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 THE JOURNAL OF SYMBOLIC LOGIC
 Volume 45, Number 2, June 1980

 JUMPING THROUGH THE TRANSFINITE:

 THE MASTER CODE HIERARCHY OF TURING DEGREES1

 HAROLD T. HODES

 Abstract. Where a is a Turing degree and e is an ordinal < (K) Li, the result of performing
 e jumps on a, a CE, is defined set-theoretically, using Jensen's fine-structure results. This opera-
 tion appears to be the natural extension through (K,)L! of the ordinary jump operations. We
 describe this operation in more degree-theoretic terms, examine how much of it could be
 defined in degree-theoretic terms and compare it to the single jump operation.

 ?1. Basic definitions and results. For A < co, let:

 Lo[A] = Mo[A] = {x Ix is hereditarily finite};

 La+i[A] = {xlx is first-order definable over <La[A]; E l La[A], A; La[A]>};

 LA[A] = U La[A];
 a<A

 Mcwa+n[A] = zn(<La[A]; E I La[A], A; La[A]>) for n ? 1;

 M0a[A] = La[A].

 Clearly Mw(a+l)[A] - Mwa[A] = La+i[A] - La[A]. <Ma[A]>a is introduced only
 for perspicacious statement of results. All proofs will use <La [A]>a. Note that
 if A --r B then Ma[A] = Ma[B]. Thus for a Turing degree a, we may define Ma =
 Ma[A] and La = La[A], for A E a. We let Ma[0] = M? = Ma and La[0] =
 L?- = La. All of the following definitions are given for a = Q. They relativize to ar-
 bitrary q in the obvious way. As usual, L?- = La, M? = Ma. Unless otherwise
 indicated, lower case Greek letters range over (81)L; A always ranges over limit
 ordinals.

 [a, 3) = {rlIa r < } a,)is an M-gap iff(M - M a) n = 0; [a, )
 is an M-gap iff (Lp - La) n w = 0. a is an M-gap ordinal iff [a, a + 1) is an
 M-gap; a is an L-gap ordinal iff [a, a + 1) is an L-gap. a is an M-index iff a is
 not an M-gap ordinal; a is an L-index iff a is not an L-gap ordinal. a starts an
 M-gap iff a is an M-gap ordianl and is the supremum of M-indices; a starts an
 L-gap iff a is an L-gap ordinal and is the supremum of L-indices. Let F(a) be the
 maximum j such that [a, a + 3) is an M-gap. Thus a is an M-gap ordinal iff F(a) #
 0. If a starts an M-gap, F(a) is the length of that gap.

 Let Ind: (81)L -+ (81)L enumerate the M-indices in increasing order. Clearly

 Received September 8, 1977.
 'Thanks to the referee for finding several major and many minor errors. Special thanks to F.

 Abramson for suggesting the use of modified Steel conditions in the proofs of Lemmas 1 and 2
 under Case 3. Writing of this paper was in part supported by a Fellowship from the Mellon
 Foundation.
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 JUMPING THROUGH THE TRANSFINITE 205

 a < Ind(a). If a < Ind(a), it is because Ind was temporarily "thrown off" by

 an M-gap. A c co is a master code for a iff Ma+i F 2w = {B I B ?T A}.
 Clearly this notion is invariant under Turing equivalence. Thus a Turing degree

 b is a master code for e iff b is the degree of a master code for I.

 THE FUNDAMENTAL THEOREM. e is an M-index iff there is a master code for A;
 furthermore, if b is the master code for t then b' is the master code for t + 1.

 We are now ready to extend the jump operation through (K1)L. Let 0() = the

 master code for Ind(e). The previous definitions and the Fundamental Theorem
 relativize to an arbitrary degree a. Thus we may define a(C) = the a-master code for

 Ind(O), for e < (N&)L.
 The central results of this paper characterize the function e 0'Q' in more

 degree-theoretic terms. We now introduce the machinery needed to state these

 results.

 Ind(a) #A a iff (30)(3 starts an M-gap and j < ?a < j + F(P) co). Let J(a) =
 the least strict upper-bound on {Ind(0)( 1 < }. a < J(a). In fact, J(a) > a iff
 Ind(a) > a and a does not start an M-gap. J(a) # Ind(a) iff a starts an M-gap.
 Ind(a) = J(a) + F(J(a)).

 We divide limit ordinals below (K1)L into three cases.

 Case 1. J(A) is not a limit of M-gaps.
 Case 2. J(A) is a limit of M-gaps and F(J(2)) < co.
 Case 3. Otherwise.

 Notice that F(J(2)) ? co iff 2 falls under Case 3.
 In subsequent proofs, further subdivision is needed.

 Case 1.1. 2 falls under Case 1 and J(2) is an M-index.
 Case 1.2. 2 falls under Case 1 but not Case 1.1.

 J(2) is an M-gap ordinal iff J(2) is admissible iff 2 is admissible and locally count-
 able. Notice that if 2 is not under Case 1.1, then J(2) = 2 = co 2. For A under
 Case 1, 2 falls under Case 1.1 iff F(J(2)) = 0, and 2 falls under Case 1.2 iff F(J(2))

 = F(2) = 1. The least Case 1.1 ordinal is co, and Ind(co) = co. The least Case 1.2 or-
 dinal is COCK =co1 and Ind(cwl) = co, + 1. The least Case 2 ordinal is sup{coCKI n < co}
 - cask, and Ind(cw) = co.L. The least Case 3 ordinal is /3o, and Ind(BO) = /3o + co.

 Between terms denoting Turing degrees, "<" represents Turing reducibility.
 A set I of Turing degrees is an ideal iff it is closed under join and downward-closed
 under <. If I is an ideal, the pair (b, c) is I-exact iff for any a, a E I iff a < b and
 a < c. If(b, c) is I-exact we shall also call (1 V c) I-exact. Let IA be the minimal
 ideal containing {Q(e) I 2 < A}. By definitions, UI, = MJ(,A) n colo =Lr n Ad
 Lp n ow where co r = JAA) and Ind (A) = co * , + n for n < co.

 The following results extend the characterization of (2-. O(C)) l j% provided

 in [6]. Let uA = the least ,u such that {a/l) I a is IA-exact} has a least member.
 THEOREM 1. ,uA exists. In fact,

 (2 + F(J(2)) for 2 under Case 1,

 (3 + F(J(2)) for A under Case 2 or Case 3.

 Thus PA = 3 + F(A) for 2 under Cases 2 or 3, and ,(i = F(G) in Case 3.
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 206 HAROLD T. HODES

 THEOREM 2. Q(R) is the least member of {q(1Q) I q is IA-exact}. Moreover, it is the
 least member of {q(fA) I q is IA-exact and Ind(2) is recursive in a}.

 Where U is a predicate of Turing degrees, a is a a-low U if a is a U and for any
 bE U,a ? b1.

 THEOREM 3. For e < uA, there is no {-Iow IA-exact degree.
 These theorems shall all be derived from the following lemmas. Let

 {2 + F(J(A)) if A falls under Case 1,

 G 3 + F(J(A)) if A falls under Case 2 or Case 3.

