order language of fub-selector structures, again taking ‘is finite’
as primitive. It is a cousin of rTT++ from [3], closer to it than was rTTpo.

Theorem 3.6 UT entails rTT fubs.

P r o o f . (A slight modification of the proof of Theorem 2.7.) Given A, T and Z as above, assume that A is of
P-finite character, and makes finite choices from Z using

∨
. We proceed as in Theorem 2.7, with a few changes.

For each finite F ⊆ T let HF = { f ∈ Y | ∨
f [F] ∈ A}.

Claim 1: for each finite F ⊆ T , HF 
= {}. Since A makes finite choices from Z using
∨
, for each t ∈ F we can

fix a zt � Z(t ) such that
∨{zt∈F} ∈ A. Define g′ from g and {〈t, zt〉 | t ∈ T } as in Theorem 2.7. So g′ ∈ Y . Since

g′[F] = {zt∈F}, g′ ∈ HF . Claim 1 follows.
Claim 2: for any finite F0,F1 ⊆ T ,HF0∪F1 ⊆ HF0 ∩ HF1 . Consider an f ∈ HF0∪F1 . So

∨
f [F0 ∪ F1] ∈ A. Consider

i ∈ 2. Since f [Fi] ⊆ f [F0 ∪ F1] and
∨

is monotonic,
∨

f [Fi] � ∨
f [F0 ∪ F1]. Since

∨
f [Fi] is P-finite and A is

of finite-character,
∨

f [Fi] ∈ A. So f ∈ HFi .
By Claims 1 & 2, {HF | F ⊆ T , F is finite} has the finite intersection property. Using UT, fix an ultrafilterU on

Y such that for each finite F ⊆ T , HF ∈ U . For t ∈ T and z � Z(t ) let Xz
t = { f ∈ Y | f (t ) = z}. By the argument

in Theorem 2.7, we have Claim 3: for each t ∈ T there is a unique zt � Z(t ) so that Xzt
t ∈ U .

Since 〈P,∨〉 is special, we may fix an upper bound b on {zt∈T } that is special for {zt∈T } in 〈P,∨〉.
Claim 4: for every x � b, if x ∈ FP then x ∈ A. Consider a P-finite x � b. By choice of b, we may fix a finite

F ⊆ T such that x � ∨{zt∈F}. Since HF ∈ U and for each t ∈ F Xzt
t ∈ U , HF ∩ ⋂

t∈FX
zt
t ∈ U . So we may fix an

f ∈ HF ∩ ⋂
t∈FX

zt
t . Since f ∈ ⋂

t∈FX
zt
t , f [F] = {zt∈F}. Since f ∈ HF ,

∨
f [F] ∈ A. So x � ∨{zt∈F} = ∨

f [F] ∈
A. Since x ∈ FP and A has finite-character, x ∈ A. Claim 4 follows.
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Since A has P-finite character, by Claim 4we have b ∈ A. For each t ∈ Tzt � Z(t ) and zt � b. So b is as required
by rTT fubs. �

Theorem 3.7 rTT fubs entails CF/CS.

P r o o f . Assume rTT fubs. LetF be any set. Assume that� ⊆ P (F )2 is finitary, monotonic and satisfies overlap
and cut for formulas. Again, it suffices to prove that � satisfies cut for F . As in Theorem 2.10, we may assume
that F 
= {} and {} � {}. Define �, |P|, P, and ∨

as in Theorem 2.10, let
∨′ = ∨ |P ′(FP).

∨′ is a monotonic
fub-selector for P. Check that 〈P,∨′〉 is special. The rest of the proof is a straightforward modification of the
argument in Theorem 2.10. �

So rTTpo and rTT fubs are equivalent modulo a weak set-theoretic background.

