Finite Level Borel Games and a Problem Concerning the Jump Hierarchy Author(s): Harold T. Hodes
Source: The Journal of Symbolic Logic, Vol. 49, No. 4 (Dec., 1984), pp. 1301-1318
Published by: Association for Symbolic Logic
Stable URL: https://www.jstor.org/stable/2274280
Accessed: 08-02-2022 02:04 UTC

REFERENCES

Linked references are available on JSTOR for this article:
https://www.jstor.org/stable/2274280?seq=1\&cid=pdf-reference\#references_tab_contents You may need to log in to JSTOR to access the linked references.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms \& Conditions of Use, available at https://about.jstor.org/terms

Association for Symbolic Logic is collaborating with JSTOR to digitize, preserve and extend access to The Journal of Symbolic Logic

FINITE LEVEL BOREL GAMES AND A PROBLEM CONCERNING THE JUMP HIERARCHY

HAROLD T. HODES

§1. Introduction. The jump hierarchy of Turing degrees assigns to each $\xi<\left(\aleph_{1}\right)^{L}$ the degree $0^{(\xi)}$; we presuppose familiarity with its definition and with the basic terminology of [5]. Let λ be a limit ordinal, $\lambda<\left(\aleph_{1}\right)^{L}$. The central result of [5] concerns the relation between $\boldsymbol{0}^{(\lambda)}$ and exact pairs on $I_{\lambda}=\left\{\boldsymbol{0}^{(\xi)} \mid \xi<\lambda\right\}$. In [6] this question is raised: Where \mathbf{a} is an upper bound on I_{λ}, how far apart are a and $\boldsymbol{0}^{(\lambda)}$? It is there shown that if λ is locally countable and admissible, they may be very far apart: $\mathbf{0}^{(\lambda)}=$ the least member of $\left\{\mathbf{a}^{(\operatorname{lnd}(\lambda))} \mid \mathbf{a}\right.$ is an upper bound on $\left.I_{\lambda}\right\}$; this is rather pathological, for $\operatorname{Ind}(\lambda)$ may be larger than λ. If λ is locally countable but neither admissible nor a limit of admissibles, we are essentially in the case of $\lambda<\omega_{1}^{C K}$; by results of Sacks [12] and Enderton and Putnam [2], $\boldsymbol{0}^{(\lambda)}=$ the least member of $\left\{\mathbf{a}^{(2)} \mid \mathbf{a}\right.$ is an upper bound on $\left.I_{\lambda}\right\}$. If λ is not locally countable, $\operatorname{Ind}(\lambda)$ is neither admissible nor a limit of admissibles, so we are again in a case like that of $\lambda<\omega_{1}^{C K}$. But what if λ is locally countable and nonadmissible, but is a limit of admissibles? For the rest of this paper let λ be such an ordinal. The central result of this paper answers this question for some such λ.

Let " $\operatorname{Det}\left(\Sigma_{n}^{0}, Y\right)$ " for a field of play Y be the statement: "Any two-player infinite game on Y is determined if the set of plays for which I wins is Σ_{n}^{0} (relative to the Baire topology on [Y])." (The definition of a field of play will be given in §2.) Let $\operatorname{Det}\left(\Sigma_{n}^{0}\right)=\operatorname{Det}\left(\Sigma_{n}^{0}, \omega^{<\omega}\right)$. The connection between our initial question and the determinacy of games was discussed in [4]; the following improves the results presented there.

Theorem 1. (i) If $L_{\lambda} \vDash \neg \operatorname{Det}\left(\Sigma_{3}^{0}\right)$, then $\mathbf{0}^{(\lambda)}=$ the least member of $\left\{\mathbf{a}^{(3)} \mid \mathbf{a}\right.$ is an upper bound on $\left.I_{\lambda}\right\}$.

Recall that α is a local \aleph_{m} iff $L_{\alpha+1} \vDash \alpha=\aleph_{m}$. Let λ be m-well-behaved iff there are $\beta, \gamma<\lambda$ so that for all α, if α is a local \aleph_{m+1} and $\beta<\alpha<\lambda$ then $L_{\alpha+\gamma} \vDash \alpha \neq \aleph_{m+1}$.
(ii) If λ is n-well-behaved, $L_{\lambda} \vDash\left(\operatorname{Det}\left(\Sigma_{n+3}^{0}\right) \& \neg \operatorname{Det}\left(\Sigma_{n+4}^{0}\right)\right)$, then $0^{(\lambda)}=$ the least member of $\left\{\mathbf{a}^{(n+4)} \mid \mathbf{a}\right.$ is an upper bound on $\left.I_{\lambda}\right\}$.

Conjecture 1 . The restriction to λ which are n-well-behaved may be eliminated from (ii).

Can the λ for which Theorem 1 answers our question be characterized in other terms? The following result goes some distance in that direction.

Received June 16, 1983.

Theorem 2. (i) If λ is not a limit of $\alpha<\lambda$ such that $L_{\alpha} \models \operatorname{Det}\left(\Sigma_{3}^{0}\right)$, then $L_{\lambda} \not \equiv \operatorname{Det}\left(\Sigma_{3}^{0}\right)$.
(ii) If λ is n-well-behaved and λ is not a limit of α such that $L_{\alpha} \models \operatorname{Det}\left(\Sigma_{n+4}^{0}\right)$, then $L_{\lambda} \neq \operatorname{Det}\left(\Sigma_{n+4}^{0}\right)$.

Conjecture 2 . The restrictions to λ which are n-well-behaved can be eliminated from (ii).

On the positive side, we will show:
Theorem 3. If α is a local \aleph_{n+1} (in fact if L_{α} is a model for the \sum_{3}^{n+1}-comprehension fragment of $(n+2)$ th order number theory and $L_{\alpha} \models \aleph_{n}$ exists $)$, then $L_{\alpha} \models \operatorname{Det}\left(\Sigma_{n+3}^{0}\right)$ (in fact if $n>0$ and $L_{\alpha} \models \gamma=\aleph_{1}, L_{\gamma} \models \operatorname{Det}\left(\Sigma_{n+3}^{0}\right)$).

Applying Π_{1}^{1} absoluteness twice, this yields the following.
Theorem 4. If λ is a limit of ordinals meeting the conditions on α in the antecedent of Theorem 3, then $L_{\lambda} \models \operatorname{Det}\left(\Sigma_{n+3}^{0}\right)$.
§2. Σ_{3}^{0} games in general. We begin with a careful look at Σ_{3}^{0} games on arbitrary fields of play. The key ideas (except for one small but important change) are implicit in Morton Davis' original proof of $\operatorname{Det}\left(\Sigma_{3}^{0}\right)$.

A set Y with $p \in Y$ is a field of play starting at p iff Y is a set of finite sequences such that:
if $q \in Y$ and $p \subseteq r \subseteq q$, then $r \in Y$;
if $q \in Y$, then for some $x, q^{\wedge}\langle x\rangle \in Y$;
length (p) is even.
Let $[Y]=\{f \mid f$ is a function on $\omega, f \upharpoonright n=p \upharpoonright n$ for $n \leq$ length (p), and for all $n \in \omega, f \upharpoonright(n+1)=(f \mid n)^{\wedge}\langle x\rangle \in Y$ for some $\left.x\right\}$. Thus [Y] is the set of plays on field Y. Where $B \subseteq[Y]$ and $Z \subseteq Y$ is a field of play starting at $p^{\prime} \in Y, G(B, Z)$ is the twoplayer infinite game of perfect information played from p^{\prime} as follows: I selects an x_{0} so that $p^{\prime \wedge}\left\langle x_{0}\right\rangle \in Z$; II selects an x_{1} so that $p^{\prime \wedge}\left\langle x_{0}, x_{1}\right\rangle \in Z$; etc.; where f is the play produced, I wins iff $f \in B$.

If Z does not start at $q \in Z$, by " $G(B, Z)$ from q " we mean the game $G\left(B, Z^{き q}\right)$ where $Z^{\supseteq q}=\{r \in Z \mid q \subseteq r\}$. Z is a II-imposed subgame of Y iff Z is a field of play starting with p and for any $q \in Z$, if length (q) is even and $q^{\wedge}\langle x\rangle \in Y$, then $q^{\wedge}\langle x\rangle \in Z$; similarly, for " Z is a I-imposed subgame of Y," except with "odd" replacing "even."

In the Baire topology on [Y], a closed set is one of the forms [S] where S is a tree in Y, i.e. $S \subseteq Y, S$ is a field of play starting with p. Where S is a function carrying $(i, j) \in \omega^{2}$ to a tree $S_{i}(j)$, a set $B=\bigcap_{i \in \omega} \bigcup_{j \in \omega}\left[S_{i}(j)\right]$ is a Π_{3}^{0} set. We fix a Σ_{3}^{0} game $G^{\prime}=G([Y]-B, Y)$ for the next two sections. We suppose that Y starts at the empty sequence \rangle. We will provide an inductive analysis of $\{p \in Y \mid \neg \mathrm{I}$ has a winning strategy for G from $p\}$.

Suppose $Z \subseteq Y, Z$ a field of play, $p \in Z$. For $i \in \omega, X \subseteq Y$, let $H_{i}(Z, X, p)$ be the game which is played as follows. First, player II selects $j \in \omega$; play continues in $Z^{\supseteq p}$. I picks an x so that $p^{\wedge}\langle x\rangle \in Z$, etc. The play $\langle j\rangle^{\wedge} f, f \in\left[Z^{\supseteq p}\right]$, is a win for I iff $f \notin\left[S_{i}(j) \cup X\right] \cap B . H_{i}(Z, X, p)$ is a Σ_{3}^{0} game (on an appropriate field of play).

Let $\Phi_{i, Z}(X)=\left\{p \in Z \mid \neg\right.$ I has a winning strategy in $\left.H_{i}(Z, X, p)\right\}$. It is not hard to see that $\Phi_{i, Z}$ is a monotone (in fact positive) Π_{2}^{1} inductive operator on $\mathscr{P}(Y)$, where the second-order quantifiers range (roughly) over $\mathscr{P}(Y)$.

The following fact is hidden in [1].
Fundamental Technical Lemma. The following are equivalent.
(1) $p \in \Phi_{i, Z}^{\infty}$.
(2) There is a II-imposed subgame of $Z^{\supseteq p},(Z, i, p)^{*}$, so that
(a) $\left[(Z, i, p)^{*}\right] \subseteq \bigcup_{j \in \omega}\left[S_{i}(j)\right]$, and
(b) I does not have a winning strategy in $G\left([Y]-B,(Z, i, p)^{*}\right)$.
(3) $p \in Z$ and I does not have a winning strategy in $G([Y]-B, Z)$ from p.

Lemma 1. For $p \in Y, p \in \Phi_{i, Z}(X)$ iff $p \in Z$ and for some $j \in \omega$:
(4) II has a winning strategy in $G\left([Y]-\left[S_{i}(j) \cup X\right], Z\right)$ from p; and
(5) where U is the II-imposed subgame of $Z^{\supseteq p}$ produced by II's aforementioned strategy, I has no winning strategy in $G([Y]-B, U)$.

Proof. (\Leftarrow) For $p \in Z$, suppose $j \in \omega$ satisfies (4), but $p \notin \Phi_{i, Z}(X)$. Let s be I's winning strategy in $H_{i}(Z, X, p)$. Let II start a play of $H_{i}(Z, X, p)$ by choosing j; let I follow s. After her initial move, let II impose U. Where f is the play produced in Z, since $\langle j\rangle^{\wedge} f$ is a win for I in $H_{i}(Z, X, p)$ and $[U] \subseteq\left[S_{i}(j) \cup X\right], f \notin B$; thus I has a winning strategy for $G([Y]-B, U)$ from p, contrary to (5).
(\Rightarrow) Suppose no j satisfies (4) and (5) and $p \in Z$. We describe a winning strategy for I in $H_{i}(Z, X, p)$. Let II start a play of $H_{i}(Z, X, p)$ with j. If (4) fails for the chosen j, let I play to win $G\left([Y]-\left[S_{i}(j) \cup X\right], Z\right)$ from p; that game is open, so I may do this. Then I wins $H_{i}(Z, X, p)$. If (4) holds for j, then U exists and (5) fails. Let s be I's winning strategy for $G([Y]-B, U)$. As long as II stays inside U let I follow s; if II never leaves U, I wins $H_{i}(Z, X, p)$; if II leaves U at position q, I has a winning strategy for $G\left([Y]-\left[S_{i}(j) \cup X\right], Z\right)$ from q, since U was designed to keep the play in a closed set; let I then play to win that game, thereby also winning $H_{i}(Z, X, p)$. Thus $p \notin \Phi_{i, Z}(X)$. QED.

Proof of the Fundamental Technical Lemma. (1) \Rightarrow (2). Suppose $p \in \Phi_{i, \boldsymbol{Z}}^{\infty}$. We describe how II imposes $(Z, i, p)^{*}$. Let $p_{0}=p,\left|p_{0}\right|_{\Phi}=\xi_{0}$ for $\Phi=\Phi_{i, Z}$. Since $p \in \Phi\left(\Phi^{<\xi_{0}}\right)$, by Lemma 1 there are a $j_{0} \in \omega$ and a U_{0}, so that U_{0} is a II-imposed subgame on $Z^{\supseteq p},\left[U_{0}\right] \subseteq\left[S_{i}\left(j_{0}\right) \cup \Phi^{<\xi_{0}}\right]$ and I has no winning strategy in $G\left([Y]-B, U_{0}\right)$ from p_{0}. Let II keep the play in U_{0} until the end of time or until a $p_{1} \notin S_{i}\left(j_{0}\right)$ is reached. In the latter case, $p_{1} \in \Phi^{<\xi_{0}}$; let $\left|p_{1}\right|_{\Phi}=\xi_{1}<\xi_{0}$; since $p_{1} \in \Phi\left(\Phi^{<\xi_{1}}\right)$ we may fix j_{1} and U_{1}, and iterate. Eventually we reach a final j_{n} and U_{n} and the play ends up in $S_{i}\left(j_{n}\right)$. At no position does I get a winning strategy in $G\left([Y]-B, U_{k}\right)$ for $k \leq n$. The resulting II-imposed game, hereafter denoted $(Z, i, p)^{*}$, is clearly as desired.
$(2) \Rightarrow(3)$ is trivial.
(3) \Rightarrow (1). Suppose $p \in Z, p \notin \Phi^{\infty}$. We now show how I can win $G([Y]-B, Z)$ from p. Let s_{0} be I's winning strategy in $H_{i}\left(Z, \Phi^{\infty}, p_{0}\right)$ for $p_{0}=p$. I pretends that he is playing $H_{i}\left(Z, \Phi^{\infty}, p_{0}\right)$ and that II started that play with $j=0$; I foliows s_{0}. Either the play in Z produced is not in B or else a $p_{1} \notin S_{i}(0) \cup \Phi^{\infty}$ is reached. In the latter case, since $p_{1} \notin \Phi^{\infty}$, I has a winning strategy s_{1} for $H_{i}\left(Z, \Phi^{\infty}, p_{1}\right)$; now I drops the previous pretense and instead pretends to be playing $H_{i}\left(Z, \Phi^{\infty}, p_{1}\right)$, and that II started that play with $j=1$. I now follows s_{1}. And so on. If a final p_{j} is reached, the play in Z produced is not in B. Otherwise for all $j \in \omega$ a p_{j} is reached, $p_{j} \notin S_{i}(j)$; thus the play does not belong to $\bigcup_{j<\omega}\left[S_{i}(j)\right] \supseteq B$; so I wins $G([Y]-B, Z)$ from p_{0}. QED.