 LEMMA 1. There is an IA-exact pair (6, c) such that (b V C)(G(1)) < 0(A) and Ind(A)
 is recursive in b and in c.

 LEMMA 2. For any d 0 IA there is an IA-exact pair (1, c) such that for any e < G(Q),
 d $ (b V c) 't and Ind(A) is recursive in b and in c.

 LEMMA 3. If (b, c) is IA-exact, then Q(A) < (b V C)(GGi)).
 By Lemmas I and 3, Q() is the least member of {q(G(a)) j q is IA-exact} and of

 {a(G(2)) I a is IA-exact and Ind(2) <)fbVc)}. Thus pA exists. By definition of PA,
 PA() I a is IA-exact} has a least member d. Since d # 12, by Lemma 2 if pA < G(A),
 d is not least. Thus u = G(2). Lemma 2 easily proves Theorem 3.

 COROLLARY. 0(A is the least member of {a(-'+PA) I q is a u.u.b. on IS} and of {a(q) I

 a is a weak u.u.b. on hS}. For e < (- I + pa) there is no a-low u.u.b. on IA; for e < UA
 there is no a-low weak u.u.b. on JS.

 (See [4] for the definition of a u.u.b. and a weak u.u.b.) This corollary connects
 these results with the apparatus of [2].

 We state, mostly without proof, some basic facts about gaps.
 1. If a starts an M-gap or an L-gap, a is a limit ordinal and wa = a.
 2. If a starts an L-gap, then aX starts an M-gap.
 3. If a is a supremum of L-indices, La 1= V = HC (i.e. "everything is count-

 able").
 4. If a starts an M-gap, aX is the supremum of L-indices.

 A z1, comprehension axiom is a sentence of the form:

 (Vx E W) (Ox fi x) -* (3y) (y c w & (Vx) (x ( y + x)).

 where 0 is 2,, and 0b is fI,,. J,, CA is the set of J,, comprehension axioms.
 5. If F(wa) ? n then Lit k A,, CA.
 6. If a starts an M-gap then a starts an L-gap iff F(a) > A.
 7. If a starts an M-gap and F(a) 2 n then a is 2,-admissible.
 PROOF. Use Jensen's result on the 2,, uniformizability of Lat.
 8. a starts an L-gap iff La l= ZF- + V = HC; if a starts an L-gap, La fln wA is a

 ,-model of analysis. (ZF- = ZF - {Power Set}.) See [8].
 9. A is a limit of M-gaps iff MA is closed under hyperjump iff MA n Ad is hf

 absolute.
 We freely identify binary relations on a with subsets of w via the coding scheme

 n = <(n)o, (nl)>. Thus for X co w, structures <X, R, A>, R C XA2, A c X, may be
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 JUMPING THROUGH THE TRANSFINITE 207

 identified with reals. An arithmetic copy of <La [A]; e r (Lj,[A2]), A> hereafter
 called an arithmetic copy of La[A], is a structure <X, R, A>, X c cw, isomorphic to

 <La[A]; E r (La[a])2, A>, coded as single real. Hereafter Ea[A] ranges over arithmetic
 copies of La[A]. Let Th"(<X; R, A>) be Th(<X; R, A; X>) n (zn U 1I) the fl
 quantifier theory of <X; R, A; X>, with each member of X viewed as a name of
 itself. For X c co, Th"(<X; R, A>) may be viewed as a single real. The following
 standard facts about the arithmetic hierarchy provide motivation for this paper:

 if EO[A] < T A, then Th"(EO[A]) T A (), and there is an E1[A] canonically con-
 structed from EO[A] such that Th(Eo[A]) T Tho(El [A])-T A M.

 The Fundamental Theorem is proved in [6]. The proof makes use of Jensen's 2n

 uniformization theorem, transferred from the J to the L hierarchy. The proof of

 that uses Jensen's notion of a 2, master code for an arbitrary La. It might seem more
 direct to imitate Jensen's proof, which proves 2, uniformization and the existence
 of 2, master codes simultaneously, with J, uniformization and J, master codes,
 thereby avoiding mention of 2, master codes. But this seems to be impossible.

 The proof of the Fundamental Theorem proceeds by proving the following fact,
 which we shall misleadingly call a corollary.

 If La t? 4n+1 CA then Jn+i(La) contains a real of the form Thn(Ea). Thus the
 master code for coa + n is the least degree of the form deg(Thn(Ea)).

 The ordinary jump on 9 corresponds to a canonical jump function * on P1:
 deg(A)' = deg(A*). Unfortunately, an arbitrary transfinite jump on 9 seems to
 be associated with no canonical such function on Ph.

 ?2. Proofs of Lemmas 1, 2 and 3. Lemmas 1 and 2 for A under Cases 1 or 2 are

 proved in [6]. For the sake of a complete presentation we sketch those proofs here.

 Suppose A falls under Cases 1 or 2. Let n = F(J(G)); let J(A) = wa. Thus for
 some Ea, Q0) = deg(Thn(Ea)). To prove Lemma 1 it suffices to construct B and
 C E 2w such that

 (1) (B. C) is exact for Lan fw;
 (2.1) if A falls under Case 1 then

 (B S C)(2+") E An+i(La);

 (2.2) if A falls under Case 2 then

 (B S3 C)(3+nl E Jn+l(La).

 To prove Lemma 2 it suffices, given d 0 IA and fE d, to construct B and C E 2w
 such that (1) is true and

 (3.1) if A falls under Case 1 then f T (B e C)(l+n);
 (3.2) if A falls under Case 2 then f ?< T (B @ C) '+n)
 We now prove Lemmas 1 and 2, using forcing with uniformly recursively pointed

 perfect trees in an arithmetic setting. Fix a forcing language built from number
 variables, numerals, predicate constants for primitive recursive predicates on 2W x
 2w x a), and generic predicate constants B and C. Build prenex sentences from 3
 and -i, with the usual 1IQ, T? classification. Conditions are as in [6]: pairs (P, Q)

 where P and Q are uniformly recursively pointed perfect trees from La nAo and
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 208 HAROLD T. HODES

 P =T Q. (P, Q) extends (R, S) iff P and Q are subtrees of R and S respectively.
 [P] is the set of characteristic functions, identified with members of Pa), which lie
 along branches of P. [P, Q] [P] x [Q]. (P, Q) H- 0 iff for any (B, C) E [P, Q],
 (B, C) 1= 0, where 0 E 110<2 The other clauses are standard:

 (P, Q) H- (3x) 0 iff for some n < ) (P, Q) H- 0 (x/n);

 (P, Q) H- -10 iff for every (R, S) extending (P, Q),

 (R, S) * 0, for 0 E 2Y>2.

 By Lemma 3.5 of [6], some condition extending (P, Q) decides 0.
 We must compute the definitional complexity over La of forcing restricted to

 G U o()). The class of conditions and the extends relation are 10 and 1o re-
 spectively. By Lemma 3.8 of [6], forcing restricted to (12 U 112) is 10. So if , falls
 under Case 1.1, forcing restricted to (,EG(A) U IG(()) is Az over La. Forcing restricted
 to (13 U 113) is H1 over La n w, so clearly 42 over La. So for , under Case 1,
 forcing for (IG(A) U RG(A)) is 4F(J(A))+l over La).