Observation 3.8 We can assess the complexity of definitions in Definitions 2.2 & 3.3 by prenexing, taking ‘is
finite’ as a primitive 2nd-order predicate, and counting alternations of second-order quantifiers. Being special
in a poset P for an X ⊆ |P| is 
1

3; so being special is a 
1
3 property of posets. Being special in a fub-selector

structure 〈P,∨〉 for X ⊆ |P| is �1
1; so being special is a 
1

2 property of fub-selector structure. So by considering
〈P,∨〉 in place of P, we gain a simpler notion of specialness.

Next, we have a brief look at relationships between the concepts defined in Definitions 2.2 to 2.4 and those
defined in Definitions 3.1 to 3.4.

Observation 3.9 If P is a special poset and
∨
is a fub-selector for P then 〈P,∨〉 is special.

P r o o f . Assume the if-clause. Consider a non-empty X ⊆ FP; fix an upper bound x on X that is special for
X in P. Consider any y ∈ FP such that y � x; fix a finite X0 ⊆ X such that for every upper bound u on X0, y � u.
In particular, y � ∨

X0. So x is special for X in 〈P,∨〉. Note: this did not require that ∨ be monotonic. �
Observation 3.10 A special poset need not have a fub-selector. Example: let |P| = ω; let m � n iff m, n ∈ ω

and either (i) m = n or (ii) m ∈ 2 and n /∈ 2 or (iii) m, n /∈ 2 and n < m; let P = 〈|P|,�〉. {0, 1} = FP has no
P-finite upper bound in P. For m ∈ 2, trivially m is special for {m} in P; 2 is special for {0, 1}, since if y � 2 is
P-finite, y ∈ {0, 1}, and y is an upper bound on {y}. So P is special, but {0, 1} has no P-finite upper bound in P.

Observation 3.11 A special fub-selector structure need not be based on a special poset. Example: let |P| = 7,
and let � be the reflexive transitive closure of

{〈i, 4〉 | i ∈ 3} ∪ {〈i+ 1, 5〉 | i ∈ 3} ∪ {〈4, 6〉, 〈5, 6〉}.
SoFP = 7;

∨ = {〈X, 6〉 | X ⊆ 7} is a fub-selector for P; check that 〈P,∨〉 is special. The upper bounds on {1, 2}
in P are 4,5, and 6. But 4 and 6 are not special for {1, 2} in P, since 0 � 4 but 0 � 5 and 5 is not special for {1, 2}
in P, since 3 � 5 but 3 � 4.

4 Further information about cut-conditions

In what follows, let Even be the set of even natural numbers, Odd = ω − Even.
We will start by considering sets of single-alternative inferences.

Definition 4.1 Consider a � ⊆ P (F ) × F . The following concepts have been much studied.9

1. � satisfies cut for formulas iff for every � ⊆ F and ϕ, δ ∈ F , if � � ϕ and �, ϕ � δ then � � δ.

2. For � ⊆ F , � satisfies cut for � iff for every � ⊆ F and δ ∈ F , if �,� � δ and for every ϕ ∈ � � � ϕ,
then � � δ.

3. � satisfies cut for sets iff for every � ⊆ F it satisfies cut for �.

4. � satisfies cut for finite sets iff for every finite � ⊆ F it satisfies cut for �.

5. � is monotonic (aka satisfies dilution) iff for every �,�′ ⊆ F and δ ∈ F , if � ⊆ �′ and � � δ then �′ � δ.

6. � is finitary (aka compact) iff for every � ⊆ F and δ ∈ F , if � � δ then for some finite �0 ⊆ � �0 � δ.

9 For a survey cf. [9]. Such a � is usually called a consequence relation on F iff it is reflexive on F , satisfies cut for sets, and is monotonic.
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7. � satisfies overlap iff for every � ⊆ F and δ ∈ F , if δ ∈ � then � � δ.

Observation 4.2 We continue with � ⊆ P (F ) × F.

1. If � is monotonic and satisfies cut for formulas, then it satisfies cut for finite sets. (This is Theorem 1.2 in
[4, p. 17].)