Supposed I has no winning strategy in $G([Y]-B, Y)$ from $\left\rangle=p_{0}\right.$. We
describe a strategy for II. It will be important that this construction, unlike Davis' construction in [1], does not assume that [Y] is compact. Let $Z\left(p_{0}\right)=\left(Y, 0, p_{0}\right)^{*}$, using the Fundamental Technical Lemma, (3) \Rightarrow (2). I moves and II responds by selecting $p_{1} \in Z\left(p_{0}\right)$; since $Z\left(p_{0}\right)$ is II-imposed this is possible. I has no winning strategy for $G\left([Y]-B, Z\left(p_{0}\right)\right)$. Let $Z\left(p_{1}\right)=\left(Z\left(p_{0}\right), 1, p_{1}\right)^{*}$, using (3) $\Rightarrow(2)$ again. Continue in this manner. Since $\left[Z\left(p_{i}\right)\right] \subseteq \bigcup_{j<\omega}\left[S_{i}(j)\right]$, II wins $G([Y]-B, Y)$. Notice that the II-imposed subgame corresponding to this strategy is $\{p \in Y \mid Z(p)$ is defined $\}$.

Observation 1. Det $\left(\Sigma_{n+3}^{0}\right)$ is a theorem of $(n+2)$ th order number theory, in fact of the Σ_{3}^{n+2}-comprehension fragment of $(n+2)$ th order number theory.

Proof. Suppose S is a function on ω^{n+2} whose values are trees in $Y_{0}=\omega^{<\omega}$. Let

$$
B=\left\{\begin{array}{l}
\bigcap_{i} \bigcup_{j} \bigcap_{i_{1}} \ldots \bigcup_{i_{n}}\left[S\left(i, j, i_{1}, \ldots, i_{n}\right)\right] \quad \text { if } n \text { is even; } \\
\bigcap_{i} \bigcup_{j} \bigcap_{i_{1}} \ldots \bigcap_{i_{n}}\left([Y]-\left[S\left(i, j, i_{1}, \ldots, i_{n}\right)\right]\right) \quad \text { otherwise. }
\end{array}\right.
$$

Let $G^{0}=G\left(\left[Y_{0}\right]-B, Y_{0}\right) ; G^{0}$ is a typical Σ_{n+3}^{0} game. For $i<n$ let G^{i+1} be the result of applying Martin's *-operation from [9] to $G^{i} ; G^{i+1}$ is a game on $Y_{i+1}=Y_{i}^{*}$, which may be viewed as a subfied of play of $\mathscr{P}^{i+1}(\omega)^{<\omega}$. Thus G^{n} is a Σ_{3}^{0} game on $Y=Y_{n}$. [Y] is not compact; hence the need to revise the Davis proof.

In $(n+2)$ th order number theory, we can formalize the previous proof that G^{n} is determined. In fact, Σ_{3}^{n+1}-comprehension suffices to prove the existence of the fixed points for the Π_{2}^{n+1} monotonic operators involved in that proof. Suppose s^{n} is a winning strategy for G^{n}; in [9] Martin describes a procedure which converts a strategy s^{i+1} for G^{i+1} into a strategy s^{i} for G^{i}. This procedure can be described and shown to work in $(n+2)$ th order number theory. Thus in $(n+2)$ th order number theory we can show that s^{0}, a winning strategy for G, exists.

If α is a local \aleph_{n+1}, then L_{α} is a model of $(n+2)$ th order number theory; thus $L_{\alpha} \models \operatorname{Det}\left(\Sigma_{n+3}^{0}\right)$. Theorems 3 and 4 follow immediately.

We will now relativize the previous discussion to models of $V=L$. Let T be the set consisting of these sentences:

$$
\begin{aligned}
& \text { Extensionality, Pairing, Union, Infinity, Foundations, } \\
& (\forall \xi)(\exists x)\left(x=L_{\xi}\right), \quad V=L .
\end{aligned}
$$

Let $\mathscr{M}=\left(M, \varepsilon^{\mathscr{M}}\right)$ be an arbitrary ω-model of $T ; M_{a}=\left\{x \in M \mid \mathscr{M} \models x \in L_{a}\right\}$ for $a \in \operatorname{On}(\mathscr{M}) ; \mathscr{M}_{a}=\left(M_{a}, \varepsilon^{\mathscr{M}} \upharpoonright M_{a}\right) ; \alpha=o(\mathscr{M})=$ the least ordinal not represented in \mathscr{M}. Suppose $Y \in \mathscr{M}, \mathscr{M} \vDash Y$ is a field of play starting at \rangle.

Lemma 2. If $\mathscr{M} \models(\forall \xi)(\exists \eta>\xi)(\eta$ is admissible $)$, then there is a Π_{1} formula defining $p \in \Phi_{i, Z}(X)$ over \mathscr{M}, where " Z " and " X " are regarded as first order variables.

Proof. Recall that $p \in \Phi_{i, Z}(X)$ is defined by the following Π_{2} formula:
$(\forall s)$ (if s is a strategy for I in the field of play for $H_{i}(Z, X, p)$ then $(\exists f)\left(f\right.$ is a play of $H_{i}(Z, X, p)$ in which I follows s and which II wins)).
Fix $s \in M, \mathscr{M} \models s$ is a strategy for I in the field of play for $H_{i}(Z, X, p)$. What follows the " $(\exists f)$ " above may be rewritten in this form:
$(\exists f)(\exists g)(f$ and g are functions on ω and $(\forall n \in \omega) \psi(s, Y, Z, i, p, f \upharpoonright n, g \upharpoonright n, n))$,
where ψ is Σ_{0}. The formula is equivalent to the statement that a certain tree \hat{T} has an infinite branch, where \hat{T} depends in a Σ_{0} way on the parameters s, Y, Z, i, p. Where $\hat{T} \in M_{a}$, if $\mathscr{M} \vDash(a<b$ and b is admissible and \hat{T} has an infinite branch), then $\mathscr{M} \vDash\left(\hat{T}\right.$ has an infinite branch in $\left.L_{b+1}\right)$, by a relativized version of the Kleene basis theorem. Thus our original formula holds in \mathscr{M} iff the following does:

> ($\forall s)$ (if s is a strategy for I in the field of play for $H_{i}(Z, X, p)$ then $(\forall \xi)$ (if $\hat{T}(s, Y, Z, i, p) \in L_{\xi}$ and ξ is admissible, then $(\exists f)\left(f \in L_{\xi+1}\right.$ and $\left.\left.f \in[\hat{T}(s, Y, Z, i, p)]\right)\right)$.

The latter is clearly equivalent to a Π_{1} formula. QED.
For the rest of this section, we will assume that $\mathscr{M} \vDash(\forall \xi)(\exists \eta>\xi)(\eta$ is admissible). For $a \in \operatorname{On}(\mathscr{M}), a$ is \mathscr{M}-stable iff $\mathscr{M}_{a} \prec_{1} \mathscr{M}$. Where $\mathscr{M}=\left(L_{\alpha}, \varepsilon \backslash L_{\alpha}\right), \mathscr{M}$-stability coincides with α-stability. Let " Σ_{n} Projectibility" be the sentence: "There is a Σ_{n} function projecting the ordinals one-one into a set"; "Projectibility" is " Σ_{1} Projectibility." Clearly α is Σ_{n}-projectible (i.e. $\rho_{a}^{n}<\alpha$) iff $L_{\alpha} \models \Sigma_{n}$ Projectibility. The familiar Skolem argument, showing that α is not projectible iff α is a limit of α stables, generalizes to $\mathscr{M}: \mathscr{M} \vDash(\neg$ Projectibility) iff the \mathscr{M}-stables are unbounded in $\operatorname{On}(\mathscr{M})$ under $<^{\mathscr{M}} ; \mathscr{M} \vDash(a$ is not projectible $)$ iff the \mathscr{M}-stables $<^{\mu}$-below a are unbounded under $<^{\mathscr{M}}$. Let $\left\{a_{b}\right\}_{b \in B}$ for $B \subseteq \operatorname{On}(\mathscr{M})$ be the increasing enumeration of the \mathscr{M}-stables (under $<^{M}$). This listing is continuous under $<^{M}$.

Suppose $c, d \in M_{a_{b}}$ and $\mathscr{M} \vDash a_{b}+1=a^{\prime}$. Where ψ is a Π_{1} formula, there is an $e \in M$ such that $\mathscr{M} \models\left(e=\{x \in c \mid \psi(x, c, d)\}\right.$ and $\left.e \in L_{a^{\prime}}\right) ;$ this is because $\mathscr{M}_{a_{b}} \prec_{1} \mathscr{M}$.
Suppose $S \in M, \mathscr{M} \models\left(S\right.$ is a function on ω^{2} such that for all $i, j \in \omega, S_{i}(j)$ is a tree in $Y)$. In this case we will say that the game $G=G([Y]-B, Y)$, for $B=\bigcap_{i} \bigcup_{j}\left[S_{i}(j)\right]$, is defined in \mathscr{M}. Fix $i, Z \in M, \mathscr{M} \vDash(i \in \omega$ and Z is a subfield of play of $Y)$. Let $\Phi=\Phi_{i, \mathrm{z}}$. For $a \in \operatorname{On}(\mathscr{M})$ fix $\theta^{<a}=\theta$ such that

$$
\mathscr{M} \vDash \theta \text { is a function on } a \text { and }(\forall \xi<a)\left(\theta(\xi)=\Phi\left(\bigcup \operatorname{Range}\left(\theta^{<\xi}\right)\right)\right),
$$

provided that for all $b<^{\mathscr{M}} a, \theta^{<b}$ is defined; let $\theta^{a}=\theta^{<a^{\prime}}$ where $. \mathscr{M} \vDash a^{\prime}=a+1$; let " $p \in \Phi^{a}$ " abbreviate " $p \in \theta^{a}(a)$ ", " $p \in \Phi^{<a "}$ abbreviate " $p \in \bigcup$ Range $\theta^{<a ",}$ " $|p|_{\Phi}=a$ " abbreviate " $p \in \Phi^{a}-\Phi^{<a ",}$ and " Φ^{∞} exists" abbreviate " $(\exists \xi)\left(\bigcup \operatorname{Range}\left(\theta^{<\xi}\right)=\Phi\left(\bigcup \operatorname{Range}\left(\theta^{<\xi}\right)\right)\right)$." Suppose that $Y, Z \in M_{a_{c}}$. For $b^{\prime}=$ $c+^{\mathscr{M}} b \in B, \mathscr{M} \vDash \theta^{<b}$ is definable over $L_{a_{b}} ;$; so $\theta^{<b} \in M_{a^{\prime}}$ where $\mathscr{M} \vDash a^{\prime}=$ $a_{b^{\prime}}+1$; this is proved by induction on b within \mathscr{M}, using Lemma 2. We are now ready to consider the Fundamental Technical Lemma within \mathscr{M}.

Lemma 3. If $\mathscr{M} \vDash p \in \Phi^{a}$, then \mathscr{M} satisfies proposition (2) of the Fundamental Technical Lemma.
Proof. Within \mathscr{M} we carry out the construction of $(Z, i, p)^{*}$ using $\theta^{<a} \in M$; notice that $(Z, i, p)^{*}$ is actually a member of M, since it is Λ_{1} in $\theta^{<a}$ and relevant parameters; it clearly meets conditions (2a) and (2b). QED.
Lemma 4. Suppose that $\mathscr{M} \vDash\left(\Phi^{\infty}\right.$ exists) and $Y, Z, \Phi^{\infty} \in L_{a_{b}}$. If $\mathscr{M} \vDash\left(p \notin \Phi^{\infty}\right)$, then $\mathscr{M} \vDash\left(\mathrm{I}\right.$ has a winning strategy in G from p which belongs to $\left.L_{a^{\prime}}\right)$, where $\mathcal{M} \vDash a_{b}+1=a^{\prime}$.

Proof. Carry out the construction used in proving the Fundamental Technical Lemma, (3) $\Rightarrow(1)$, within \mathscr{M}. Notice that all of I's subsidiary strategies, the s_{j} 's of that proof, belong to $M_{a b}$; thus definably over $M_{a b}$ we may assemble them into a strategy for I in G from p. QED.

Suppose $\mathscr{M} \models \neg \mathrm{I}$ has a winning strategy in G from p. We now construct a system of notation within \mathscr{M}. Let $Y \in M_{a_{c}}$, where c is the $<^{\mathcal{M}}$-least such ordinal. We will define a partial two-place function $g_{\mathcal{M}}=g$. Let $g\left(\left\rangle^{\mathcal{M}}, p\right)=a\right.$ iff $\mathscr{M} \vDash a=c+|p|_{\Phi}$, where $\Phi=\Phi_{0, Y}$. If $g\left(\left\rangle^{\mathcal{M}},\langle \rangle^{\mathcal{M}}\right)\right.$ is defined, $\mathscr{M} \vDash\left(\left\rangle \in \Phi^{b}\right)\right.$ for some $b \in \operatorname{On}(\mathscr{M})$; by Lemma 3 we may fix $Z\left(\left\rangle^{\mathcal{M}}\right)\right.$ by $\mathscr{M} \vDash(Y, 0,\langle \rangle)^{*}=Z\left(\langle \rangle^{\mathcal{M}}\right)$. Now suppose that $g(q, q)$ and $Z(q)$ are defined, $\mathscr{M} \models(q \in Y$ and length $(q)=2 i)$ and $\mathscr{M} \vDash \neg \mathrm{I}$ has a winning strategy in $G([Y]-B, Z(q))$ from q. Suppose $\mathscr{M} \vDash q^{\prime}=q^{\wedge}\langle x, y\rangle \in Z(q)$. Let $g\left(q^{\prime}, p\right)=a$ iff $\mathscr{M} \vDash a=g(q, q)+|p|_{\Phi}$, where $\Phi=\Phi_{i+1, Z(q)}$. If $g\left(q^{\prime}, q^{\prime}\right)$ is defined, for some $b, \mathscr{M} \vDash q^{\prime} \in \Phi^{b}$; fix $Z\left(q^{\prime}\right)$ by $\mathscr{M} \vDash\left(Z(q), i+1, q^{\prime}\right)^{*}=Z\left(q^{\prime}\right)$. Thus $\mathscr{M} \vDash \neg \mathrm{I}$ has a winning strategy for $G\left([Y]-B, Z\left(q^{\prime}\right)\right)$ from q^{\prime}; so the induction hypothesis is preserved.