 Suppose , falls under Case 2. La n w is n1 absolute. So forcing restricted to
 (10 U 110) is 11 over La. But by the Kleene basis theorem we can show that it is also
 C1 over La; suppose (P, Q) H- 0 if and only if(Vf E ),w) R(f F, Q, 0), where R E f?,
 Wx is the hyperjump of X. Then (Vf e cw)R(f, P, Q, 0)if (Vf<T W(P Q))
 R(f P, Q, 0) iff La N (3e) (t admissible & (P, Q) E Le & (Vf E Lc+i n cow)
 *R(f, P, Q. 0)). So in Case 2, following up the definition of forcing, forcing for
 (?+?3 U MOW3) is AI+1 over La, thus for (T 0(A) U H8o)( iS 4F(J(A))+l over La

 Let <0j>ji, and <Ai>E., be J.+i(La) enumerations of (TG(A) U HG(A)) and La n
 2w respectively. The latter exists by the corollary to the Fundamental Theorem.
 Let

 Po = Qo = id, (P2i+l, Q2i+1) = (P2i * Ai, Q2U * Ai);

 (W2i+2, Q2i+2) = the < L least extension of (P2i+l, Q2i+1) deciding 0 ,

 where P * A is the canonical result of coding A into P; see [6, Lemma 3.3].
 <(Pi, Qi)>i,,w E Jn+i(La). Let (B, C) = nfl<,(P2, Q2]. The usual forcing = truth
 lemma states that (B, C) H- Oi iff (P2i+l, Q2i+1) H- 0. (1) follows easily from the
 odd steps and Lemma 3.7 of [6]. Since(B S C)(G )) is defined by a IG(A) formula,
 (2.1) and (2.2) are satisfied.

 To prove Lemma 2 it shall be necessary to prove the following.
 SUBLEMMA 1. For any i and any condition (P, Q) there is an m and a condition

 (R, S) extending (P, Q) such that either

 (R, S) H- ; {f} (BEC) (G()-1) (tn) converges"

 or

 (3k)(k # f(m) & (R, S) H "{i}(B CGQ)-l)(m) = k)

 Suppose (P, Q) and i are a counterexample, i.e. for any m and any (R, S) extending

 (PF Q):
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 JUMPING THROUGH THE TRANSFINITE 209

 (4) (3(R*, S*) extending (R, S)) (R*, S*) H-, "{i} ) (G(C)-l)(r) converges";
 and

 (5) (Vk)(if (R, S) H- "{i}(B(C) (GA-lD(rn) = k" thenf(m) = k).
 Thus f(m) = k iff

 La F (3(R, S)) (R, S) extends (P, Q) & (R, S) H- , {i}(je )(GQl ))(mn) = k".

 By the previous results on the definitional complexity of forcing, the above

 definition is T, Thus, because f is a function,f E Zn(La). But La I= An CA. SO fE
 La, contrary to choice off.

 We now finish the proof of Lemma 2. Let < 0i>iE,, and <Aj>i-,, be enumerations
 of (G(A) -1 U ffG(A)-1) and La n 2w respectively; let

 Po = Qo = id;

 (P3i+l, Q3i+1) = (P3W * Ai, QU * Ai);

 (P3i+2, Q3i+2) = an extension of (P32+1, Q3i+1) deciding 0;

 (P3i+3, Q3i+3) = an extension of (P3i+2, Q3i+2) such that for some m,

 either

 (P3i+3, Q3i+3) - '' {i}(BDC)(GA-l)(m) converges" or

 for some k # f(m),

 (P3i+3, Q3i+3) - "{i}_(BC)(G(Al))(r) = k.

 Let (B, C) = n<<, [Pi, Q]. (1) is immediate as in Lemma 1. Stages of the form 3i
 insure the truth of (3.1) and (3.2). Note that iffe AJ+i(La) the above construction

 can be made Jn+, over La. So for d < 0 W we could choose (b, c) so that d ?
 (b V C)(G(1)-1) and (b V C)(G(A)) < Q(A), so (b V C)(G()) = W) by Lemma 3

 Suppose that , falls under Case 3. Recall that J(2) = 2 = ct)2. Let F(2) = wj3 +

 n. For some EA+, Q(A) = deg(Th,(EA+p)). To prove Lemma 1 it suffices to construct
 B and C E 2w such that (1) is true and

 (8) For some E[B @ C], Th,(Ep[B 0 C]) E Jn+,(L+p);
 (9) Y + 0i < wjand + i < wc;

 (9) implies that Ind(A) < wfB6C). Its purpose is more than decorative. Let b =
 deg(B), c = deg(C). Ind (VC) (F(2)) = Ind(bVc)(cwP) + n. Suppose Ind(bVc)(wP) =

 wr + m. Then for some E. [B S C], (b V C)(G G)) = deg (Thm+n (Er[B S C])). If
 cw3 + n < cwr + m, we have no reason to expect that we can find B, C and
 Er[B ?3 C] such that Thm+n(E7[B @ C]) E A"+1(LA+p) However, (9) insures that
 Ind(kVc)(co1) = COO. Thus (8) suffices for Lemma 1. For Lemma 2, suppose that
 d ? IA and fE d. If A falls under Case 3 it suffices to construct B and C E 2W such
 that (1) and (9) are true and

 (10)fj' 0n(Lj[B @ C]).
 As before, (9) insures that (b V c)(F(G)) = deg(Th.(Ep[B S C])) for some
 Ep[B G C]. Furthermore, UIOvc) = L[B G C] n w.

 For both Lemmas 1 and 2 we shall obtain B = BO e) B1 and C = CO E C1,
 such that Bo and CO are Turing upper-bounds on L A now and such that B1 and C1
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 210 HAROLD T. HODES

 are wellfounded trees of height high enough to insure that c0t' and cojc' are greater
 than A + 3.

 In Case 3, the proofs of Lemmas 1 and 2 use forcing for a ramified language. Fix
 a set P of one-place predicate constants. Let the lexicon of L*[P] consist of members

 of P, --, &, 3, parentheses, countably many unranked variables, and for each

 e < a, countably many variables of rank A. Let the formation rules be as usual,
 except that FP(v)1 for P E P is well-formed iff v has rank 0. Call a formula with no

 bound unranked variables "ranked". Let Co[P] be a set of standard names for

 members of Lo. Let Ce+i[P] be the set of terms kC0(x1/c1, X.,klC) such that b is
 ranked with exactly the free variables xc, xl, ..., Xk, no bound variables of rank

 > A, c1, ., Ck E UJ< Ca[P]. If e is a limit, let CC[P] = Ua<CU[P]. Let Lj[P] be the
 language which results by supplementing Ls*[P] by the constants in C,[P].