2. If � is monotonic, finitary, and satisfies cut for formulas, then it satisfies cut for sets. (This is the “single-
alternative” analog of CF/CS.)

P r o o f . For (1), assume the if-clause. It suffices to prove this: for every n ∈ ω,

(∗) for every �,� ⊆ F and δ ∈ F , if card(�) = n, �,� � δ, and for every ϕ ∈ �� � ϕ, then � � δ.

If n = 0, (∗) is obvious. Given n ∈ ω, assume (∗). Consider any �,� ⊆ F and δ ∈ F ; assume that card(�) =
n+ 1 and for every ϕ ∈ �� � ϕ. Fix ϕ0 ∈ � and let �′ = � − {ϕ0} and �′ = � ∪ {ϕ0}. So �′,�′ � δ. By mono-
tonicity, for every ϕ ∈ �′ �′ � ϕ. By the induction hypothesis, �′ � δ. Since � � ϕ0 and � satisfies cut for for-
mulas, � � δ. By induction, for every n ∈ ω (∗) is true.

For (2), assume the if-clause. First prove that for every n ∈ ω,

(∗∗) for every finite �,� ⊆ F and δ ∈ F , if card(�) = n, �,� � δ, � ∩ � = {}, and for every ϕ ∈ � � � ϕ,
then � � δ.

The argument is like that for (1). Then we can use the assumption that � is finitary to complete the argument. �
Remark 4.3 The induction formula for (1) is 
1

1 in this sense: taking F as the domain and taking union and
� as primitive, it starts with a two second-order universal quantifiers prefixed to a first-order formula. For (2) the
induction-formula is finite-
1

1 in �, since the initial two second-order universal quantifiers are restricted to finite
subsets of the domain.

I found it somewhat surprising that, in contrast to the CF/CS Theorem, Observation 4.2(2) required merely
induction on ω, and a rather simple form at that.

Observation 4.2(1) required use of monotonicity: that � ⊆ P (F ) × F is finitary and satisfies cut for formulas
does not suffice to ensure that � satisfies cut for finite sets.

Example 4.4 Assume that 3 ⊆ F . For � ⊆ F and δ ∈ F , let � � δ iff either (i) � = 2 and δ = 2, or (ii) � = {}
and δ ∈ 2.10 Clearly � is finitary.
Claim: � vacuously satisfies cut for formulas. Assume that (a) �, ϕ � δ, (b) � � ϕ, and (c) ϕ /∈ �. Condition

(ii) does not make (a) true; so condition (i) does; so � ∪ {ϕ} = 2. Fix i ∈ 2 so that � = {i} and ϕ = 1 − i. By (b),
i � 1 − i. But neither (i) nor (ii) makes that true. The claim follows. Since � 2, � does not satisfy cut for finite sets.

We now return to sets of multiple-alternative inferences. For what follows, consider any � ⊆ P (F )2.

Observation 4.5 If � satisfies cut for formulas, it satisfies cut for finite sets.11 Note: this avoids using mono-
tonicity, in contrast to Observation 4.2(1).

P r o o f . Assume that � satisfies cut for formulas. It suffices to prove by induction that

(∗) for every n ∈ ω for every � ⊆ F , if card(�) = n+ 1 then � satisfies cut for �.

For n = 0, this is trivial. Given n, assume the obvious induction hypothesis. Given�,� ⊆ F , assume that for every
�0 and �1, if {�0,�1} ∈ Splt(�) then �,�0 � �,�1. Fix ϕ ∈ � and set �′ = � − {ϕ}. For every �0 and �1,
if {�0, �1} ∈ Splt(�′) then �,�0, ϕ � �,�1 since {�0 ∪ {ϕ}, �1} ∈ Splt(�); so by the induction hypothesis,
�, ϕ � �. Similarly, for every �0 and �1, if {�0, �1} ∈ Splt(�′) then �,�0 � �,�1, ϕ; so � � �,ϕ. By one
use of cut for formulas, � � �. Hence (∗) follows. So � satisfies cut for �. �

Corollary 4.6 If F is finite and � satisfies cut for formulas, it satisfies cut for sets.