Lemma 5. Suppose that $b \in B$ and for all $q, p:$ if $g(q, p)$ is defined, then $g(q, p)<^{\mathcal{M}} b$. Then $\mathscr{M} \vDash$ II has a winning strategy in G.

Proof. For $\Phi=\Phi_{0, Y}, \mathscr{M} \vDash$ (if $|p|_{\Phi}$ exists, then $|p|_{\Phi}<b$); so $\mathscr{M} \vDash \Phi^{\infty}$ exists. Using Lemma 4, $\mathscr{M} \models\left\rangle \in \Phi^{\infty}\right.$; so $\mathscr{M} \vDash\left(\left|\left\rangle\left.\right|_{\Phi}=b^{\prime}\right)\right.\right.$, for some $b^{\prime} \in \operatorname{On}(\mathscr{M})$. $\mathscr{M} \vDash c+b^{\prime}$ exists; otherwise fix $b^{\prime \prime}$ so that $\mathscr{M} \vDash c+b^{\prime \prime}=b$; since $b^{\prime \prime}<^{\mathscr{M}} b^{\prime}$, for some $r, \mathscr{M} \vDash$ $|r|_{\Phi}=b^{\prime \prime}$; so $g\left(\left\rangle^{M}, r\right)=b\right.$, a contradiction. Thus $g\left(\left\rangle^{M},\langle \rangle^{M}\right)\right.$ is defined, and so is $Z\left(\left\rangle^{\mathcal{M}}\right)\right.$. In fact $Z\left(\left\rangle^{\mathcal{M}}\right)\right.$ is Λ_{1} in $\theta^{<b^{\prime}}$, and so belongs to $M_{a_{b}}$. Now suppose that $Z(q)$ and $g(q, q)$ are defined, $Z(q) \in M_{a_{b}}, \mathscr{M} \vDash(q \in Y$ and length $(q)=2 i), \mathscr{M} \vDash \neg \mathrm{I}$ has a winning strategy in $G([Y]-B, Z(q))$ from q. Let $\mathscr{M} \vDash q^{\prime}=q^{\wedge}\langle x, y\rangle \in Z(q)$. For $\Phi=\Phi_{i+1, Z(q)}$, as above we have $\mathscr{M} \vDash \Phi^{\infty}$ exists. By Lemma 4, $\mathscr{M} \vDash q^{\prime} \in \Phi^{\infty}$; thus there is a $b^{\prime} \in \operatorname{On}(\mathscr{M})$ so that $\mathscr{M} \models\left|q^{\prime}\right|_{\mathscr{D}}=b^{\prime}$. As before, $\mathscr{M} \vDash c+b^{\prime}$ exists; so $g\left(q^{\prime}, q^{\prime}\right)$ is defined, as is $Z\left(q^{\prime}\right)$; again $Z\left(q^{\prime}\right) \in M_{a_{b}}$. Since for all q so that $Z(q)$ is defined, $Z(q) \in M_{a_{b}}$, we can define $\{q \mid Z(q)$ is defined $\}$ over $M_{a_{b}}$; it is a winning strategy for II in G which belongs to M. QED.

We will use g_{μ} later. For now we note the following fact.
Lemma 6. Suppose α is a limit of admissibles, $L_{\alpha} \models\left(\aleph_{n}\right.$ exists and Y is a subfield of play of $\left.\mathscr{P}^{n}(\omega)^{<\omega}\right)$. If $L_{\alpha} \models \operatorname{Det}\left(\Sigma_{3}^{0}, Y\right)$, then $L_{\alpha} \models \operatorname{Det}\left(\Sigma_{n+3}^{0}\right)$.

Proof. We use the notation of Observation 1, where G is defined in L_{α}, i.e. $S \in L_{\alpha}$. We define the sequence G^{i} and Y_{i} using the Martin ${ }^{*}$-operation within L_{α}, i.e. $L_{\alpha} \models Y_{i+1}=Y_{i}^{*}$, where Y_{i} is a subfield of play of $\mathscr{P}^{i}(\omega)^{<\omega} \cap L_{\alpha}$. Suppose for $s^{n} \in L_{\alpha}$, $L_{\alpha} \models s^{n}$ is a winning strategy for G^{n}. It suffices to note that s^{i} may be defined from s^{i+1} within L_{α}. If s^{i+1} is a winning strategy for I , this is straightforward. If s^{i+1} is a winning strategy for II and $s^{i+1} \in L_{\beta}$, where $L_{\alpha} \models \beta>\aleph_{i+1}$, then $s_{i} \in L_{\beta^{\prime}}$ where $\beta^{\prime}=\beta^{+}+1 .\left(\beta^{+}=\right.$the least admissible $<\beta$.) To see this, recall the closed games of the form G^{\prime} from [9, p. 367]. The set of winning positions for I in G^{\prime} belongs to L_{β}. By Theorem 7B. 2 of [11], a winning strategy for G^{\prime} belongs to $L_{\beta^{\prime}}$. By finding such strategies and using them as detailed in [9], s^{i} is defined in L. Thus $L_{\alpha} \models s^{i}$ is a winning strategy; so s^{0} is as required. QED.
§3. Computing infinite descending chains. Suppose \mathscr{M} is a nonstandard ω-model of $T, \mathscr{M}=\left(M, \varepsilon^{\mathcal{M}}\right), M \subseteq \omega$; let $\alpha=o(\mathscr{M})$ and suppose that $L_{\alpha} \models \gamma=\aleph_{m}$ is the greatest cardinal, and $\mathscr{M} \vDash \gamma^{\mathcal{M}}=\aleph_{m}$ is the greatest cardinal, where $m \in \omega$. Let \mathscr{E} be an arithmetic copy of $L_{\hat{\alpha}}$, i.e. $\mathscr{E}=\left(E, \varepsilon^{\mathscr{E}}\right)$ for $E \subseteq \omega, \mathscr{E}$ isomorphic to $L_{\hat{\alpha}}$, for $\alpha \leq \hat{\alpha}$. We will investigate varıous cases of this question: how hard is it to compute an infinite descending $\varepsilon^{\mathscr{M}}$ chain given an oracle for $A=\operatorname{Sat}(\mathscr{M}) \oplus \operatorname{Sat}(\mathscr{E})$?

For $a \in \operatorname{On}(\mathscr{M})$ let $M_{a}=\left\{b \mid \mathscr{M} \models b \in L_{a}\right\}, \mathscr{M}_{a}=\left(M_{a}, \varepsilon^{\mathscr{M}} \upharpoonright M_{a}\right)$; for $a \in \operatorname{On}(\mathscr{E})$ define \mathscr{E}_{a} analogously. Let $M^{\prime}=\bigcup\left\{M_{a} \mid a\right.$ is a standard ordinal of $\left.\mathscr{M}\right\}, \mathscr{M}^{\prime}=$
$\left(M^{\prime}, \varepsilon^{\mathscr{M}} \upharpoonright M^{\prime}\right)$. Let $E_{\alpha}=$ the domain of \mathscr{E}_{a} for $a=\alpha^{\mathscr{E}}$ if $\hat{\alpha}>\alpha$; let E_{α} be E if $\alpha=\hat{\alpha}$. Let $F: E_{\alpha} \rightarrow M$ be the unique isomorphic embedding of $\left(E_{\alpha}, \varepsilon^{\mathscr{E}} \upharpoonright E_{\alpha}\right)$ onto \mathscr{M}^{\prime}. Let $F_{i}=F \upharpoonright\left\{x^{\mathscr{E}} \mid x \in \mathscr{P}^{i}(\omega)\right\}$ for $i \leq m+1$. Where confusion is unlikely, we will identify \mathscr{E} and $L_{\hat{\alpha}}$.

Lemma 7. F_{i} is recursive in $A^{(i)}$.
Proof. For $i=0$, this is clear. $F_{i+1}(a)=b$ iff $L_{\alpha} \models a \subseteq \mathscr{P}^{i}(\omega), \mathscr{M} \models b \subseteq \mathscr{P}^{i}(\omega)$, and for all c such that $L_{\alpha} \models c \in \mathscr{P}^{i}(\omega)$: $L_{\alpha} \models c \in a$ iff $\mathscr{M} \models F_{i}(c) \in b$; so F_{i+1} is Π_{1}^{0} in F_{i}, so by induction is recursive in $A^{(i+1)}$.

Corollary 1. If $L_{\alpha} \models \operatorname{card}(\delta)=\aleph_{i}$, then $F \upharpoonright \delta$ is recursive in $A^{(i)}$ for $i \leq m$.
Proof. Fix $W, g \in L_{\alpha}, W$ a well-ordering of height $\delta, \operatorname{Fld}(W) \subseteq \mathscr{P}^{i}(\omega) \cap L_{\alpha}$ and g the order-preserving map of $\operatorname{Fld}(W)$ onto δ. For $\xi<\delta, F(\xi)=b$ iff for some a, $L_{\alpha} \vDash g(a)=\xi$ and $\mathscr{M} \vDash g^{\mathscr{M}}\left(F_{i}(a)\right)=b$. So $F \upharpoonright \delta$ is recursive in $A \oplus F_{i}$, and thus in $A^{(i)}$. QED.

Lemma 8. $F \upharpoonright \alpha$ and F are recursive in $A^{(m+1)}$.
Proof. Using any reasonable way of coding constructible sets as ordinals, it suffices to prove this for $F \upharpoonright \alpha$. Let $\varphi(x, y)$ be the Σ_{1} formula which defines the enumeration of $\mathscr{P}^{m+1}(\omega) \cap L$ in increasing order under $<_{L}$, i.e. $L \models \varphi(x, \xi)$ iff x is the ξ th member of $\mathscr{P}^{m+1}(\omega)$ under $<_{L}$. This remains true within L_{α}. Let $x_{b}=a$ iff $\mathscr{M} \vDash \varphi(a, b)$ for $b \in \operatorname{On}(\mathscr{M}), y_{\xi}=a$ iff $L_{\alpha} \models \varphi(a, \xi)$ for $\xi<\alpha$. Then $F(\xi)=b$ if $F_{m+1}\left(y_{\xi}\right)=x_{b}$; so $F \upharpoonright \alpha$ is recursive in $A \oplus F_{m+1}$ and so in $A^{(m+1)}$. QED.

Corollary 2. There is an infinite descending $\varepsilon^{\boldsymbol{M}}$-chain recursive in $A^{(m+2)}$.
Proof. By Lemma $7, \operatorname{On}(\mathscr{M})-\operatorname{On}\left(\mathscr{M}^{\prime}\right)=\operatorname{On}(\mathscr{M})-F^{\prime \prime} \alpha$, which is co-r.e. in $A^{(m+1)}$, and so is recursive in $A^{(m+2)}$; an infinite descending $\varepsilon^{\mathcal{M}}$-chain may now be easily constructed. QED.

The rest of this section concerns improvements of Corollary 2. We recall the generalization of projectibility from Σ_{1} to Σ_{n} : α is Σ_{n}-projectible iff there is an f mapping α one-one into some $\delta<\alpha$, where f is Σ_{n} over L_{α}.

Lemma 9. Suppose that α is Σ_{n+1}-projectible. If there is a nonstandard a such that $\mathscr{M}^{\prime} \prec_{n} \mathscr{M}_{a}$, then there is an infinite descending $\varepsilon^{\mathscr{M}}$-chain recursive in $A^{(m)}$.

Proof. Let f be a Σ_{n+1} over L_{α} projection of α into γ, where $L_{\alpha} \models \aleph_{m}=\gamma$. Suppose f is defined over L_{α} by $(\exists z) \varphi(p, x, y, z), p \in L_{\alpha}, \varphi$ a Π_{n} formula. Suppose $\mathscr{M}^{\prime} \prec_{n} \mathscr{M}$; otherwise replace \mathscr{M} by an appropriate \mathscr{M}_{a}. Then $\mathscr{M} \models(\exists z) \varphi\left(p^{\mathscr{M}}, \xi^{\mathcal{M}}, f(\xi)^{\mathcal{M}}, z\right)$ for all $\xi<\alpha$.

Claim. For $b \in \operatorname{On}(\mathscr{M}), b$ is nonstandard iff one of the following conditions obtains:
(1) $\mathscr{M} \vDash \neg\left(\exists \eta<\gamma^{\mathscr{M}}\right)(\exists z) \varphi\left(p^{\mathcal{M}}, b, \eta, z\right)$;
(2) for some $\eta<\gamma, \eta \notin \operatorname{Range}(f)$ and $\mathscr{M} \vDash(\exists z) \varphi\left(p^{\mathscr{M}}, b, \eta^{\mathscr{M}}, a\right)$;
(3) $\mathscr{M} \vDash(\exists \xi)\left(\exists \xi^{\prime}\right)\left(\exists \eta<\gamma^{\mathcal{M}}\right)(\exists z)\left(\exists z^{\prime}\right)\left(\xi \neq \xi^{\prime} \&\left\langle\xi^{\prime}, z^{\prime}\right\rangle<_{L}\langle\xi, z\rangle \&\langle\xi, z\rangle \in L_{b} \&\right.$ $\left.\varphi\left(p^{\mathcal{M}}, \xi, \eta, z\right) \& \varphi\left(p^{\mathcal{M}}, \xi^{\prime}, \eta, z^{\prime}\right)\right)$.

Thus the set of nonstandard $b \in \operatorname{On}(\mathscr{M})$ is RE in $A \oplus(F \upharpoonright \gamma)$, which by Corollary 1 , is recursive in $A^{(m)}$; this suffices to compute a descending ε^{μ}-chain as in the proof of Lemma 8. QED.

Lemma 10. Suppose that for all nonstandard $a \in \operatorname{On}(\mathscr{M}), \mathscr{M}^{\prime} \nprec_{1} \mathscr{M}_{a}$. If α is not Σ_{1}-projectible and the order-type of the α-stable ordinals $=\beta<\alpha$, then there is an infinite descending ε^{M}-chain recursive in $A^{(m)}$.