 Identify terms and formulae of Lj[P] with members of L,, in some fixed way. The
 rank of term c, p(c), is the least e such that c E C[P]. A formula 0 of L,, [P] is ranked
 iff it has no bound unranked variables. Its rank, p(b), is the supremum of the ranks
 of its contained constants predicate constants, and bound variables, where mem-

 bers of P have rank 1. Suppose P = {Po, ..., P)}. For i < k, suppose Pi is assigned
 to Pi 't co. L *PO, ..., Pk] is defined in the obvious way, and obviously equals
 Lv [Po GD... GD Pk] <L7,[Po, .. ., PjI; E I LJ[Po, ..., Pjk, Po, ..., Pk; L[Po, ..., Pa]> is the
 intended structure for Lj[P]. Note that for V > 0, the intended structure contains
 each Pi both as an extension of Pi and as an individual denoted by "xO(Pj(xO))".
 Variables of rank e < V range over LJ[Po, ..., P']k c E Cj[P] denotes a member of
 LP(C) [Po, ..., PP]. Thus if 0 is ranked, 0 is interpretable over Lp(W) [PO, *.., PJ].

 Let 11o = = {q I 0 is ranked formula of Lj[P]}. Define 2, and Ah, as usual.
 For the proofs to follow, let P = {Bo, P1, Co, C1} and let Lp[P] = VL; let CjP] =
 e.

 To insure the truth of (9) we need conditions more complicated than those used

 up to now. Let 3 be the maximum ordinal < A + 3 which is either admissible or a
 limit of admissibles.

 A modified Steel condition is a finite function z into 3 such that dom(z) c

 Seq - { < > }, dom(z) is closed under initial segments, and for a, T E dom(z), if
 a properly extends r then z(a) < z(r). (Think of < > as belonging to dom(z)
 and z( < >) = 3.) If y and z are such conditions, z extends y if z r dom(y) = y.

 Let a condition be a quadruple (P, Q, y, z), where P and Q are Turing equivalent
 uniformly recursively pointed perfect trees in LA and y and z are modified Steel
 conditions. Understand "extends" componentwise. Hereafter, "K" etc. shall
 range over conditions. Let the height of K, ht(K), = max(range(y) U range(z)).

 Let K = the set of conditions; Ke = {K I ht(K) < A}, where e is a limit ordinal.
 Let < * be the wellfounded relation on sentences of L introduced by Cohen in

 his definition of forcing [3, p. 115]. Forcing for sentences in L is defined by induction
 on < *. Let K = (P, Q, y, z).

 KH- 0 ifflp(0) = Oand 0 is true;

 K H- 8o(k) iff for every Xe [P], k E X;

 K H- Co(k) iff for every Xe [Q], k E X;
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 JUMPING THROUGH THE TRANSFINITE 211

 K H-1(k) iff ke dom(y) or k = >;

 K H- C1(k) iff ke dom(z) or k =< >;

 K H- -0 iff for every K' extending K, K' N/ 0, for p(- 0) > 0;

 K H- 0 &b iffKH0andKH--0bforp(0&b) > O;

 K H- (3xC)0 iff for some c E Cc, K H 0(xC/c), for p((3xC)0) > 0;

 K H- (3x)0 iff for some c E C, K H- 0(xlc);
 K H- C1 E C2 iff either (i) p(c1) < p(c2) and c2 is X 0 and

 K [ 0(xtlcl), or (ii) for some C3, p(C3) < p(C2)

 and K F- ((Vx)(x E c1 - x E C3) & C3 E C2)

 where p(c1) = t + 1, and in either case p(c1 e c2) > 0.

 Let 101 be the ordinal for the position of 0 in < * r {0b I sb E Hfo and p(b) > 0}.
 Thus sup 101 ? co*(A+ 3). In order to refer to 01 in LA+, code co (A + P) into
 co x (2 + P3) in the canonical way; we shall freely identify I 0 I with the appropriate
 member ofcox (2 + P). For g < 2 + 3 and 0 such that p(0) > 0,101 < cog
 iff p(0) < 7. From right to left this is clear; if 101 < co7), then for some k < co,
 101 =co p(0) + k; so co p(0) < c0; so p(0) < 7.

 SUBLEMMA 2. Forcing restricted to (2n U In") sentences is zI+1 over LA+p.
 Let H- be the characteristic function for forcing. We shall prove that H-

 (K X 11o) e f1(LA+p). Because it is a function, it then belongs to J1(LA+p).

 Forcq < ?6, let H,,, = H- r (K), x {01p(0) = Oor 101 < 7}). For e < g <
 2 + 3 and k < co, let HLwi?+k = H- (K x {0 1 101 <(072 + k or p(0) O}).
 We shall find 21 formulas 01(f) and 02(f, K, 0, i) such that for co C < 6:

 (12) if72 < (, H-@7eLC;
 (13) Lwe # 0(f) iff for some 72 < ,f H-F ;
 (14) if e is a successor, H-,,(K, 0) = i iff

 L(,w [ (3f)(01(f) & 02(f, K, 0, i));

 (15) if C is a limit, H-,,(K, 0) = i iff

 L #,e F (3f)(01(f) &f(K, 0) = i).

 We shall find a Tl formula 03(f) and for each k < c a formula Xk(f, K, 0, i)
 such that:

 (16) for k < co HF5+k (K, 0) = i iff4L [ (3f)(01(f) & Xk(f, K, 0, i)); and for
 such that e < e < ? + Ai;

 (17) for 6 < ?7 < C and k < co, H-wv+k e L;
 (18) Le 3(f) ifffor some V and k, 3 < V < C and k < co, f= H-cv7+k;
 (19) for e such that 3 < < A + / and k < co,

 [Fw+k (K, 0) = i iffLe k (3f)(03(f) & Xk(f' K, 0, i));

 and finally for 0 e Ho;

 (20) H- (K, 0) = i iff LA+p t= (3f)(03(f) & x(f, K, 0, i)).
 As a first approximation to 01(f), consider
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 (21) f is a function into 2 & (3,) (Q exists & dom(f) = Keg x {0 1 101 < a} &
 (V<K, 0> E dom f):

 (I) p(0) = 0 => (f(K, 0) = 1 iff 0 is true),
 (2) (Vk E c>)) (0 = rBo(k)l (f(K, 0) = 1 iff ...)),

 (6) (Vo E {0 I 0 < 10 1 <})(0 = r- (f(K, 0) = I if (VK')(K' extends
 K = f(K', b) = 0))),

 (8) (Vo) (Vo4 E {0 I I 0 1 < V})(0 = F(3xC)041 =t (f(K, 0) = 1 iff (3ce Co)
 (f(K, 0b(XC1c) = 1))))

 What are the failings of (1)? The '(Va)' in clause (8) is unrestricted. But for 1 01 <

 ay, if 0 = (3cx)o, t < p(0) < 101 < V. Thus it may be replaced by '(Vt < a)'.
 More seriously, the quantifier over conditions in clause (6) is not only unrestricted

 within L<,, for co e < 3, but if co~ < 3, its intended range includes more than L.C.
 We shall show that in fact it may be replaced by '(VK' E Km,,)'. This shall require
 several facts about modified Steel conditions due, essentially, to Steel [10].

 If x and y are modified Steel conditions and g is a limit ordinal, then x is an -
 retag of y iff: dom(x) = dom(y); if x(a) < g then x(a) y(a); if x(a) ? ig then
 y(a) 2 ag. Notice that 'is an iy-retag of' is symmetric.