Definition 4.7 Consider a set � of inferences on P (F ), and any �,� ⊆ F . These definitions are from [4].

10 Reminder: 2 = {0, 1}.
11 [4, Theorem 2.3] reads thus: “Cut for formulas is equivalent (granted dilution) to cut for finite sets”. Recall: dilution is monotonicity.

This might create the impression (well, it did for me) that monotonicity is needed from left to right.
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1. � satisfies cut1 for � iff: for every �,� ⊆ F , if �,� � � and for every ϕ ∈ � � � �,ϕ, then � � �.

2. � satisfies cut2 for � iff: for every �,� ⊆ F , if � � �,� and for every ψ ∈ ��,ψ � �, then � � �.

3. � satisfies cut1 [cut2] iff for every � ⊆ F , � satisfies cut1 [cut2] for �.

4. � satisfies cut3 for 〈�,�〉 iff: for every �,� ⊆ F , if (a) �,� � �,�, (b) for every ψ ∈ � �,ψ � �, and
(c) for every ϕ ∈ � � � �,ϕ, then � � �.

5. � satisfies cut3 iff for every �,� ⊆ F � satisfies cut3 for 〈�,�〉.
Observation 4.8

1. These are trivially equivalent:

(a) � satisfies cut for formulas;

(b) for every ϕ ∈ F, � satisfies cut1 for {ϕ};
(c) similarly for cut2;

(d) � satisfies cut3 for 〈{ϕ}, {}〉;
(e) � satisfies cut3 for 〈{}, {ϕ}〉.
The following are trivial:

2. � satisfies cut3 for 〈�, {}〉 iff � satisfies cut1 for �;

3. � satisfies cut3 for 〈{}, �〉 iff � satisfies cut2 for �.
Somewhat less trivially, if � is monotonic then:

4. if � satisfies cut1 and cut2 then it satisfies cut3;

5. if � satisfies cut for sets then it satisfies cut3.

These follow from [4, Theorems 2.6 & 2.7 (p. 32)]. So assuming just monotonicity, cut1 or cut2, and then cut3,
are stepping-stones towards cut for sets.

Observation 4.9 Assume that F is infinite.

1. That � is monotonic and satisfies overlap and cut3 does not suffice to ensure that � satisfies cut for sets. (So
in the statements of CF/CS and CF/ CS∗, we need the condition that � be finitary.)

2. That � is monotonic and satisfies overlap and cut for formulas does not suffice to ensure that � satisfies
either cut1 or cut2.

Example 4.10 Let ω ⊆ F .

(1) For �,� ⊆ F , let � � � iff: either (i) � ∩ � 
= {}, or (ii) F − (� ∪ �) is finite. So � is monotonic and
satisfies overlap.

Claim: � satisfies cut3. Consider �,�,�,� ⊆ F . Assume that (a) �,� � �,�, (b1) for every ϕ ∈ � (b1ϕ )
� � �,ϕ, and (b2) for everyψ ∈ � (b2ψ ) �,ψ � �. Assume for a contradiction that � � �. So (c.i) � ∩ � = {}
and (c.ii) F − (� ∪ �) is infinite. By (a), either � � � or � � �. Case 1: � � �. Fix a ϕ ∈ � − �. By (c.i) and
choice of ϕ, clause (i) does not make (b1ϕ ) true; so (ii) does; so F − (� ∪ {ϕ} ∪ �) is finite; so F − (� ∪ �) is
finite, contrary to (c.ii). Case 2: � � �. Fix a ψ ∈ � − �. An argument symmetric with the preceding one yields
a contradiction. So � � �, proving the claim. Consider any splitting {�0, �1} of F . By clause (ii), �0 � �1, 0.
But {} � 0. So � does not satisfy cut for sets.