Proof. Let $\left\{\alpha_{\xi}\right\}_{\xi<B}$ be the increasing enumeration of the α-stable ordinals. Let $\left\{a_{b}\right\}_{b \in B}$ for $B \subseteq \operatorname{On}(\mathscr{M})$ be the $<^{\mathcal{M}}$-increasing enumeration of the \mathscr{M}-stable
ordinals. We describe a procedure effective in $A^{(m)}$ for selecting a nonstandard $a \in \operatorname{On}(\mathscr{M})$; it is sufficiently independent of \mathscr{M} to be repeatable with \mathscr{M}_{a} in the place of \mathscr{M}; iterating this procedure, we will obtain our desired $\varepsilon^{\mathscr{M}}$-chain. Assume without loss of generality that $\mathscr{M}^{\prime} \not_{1} \mathscr{M}$.

If B is nonempty, there is a b_{0} which is the $<^{\mathcal{M}}$-maximal b such that a_{b} is standard; otherwise $\mathscr{M}^{\prime} \prec_{1} \mathscr{M}$. Clearly b_{0} is standard; let $b_{0}=\left(\xi_{0}\right)^{\mathcal{M}}$ and $a^{*}=a_{b_{0}}$. Where $\gamma^{\mu}=a_{b_{0}}, \gamma$ is α-stable: for suppose $e \in L_{\gamma}, \varphi$ is Π_{0} and $L_{\alpha} \models(\exists x) \varphi(x, e)$; then $\mathscr{M} \vDash(\exists x) \varphi\left(x, e^{\mathscr{M}}\right)$ and $e^{\mathscr{M}} \in \mathscr{M}_{a *}$; thus $\mathscr{M}_{a *} \vDash(\exists x) \varphi\left(x, e^{\mathscr{M}}\right)$ and so $L_{\gamma} \models(\exists x) \varphi(x, e)$. We may prove more along these lines: for $\delta<\gamma, \delta$ is α-stable iff $\delta^{\mathcal{M}}$ is \mathscr{M}-stable. Let $e \in L_{\delta}$ and let φ be Π_{0}. Suppose that δ is α-stable; if $\mathscr{M} \models(\exists x) \varphi\left(x, e^{\mathcal{M}}\right)$, then $\mathscr{M}_{a *} \models(\exists x) \varphi\left(x, e^{\mathscr{M}}\right)$; so $L_{\gamma} \models(\exists x) \varphi(x, e)$; so $L_{\delta} \models(\exists x) \varphi(x, e)$; so $\mathscr{M}_{\delta \mu} \models(\exists x) \varphi\left(x, e^{\mathscr{M}}\right)$; thus $\delta^{\mathcal{M}}$ is \mathscr{M}-stable. Suppose that $\delta^{\mathcal{M}}$ is \mathscr{M}-stable; if $L_{\alpha} \models(\exists x) \varphi(x, e)$ then $\mathscr{M} \vDash(\exists x) \varphi\left(x, e^{\mathscr{M}}\right)$; so $\mathscr{M}_{\delta^{\mathscr{M}}} \vDash(\exists x) \varphi\left(x, e^{\mathscr{M}}\right)$; so $L_{\delta} \models(\exists x) \varphi(x, e)$, showing δ to be α stable. This implies the following important fact: For $\xi \leq \xi_{0}$ and $b=\xi^{\mathcal{M}}, a_{b}=\left(a_{\xi}\right)^{\mathcal{M}}$.

We now describe three search procedures; we will engage in Search 1 if B is nonempty, in Search 2 if B is nonempty and has a $<^{\mathcal{M}}$-maximum member, and in Search 3 if B is empty. All of these searches can be carried out effectively in $A \oplus(F \upharpoonright \beta)$.

Search 1. Search for $\xi<\beta$ so that for $b=\xi^{\mathcal{M}}=F(\xi) \in B, a_{b} \neq\left(\alpha_{\xi}\right)^{\mathcal{M}}$. We try to determine whether $a_{b} \neq\left(\alpha_{\xi}\right)^{M}$ as follows: search for $r \in L_{\alpha}$ and $s \in M$ so that

$$
\begin{aligned}
& L_{\alpha} \models r \text { is the } \alpha_{\xi} \text { th subset of } \mathscr{P}^{m}(\omega) \text { under }<_{L} ; \\
& \mathscr{M} \models s \text { is the } a_{b} \text { th subset of } \mathscr{P}^{m}(\omega) \text { under }<_{L} ;
\end{aligned}
$$

then search for an $e \in L_{\alpha} \cap \mathscr{P}^{m}(\omega)$ so that $L_{\alpha} \models e \in r$ iff $\mathscr{M} \not \equiv e^{\mathscr{M}} \in s$, using F_{m}. Such an e exists, and so will be found, iff $a_{b} \neq\left(\alpha_{\xi}\right)^{\boldsymbol{M}}$. We output the first a_{b} found in this manner. Such an a_{b} is nonstandard; otherwise $b \leq^{\mathcal{M}} b_{0}$, in which case $a_{b}=\left(\alpha_{\xi}\right)^{\mathcal{M}}$.

Search 2. Let c_{0} be the $<^{\mathcal{M}}$-maximum member of B. Find η_{0} so that $\eta_{0}^{\mathcal{M}}=c_{0}$. Then search for $\eta_{1}, \ldots, \eta_{k}<\eta_{0}$ and $c_{1}, \ldots, c_{k} \in B, a \in \operatorname{On}(\mathscr{M})$ and φ a Π_{0} formula so that $(F \upharpoonright \beta)\left(\eta_{i}\right)=c$; for $1 \leq i \leq k, a_{c_{0}}<{ }^{\mathcal{M}} a$ and:

$$
\begin{aligned}
L_{\alpha} & \neq(\exists x) \varphi\left(x, \alpha_{\eta_{0}}, \alpha_{\eta_{1}}, \ldots, \alpha_{\eta_{k}}\right), \\
\mathscr{M} & \vDash\left(\exists x \in L_{a}\right) \varphi\left(x, a_{c_{0}}, a_{c_{1}}, \ldots, a_{c_{k}}\right) .
\end{aligned}
$$

Output a.
Claim. If this search succeeds, a is nonstandard. If $a_{c_{0}}$ is nonstandard, so is a; otherwise $c_{0}=b_{0}, \eta_{0}=\xi_{0}$; thus $a_{c_{i}}=\left(\alpha_{\eta_{i}}\right)^{\mathcal{M}}$ for $i \leq k$. If $\mathscr{M} \vDash \varphi\left(e, a_{c_{0}}, a_{c_{i}}, \ldots, a_{c_{k}}\right)$ and $e \in \mathscr{M}^{\prime}$, then $e=d^{\mathscr{M}}$ for $d \in L_{\alpha}$ and $L_{\alpha} \models \varphi\left(d, \alpha_{\eta_{0}}, \alpha_{\eta_{1}}, \ldots, \alpha_{\eta_{k}}\right)$, contrary to what holds in L_{α}; thus for a witness $e \in \mathscr{M}_{a}, a$ must be nonstandard.

If B has no $<^{\mathscr{M}}$-maximum member, then $b=b_{0}{ }^{(\boldsymbol{M}} 1 \in B$ and $\xi_{0}+1<\beta$ meet the conditions of Search 1 ; so eventually Search 1 succeeds. If B has a $<^{M_{-}}$ maximum member c_{0} and $c_{0}>^{\mu} b_{0}$, Search 1 will succeed. Now suppose that $c_{0}=b_{0}$. Also suppose that for all Π_{0} formulae φ and all $\eta_{1}, \ldots, \eta_{k}<\eta_{0}=\xi_{0}<\beta$ and $c_{i}=\left(\eta_{i}\right)^{\mu}$ for $i \leq k$: if

$$
\mathscr{M} \vDash(\exists x) \varphi\left(x, a_{c_{0}}, a_{c_{1}}, \ldots, a_{c_{k}}\right),
$$

then

$$
L_{\delta} \models(\exists x) \varphi\left(x, \alpha_{\eta_{0}}, \alpha_{\eta_{1}}, \ldots, \alpha_{\eta_{k}}\right),
$$

for $\delta=\alpha_{\xi_{0}+1}$. Then for $b=\delta^{\mathcal{M}}, \mathscr{M}_{b} \models(\exists x) \varphi\left(x, a_{c_{0}}, a_{c_{1}}, \ldots, a_{c_{k}}\right)$. Thus b is \mathscr{M}-stable, standard, and $b>^{M} a_{b_{0}}$, contrary to the choice of b_{0}. So our supposition is false and Search 2 will succeed.

Search 3. We suppose that B is empty. Search for a Π_{0} formula φ without parameters, and an $a \in \operatorname{On}(\mathscr{M})$ so that $L_{\alpha} \not \equiv(\exists x) \varphi$ and $\mathscr{M} \vDash\left(\exists x \in L_{a}\right) \varphi$; output a. Clearly a is nonstandard. If no such ϕ and a exist, $\left(\alpha_{0}\right)^{\mathcal{M}}$ would be \mathscr{M}-stable, and so $0^{M} \in B$.

To construct an infinite descending $\varepsilon^{\mathscr{M}}$-chain, proceed as follows. If $\mathscr{M} \models(a$ is the greatest ordinal), output a; otherwise run the appropriate searches, outputting the first appropriate a we find. Replace \mathscr{M} by \mathscr{M}_{a} and do it again; etc. QED.

We are now ready to use the apparatus of $\S 2$ to obtain another improvement of Corollary 2.

Lemma 11. If $L_{\alpha} \neq \operatorname{Det}\left(\Sigma_{m+3}^{0}\right)$, then there is an infinite descending ε^{μ}-chain recursive in $A^{(m)}$.

First we show that without loss of generality we may suppose that α is Σ_{2} projectible. Fix Y so that $L_{\alpha} \models Y=Y^{m}$, for $Y^{i}, i \leq m$, as defined in the observation from §2.

Lemma 12. If α is not Σ_{2} projectible, then $L_{\alpha} \models \operatorname{Det}\left(\Sigma_{m+3}^{0}\right)$.
Proof. Suppose α is not Σ_{2} projectible. By Lemma 6 it suffices to show that $L_{\alpha} \models$ all Σ_{3}^{0} games on Y are determined. By the analysis of such games in $\S 2$, it suffices to show that if Φ is a monotone inductive operator on $\mathscr{P}(Y) \cap L_{\alpha}$ with a Π_{1} definition over L_{α}, then $L_{\alpha} \models \Phi^{\infty}$ exists. Observe that " $|p|_{\Phi}=\xi$ " is expressible over L_{α} as:
$(\exists f)\left(f\right.$ is a function on $\xi+1$ and $p \in f(\xi)-\bigcup f^{\prime \prime} \xi$ and
$(\forall \eta \leq \xi)(\forall q \in Y)\left(q \in f(\eta)\right.$ iff $\left.\left.q \in \Phi\left(\bigcup f^{\prime \prime} \eta\right)\right)\right)$.

Since $L_{\alpha} \models \Sigma_{2}$ Bounding, this formula may be put into Σ_{2} form. By the Σ_{2} uniformization of L_{α} (see [8]) there is a function h uniformizing $\left\{\left.(\xi, p)\left|L_{\alpha} \models\right| p\right|_{\Phi}=\right.$ $\xi\} ; h$ is Σ_{2} over L_{α}. Familiar arguments show that α is the limit of α many α stable ordinals; so by results of $\S 2, L_{\alpha} \models(\forall \xi)\left(\Phi^{\xi}\right.$ exists). If $L_{\alpha} \neq \Phi^{\infty}$ exists, for any $\xi<\alpha$ there is a p so that $L_{\alpha} \models|p|_{\Phi}=\xi$; thus $\operatorname{dom}(h)=\alpha$. Clearly h is one-one and projects α into $Y^{n} \in L_{\alpha}$; this violates the fact that α is not Σ_{2} projectible. QED.

Therefore we may as well suppose that $\mathscr{M}^{\prime} \nVdash_{1} \mathscr{M}$ and $\mathscr{M}^{\prime} \not \not_{1} \mathscr{M}_{a}$ for all $a \in \operatorname{On}(\mathscr{M}), a$ nonstandard. By Lemma 10 we also may as well suppose that the order-type of the α-stable ordinals is α. Let $\left\{\alpha_{\xi}\right\}_{\xi<\alpha}$ be the increasing enumeration of the α-stables.

Lemma 13. If $a \in \operatorname{On}(\mathscr{M})$ is nonstandard, then there is a nonstandard $b<^{M}$ a such that $\mathscr{M} \vDash b$ is nonprojectible.

Proof. Since the order-type of the α-stables is α, α is a limit of limits, and thus a limit of nonprojectibles. If $\xi<\alpha$ is nonprojectible, $\mathscr{M} \vDash \xi^{\mathscr{M}}$ is nonprojectible; so the standard nonprojectible ordinals in \mathscr{M} are unbounded. If this lemma fails for a, then $\{b \mid \mathscr{M} \models b<a$ and $(\forall \eta)$ (if $b \leq \eta<a$, then η is nonprojectible) $\}$ is represented in \mathscr{M} but has no $<^{\boldsymbol{M}}$-least member. QED.

Without loss of generality, suppose that $\mathscr{M} \models \neg$ Projectibility; otherwise select a nonstandard $b \in \operatorname{On}(\mathscr{M})$ so that $\mathscr{M} \vDash(b$ is nonprojectible $)$, and replace \mathscr{M} by \mathscr{M}_{b}. Trivially $\mathscr{M} \models(\forall \xi)(\exists \eta \geq \xi)$ (η is admissible). Let $\left\{a_{b}\right\}_{b \in B}$ be as in the proof of

Lemma 10. Since $\mathscr{M} \vDash \neg$ Projectibility, the \mathscr{M}-stables are unbounded in $<^{\mathscr{M}}$ and B has no maximum member. We now use the apparatus of $\S 2$. Let $G^{0}=$ $G\left(\left[Y_{0}\right]-B, Y_{0}\right)$ be our typical Σ_{n+3}^{0} game defined in L_{α}. Form $G=G^{n}$ on $Y=Y^{n}$ as in the proof of Lemma 6 . Suppose that $L_{\alpha} \neq\left(\right.$ there is a winning strategy in G^{0}). By Lemma $6, L_{\alpha} \neq$ (there is a winning strategy in G). Let $g=g_{L_{\alpha}}$ and $\hat{g}=g_{\mathcal{M}}$. Fix $\eta=$ the least ordinal so that $Y \in L_{\alpha_{\eta}}, c=$ the $<^{M}$-least member of B so that $Y^{\mathcal{M}} \in M_{a_{c}}$. Let ξ_{0} and b_{0} be as in the proof of Lemma 10.