 RETAGGING LEMMA. Suppose that x, x' and y are modified Steel conditions, x'

 extends x, and e < ig are two limit ordinals. If y is an rj-retag of x then some modi-
 fied Steel condition y' extends y, and is a t-retag of x'.

 PROOF. Let

 {0 if X'(a) < i,

 = I + max{r(a 'j) I a ^j e dom x'} otherwise.

 Clearly dom(r) = doti(x'), since dom(x') is finite and wellfounded under <,
 where a -< z iffz properly extends a.
 Let

 Jx'(u) if r(a) = 0,

 A)= 1 I + max{y'(ofj) I or'j e dom x'} if r(a) # 0 and a 0 dom y,
 ty(a) otherwise.

 Clearly dom(y') = dom(x').

 Claim. If a -< Z E dom(y') then y'(a) > y'(r).
 This is straightforward unless a E dom(y) and r 0 dom(y). Then, by induction

 on r(r), y'(r) < x'(r). But x'(T) < x'(a) = x(a). If x(a) <,a, x(a) = y(a) = y'(a)
 yielding y'(r) < y'(a). If x(a) 2 a, y'(a) 2 7a. But by induction on r(r), y'(r) < e +
 w <? . So again y'(r) < y'(a). Thus y' is a modified Steel condition. Clearly y' is a
 C-retag of x'. Suppose a E dom(y). If r(a) # 0, y'(a) = y(a). If r(a) = 0, y'AU) =
 x'(a) = x(a) = y(a) because x(a) <e < ) and y is an 77-retag of x. Thus y' ex-
 tends y. Note that if V < ht y, ht(y') = ht(y); if ht(y) <,a, ht(y') < C + a.
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 COROLLARY 1. If x' and x are modified Steel conditions, x' extending x, and e is
 a limit ordinal, then there is a modified Steel condition y extending x such that y is a

 t-retag of x and ht(y) < max(ht(x) + c), e + c)).
 PROOF. Because x is a (t + w))-retag of itself, the desired y exists by the retagging

 lemma and the concluding remark in its proof.

 Let condition <P, Q, x, y> be a t-retag of <P, Q, x', y'> iff x and y are t-retags of
 x and y' respectively. The previous lemma and corollary remain true when modi-
 fied Steel conditions are replaced by conditions.

 COROLLARY 2. For 0 e 11o such that 101 < e or p(0) = 0 and K' an W - {-retag
 ofK:KH- 0 if K'H- 0.

 PROOF. If p(0) = 0, this is trivial. We now induce on 101. Clearly K H- po(k)
 iff K' H- fo(k).

 Similarly for the other base clauses. All induction steps except the one for nega-

 tion are trivial. Suppose K H* '0. Let Ko extend K such that Ko H- 0. Since

 I 01 < ., 101 < A. The retagging lemma provides K6 extending K' which is an
 c)I 0 1-retag of K. By induction hypothesis, Ko H- 0 iff K' H- 0. Thus K' H* ' 0.
 The converse follows symmetrically.

 COROLLARY 3. For Ke Kwe and 0 such that 101 < Z, K - 0 ifffor any K' E
 K<,, if K' extends K, K' [I 0.

 PROOF. (=p) is clear. (<=) Suppose K* extends K, K* H- 0. By Corollary 1 there
 is a K' extending K, K' an l) 10 1-retag of K*, and ht(K*) < max(ht(K) + c),

 101 + c) < ce. Thus K* H- 0 by Corollary 2 and K* E K.C. So the quantifier
 restriction in (*) (6) may be introduced.

 We now construct 02. Let t be a 21 term such that for any AY, L. (,7+1? 1= t =7.
 As a first approximation let 02(f, K, 0, i) be:

 (10 1 < t & ff(K, 0) = i) V (10 1 = t & dom(f) = (K, x { II0111 < t I &
 (1) p(0) = 0 => (i = 1 iff 0 is true)

 (2) (Vk e w)(0 = _BO(k)l -E (i 1 iff ...))

 (6) (Volb e {0l 101 < t})(0 0-is1 => (i = 1 iff (VK' e Kt)(f(K', sb) = 0)))

 The arguments used in revising (*) show that for 101 =

 LO)(V+ 1= 01(f) & 02(f, K, 0, i) ifff = Hw,, and H-w (v+,)(K, 0) = i.

 We now prove (12)-(15) by simultaneous induction. (12) is vacuously true for
 0= . For any e such that l) e < &, if (12) is true, so is (13). Then so are (14) and

 (15). Thus H-we e Lwc+j, implying (12) for e + 1. If e is a limit, (12) holds for
 e induction. Thus (12)-(15) are all true. Consequently H-3 E 21(L3) and thus
 H- e 4+1- If s = A + A, this proves Sublemma 2.

 If s < A + A, notice that K e L+1 C LA+p. 03(f) may be taken to have the form:

 (f = H-B) V (3 y)(3k < wo)( < r1 & dom(f) = K x { 01 10 1 < w0 + k} & 0'(f)),

 where the construction of P' is easy. Notice that the quantifier (VK) in clause (6)
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 may be restricted to K. Let Xo(f, K, 0, i) be f(k, 0) = i. Suppose Xk has been
 constructed. Let Xk+1(f, K, 0, i) be

 (5) (VA)(0 = - r > (i = 1 iff (VK' extending K)(Xk(F, K', sb, 0)))) &

 (6) (V-b)(V0b')(0 = rb A 0b'1 = (i = 1 iff (Xk(F, K, sb, 1) & (Xk(F, K, b', 1)))),

 (16) is clear, using (13), yielding (17) for e = a + 1. Assume (17) for arbitrary {.
 By construction, (18) and (19) are true for A. Thus (17) is true for e + 1. If e is a
 limit and (17) is true for all A' < 4, (17) is true for A. Thus (17)-(19) are true for

 all e such that a < e < A + 3. So (20) is also true, proving that H- [ (K x IJo) e
 TN(LA+p). Sublemma 2 is proven.

 Suppose <KK.>ij, is a 2, generic sequence, i.e. for each i E cl), Ki+l extends Kj
 and for every 0 E Zn there is an i such that Ki decides 0. Where Ki = <Pi, Qi,
 xi, yi>, let To= Uxi, T1 = Uyis B1 = dom(T0) and C1 = dom(T1). By the
 usual forcing = truth lemma, for any k E wt, k E B1 iff for some i, Ki H- fl(k), and

 similarly for C1. By definition of modified Steel conditions, To: c seq - {< >} -+
 such that if a<' e dom(T0), a e dom(T0) and To(a) > To(r). Similarly for T1.
 Thus <B,, <> and <C1, <> are wellfounded.