(2) For �,� ⊆ F , let � � � iff: either (i) � ∩ � 
= {}, or (ii) F − � is finite, or (iii) � ∩ Even 
= {}, or (iv)
F − � is finite, or (v) � ∩ Odd 
= {}. So � is monotonic and satisfies overlap.

Claim: � satisfies cut for formulas. Consider �,� ⊆ F and ϑ ∈ F . Assume that (a) �, ϑ � � and (b) � �
�,ϑ . For a contradiction, assume that � � �. So (c.i) � ∩ � = {}, (c.ii) F − � is infinite, (c.iii) � ∩ Even = {},
(c.iv) F − � is infinite, and (c.v) � ∩ Odd = {}. By (a), ϑ /∈ �; by (b) ϑ /∈ �. So by (c.i), clause (i) makes neither
(a) nor (b) true. By (c.ii) and (c.iv), neither clause (ii) nor clause (iv) makes (a) true; similarly for (b). By (c.iii),
(iii) does not make (a) true; so (v) does; by (c.v), ϑ /∈ Even. But by (c.v), clause (v) does not make (b) true; so
(iii) does; by (c.iii), ϑ ∈ Even, a contradiction. So � � �. The claim follows. By clause (v), F � {}, and for every
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n ∈ ω by clause (iii) Even � 2n; but since Even � {}, � does not satisfy cut1. By clause (iii), {} � F , and for every
ϕ ∈ Odd by clause (v) ϕ � Even; but since {} � Even, � does not satisfy cut2.

Observation 4.11 For any infinite � ⊆ F, that � is finitary and satisfies overlap and cut3 does not suffice to
ensure that � satisfies cut for �.

Example 4.12 For �,� ⊆ F , let � � � iff: either (i) � ∩ � 
= {}, or (ii) � = � = {}, or (iii) � ∪ � is infinite.
Since {} � {}, � is finitary. (i) ensures that � satisfies overlap. Consider �,� ⊆ F . To show that � satisfies

cut3 for 〈�,�〉, consider any �,� ⊆ F , and assume that (a) �,� � �,�, (b1) for every ϕ ∈ � (b1ϕ ) � � �,ϕ,
and (b2) for every ψ ∈ � (b2ψ ) �,ψ � �.
Claim: � � �. Assume otherwise. So (c.i) � ∩ � = {}, (c.ii) either � 
= {} or � 
= {}, and (c.iii) � ∪ � is

finite. By (a), either � � � or � � �. Assume that � � �. Consider ϕ ∈ � − �. By (c.i) and choice of ϕ,
clause (i) does not make (b1ϕ ) true; by (c.iii) clause (iii) does not make (b1ϕ ) true; trivially clause (ii) does not
either; thus a contradiction. By a symmetric argument, the assumption that � � � also yields a contradiction.
The claim follows; so � satisfies cut3 for 〈�,�〉. So it satisfies cut3. Consider any infinite � ⊆ F . For every
{�0,�1} ∈ Splt(�), �0 � �1, 0 by clause (iii); but {} � 0. So � does not satisfy cut for �.

Corollary 4.13 1. That � is finitary and satisfies overlap as well as cut1, cut2 or both, does not suffice to
ensure that it satisfies cut for sets.

2. That � is finitary and satisfies overlap as well as cut for formulas does not suffice to ensure that it satisfies
cut for sets. (So in the statements of CF/CS and CF/CS∗, we need the condition that � be monotonic.)

P r o o f . For (1), note that if it sufficed to ensure satisfaction of cut for sets that � be finitary and satisfy
overlap as well as cut1, cut2 or both, then, by Observation 4.8(2), adding satisfaction of cut3 also would suffice,
contrary to Observation 4.11.