Lemma 14. For $g(q, p)=\xi, \hat{g}\left(q^{\mathcal{M}}, p^{\mathscr{M}}\right)=b$: if $\xi<\xi_{0}$ or $b<^{\mathcal{M}} b_{0}$ then $b=\xi^{\dot{\mu}}$; and if $\hat{g}\left(q^{\mu}, p^{\mu}\right)=b_{0}$ then $g(q, p)=\xi_{0}$.

Proof. Suppose $q=\langle \rangle$. Since $\eta \leq \xi$ and $c \leq^{\boldsymbol{\mu}} b$, if $\xi<\xi_{0}$ or $b<^{\mu} b_{0}, \eta^{\mu}=c$. So suppose $\eta^{\mu}=c$. By induction on ξ^{\prime} such that $\eta+\xi^{\prime}<\xi_{0}$: for all $r \in Y$, $L_{\alpha} \models r \in\left(\Phi_{o, Y}\right)^{\xi^{\prime}}$ iff $\mathscr{M} \vDash r^{\mathcal{M}} \in\left(\Phi_{0^{\mu}, Y^{\mu}}\right)^{\hat{b}}$ for $\hat{b}=\left(\xi^{\prime}\right)^{\mathcal{M}}$; we use the facts that $a_{c+\mu \hat{b}}=\left(\alpha_{\eta+\xi^{\prime}}\right)^{\mathcal{M}}, \theta_{0, Y}^{\xi^{\prime}, Y} \in L_{\alpha_{n+\xi^{\prime}+1}}$ and $\mathscr{M} \vDash\left(\theta_{0, \mu, Y^{\mathcal{M}}}^{b} \in L_{a_{c}+\hat{b}+1}\right)$. Where $\xi=\eta+\xi^{\prime}$ and $b=c+{ }^{\mathcal{M}} b^{\prime}, L_{\alpha} \models|p|_{\Phi_{0, Y}}=\xi^{\prime}$ and $\mathscr{M} \models\left|p^{\mathcal{M}}\right|_{\Phi_{0}, \mathcal{M}, Y^{\mathcal{M}}}=b^{\prime}$, which is to say:

$$
p \in \theta_{0, Y}^{\xi^{\prime}}\left(\xi^{\prime}\right)-\bigcup \text { Range } \theta_{0, Y}^{\xi^{\prime}} \quad \text { and } \quad \mathscr{M} \vDash\left(p^{\mathcal{M}} \in \theta_{0, \mu, Y^{M}}^{b^{\prime}}\left(b^{\prime}\right)-\bigcup \text { Range } \theta_{0}^{b^{\prime}, Y^{\prime}, Y^{M}}\right)
$$

If $\xi<\xi_{0}, \mathscr{M} \vDash\left(\left(\theta_{0, Y}^{\xi^{\prime}}\right)=\theta_{0, \mu, Y^{M}}^{\hat{b}}\right)$, and thus $b^{\prime}=\hat{b}$ and $b=\xi^{\mathcal{M}}$; similarly if $b<^{\mathcal{M}} b_{0}$.
Now suppose that $q=q^{\prime} \wedge\langle x, y\rangle$, length $\left(q^{\prime}\right)=2 i$; assume as an induction hypothesis that if $g\left(q^{\prime}, q^{\prime}\right)<\xi_{0}$ or $\hat{g}\left(q^{\prime \mu}, q^{\prime \mu}\right)<{ }^{\mathcal{M}} b_{0}$, then $\hat{g}\left(q^{\prime \mu}, q^{\prime \mu}\right)=g\left(q^{\prime}, q^{\prime}\right)^{\mu}$ and $\mathscr{M} \vDash Z\left(q^{\prime}\right)^{\mathcal{M}}=Z\left(q^{\mathcal{M}}\right)$. If $\xi<\xi_{0}$ or $b<^{\mathcal{M}} b_{0}$ the antecedent of the induction hypothesis obtains. Suppose it does. By induction on ξ^{\prime} so that $g\left(q^{\prime}, q^{\prime}\right)+\xi^{\prime}<$ ξ_{0}, we show that for all $r \in Y$ and $\hat{b}=\left(\xi^{\prime}\right)^{\mathcal{M}}, L_{\alpha} \vDash r \in\left(\Phi_{i+1, Z\left(q^{\prime}\right)}\right)^{\xi^{\prime}}$ iff $\mathscr{M} \vDash$ $\left.r^{\mathcal{M}} \in\left(\Phi_{i+1} \cdot \mathcal{M}, Z\left(q^{\prime}\right)\right)^{\mu}\right)^{\hat{b}}$. Where $\xi=g\left(q^{\prime}, q^{\prime}\right)+\xi^{\prime}$ and $b=\hat{g}\left(q^{\prime} \cdot \mu, q^{\prime \mu}\right)+{ }^{M} b^{\prime}$, we have

$$
p \in \theta_{i+1, Z\left(q^{\prime}\right)}^{\xi^{\prime}}\left(\xi^{\prime}\right)-\bigcup \operatorname{Range}\left(\theta_{i+1, Z\left(q^{\prime}\right)}^{\xi^{\prime}}\right)
$$

and

$$
\mathscr{M} \models p^{\mathscr{M}} \in \theta_{i+1^{\mathscr{M}}, Z\left(q^{\prime},\right)^{b^{\prime}}}\left(b^{\prime}\right)-\bigcup \operatorname{Range}\left(\theta_{i+1^{M}, Z\left(q^{\prime}, \mu\right)}^{b^{\prime}}\right) ;
$$

if $\xi<\xi_{0}$, then $\mathscr{M} \vDash\left(\theta_{i+1, Z\left(q^{\prime}\right)}^{\xi^{\prime}}\right)^{\mathcal{M}}=\theta_{i+1^{\mathscr{M}}, Z\left(q^{\prime}, \mathcal{M}\right)}^{\hat{b}}$; so $b^{\prime}=\hat{b}$ and $b=\xi^{\mathcal{M}}$. A similar argument applies if $b<^{\mathcal{M}} b_{0}$. Furthermore,

$$
\mathscr{M} \models\left(Z\left(q^{\prime}\right), i+1, p\right)^{* \mathscr{M}}=\left(Z\left(q^{\prime}{ }^{\mathcal{M}}\right), i+1, p^{\mathcal{M}}\right)^{*}
$$

preserving our induction hypothesis.
Now suppose $\hat{g}\left(q^{\mathcal{M}}, p^{\mathcal{M}}\right)=b_{0}$. If $g(q, p)$ is defined, $g(q, p) \geq \xi_{0}$. Suppose $q=\langle \rangle$. If $g\left(\rangle, p)\right.$ is undefined or defined and $\neq \xi_{0}$, for ξ^{\prime} so that $\eta+\xi^{\prime}=\xi_{0}$ and for $\Phi=\Phi_{0, Y}, p \notin \Phi^{\xi^{\prime}}$. Suppose d is a witness to the Σ_{1} fact that $p \notin \Phi\left(\Phi^{<\xi^{\prime}}\right)$. By the preceding part of the lemma,

$$
\mathscr{M} \vDash\left(\left(\theta_{o, Y}^{<\xi^{\prime}}\right)^{\mathcal{M}}=\theta_{0 \cdot \mu}^{<b^{\prime}, Y^{\prime}, \mathcal{M}}\right) \text {, for } b^{\prime}=\left(\xi^{\prime}\right)^{\mu} .
$$

Thus $d^{\mathscr{M}}$ witnesses in \mathscr{M} the fact that

$$
\mathscr{M} \vDash\left(p^{\mathcal{M}} \notin \Phi_{0^{M}, Y^{\mu}}\left(\bigcup \text { Range } \theta_{0^{\mu}, Y^{M}}^{<b^{\prime}}\right)\right) .
$$

This contradicts our supposition that $\hat{g}\left(\rangle, p)=b_{0}\right.$, since $\mathscr{M} \models c+b^{\prime}=b_{0}$. For $q=q^{\prime} \wedge\langle x, y\rangle, q^{\prime}$ of length $2 i$, the argument is similar.

At last we are prepared for the construction which proves Lemma 11. As in our proof of Lemma 10 , we describe a procedure for selecting a nonstandard
$a \in \operatorname{On}(\mathscr{M})$; we require that $\mathscr{M} \vDash a$ is nonprojectible. This will enable us to iterate the process with \mathscr{M}_{a} in place of \mathscr{M}.

If $\mathscr{M} \vDash$ (there is a greatest nonprojectible ordinal), output that $a \in \operatorname{On}(\mathscr{M})$ such that $\mathscr{M} \models a$ is the greatest nonprojectible ordinal. By Lemma 13, a is nonstandard. Now assume that $\mathscr{M} \vDash(\forall \xi)(\exists \eta \leq \xi)$ (η is nonprojectible). If (and only if) $\mathscr{M} \not \equiv$ (there is a winning strategy in G), we engage in a variant of Search 1 from Lemma 10.

Search 1'. Search for $q, p \in Y, \xi<\alpha$ and $b \in B$ so that $L_{\alpha} \vDash g(q, p)=\xi$, $\mathscr{M} \vDash \hat{g}\left(q^{\mathcal{M}}, p^{\mathcal{M}}\right)=b$ and $a_{b+M_{1}} \neq\left(\alpha_{\xi+1}\right)^{\mathcal{M}}$. The last clause is "checked" as in the proof of Lemma 10. If this search succeeds, output an $a \in \operatorname{On}(\mathscr{M})$ such that $\mathscr{M} \vDash\left(a_{b+1} \leq a\right.$ and a is nonprojectible $)$.

If $\mathscr{M} \vDash$ (there is a winning strategy in G), find an $a \in \operatorname{On}(\mathscr{M})$ so that $\mathscr{M} \models(a$ is nonprojectible and there is a winning strategy in G belonging to L_{a}). Such an a must be nonstandard, for if $s \in L_{\alpha}$ and $\mathscr{M} \vDash\left(s^{\mathcal{M}}\right.$ is a winning strategy in $\left.G\right)$, then $L_{\alpha} \vDash(s$ is a winning strategy in G), contrary to our assumptions.

We now show that if we engage in Search 1^{\prime}, we succeed. It suffices that there be $q, p \in Y$ so that $\hat{g}\left(q^{\mathcal{M}}, p^{\mathcal{M}}\right)=b_{0}$; for then $g(q, p)=\xi_{0}$ and b_{0} and ξ_{0} are as required. Suppose not. Then $\mathscr{M} \vDash$ (if $\hat{g}\left(q^{\mathscr{M}}, p^{\mathscr{M}}\right)$ is defined, then $\left.\hat{g}\left(q^{\mathcal{M}}, p^{\mathscr{M}}\right)<b_{0}\right)$. By Lemma 5, $\mathscr{M} \vDash$ (II has a winning strategy in G), contrary to our case assumption.

Since our output a is such that $\mathscr{M}_{a} \vDash \neg$ Projectibility, this process may be iterated. This construction is effective in $A \oplus F_{m}$, and thus in $A^{(m)}$. QED.

Lemmas 9,10 and 11 permitted us to shave two jumps off of Corollary 2. We now consider ways to shave a single jump off of Corollary 2. Generalize the notion of \mathscr{M} stability from Σ_{1} to Σ_{k} as follows: a is $\Sigma_{k}-\mathscr{M}$-stable iff $\mathscr{M}_{a} \prec_{k} \mathscr{M}$. So α-stability is just $\Sigma_{1}-L_{\alpha}$-stability. As usual, $\mathscr{M} \vDash\left(\neg \Sigma_{k}\right.$-Projectibility) iff the $\Sigma_{k}-\mathscr{M}$-stables are unbounded in \mathscr{M}.

Lemma 15. If for some k, α is $\boldsymbol{\Sigma}_{k}$-projectible, then there is an infinite descending $\varepsilon^{{ }^{M}}$ chain recursive in $A^{(m+1)}$.

Proof. By Lemma 9 we may assume that α is not Σ_{1}-projectible. Let k be least so that α is Σ_{k+1}-projectible; again by Lemma 9 we may assume that for no nonstandard a is $\mathscr{M} \prec_{k} \mathscr{M}_{a}$; thus $k \geq 1$. Let k^{\prime} be least such that either for all nonstandard $b, \mathscr{M}^{\prime} \not_{k^{\prime}+1} \mathscr{M}_{b}$, or such that there is a nonstandard $a \in \operatorname{On}(\mathscr{M})$ so that for all nonstandard $b<^{M} a, \mathscr{M}^{\prime} \not \not_{k^{\prime}+1} \mathscr{M}_{b}$. Then $k^{\prime}+1 \leq k$. Without loss of generality we may suppose that for all nonstandard $b \in \operatorname{On}(\mathscr{M}), \mathscr{M}^{\prime} \not_{k^{\prime}+1} \mathscr{M}_{b}$; otherwise replace \mathscr{M} by an appropriate \mathscr{M}_{a}.

Suppose $a \in \operatorname{On}(\mathscr{M})$ is nonstandard, $\mathscr{M}^{\prime} \prec_{k^{\prime}} \mathscr{M}_{a}$. We describe a procedure, which is sufficiently independent of a to be iterated recursively in $A^{(m+1)}$, for choosing a $b<^{\mathscr{M}} a, b$ nonstandard. If $\mathscr{M} \models$ (there is a maximum $L_{a}-\Sigma_{k^{\prime}}$-stable ordinal), find b so that $\mathscr{M} \models\left(b\right.$ is the maximum $L_{a}-\Sigma_{k^{\prime}}$-stable ordinal). Since α is not $\Sigma_{k^{\prime}}$-projectible, α is a limit of $L_{\alpha}-\Sigma_{k}$-stables; furthermore $\mathscr{\Lambda}^{\prime} \prec_{k^{\prime}} \mathscr{M}_{a}$; thus b is nonstandard. Since $\mathscr{M}_{b} \prec_{k^{\prime}} \mathscr{M}_{a}, \mathscr{M}^{\prime} \prec_{k^{\prime}} \mathscr{M}_{b}$, and we may iterate with b in place of a.