 SUBLEMMA 3. If a E B1,for any 4, IO]B1 = e if for some i, xi(a) =
 Furthermore, the order type of <B1, -< > = J. Similarly for C1 and yi. Proof by in-

 duction on I1iB1. Suppose ITIB1 = a. For some i, a E dom(xi) and Ki H- "IQIB1j =
 By the induction hypothesis (aB), ILIB1 ? Xi(oa) SO xi(a) ? {. If x(a) > A, let K =
 <Pi, Q,, xi U {<or j, t>}, yi>, for some j such that o'j ? dom(xi), and form an-
 other generic sequence extending K and yielding B1 in place of B1. By choice of i

 and forcing = truth, kI&IB = 4. But by the induction hypothesis ( j=), I 1f , IA1 = a.
 Contradiction. Thus xi(a) =. Now suppose that xi(a) = A. If Joiaj > a, for some
 j, orj e B1 and Jor"J11 ? A. By the induction hypothesis (=>) there is an i' i
 such that xi,(u'j) ? 4, which is impossible. If 7) = IaIB1 < 4, select i' ? i such
 that Ki, H- "IMIB1 = 7". Where K = <Pi,, Qi,, xi U {<a'j, ,y>}, yi,> forj such that
 o*j I dom xi, form another generic sequence extending K and yielding B1 in place
 of B. By choice of i and forcing = truth, IacIj = rj. By the induction hypothesis
 (Ja), 'jjbJ = 7Contradiction. Thus I0iB1 = a. Suppose SUP{1cIBi1la Ee B1} = e < d.
 For some i, Ki HF "SUP{001B11 81(q)} = A". Let K = <Pi, Qi, xi U {<<i>, + 1>},
 yi> for <j> E dom(xi). Form a generic sequence extending K and yielding B1 in
 place of B1. By forcing = truth, sup{lajJJ a Eo B1} = A. But by previous parts of this
 sublemma, (<j>IA1 = e + 1. Contradiction. A symmetric argument applies to C1.

 We now construct B and C. Let <Ai>iE, and < 0 i>c, be enumerations of LA f 2'
 and the n,, sentences of L, both members of z1+?(LA?p) Such enumerations exist
 by the corollary to the Fundamental Theorem. Define <Kj>i,, E S"+,(LA+p) by:

 Ko = <idid, A, A>;

 K2j+l = the <L-least condition extending K2j and deciding 0j;

 K2i+2 = <P * Ai, Q * Ai, x, y> where K2i+1 = <P, Q, x, y>.
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 JUMPING THROUGH THE TRANSFINITE 215

 Letting Ki = <Pi, Q,, xi, yi>, let Bo= ni<,jPi], CO = ni<f[Q] and B1, C1, To
 and T1 as above. Let B = Bo G B1 and C = CO G C1. By the standard argument,
 iff <T B andf<TC, fe LA+p, and sofe LA. By the even stages of the construc-
 tion, for any f E LA, f < T Bo and f <T Co. Thus (1) is true. Because s < cw)Bj and
 a < cvfi, (9) is true. Because <Kj>jc=, e J,+?(LA+p), there is an M, a term-model
 copy of Lp[B, ( C], such that the Th,(M) E + Because Jn+,(LA+p) contains
 a counting of the set of terms C, the preimage of EM under this counting is the

 desired Ep[B G C], verifying (8).
 We now prove Lemma 2 for Case 3. Recall that fE cy - LA. The language L is

 as before. We now extend Sublemma 1 to this setting.

 SUBLEMMA 4. 0(xO, y0) E 2n,, K E K. There are k < c) and K' extending K such that
 either K' H- (3y0)0(ik, y0) orfor some m # f(k), K' = 0(k, mn).

 PROOF. Suppose not. Then for any k E c) and any K' extending K there is a K*

 extending K' s.t. K* [[ (3y^)0(k, )O), and for any such K', if K' [- 0(k, mn) then
 f(k) = m. This gives us a 2,n definition of f over LA+p. Thus f E J"(LA+p). But
 L+p JI= CA. So f E LA+p. Contradiction. Select such a k and K' and call them
 k(K, 0) and K'(K, 0) respectively.

 We may now construct B and C. Let <Ai>iE, and <0j>jE, enumerate LA n 2o
 and the n,, sentences of L. Let <Ki>iE, be such that:

 Ko = <id, id, A, A>;
 K3j+1 decides 0i;
 K3i+2(P * Ai, Q * Ai, x, y) where the K3?i+ = (P, Q, x, y);
 K3i+3 = K3i+2 if 0i does not contain exactly the free variables x0 and yO,

 K'(K3i+2, 0 ) otherwise.
 Form Bo, B1, CO, C1, B, C from <Ki>iW, as before. As with Lemma 1, (1) and

 (9) are true. Suppose f E 2,(Lp[B E C]). Then f is defined over L4B 0 C] by some
 0,(x0, y0). For some j, Kj H- 0i(k, f(k)) where k = k(K3i+2, 0i). But either
 Ki H- -i(3y0)0 .(k, y0) or Ki H- 0i(k, mn) for m # f(k). Contradiction. Thus
 (10) is also true.

 Again we note that if d < Q(A), (b, ) could be constructed so that (b V C)(G(A)) <
 WAl, thus (b V c)(G(A)) = Q() by Lemma 3.

 We now turn to Lemma 3. Suppose that (b, c) is IA-exact, B E b and C E c. Let
 J(A) = o r. In Cases 1 and 2 we want to construct a real ThF (j(,,)(Er) which is
 recursive in (B 0 C)(G(1)). By an easy modification of Definition 8 from [1], there
 is an operator * on 20 x c) such that (i) (X, y)* <T- X(@) uniformly in y, and (ii)

 for any Ec and b E w) such that for no x E Fld(Ec), (x), = b, (Tho(Ec), b)*=
 Tho(Ec+i) for an Ec+j extending Ec. We also note that the relation X = Y(co) is no
 over 20 x 20 (although it is only no over Po) x Po)!).

 Case 1.1. F(A) = 0 and G(G) = 2. If 7 = r' + 1, r' is an L-index for otherwise
 A falls under Case 3. Applying the corollary to the Fundamental Theorem to r',
 there is a real Tho(Er,) E L,. Er, may be chosen so that for any x E Fld(Er,), (x), #
 0. Let Tho(Er) = (Tho(Er,), O)* <T Tho(Er,) (). By results in [4], (B 0 C) (2) can

 compute a nice parametrization of Lr n Aod. Thus Tho(Er,) ( < T (B 0 C) (2).
 Now suppose that r is a limit. Select a rT' < r such that [rT', r) contains no

 M-gaps. As before, select a real Tho(Er,) E Lr/?i. By choice of r", there is a linear
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 system of notation R E Lr/+i of height (r - r'). Working over L7 we construct a
 sequence <Tho(EX)>XEF1d(R), each E. is an EIXIR, as follows.

 (Tho(Er') if IXIR = 0;

 Tho(Ex) = J(Tho(Ey), y)* if IXIR = IYIR + 1;

 l U Tho(Ey) if IXIR is a limit.
 y<R

 Tho(E7) = U Tho(Ex).
 xeFld(R)

 To show that Tho(E7) < T (B Q C)(2), we introduce another such sequence.

 [Tho(E7') if IXjR I 0,

 Hx(R) = Hy(R)(w) if IXIR = IYIR + 1,

 t{<y,z> IzEHy(R)&y <RX}.

 H(R)= {<x,z>IzeHx(R)&xeFld(R)}.