For (2), note that if that � is finitary and satisfies overlap as well as cut for formulas sufficed to ensure satis-
faction of cut for sets, then by Observation 4.8(1) adding satisfaction of cut1 or cut2 also would suffice, contrary
to (1). �

Observation 4.14 That� is finitary and satisfies overlap, cut1 and cut2 does not suffice to ensure that� satisfies
cut3.

Example 4.15 Consider any infinite set F , and non-empty � and � subsets of F such that � ∩ � = {}. We
will define � to be finitary and satisfy overlap, cut1 and cut2, but not satisfy cut3 for 〈�,�〉.

For�,� ⊆ F , let� � � iff either (i)� ∩ � 
= {}, or (ii)� ∩ � 
= {} and (� ∪ �) ∩ � = {}, or (iii)� ∩ � 
= {}
and (� ∪ �) ∩ � = {}, or (iv) � ∩ � 
= {} and � ∩ � 
= {}.

Check that � is finitary and satisfies overlap. To show that � satisfies cut1, given �,�,� ⊆ F assume that
(a) �,� � � and (b) for every ϕ ∈ � (bϕ ) � � �,ϕ. Assume that � � �. Thus: (c.i) � ∩ � = {}; (c.ii) either
� ∩ � = {} or (� ∪ �) ∩ � 
= {}; (c.iii) either � ∩ � = {} or (� ∪ �) ∩ � 
= {}; (c.iv) either � ∩ � = {} or � ∩
� = {}. By (b), (d)� ∩ � = {}. By (c.i) and (d), clause (i) does not make (a) true. By (a),� � �. Fix a ϕ ∈ � − �.
By (c.i), clause (i) does not make (bϕ ) true. We now go through the remaining combinations.

Assume that clause (ii) makes (bϕ ) true, i.e., (� ∪ {ϕ}) ∩ � 
= {} and (� ∪ � ∪ {ϕ}) ∩ � = {}. So (� ∪ �) ∩
� = {}; by (c.ii), � ∩ � = {}. So ϕ ∈ �. Assume that clause (ii) makes (a) true; so � ∩ � 
= {}, a contradic-
tion. Assume that clause (iii) makes (a) true; so (� ∪ � ∪ �) ∩ � = {}; since ϕ ∈ � ∩ �, this is a contradiction.
Assume that clause (iv) makes (a) true; so � ∩ � 
= {}, contrary to (� ∪ �) ∩ � = {}.

Assume that clause (iii) makes (bϕ ) true, i.e., � ∩ � 
= {} and (� ∪ � ∪ {ϕ}) ∩ � = {}. But, by (c.iii), (� ∪
�) ∩ � 
= {}, a contradiction.

Assume that clause (iv) makes (bϕ ) true, i.e., � ∩ � 
= {} and (� ∪ {ϕ}) ∩ � 
= {}. By (c.iv), � ∩ � = {}. So
ϕ ∈ �. Assume that clause (ii) makes (a) true; so (� ∪ � ∪ �) ∩ � = {}; so ϕ ∈ � ∩ � = {}, a contradiction.
Assume that clause (iii) makes (a) true; so (� ∪ � ∪ �) ∩ � = {}; so � ∩ � = {}, a contradiction. Assume that
clause (iv) makes (a) true; so � ∩ � 
= {}, a contradiction.

Having exhausted the cases, we have shown that � � �. So � satisfies cut1. A symmetric argument shows that
� satisfies cut2. But: for each ϕ ∈ �, by clause (ii) {} � ϕ; for each ψ ∈ �, by clause (iii) ψ � {}; since � 
= {}
and � 
= {}, by clause (iv) � � �. Check that {} � {}. So � does not satisfy cut3 for 〈�,�〉.
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Observation 4.16 That � is finitary and satisfies overlap and cut for formulas does not suffice to ensure that
� satisfies cut1 or cut2.