Suppose $\mathscr{M} \not \equiv$ (there is a maximum $L_{\alpha}-\Sigma_{k^{\prime}}$-stable ordinal).
Claim. There are arbitrarily low (in $<^{\mathscr{M}}$) nonstandard $b \in \operatorname{On}\left(\mathscr{M}_{a}\right)$ that are $\mathscr{M}_{a}-\Sigma_{k^{\prime}}-$ stable. Since α is not Σ_{k}-projectible and $\mathscr{M}^{\prime} \prec_{k^{\prime}} \mathscr{M}_{a}$, the standard $\mathscr{M}_{a}-\Sigma_{k^{\prime}}$-stables are unbounded in $<^{\boldsymbol{M}}$. If for $c<^{\mathcal{M}} a, c$ nonstandard, there are no nonstandard $\mathscr{M}_{a}-\Sigma_{k^{\prime}}$ stables below c, then $\left\{d \mid d<^{\mathscr{M}} c\right.$ and $(\forall \eta)$ (if $d \leq \eta<c$ then η is not $\mathscr{M}_{a}-\Sigma_{k^{\prime}}$-stable $\}$ is represented in \mathscr{M} but has no $\varepsilon^{\mathscr{M}}$-least member; contradiction. Thus the $\mathscr{M}_{a}-\Sigma_{k^{\prime}}-$
stables are unbounded below a under $<^{\mathcal{M}}$. We will apply a technique hereafter called " $\Sigma_{k^{\prime}+1}$-witnessing." For some $\Pi_{k^{\prime}}$ formula φ and some $p \in L_{\alpha}, \mathscr{M}_{a} \models$ $(\exists x) \varphi(x, F(p))$ and $L_{\alpha} \not \equiv(\exists x) \varphi(x, p)$; the search for φ and p is recursive in $A^{(m+1)}$. Then we find $b<^{\mathscr{M}} a$ so that $\mathscr{M}_{a} \models\left(\exists x \in L_{b}\right) \varphi(x, F(p))$ and b is $\mathscr{M}_{a}-\Sigma_{k^{\prime}}$-stable; output b. This b must be nonstandard; since $\mathscr{M}_{b} \prec_{k^{\prime}} \mathscr{M}_{a}, \mathscr{M}^{\prime} \prec_{k^{\prime}} \mathscr{M}_{b}$; thus this process may be iterated with b in place of a. QED.

Conjecture 3. Even if for all $k \alpha$ is not Σ_{k}-projectible (i.e. α is a local \aleph_{m+1}), the consequent of Lemma 15 is true.

A proof of Conjecture 3 would yield proofs of Conjectures 1 and 2. Unfortunately, the technique used in Lemma 15 does not generalize to a proof of Conjecture 3 in any straightforward way. Suppose that for any $k \in \omega$ there are arbitrarily low (in $<^{\mathcal{M}}$) nonstandard b so that $\mathscr{M}^{\prime}<_{k} \mathscr{M}_{b}$. For example, suppose $\mathscr{M}^{\prime} \prec_{2} \mathscr{M}_{a}$ and $\mathscr{M}_{a} \models\left(a\right.$ is not Σ_{2}-projectible). If the Σ_{3}, or even the Σ_{4}, witnessing technique yields an output, that will yield a nonstandard $b<^{\mathscr{M}} a$. But if $\mathscr{M}^{\prime} \prec_{3} \mathscr{M}_{a}$ (and $\mathscr{M}^{\prime} \prec_{4} \mathscr{M}_{a}$), then they will not yield an output; there seems to be no way effective in $A^{(m+1)}$ to decide this; if we also apply Σ_{5} witnessing and it yields an output before Σ_{3} or Σ_{4} witnessing does so, that output is nonstandard if $\mathscr{M}^{\prime} \prec_{3} \mathscr{M}_{a}$; but otherwise it might be standard.

What follows is a case of making the best of a bad situation.
Let $\hat{\alpha}$ be the least ordinal such that $L_{\hat{\alpha}} \models \alpha \neq \aleph_{m+1}$. Then $\hat{\alpha}=\alpha^{\prime}+1$ for α^{\prime} of the form $\alpha+\hat{\xi}$. Suppose that $\hat{\xi}<\alpha$. Recall that \mathscr{E} is an arithmetic copy of $L_{\hat{\alpha}}$. Where $a \in \operatorname{On}(\mathscr{M})$ and $\xi<\alpha$ we define $F^{a, \xi}: L_{\alpha+\xi} \rightarrow M_{b}$ for $b=a+^{M} \xi^{\mathcal{M}}$. Recall that for any $\xi^{\prime}<\xi, p \in L_{\alpha+\xi^{\prime}+1}-L_{\alpha+\xi^{\prime}}$ may be defined over $L_{\alpha+\xi^{\prime}}$ by a formula in which all parameters are ordinals. $F^{a, \xi} \upharpoonright L_{\alpha}=F ; F^{a, \xi}\left(\xi^{\prime}\right)=a+{ }^{\mathscr{M}} \xi^{\prime M}$; where $p \in$ $L_{\alpha+\xi^{\prime}+1}-L_{\alpha+\xi^{\prime}}$ and $\varphi(x, \bar{q})$ is the $<_{L}$-least formula defining p over $L_{\alpha+\xi^{\prime}}$ so that \bar{q} consists of ordinals, let $F^{a, \xi}(p)=p^{\prime} \in M_{b}, b=a+^{\mathcal{M}}\left(\xi^{\prime}+1\right)^{\mathcal{M}}$ so that $\mathscr{M} \vDash$ $(\forall x)\left(x \in p^{\prime}\right.$ iff $\left.L_{a+\xi^{\prime}} \vDash \varphi\left(x, F^{a, \xi^{\prime}}(\bar{q})\right)\right)$. We call $a \in \operatorname{On}(\mathscr{M})(\xi, n)$-reflecting iff for every Σ_{n} formula φ and every \bar{p} from $L_{\alpha+\xi}$

$$
L_{\alpha+\xi} \models \varphi(\bar{p}) \quad \text { iff } \quad \mathscr{M}_{b} \models \varphi\left(F^{a, \xi}(\bar{p})\right)
$$

for $b=a+{ }^{M} \xi^{M}$. Note: where $\bar{p}=\left(\ldots, p_{i}, \ldots\right), F^{a, \xi}(\bar{p})=\left(\ldots, F^{a, \xi}\left(p_{i}\right), \ldots\right)$. Since $F^{a, \xi} \upharpoonright \mathrm{On}\left(L_{\alpha+\xi}\right)$ is recursive in $F \upharpoonright \xi$, it is recursive in $A^{(m)}$.

Suppose \hat{n} is least so that a projection f of α^{\prime} into $\gamma<\alpha\left(\right.$ where $L_{\alpha} \models \gamma=\aleph_{m}$) is $\Sigma_{\hat{n}}$ over α^{\prime}. Clearly such \hat{n} and f exist.

Lemma 16. If there is $a(\hat{\xi}, \hat{n}+1)$-reflecting $a \in \operatorname{On}(\mathscr{M})$, then there is an infinite descending ε^{M}-chain recursive in $A^{(m+1)}$.

Proof. Suppose a is $(\hat{\xi}, \hat{n}+1)$ reflecting, $b=a+{ }^{\mathcal{M}} \hat{\xi}^{\mathcal{M}}$, and f is defined over $L_{\alpha+\hat{\xi}}$ by $\varphi(x, y, p)$. Then

$$
\mathscr{M}_{b} \models(\forall x)\left(\varphi\left(x, F^{a, \hat{\xi}}(f(\eta)), F^{a, \hat{\xi}}(p)\right) \text { iff } x=F^{a, \hat{\xi}}(\eta)\right)
$$

for $\eta<\alpha^{\prime}$. For $c \in \operatorname{On}(\mathscr{M}), c \in \mathscr{M}^{\prime}$ iff for some $\eta<\alpha$ and $\xi<\gamma, \mathscr{M}_{b} \models$ $\varphi\left(c, \eta^{M}, F^{a, \hat{\xi}}(p)\right)$ and $L_{\alpha^{\prime}} \models \varphi(\xi, \eta, p)$. Since $F \upharpoonright \gamma$ and $F^{a, \hat{\xi}}$ are recursive in $A^{(m)}$, On $\left(\mathscr{M}^{\prime}\right)$ is RE in $\mathrm{A}^{(m)}$; the lemma follows easily. QED.

We now assume that no $a \in \operatorname{On}(\mathscr{M})$ is $(\hat{\xi}, \hat{n}+1)$-reflecting. Where W is any wellordering, f and h are functions on ω^{2}, Range $(h) \subseteq \operatorname{Fld}(W)$, we will say that h and W bound the convergence of f iff for all $x, t_{0}<\cdots<t_{l-1}$:

$$
\begin{aligned}
& \text { for all } i<l \text {, if } f\left(x, t_{i}\right) \neq f\left(x, t_{i}+1\right) \text {, then } \\
& h\left(x, t_{i}+1\right)<{ }^{W} h\left(x, t_{i}\right) .
\end{aligned}
$$

Let $\left(\xi^{\prime}, n^{\prime}\right)<(\xi, n)$ iff $\xi^{\prime}<\xi$ or $\left(\xi^{\prime}=\xi\right.$ and $\left.n^{\prime}=n\right)$. Fix

$$
W=\left\{(a, b) \mid a=\left(\xi^{\prime}, n^{\prime}\right)^{\mathscr{E}} \text { and } b=(\xi, n)^{\delta} \text { for }\left(\xi^{\prime}, n^{\prime}\right)<(\xi, n)\right\} .
$$

The following lemma is the source of the restrictions in Theorems 1 and 2 to λ which are n-well-behaved. The natural strategy for proving Conjectures 1 and 2 , short of proving Conjecture 3, would be to improve Lemma 17 , e.g. by replacing W with a well-ordering of type ω.

Lemma 17. There are functions f and h recursive in $A^{(m+1)}$ such that h and W bound the convergence of f and f converges to an infinite descending $\varepsilon^{\mathscr{M}}$-chain.

Proof. We describe a procedure which, given a nonstandard $a \in \operatorname{On}(\mathscr{M})$, guesses at a nonstandard $c<^{M} a$; to each guess we associate a pair $(\xi, n)<(\hat{\xi}, \hat{n}+1)$; each time we change our guess we pick a new pair below the previous one. Note: if (η, m) is least such that a is (η, m) reflecting, φ is Π_{m} and $\bar{p} \in L_{\alpha+n}$: if $L_{\alpha+n} \models(\exists x) \varphi(x, \bar{p})$ then $\mathscr{M}_{b} \models(\exists x) \varphi\left(x, F^{a, \eta}(\bar{p})\right)$ for $b=\alpha+{ }^{\mathscr{M}} \eta^{\mu}$. By assumption there is such an $(\eta, m)<(\hat{\xi}, \hat{n}+1)$. We search for a Π_{n} formula $\varphi, \xi \leq \hat{\xi}, \bar{p} \in L_{\alpha+\xi}$ and $c \in \operatorname{On}(\mathscr{M})$ so that:

$$
\mathscr{M}_{b} \models\left(\exists x \in L_{c}\right) \varphi\left(x, F^{a, \xi}(\bar{p})\right) \quad \text { and } \quad L_{\alpha+\xi} \models \neg(\exists x) \varphi\left(x, F^{a, \xi}(\bar{p})\right)
$$

for $b=a+{ }^{\mathscr{M}} \xi^{\mathcal{M}}$. By the remark about (η, m), eventually we find these. We output guess c associated with the pair (ξ, n). If we later find a $\Pi_{n^{\prime}}$ formula $\varphi^{\prime}, \xi^{\prime} \leq \hat{\xi}$ with $\left(\xi^{\prime}, n^{\prime}\right)<(\xi, n), \bar{p}^{\prime} \in L_{\alpha+\xi^{\prime}}$ and $c^{\prime} \in \operatorname{On}(\mathscr{M})$ so that

$$
\mathscr{M}_{b^{\prime}} \models\left(\exists x \in L_{c^{\prime}}\right) \varphi^{\prime}\left(x, F^{a, \xi^{\prime}}\left(\bar{p}^{\prime}\right)\right) \quad \text { and } \quad L_{\alpha+\xi^{\prime}} \models \neg(\exists x) \varphi^{\prime}\left(x, \bar{p}^{\prime}\right)
$$

for $b^{\prime}=a+{ }^{\mathcal{M}} \xi^{\prime \mathcal{M}}$, we change our guess to c^{\prime} and associate it with $\left(\xi^{\prime}, n^{\prime}\right)$-for we know that a was not (ξ, n)-reflecting. Eventually we reach a guess c associated with (η, m); this c must be nonstandard. We iterate guessing in the usual manner to define the desired f and h. QED.

§4. Proof of Theorem 1.

Lemma 18. Consider any $n \in \omega$. If $n>0$, suppose λ is $(n-1)$-well-behaved; suppose that $L_{\lambda} \not \equiv \operatorname{Det}\left(\Sigma_{n+3}^{0}\right)$ and $A \subseteq \omega$ is a Turing upper bound on $L_{\lambda} \cap \mathscr{P}(\omega)$. Then there is an arithmetic copy \mathscr{E}_{λ} of L_{λ} so that $\operatorname{Sat}\left(\mathscr{E}_{\lambda}\right)$ is recursive in $A^{(n+3)}$. $\left(\operatorname{Sat}_{0}\left(\mathscr{E}_{\lambda}\right)\right.$ is the Σ_{0} satisfaction relation for \mathscr{E}_{λ}.)

Proof. If $n=0$, let $\beta_{0}<\lambda$ bound $\left\{\xi \mid \xi\right.$ is a local $\left.\aleph_{1}\right\}$ below λ. (If no such β_{0} existed, by Theorem 4 and the Π_{1}^{1} absoluteness of λ and of any local $\aleph_{1}, L_{\lambda} \models \operatorname{Det}\left(\Sigma_{3}^{0}\right)$, contrary to our supposition.) If $n>0$, using the fact that λ is $(n-1)$-well-behaved, fix β_{0} and γ_{0} so that: for any α which is a local \aleph_{n}, if $\beta_{0}<\alpha<\lambda$, then $L_{\alpha+\gamma_{0}} \models \alpha \neq \aleph_{n}$. We might as well take $\gamma_{0}<\beta_{0}$. Thus for $\beta_{0}<\alpha<\lambda, L_{\alpha} \neq \aleph_{n+1}$ exists. Fix $\beta_{1}<\lambda$ so that for any limit of admissibles α, if $\beta_{1}<\alpha<\lambda$, then $L_{\alpha} \not \equiv \operatorname{Det}\left(\Sigma_{n+3}^{0}\right)$. If no such β_{1} exists, where G is a Σ_{n+3}^{0} game on $\omega^{<\omega}$ defined in L_{λ}, select $\alpha<\lambda, \alpha$ a limit of admissibles sufficiently large for G to be defined in L_{α}, so that $L_{\alpha} \models \operatorname{Det}\left(\Sigma_{n+3}^{0}\right)$; by the Π_{1}^{1} absoluteness of α and $\lambda, L_{\lambda} \vDash G$ is determined; thus $L_{\lambda} \models \operatorname{Det}\left(\Sigma_{n+3}^{0}\right)$, contrary to our supposition. Let β be admissible and locally countable, where $\max \left\{\beta_{0}, \beta_{1}\right\} \leq \beta<\lambda$. Fix an arithmetic copy \mathscr{E} of L_{β}, $\operatorname{Sat}(\mathscr{E}) \in L_{\beta^{+}} ;$fix $e_{0} \in \omega$ so that $\operatorname{Sat}(\mathscr{E})=\left\{e_{0}\right\}^{A}$. Let $W^{*}=\left\{(a, b) \mid a=\left(\xi^{\mathscr{E}}, n^{\mathscr{E}}\right), b=\right.$ $\left(\xi^{\prime \delta}, n^{\prime \delta}\right)$ for $(\xi, n)<\left(\xi^{\prime}, n^{\prime}\right)$ and $\left.\xi<\gamma_{0}\right\}$.