 By induction along R, Tho(Ex) < T HX(R) uniformly in x and Hx(R) E L. for each
 x e Fld(R). Thus Tho(E7) ? T H(R) and H(R) e zll(L. n WW). Again because
 (B (D C)(2) computes a nice parametrization of Lr n w, H(R) ? T (B E C) (2)*

 Case 1.2. A = r, F(A) = 1 and G(A) = 3. We use the previous argument with a
 twist. Let r' < r be maximum such that r' is admissible or a limit of admissibles.

 LA contains no system of notation for A. But because (B @ C) (2) computes a nice

 parametrization of LA n(ow, there is a linear system of notation R of A = A -'
 such that H(R) ?T(B D C) (2) and each initial segment of R belongs to LA. This
 follows from Theorem 2 of [4], replacing the ordinary jump by the w-jump. Select

 Tho(Er,) e L,,+, and construct <Tho(Ex)>XEF1d(R) and Tho(EA) as before, with Er an
 ErT+IXIR. Again Tho(EA) < T H(R) < T (B Ge C)(2). But then Thl(EA) < T Tho(EA)' < T
 (B G C)(3).

 Case 2. A = r7 Let F(A) = n, G(O) = n + 3. Again, by a slight revision of
 Theorem 3 of [4], we may select a linear system of notation R for A, such that H(R)

 <T (B (D C)(3). Select Tho(Eo) e L1. We construct <Tho(Ex)>, with EX an EIXIR, and
 Tho(EA) as before. Again Tho(EA) ? T H(R). Thus Thn(EA) ? T Tho(EA) (")< T
 (B E C) (G (A)).

 Case 3. A = r, F(A) = G(A) = wo) + n. The argument divides into two subcases.
 Suppose 3 < A + 3. Thus / < woA, Ind(Vc) (G(A)) = G(A). We wish to find an

 EA+p such that Thn(EA+p) E Jn+l(Lp[B D C]). By the argument for Case 2, there is
 a real Tho(EA) <T (B D C) (3), and so belonging to L1[B ED C]. Let R be a linear
 system of notation for / such that R < T (B (e C) (3) and all initial segments of R

 belong to LA. Within L,[B e) C] we construct a sequence <Tho(EX)>XEF1d(R) starting
 with Tho(Ex) and such that Ex is an EA+IxIR. Tho(EA+p) = UXEFld(RTho(Ex) as be-

 fore; so Tho(EA+p) < T H(R). H(R) e J1(Lp[B D C]); so H(R) () eJn+1(Lp [B G? c])
 and Thn(EA+P) < T ThO(EA+p) (n) < T H(R) (W.

 Now suppose that P, = A + P. Let Ind(MVC) (G(A)) wv *3 + m. The strategy used
 up to now is no longer available, for we cannot count on there being a system of
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 notation for : belonging to L1[B 63 C]. Let L x>{<I, x? I x E - Le for e <

 A + 3} and let "<, x> E <a,, y> iff x E y. Thus <L, E r (L x L)> is isomorphic to
 <LA+p, e> and L E z1(Lp[B D C]). Select Thm(Ea [B E C]) E (b V c)(G(A)). Let EA+p
 be the copy within E3[B e C] of <L, E r (L x L)>. Because co: + n ? cod + m,

 Thn(EA+P) < T Thm(Ej[B 0 C]).

 ?3. Defining A..0(e) inductively. AiK.O) has been defined set-theoretically. In
 [6] (A{Q(e)) /3o is shown to have a sort of degree-theoretic inductive definition

 over <9; ?, '>; viz. there is a sequence of formulae <b0(x)>j<, in the language
 of <9; ?,', I> such that for any A < /0 there is an i such that <9; <, ', IA> I=

 (3x)0b(x) and for the least such i, <9; <? I, IA> = 0(A) = (Qx) b5(x). Allowing
 the appearance of Aq.q ) for t < /% in the structure, we can bootstrap up to a
 larger initial segment of A$.O(C). How far may this be iterated? We define a se-

 quence of suchinitial segments <di>i<?,, as follows.
 Given any partial function d on ordinals, let dom*(d) be the maximal initial

 segment of the ordinals on which d is defined.

 do(n) = Q (n) for nE co.
 d,+1(A) = the least member of {d, (Aa) I a is IA-exact} if for every IA-exact a, ,uA E

 dom*(dt); undefined, otherwise;

 dj+j(A + n) = di?+,)(n).
 d,,(A) = the least member of {d4 (puA) I is IA-exact, i E co} if there is an i E co

 such that for every IA-exact a, ,uA E dom(d/());

 do.(A + n) = d.)(A)(n)
 Notice that di+a(A) = max{d I for any IA-exact a, d < d4(jiA)}, under the above

 conditions for definition. So the definition of d1 in terms of do coincides with the
 inductive degree-theoretic definition of At < /0.Q(e) provided in [6].

 a is a local ti iff Lai+ # a = xe. Let de be the least local Be. Let J<, be the
 least a such that La k= (Vn E Io) (xn exists). Note that SUP{Jn I n E I} < 3<w <
 Id. For n ? 1, let A, be that A such that L"+, k= A = xi. Let A, be that A such
 that La<,, # A = K1. Again, A,, < A for that A such that Law I= A = x1.

 THEOREM 4. For t < I, dom*(de) = A.

 This approach to defining Q (A) in terms of IA stops at A.. This follows from the
 following.

 THEOREM 5. There is an 1J.-exact a such that d~a(l) is undefined. Thus if dual
 is defined in terms of de just as di+, is defined in terms of di, then dom*(d?,i+) = 2,

 We simultaneously prove Theorem 4 and the following lemma.
 LEMMA 4. Suppose that [A, A + a) is a maximal L-gap. [A, A + a) contains a local

 Ki+1 ifffor the some IA-exact a, uA 0 dom*(diF).
 PROOF. 20 = co. Thus for e = 0, Theorem 4 is trivial. For i = 0, by results

 from ?2, both sides of the biconditional in Lemma 4 are true. A1 = /0. By results
 in ?2, for e = 1, Theorem 4 follows. Suppose 1 < e < co and e = i + 1. We
 assume as our induction hypothesis that for any a, dom*(do) = A?. This is legiti-
 mate because this proof, though presented relative to Q, may be relativized to any
 degree. In what follows, we write La as (La, 4).

 We first prove Lemma 4 for i as above. (a). Let a be IA-exact, uA 0 dom*(dL7).
 By induction hypothesis relativized to a, dom*(dc) = A?. So ,pA ? Ac.
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 Claim. McE [A, A + a).
 First we show that Aq < A + a. If A + a < l:, then a <4; so ca < O7A =

 17. For some n, E Cl, PA = cva + n and 4L7 is a limit; so uA < 4L7. Now we show that
 d7 < A + a. Suppose A + a < d. A + a is an L-index. But (LI, at) I= ZF-;
 thus (L, Jq) 1= ZF-. So Jq is not an L-index. Thus 2A < A + / < 3z. LA+a+l con-
 tains a wellordering of height A + a. So does (LB, A + a + 1). But [4AL, da + 1)
 is an La-gap. Contradiction. Therefore b < A + a.

 Claim. [A, Jq + 1) contains a local xi+l. Let a, , ..,al, be such that:

 (La ata + 1) kal = & . & ai= i-, & =Hi.

 Thus

 (L, d0 + 1) 1= $1 & a1 2 2 & -- & a-1 2 i & A +.