Example 4.17 Let 4 ⊆ F . For �,� ⊆ F , let � � � iff either (i) � ∩ � 
= {}, or (ii) � ∪ � ⊆ Even and either
(ii.i) card(�) + 2 = card(�) or (ii.ii) card(�) = card(�) + 1, or (iii) � ∪ � ⊆ Odd and either (iii.i) card(�) =
card(�) + 2 or card(�) + 1 = card(�), or (iv) � ∪ � is infinite.

(i) ensures that � satisfies overlap.
Claim: � is finitary. Assume that � � �. Without loss of generality we may assume that � ∪ � is infinite. So

either � is infinite or � is. Assume that � is infinite. Either � ∩ Even or � ∩ Odd is infinite. Assume the former;
let � = {}, and fixing a γ ∈ � ∩ Even let �′ = {γ }; by (ii.ii) �′ � �′. Assume the latter; let � = {}, and fixing
distinct γ0, γ1 ∈ � ∩ Odd let �′ = {γ0, γ1}; by (iii.i) �′ � �′. Assuming that � is infinite, the choices of �′ and
�′ are symmetric, proving the claim.

Given �,� ⊆ F and ϑ ∈ F , assume that (a) �, ϑ � �, and (b) � � �,ϑ .
Claim: � � �. Assume otherwise; so:

(c.i) � ∩ � = {};
(c.ii) either � ∪ � � Even or

both card(�) + 2 
= card(�) and card(�) 
= card(�) + 1;

(c.iii) either � ∪ � � Odd or
both card(�) 
= card(�) + 2 and card(�) + 1 
= card(�);

(c.iv) � ∪ � is finite.

By (a) and (b), ϑ /∈ � ∪ �. Neither clause (i) nor clause (iv) make (a) true; so (a) is made true by either (ii) or (iii).
So either (d1) � ∪ � ∪ {ϑ} ⊆ Even or (d2) � ∪ � ∪ {ϑ} ⊆ Odd. Assume (d1). So clause (ii) makes (a) true, and
by (c.ii), (e1) card(�) + 2 
= card(�) and (e2) card(�) 
= card(�) + 1. Assume that (ii.i) makes (a) true, i.e.,

(∗) card(�) + 3 = card(� ∪ {ϑ}) + 2 = card(�).

Clause (iii) does not make (b) true; so either (ii.i) or (ii.ii) does. If clause (ii.i) makes (b) true, then

card(�) + 2 = card(� ∪ {ϑ}) = card(�) + 1,

contradicting (∗). If clause (ii.ii) does,
card(�) = card(� ∪ {ϑ}) + 1 = card(�) + 2,

contradicting (∗). Assume that clause (ii.ii) makes (a) true, i.e.,

(∗∗) card(�) + 1 = card(� ∪ {ϑ}) = card(�) + 1.

So card(�) = card(�). Again, either clauses (ii.i) or (ii.ii) makes (b) true, and both cases yield contradictions.
Assuming (d2) yields a contradiction by symmetric arguments. The claim follows. So � satisfies cut for formulas.
Clearly {} � {}. Since {0, 2} � {}, {} � 0 and {} � 2, � does not satisfy cut1 for {0, 2}. Since {} � {1, 3}, {1} � {}
and {3} � {}, � does not satisfy cut2 for {1, 3}.

Observation 4.18 That � is finitary and satisfies overlap, cut3 and cut for F is not sufficient to ensure that it
satisfies cut for sets. (Thus for Lemma 2.9 above, i.e., [4, Theorem 2.2, p. 31], we needed that � be monotonic.)

Example 4.19 Let F be such thatω ⊆ F . For �,� ⊆ F let � � � iff either (i) � ∩ � 
= {}, or (ii) � = � = {},
or (iii) � ∪ � ⊆ Even and � ∪ � is infinite.