Let $C_{0}=\left\{e \in \omega \mid\{e\}^{A}\right.$ is total and codes some $\operatorname{Sat}(\mathscr{M})$ where \mathscr{M} is an ω-model for $T\}$. C_{0} is Π_{2}^{0} in A. For $e \in C_{0}$, let $\mathscr{M}(e)$ be such that $\{e\}^{A} \operatorname{codes} \operatorname{Sat}(\mathscr{M}(e))$. If for some $e \in C_{0}, o(\mathscr{M}(e))>\lambda$, Lemma 18 follows immediately. Since $o(\mathscr{M}(e))$ is admissible and λ is not, $o(\mathscr{M}(e)) \neq \lambda$. We assume that for all $e \in C_{0}, o(\mathscr{M}(e))<$ λ. Let $C_{1}=\left\{e \in C_{0} \mid\right.$ for some $a \in M(e), a$ codes $\left\{e_{0}\right\}^{A}$ in $\left.\mathscr{M}(e)\right\}$; since " a codes $\left\{e_{0}\right\}^{A}$ in $\mathscr{M}(e) "$ is Π_{1}^{0} in A, C_{1} is Δ_{3}^{0} in A. For $e \in C_{1}, o(\mathscr{M}(e))<\beta$.

If $n=0$, let $C_{2}=\left\{e \in C_{1} \mid\right.$ for every $x \in \omega$, if $\{x\}^{A}$ is total then $\{x\}^{A}$ is not an infinite descending $\varepsilon^{\mu(e)}$-chain $\}$. If $n>0$, let $C_{2}=\left\{e \in C_{1} \mid\right.$ for every x and $y \in \omega$, if $\{x\}^{A^{(n)}}$ and $\{y\}^{A^{(n)}}$ are total and $\{y\}^{A^{(n)}}$ and W^{*} bound the convergence of $\{x\}^{A^{(n)}}$ then $\{x\}^{A^{(n)}}$ does not converge to an infinite descending $\varepsilon^{\mathcal{M}(e)}$-chain $\} . C_{2}$ is Π_{n+3}^{0} in A. We now use the results of $\S 3$.

Lemma 19. If $e \in C_{2}$, then $\mathscr{M}(e)$ is well-founded.
Proof. Suppose $e \in C_{2}, \mathscr{M}=\mathscr{M}(e)$ is nonstandard, $\alpha=o(\mathscr{M})$. Let $L_{\alpha} \models\left(\aleph_{m}\right.$ is the greatest cardinal). Since $\beta<\alpha, m \leq n$. Select \mathscr{E}_{α}, an arithmetic copy of, L_{α}, where $\operatorname{Sat}\left(\mathscr{E}_{\alpha}\right) \in L_{\lambda} ; \operatorname{Sat}(\mathscr{M}) \oplus \operatorname{Sat}\left(\mathscr{E}_{\alpha}\right)$ is recursive in A.

Case 1. $m=n$. If α is Σ_{1}-projectible, by Lemma 9 , there is an infinite descending $\varepsilon^{\mathcal{M}}$-chain recursive in $A^{(n)}$. If α is not Σ_{1}-projectible, α is a limit of admissibles; since $\beta<\alpha, L_{\alpha} \neq \operatorname{Det}\left(\Sigma_{n+3}^{0}\right)$; so by Lemmas 10 and 11 there is an infinite descending $\varepsilon^{\mathcal{M}_{-}}$ chain recursive in $A^{(n)}$. All this contradicts $e \in C_{2}$. If $n=0$, we are done. Suppose $n>0$.

Case 2. $m=n-1$. If α is not a local \aleph_{n}, by Lemma 15 there is an infinite descending $\varepsilon^{\mathcal{M}}$-chain recursive in $A^{(n)}$. If α is a local \aleph_{n}, we cannot be so straightforward. Fix $\mathscr{E}_{\tilde{\alpha}}$, an arithmetic copy of $L_{\hat{\alpha}}$ so that $\operatorname{Sat}\left(\mathscr{E}_{\hat{\alpha}}\right) \in L_{\lambda}$, for $\hat{\alpha}, \hat{\xi}$ and \hat{n} as in Lemma 16. By choice of β_{0} and $\gamma_{0}, \widehat{\xi}<\gamma_{0}$ and so $\hat{\xi}<\beta<\alpha$. By Lemma 16, if some $a \in \operatorname{On}(\mathscr{M})$ is $(\hat{\xi}, \hat{n}+1)$-reflecting, then there is an infinite descending chain recursive in $A^{(n)}$. Otherwise, fix W as in Lemma 17. Let f and h be the functions recursive in $\left(\operatorname{Sat}(\mathscr{M}) \oplus \operatorname{Sat}\left(\mathscr{E}_{\tilde{\alpha}}\right)\right)^{(n)}$ delivered by Lemma 17; they are also recursive in $A^{(n)}$. The function \widehat{F} such that for $\xi \leq \hat{\xi}, \widehat{F}\left(\xi^{\mathscr{G}}\right)=\xi^{\mathscr{E}}$ is recursive in finitely many jumps of $\left(\operatorname{Sat}(\mathscr{M}) \oplus \operatorname{Sat}\left(\mathscr{E}_{\hat{\alpha}}\right)\right) \in L_{\lambda}$, and so in A; thus via \hat{F}, h may be "translated" to an \hat{h} into W^{*} so that \hat{h} and W^{*} bound the convergence of f; this contradicts $e \in C_{2}$. If $n=1$, we are done. Suppose $n>1$.

Case 3. $m \leq n-2$. Use Corollary 2 for a contradiction with $e \in C_{2}$. QED.
Let $C_{3}=\left\{e \in C_{2} \mid \mathscr{M}(e) \models K P\right.$ and $(\forall x)(x$ is countable $\left.)\right\} . C_{3}$ is Π_{n+3}^{0} in A. Since λ is locally countable, for every $\alpha<\lambda$ there is $e \in C_{3}$ with $o(\mathscr{M}(e))>\alpha$. For $e, e^{\prime} \in C_{3}$ and $o(\mathscr{M}(e)) \leq o\left(\mathscr{M}\left(e^{\prime}\right)\right)$, let $h_{e, e^{\prime}}: M(e) \rightarrow M\left(e^{\prime}\right)$ be the isomorphic embedding of $\mathscr{M}(e)$ onto an initial segment of $\mathscr{M}\left(e^{\prime}\right)$. Recall the coding of hereditarily countable sets by trees on ω; see [8] for details. For $x \in L, x$ hereditarily countable, let $c(x)$ be the $<_{L^{-}}$ least tree on ω coding x; if α is admissible and locally countable, for $x \in L_{\alpha}, c(x) \in L_{\alpha}$. Thus $h_{e, e^{\prime}}(x)=y$ iff for all $n \in \omega, \mathscr{M}(e) \models n^{\mathscr{M}(e)} \in c(x)$ iff $\mathscr{M}\left(e^{\prime}\right) \models n^{\mathscr{M}\left(e^{\prime}\right)} \in c(y)$; so $h_{e, e^{\prime}}$ is Π_{1}^{0} is A, uniformly in e and e^{\prime}. Furthermore, $o(\mathscr{M}(e))<o\left(\mathscr{M}\left(e^{\prime}\right)\right)$ iff for some $y \in M\left(e^{\prime}\right)$ there is no $x \in M(e)$ so that $h_{e, e^{\prime}}(x)=y$. This question is Σ_{3}^{0} in A. We define a sequence $\left\{e_{i}\right\}_{i<\omega}$ for $e_{i} \in C_{3}$. Fix $e_{0} \in C_{3}$. Let e_{i+1} be the least $e \in C_{3}$ so that $e>e_{i}$ and $o(\mathscr{M}(e))>o\left(\mathscr{M}\left(e_{i}\right)\right)$. Since C_{3} is recursive in $A^{(n+3)}$, so is $\left\{e_{i}\right\}_{i<\omega}$. We now construct our desired \mathscr{E}_{λ} recursively in $A^{(n+3)}$.

Let $E=\left\{\langle i, x\rangle \mid x \in M\left(e_{i}\right)\right.$ and if $i>0$ then $\left.x \notin \operatorname{Range}\left(h_{e_{i-1}, e_{i}}\right)\right\}$. Let

$$
\begin{array}{r}
\varepsilon^{\varepsilon_{\lambda}}=\left\{\left\langle\left\langle i_{1}, x_{1}\right\rangle,\left\langle i_{2}, x_{2}\right\rangle\right\rangle \mid \mathscr{M}\left(e_{i}\right) \models y_{1} \in y_{2}, \text { where } i=\max \left\{i_{1}, i_{2}\right\}\right. \\
\text { and } \left.y_{j}=h_{e_{i_{j}}, e_{i}}\left(x_{j}\right) \text { for } j=1,2\right\} .
\end{array}
$$

For a Σ_{0} formula $\varphi\left(v_{1}, \ldots, v_{k}\right)$ and values $\left\langle i_{1}, x_{1}\right\rangle, \ldots,\left\langle i_{k}, x_{k}\right\rangle \in E$, let $i=\max \left\{i_{1}, \ldots, i_{k}\right\}, y_{j}=h_{e_{i_{j}}, e_{i}}\left(x_{j}\right)$ for $1 \leq j \leq k$, and let

$$
\varphi\left(\left\langle i_{1}, x_{1}\right\rangle, \ldots,\left\langle i_{k}, x_{k}\right\rangle\right) \in \operatorname{Sat}_{0}\left(\mathscr{E}_{\lambda}\right) \quad \text { iff } \quad \mathscr{M}\left(e_{i}\right) \models \varphi\left(y_{1}, \ldots, y_{k}\right) .
$$

For $\mathscr{E}_{\lambda}=\left(E, \varepsilon^{\mathscr{E}_{\lambda}}\right)$, $\operatorname{Sat}_{0}\left(\mathscr{E}_{\lambda}\right)$ is recursive in $A^{(n)}$. QED.
The following argument, when combined with Lemma 18, proves Theorem 1.
Lemma 20. Let \mathscr{E} be an arithmetic copy of L_{λ}.
(i) There is an $A \subseteq \omega$, a Turing upper bound on $L_{\lambda} \cap \mathscr{P}(\omega)$, with $A^{(3)}$ recursive in $\mathrm{Sat}_{0}(\mathscr{E})$.
(ii) If $L_{\lambda} \vDash \operatorname{Det}\left(\Sigma_{n+3}^{0}\right)$, then there is an $A \subseteq \omega$, a Turing upper bound on $L_{\lambda} \cap \mathscr{P}(\omega)$, with $A^{(n+4)}$ recursive in $\mathrm{Sat}_{0}(\mathscr{E})$.

Proof. We force with uniformly recursive pointed perfect trees in L_{λ}. A perfect tree is a function $P: 2^{<\omega} \rightarrow 2^{<\omega}$ such that $P\left(\sigma^{\wedge}\langle 0\rangle\right)$ and $P\left(\sigma^{\wedge}\langle 1\rangle\right)$ are incompatible extensions of $P(\sigma)$ for $\sigma \in 2^{<\omega} . P$ is uniformly recursively pointed iff for some $c \in \omega$ for all $A \in[P], P=\{e\}^{A} ; Q$ extends P iff for all $\sigma \in 2^{<\omega}, P(\sigma) \subseteq Q(\sigma)$. We refer to such trees in L_{λ} as conditions. Let \mathscr{L} be an arithmetic forcing language with primitives ' \exists ', ' \neg ', ' $\&$ ', ' $=$ ', a predicate for each primitive recursive relation, and 'A', an uninterpreted one-place predicate. We suppose that all sentences are prenex. If φ is a $\Pi_{2}^{0} \cup \Sigma_{2}^{0}$ sentence of \mathscr{L}, let $P \Vdash \varphi$ iff for all $A \in[P], A \models \varphi$. For a proof of the density lemma, that for every such φ and every condition P there is a condition Q which extends P and either $Q \Vdash \varphi$ or $Q \Vdash \neg \varphi$, see [12]. To prove (i), we extend the definition of forcing to $\Pi_{3}^{0} \cup \Sigma_{3}^{0}$ sentences as follows:
$P \Vdash(\exists x) \varphi(x) \quad$ iff \quad for some $k \in \omega, P \sharp \varphi(k) ;$
$P \Vdash \neg(\exists x) \varphi \quad$ iff \quad for every condition Q extending $P, Q \sharp(\exists x) \varphi$,
where φ is Π_{2}^{0}. Density under this definition is trivial; forcing for sentences in $\Sigma_{3}^{0} \cup \Pi_{3}^{0}$ is Π_{1}^{1} and so Δ_{1} over L_{λ}.

To prove (ii) we extend the defining of forcing for $\Sigma_{2}^{0} \cup \Pi_{2}^{0}$ sentences to $\Sigma_{n+4}^{0} \cup \Pi_{n+4}^{0}$ sentences in the simplest possible way:

$$
P H \varphi \quad \text { iff } \quad \text { for every } A \in[P], A \models \varphi .
$$

Again forcing is Δ_{1} over L_{λ}. I owe the key idea in the following lemma to Leo Harrington.

Lemma 21. Suppose $L_{\lambda} \models \operatorname{Det}\left(\Sigma_{n+3}^{0}\right), \varphi(x)$ is a Π_{n+3}^{0} formula of \mathscr{L} with only x free, and P is a condition. There is a condition Q extending P such that either $Q \sharp(\exists x) \varphi(x)$ or $Q \sharp \neg(\exists x) \varphi(x)$.

Proof. Let $G(P, \varphi)$ be the following game. I selects $k \in \omega$; hereafter both players proceed in $2^{<\omega}$. Where $\langle k\rangle^{\wedge} f_{1}$ is I's play and f_{2} is II's play, I wins iff $f_{1} \in[P]$, $f_{1} \models \varphi(k)$ and $f_{2}=\left\{e_{1}\right\}^{\langle k\rangle}{ }^{\wedge} f_{1}$, where e_{1} is a specific number in ω; we will postpone specifying it for a moment. $G(P, \varphi)$ is clearly a Π_{n+3} game which is defined over L_{λ}. Thus L_{λ} contains a winning strategy s for $G(P, \varphi)$. Let $\hat{s}=$ the characteristic function of $\left\{\langle x, s(x)\rangle \mid x \in 2^{<\omega}\right\}$.