Clearly � is finitary and satisfies overlap. Consider �,�,�,� ⊆ F . Assume that (a) �,� � �,�, (b1) for
every ϕ ∈ � (b1ϕ ) � � �,ϕ, and (b2) for every ψ ∈ � (b2ψ ) �,ψ � �.
Claim: � � �. Assume otherwise. So (c.i) � ∩ � = {}, (c.ii) � ∪ � 
= {}, and (c.iii) either � ∪ � is finite or

� ∪ � � Even. Also (d1) � ∩ � = {}, (d2) � ∩ � = {}, and (e) either � � � or � � �. Assume that � � �.
Fix a ϕ ∈ � − �. By (c.i) and (d1), clause (i) does not make (b1ϕ ) true; clearly clause (ii) does not. So clause (iii)
does; so � ∪ � ∪ {ϕ} is an infinite subset of Even; but then � ∪ � is infinite, contradicting (c.iii). A symmetric
argument applies assuming that � � �, using (d2). The claim follows. So � satisfies cut3. Assume that for every
�0 and�1, if {�0,�1} ∈ Splt(F ) then �,�0 � �,�1. If � ∩ � = {} then for any such�0 and�1 neither clauses
(i), (ii) nor (iii) can make true �,�0 � �,�1; so � ∩ � 
= {}; so � � �. So � satisfies cut for F .
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Clearly {} � {0}. But for any �0 and �1, if {�0,�1} ∈ Splt(Even) then �,�0 � �,�1 by case (iii). So � does
not satisfy cut for Even.

5 Appendix

The proof of rTTpo made no essential use of the anti-symmetry of partial orderings. So it generalizes from posets
to prosets. But the obvious straightforward generalization—simply applying it to prosets which as posets are
special—is not the most general generalization. We will not need any such generalization; but the optimal one
may be of interest.

Consider a prosetP = 〈|P|,�〉 (i.e.,� is a pre-ordering of |P|).12 Let x ∼ y iff x � y � x. So∼ is an equivalence
relation on |P| with respect to which � is compatible. So P/∼ is well-defined, and is a poset.

For readability, let �∗ = (�/∼).
For X ∈ P/∼ and y ∈ P, let X �∗ y iff for every (equivalently, some) x ∈ X , x � y.
For an y ∈ P, {x | x � y} might be infinite even though {X | X �∗ y} is finite; we shall rely on the latter set

rather than the former.
Let y be P-finitepro iff: for every f : ω → P, if for every i ∈ ω f (i+ 1) � f (i) then for some n ∈ ω for every

i ∈ ω − n f (i) � f (i+ 1). Note: y is P-finitepro iff {X | X �∗ y} is finite. Furthermore
⋃FP/∼ = {x ∈ P | x is P-

finitepro}.
Let A be of A is of P-finite characterpro iff A ⊆ P and for every x ∈ P,

x ∈ A iff for every P-finitepro y, if y � x then y ∈ A.

So A is of P-finite characterpro iff for some (equivalantly, any) A′ ⊆ P/∼ such that A = ⋃
A′, A′ is of P/∼-

finite character.
Let P be specialpro iff P/∼ is special.
Consider a Z and T such that Z : T → FP/∼. For S ⊆ T and x ∈ P, xmakes S-choices from Z iff for every t ∈ S

there is a Xt �∗ Z(t ) such that Xt �∗ x. For A ⊆ P, A makes finite choices from Z iff for every finite S ⊆ T some
xS ∈ A makes S-choices from Z and is P-finitepro.

Lemma 5.1 (The Restricted Tukey-Teichmüller Lemma for Prosets; rTTpro) Assume that P is a specialpro
proset, and Z : T → FP/∼. For any A ⊆ P, if A is non-empty, of P-finite characterpro, and makes finite choices
from Z, then for some b ∈ A, b makes T -choices from Z (i.e., for every t ∈ dom(Z) there is an X �∗ Z(t ) so that
X �∗ b).

P r o o f . Apply rTTpo to P/∼. �
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