Case I. s is a winning strategy for I. We construct a condition Q so that $Q \Vdash$ $(\exists x) \varphi(x)$. Suppose s tells I to first select k. Consider the tree T_{0} of initial segments of plays by II which encode \hat{s} at even places, i.e. $T_{0}=\left\{\left\langle\hat{s}(0), i_{0}, \ldots, s(x), i_{x}\right\rangle \mid x \in \omega\right\}$. Let
T_{1} be the set of I's responses under s to II's moves in T_{0}, with I's initial move deleted. Since s wins for $I, T_{1} \subseteq \operatorname{Range}(P)$. Claim: $\left[T_{1}\right]$ is a perfect set. If not, then for some $\sigma \in T_{1}$ there is a unique $f_{1} \in\left[T_{1}\right], f_{1} \upharpoonright$ length $(\sigma)=\sigma$. Suppose σ is I's response to $\tau \in T_{0}$. For any $f_{2} \in\left[T_{0}\right]$ such that $f_{2} \upharpoonright$ length $(\tau)=\tau,\langle k\rangle^{\wedge} f_{1}$ is I's play against II's play of f_{1}. But we may choose f_{2} so that f_{2} is not recursive in $\langle k\rangle^{\wedge} f_{1}$, contrary to $f_{2}=\left\{e_{1}\right\}^{\langle k\rangle^{\wedge} f_{1}}$; this establishes the claim. Therefore there is a perfect tree Q extending P so that $[Q]=\left[T_{1}\right]$. Claim: for any $A \in[Q], A \models \varphi(k)$. It suffices to show that for any $A=f_{1} \in[Q]$ there is an $f_{2} \in\left[T_{0}\right]$ so that $\langle k\rangle^{\wedge} f_{1}$ is I's response to II's play of f_{2} under s. Suppose $Q(\sigma)=f_{1} \upharpoonright z$ and $D_{\sigma}=\left\{\tau \in T_{0} \mid\langle k\rangle^{\wedge}\left(f_{1} \upharpoonright z\right)\right.$ is I's response to τ under $s\} . D_{\sigma}$ is nonempty and if $Q\left(\sigma^{\wedge}\langle i\rangle\right)=f_{1} \upharpoonright z^{\prime}$, then $z^{\prime}>z, D_{\sigma^{\wedge}}\langle i\rangle$ is nonempty, and any $\tau^{\prime} \in D_{\sigma^{\wedge}\langle i\rangle}$ extends some $\tau \in D_{\sigma}$; by König's lemma the desired f_{2} exists.

We finally show that Q is uniformly recursively pointed. For $f_{1} \in[Q]$, $\left\{e_{1}\right\}^{\langle k\rangle \wedge f_{1}} \in\left[T_{2}\right]$ and so encodes \hat{s} and thus s; so f_{1} computes s by a single procedure independent of f_{1}; but Q is recursive in $P \oplus s$; since $f_{1} \in[P], P$ is recursive in f_{1} by a procedure independent of f_{1}; putting these together, Q is recursive in f_{1} by a procedure independent of f_{1}.

Case II. s is a winning strategy for II. Let Q be the result of coding \hat{s} into P at the odd places, i.e. $Q(\sigma)=P\left(\left\langle(\sigma)_{0}, \hat{s}(0), \ldots,(\sigma)_{z}, \hat{s}(z)\right\rangle\right)$ where $z=$ length $(\sigma)-1$. By a familiar argument (see e.g. [12]), Q is uniformly recursively pointed; since $s \in L_{\lambda}$, $Q \in L_{\lambda}$. For $A=f_{1} \in[Q]$ we show that $A \models \neg(\exists x) \varphi(x)$. We first complete our description of $G(P, \varphi)$ by specifying e_{1} : let e_{2} be a procedure which, given a play $\langle k\rangle^{\wedge} f_{1}$ by I, computes the real encoded at the odd places in f_{1}; let e_{3} be the procedure which, given a strategy for II and a play by I, computes the play of II under that strategy in response to that play by I ; e_{1} is the procedure which first applies e_{2} to $\langle k\rangle{ }^{\wedge} f_{1}$, regards the result as the characteristic function of a strategy for II, and applies e_{3} to that strategy and $\langle k\rangle^{\wedge} f_{1}$. Now suppose I plays $\langle k\rangle^{\wedge} f_{1}$, $f_{1} \in[Q]$; let f_{2} be II's response under s. Since $\left\{e_{2}\right\}^{\langle k\rangle^{\wedge} f_{1}}=\hat{s}$ and $\left\{e_{3}\right\}^{s,\langle k\rangle \wedge f_{1}}=f_{2}$,

$$
f_{2}=\left\{e_{1}\right\}^{\langle k\rangle^{\wedge} f_{1}} .
$$

But $f_{1} \in[P]$ and I loses this play of $G(P, \varphi)$; so $A \models \neg \varphi(k)$. Since k was arbitrary, $A \models \neg(\exists x) \varphi x$. QED.

The rest of the construction for Lemma 20 is routine. We fix a listing $\left\langle\varphi_{i}\right\rangle_{i<\omega}$ of all Σ_{n+4}^{0} sentences of \mathscr{L}, and a Δ_{1} over L_{λ} listing $\left\{A_{i}\right\}_{i<\omega}$ of $L_{\lambda} \cap \mathscr{P}(\omega)$. We form a Δ_{1} (over L_{λ}) sequence $\left\langle P_{i}\right\rangle_{i<\omega}$ of conditions, P_{i+1} extending P_{i}, so that:

$$
\text { either } P_{2 i} \Vdash \varphi_{i} \text { or } P_{2 i} \Vdash \neg \varphi_{i}
$$

$P_{2 i+1}$ is the result of coding A_{i} into $P_{2 i}$ at the odd places. Then $\bigcap_{i<\omega}\left[P_{i}\right]=\{A\}$ for some $A \subseteq \omega$. The odd steps ensure that A computes A_{i} for all $i<\omega$; the even steps ensure that $A \models \varphi_{i}$ iff $P_{2 i} \Vdash \varphi_{i}$; since $\left\langle P_{i}\right\rangle_{i<\omega}$ and the forcing relation are Δ_{1} over L_{λ}, $A^{(n+4)}$ is recursive in $\operatorname{Sat}_{0}\left(\mathscr{E}_{\lambda}\right)$. QED.
§5. Failure of determinacy. The results of $\S 3$, together with techniques developed by H. Friedman [3] and Martin [10], enable us to show that certain initial segments of L do not satisfy certain determinacy conditions. Clearly $L_{\alpha} \models \operatorname{Det}\left(\Sigma_{n+3}^{0}\right)$ iff $L_{\gamma} \models \operatorname{Det}\left(\Sigma_{n+3}^{0}\right)$, where $\gamma=\left(\aleph_{1}\right)^{L_{\alpha}}$. Thus we confine our attention to locally
countable initial segments of L. We now suspend the assumption that λ is not admissible; the following theorem clearly implies Theorem 2 if λ is not admissible.

Theorem 5. Let λ be a locally countable limit of admissibles. Suppose that λ is not a limit of $\alpha<\lambda$ such that $L_{\alpha} \models \operatorname{Det}\left(\Sigma_{n+3}^{0}\right)$. If $n>0$ suppose that λ is $(n-1)$-wellbehaved. Furthermore, suppose that if λ is not projectible, then the order-type of the λ stable ordinals is less than λ. Then $L_{\lambda} \neq \operatorname{Det}\left(\Sigma_{n+3}^{0}\right)$.

Proof. Suppose not; let α be the least counterexample. Fix $\beta_{0}, \gamma_{0}, \beta_{1}, \beta, \mathscr{E}=\mathscr{E}_{\beta}$ and W^{*} as in the proof of Lemma 18. Let T^{\prime} be the result of adding to T these further sentences:
$(\forall x) x$ is countable;
if Projectibility fails then the stable ordinals have the order-type of some ordinal;
$(\forall \alpha) \alpha$ satisfies Theorem 5.
By our choice of $\alpha, L_{\alpha} \models T^{\prime}$.
We associate with each formula φ in which $\operatorname{Sat}(\mathscr{E})$ is the sole parameter a game $G(\varphi)$ on $2^{<\omega}$. Where f_{1} and f_{2} are the plays produced by I and II, respectively, I wins $G(\varphi)$ iff:
(i) f_{1} encodes $\operatorname{Sat}(\mathscr{M})$, where \mathscr{M} is an ω-model of $T^{\prime} \cup\{\varphi\}$ in which $\operatorname{Sat}(\mathscr{E})$ is represented;
(ii.1) if $n=0$, for every $x \in \omega$ such that $\{x\}^{f_{1} \oplus f_{2}}$ is total, $\{x\}^{f_{1} \oplus f_{2}}$ is not an infinite descending ε^{μ}-chain; and
(ii.2) if $n>0$, for every $x, y \in \omega$ such that $\{x\}^{\left(f_{1} \oplus f_{2}\right)^{(n)}}$ and $\{y\}^{\left(f_{1} \oplus f_{2}\right)^{(n)}}$ are total and $\{y\}^{\left(f_{1} \oplus f_{2}\right)^{(n)}}$ and W^{*} bound the convergence of $\{x\}^{\left(f_{1} \oplus f_{2}\right)^{(n)}}$, then $\{x\}^{\left(f_{1} \oplus f_{2}\right)^{(n)}}$ does not converge to an infinite descending ε^{μ}-chain.

We note that $G(\varphi)$ is a $\Pi_{n+3}^{0}(\operatorname{in} \operatorname{Sat}(\mathscr{E}))$ game. By hypothesis there is an $s \in L_{\lambda}$ so that $L_{\lambda} \models(s$ is a winning strategy for $G(\varphi))$. Since λ is a limit of admissibles, s is a winning strategy for $G(\varphi)$. We show: s is winning strategy for I iff $L_{\lambda} \models \varphi$. This implies that truth in the structure $\left\langle L_{\lambda} ; \varepsilon \upharpoonright L_{\lambda} ; \operatorname{Sat}(\mathscr{E})\right\rangle$ is definable over that structure, contrary to Tarski's well-known result.

If $L_{\lambda} \models \varphi$, then I has this winning strategy: encode $\operatorname{Sat}\left(\mathscr{E}_{\lambda}\right)$ for \mathscr{E}_{λ} an arithmetic copy of L_{λ}.

Claim. If $L_{\lambda} \vDash \neg \varphi$, then II has this winning strategy: encode $\operatorname{Sat}\left(\mathscr{E}_{\lambda}\right)$ for \mathscr{E}_{λ} an arithmetic copy of L_{λ}. Suppose II plays f_{2} encoding $\operatorname{Sat}\left(\mathscr{E}_{\lambda}\right)$ and I plays f_{1}, encoding an \mathscr{M} which satisfies condition (i). Clearly \mathscr{M} is nonstandard. We show that condition (ii) fails. Where $\alpha=o(\mathscr{M}), \beta<\alpha$ since $\operatorname{Sat}(\mathscr{E})$ is represented in \mathscr{M}. We cannot have $\lambda<\alpha$, by the third new sentence of T^{\prime}. Let $L_{\alpha} \models\left(\aleph_{m}\right.$ is the greatest cardinal). If $\lambda=\alpha$, then $m=0$; by the assumptions on λ either Lemma 9 or Lemma 10 provides an infinite descending $\varepsilon^{\boldsymbol{M}}$-chain recursive in $f_{1} \oplus f_{2}$ and violating (ii). Suppose $\alpha<\lambda$. If $n=0$, since $\beta_{0} \leq \beta<\alpha$ we have $m=0$; since $\beta_{1} \leq \beta<\alpha, L_{\alpha} \neq \operatorname{Det}\left(\Sigma_{3}^{0}\right)$; by Lemma 9 or 10 or 11 there is an infinite descending $\varepsilon^{\mathcal{M}}$-chain recursive in $f_{1} \oplus f_{2}$, violating (ii). If $n>0$, then $m \leq n$, since $\gamma_{0} \leq \beta_{0}<$ $\beta<\alpha$ and if γ were a local \aleph_{n+1} and $\beta_{0}<\left(\aleph_{n}\right)^{L_{\nu}}+\delta=\gamma$ we would have $\delta \leq \gamma_{0}$, which is impossible. We now argue by cases as in the proof of Lemma 19. If $m=n$, Lemmas 9,10 or 11 apply; if $m=n-1$, Lemmas 15,16 or 17 apply; if $n \geq 2$ and $m \leq n-2$, Corollary 2 applies; so in all cases (ii) fails and II wins $G(\varphi)$. QED.

REFERENCES

[1] Morton Davis, Infinite games with perfect information, Advances in game theory, Annals of Mathematics Studies, no. 52, Princeton University Press, Princeton, New Jersey, 1964, pp. 85-101.
[2] H. B. Enderton and Hilary Putnam, A note on the hyperarithmetical hierarchy, this Journal, vol. 35 (1970), pp. 429-430.
[3] Harvey Friedman, Higher set theory and mathematical practice, Annals of Mathematical Logic, vol. 2 (1971), pp. 325-357.
[4] Harold T. Hodes, Jumping through the transfinite, Ph.D. Thesis, Harvard University, Cambridge, Massachusetts, 1977.
[5] -, Jumping through the transfinite, this Journal, vol. 45 (1980), pp. 204-220.
[6] -_, Upper bounds on locally countable admissible initial segments of a Turing degree hierarchy, this Journal, vol. 46 (1981), pp. 753-760.
[7] Ronald Jensen, The fine structure of the constructible hierarchy, Annals of Mathematical Logic, vol. 4 (1972), pp. 229-308.
[8] Carl Jockusch, Jr., and Stephen Simpson, A degree-theoretic definition of the ramified analytical hierarchy, Annals of Mathematical Logic, vol. 10 (1976), pp. 1-32.
[9] Donald Martin, Borel determinacy, Annals of Mathematics, ser. 22, vol. 102(1975), pp. 363-371. [10] - , Analysis and Σ_{4}^{0} games (unpublished manuscript).
[11] Yiannis Moschovakis, Elementary induction on abstract structures, North-Holland, Amsterdam, 1974.
[12] Gerald Sacks, Forcing with perfect closed sets, Axiomatic set theory, Proceedings of Symposia in Pure Mathematics, vol. 13, part 1, American Mathematical Society, Providence, Rhode Island, 1971, pp. 331-355.

```
CORNELL UNIVERSITY
    ITHACA, NEW YORK 14853
```