 Thus [A, A + a) contains a local ,i+l.
 (=:-). Suppose that [A, A + a) contains a local x+l. Thus there are a1, ..., a, E

 [A, A + a) such that

 La+ iA= & a = 2 & ... &a= i.
 Clearly A + a1 = a1. We construct an IA-exact pair (b, c) such that A(Vc) < A.
 By the induction hypothesis, Abvc) = dom*(di(VC)). So this suffices. We construct
 B and C E 2w such that b = deg(B) and c = deg(C). Let conditions be as in

 the proof of Lemmas 1 and 2 under Cases 1 and 2. Let the forcing language L be

 La,+, [B, C]. Let <(Pi, Qj)>j,, be a sequence of conditions such that
 Po = Qo = id;
 (P2i+1, Q2i-5?) extends (P2b, Q25) and decides 0j;
 (P2i+2, Q2i+2) = (P2i+1 * Ai, Q2i+1* Ai);

 where <0 i>i,, and <Ai>i,, are enumerations of the sentences of L and of LA n 2w
 respectively. Let (B, C) = njfPj, Q,]. A < cWi(B0c). By the standard argument, all
 cardinals of Lai+, except for N1 are preserved.

 Lai+1[B d? C] I=a--1 = H1 & . & ai = Hi.

 Thus ai 2 (Vc). So AbVc) < a1 < a < coa < gA. Thus Lemma 4 is proved for
 this choice of i.

 We now prove that dom*(dj+.) = Ai+1. If A < Aj+1, A does not start an L-gap
 containing a local si+,. By Lemma 4, for any a which is IA-exact, PA E dom*(dq).
 Thus d+.1(A) is defined. Ai+1 starts an L-gap containing a local Ni+1. By Lemma 4,
 dj+1(A?+l) is undefined.

 Finally, suppose e = to. If A < A<,,, for some i E co, A does not start an L-gap con-
 taining a local H,+1. By Lemma 4, for any IA-exact a, ,A E dom*(dL7). Thus d,(A) is
 defined. A. starts an L-gap containing a local ?i+l for every i E co. Thus for any
 i E co there is an 1A-exact a such that ,iA. 0 dom*(dli). Thus d,(Ai,) is undefined.

 PROOF OF THEOREM 5. Let <i>i be such that for all i E co, (L, 3<w) = a, = Hi1.
 It suffices to construct (b, c) IA-exact such that 1 = A(VC). Because IUA. > coa1 =
 a,, by Theorem 4, A. 0 dom*(dWVW)). Thus d?+l(A.) is undefined. As in the proof
 of Lemma 4 (=>), we construct (b, c) such that for all i E co, (L(W), '3<,) I=- a = Hi.
 Thus '<, = J~lc). So a1 = A(Vc).
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 JUMPING THROUGH THE TRANSFINITE 219

 Let A, for n < cv, be nth-order number theory, i.e. Peano's axioms set in an nth

 order language, where variables of order i, 1 < i < n, range over sets of type

 i - 1. Let A., = UTAH, in the language with variables of all finite orders. A2 is anal-
 ysis. For e < co, we imitate the construction of the ramified analytical hierarchy.

 A structure for Ac has the form << Ui>?,<c<; +, *, S; 0> where U0 = co and Uj+1 s
 P(U,); variables of order j + 1 range over Uj. Let MS be the structure for AC with
 all U,'s, for j + 0, empty. Form the transfinite sequence <Mi>,, by iterating closure
 under definability in the language of Ac. This hierarchy stops. Let the final structure

 be Me with domains <Ut>1<,<,; let the closure ordinal be rC. Then MC 1= Ac. Let
 4* be AC translated into the language of set theory. L F nPn (cv) and Lx< n P? (cv)
 are, respectively, the minimal models for A *ni and A * in which wellfoundedness is

 absolute. Thus U+l1 = (L, in) f Pi(Z); U. = (L, d<.) n Pi(cv) where U7+1, U.
 are from Mn+l, Mw respectively. Thus for any n < c, rn = ,n-1; furthermore,

 ,= a<. Let IC = AC for e < cv. By Theorem 4, U'E n 2" = Ue. Thus de classifies
 the degrees of reals in Mc.

 ?4. Comparison with the single jump operation. How similar is the single jump

 operation a + a' to an arbitrary operation of the form a + a(c) for e < (K1)Lb? In
 this section we examine an analogy and a striking disanalogy. As usual, all results
 are stated for a = 0, but easily generalize to arbitrary a.

 The analogy: Friedberg's completeness theorem ((Va 2 Q')(3c)(a = c')) gener-
 alizes to arbitrary transfinite jumps:

 THEOREM 6. For any e < (x1)L and any a, if a > 0 (0 then there is a c such that a
 - c(c)

 The disanalogy: the trivial fact that 0' < a' does not generalize in the most
 straightforward way.

 THEOREM 7. For any e < (x1)L and any a, 0Q() < a(Ind(C)).
 THEOREM 8. For any < (X1)L there is a b such that 0Q(e = b(Ind()).
 Before we present proofs, notice that if e + ,y < (x1)L, Q () <v) = 0(c+7). This fol-

 lows by an easy induction on 71.
 PROOF OF THEOREM 6. Suppose a 2 Q(c). If e = a + 1, by the relativization of

 Friedberg's theorem to 0(a), there is a d 2 Q(a), d' = a. By the induction hypothesis
 on a, there is a c such that d = c(a). Thus d' = c(a+l) = a.

 Suppose that e is a limit ordinal. By analogy with Friedberg's argument, we
 construct a c such that c(c) < a < c V 0(E) < c(c). Clearly such a c is as desired.
 Suppose Ind(C) = cvl + n and A E a. Let the forcing language L be Lp[C]. Let
 <0ji>i<, be a An+1(Lp) enumeration of the 2,, U Jl,, sentences of L. We shall force
 with Cohen condition, viewed as finite strings of 0 and 1. There is a sequence of

 Cohen conditions J E A,+1(Lp) such that for every i:
 or+1 extends ri;
 c72i decides qi;
 0'2i+1 = o02i^A(i).

 Let C = limi_,ai; let c = deg(C). For any Ep, <aj> ,_, is coded by a single real re-
 cursive in Th"(Eo) e A. Select Ep such that Th"(Eo) E 0 T' . Because Th"(Eo) < T A,
 C < T A. Because the even steps are determined only by Th"(Ep) and A is coded
 into C at the odd steps, A <T C ED Th"(Eo). Thus c (c < a < c V 0 (). Finally
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 220 HAROLD T. HODES

 because all conditions belong to Lo, for any y7 < f and any m, L. # Am CA iff
 LJ[C1 F J1,CA. Thus for any ? <, Q( < c) . Therefore c V 0 () < c ae. Q.E.D.

 PROOF OF THEOREM 7. Suppose e = r + 1. By induction hypothesis, Q(r) < a(Ind(r)).

 Thus 0(r+l) < a(Ind(r)+1). But Ind() = Ind(r) + 1. Suppose e is a limit. Let Ind(O) =
 cei3 + n; let Indg(Ind(O)) = cQa + in 2 co) + n. Let A E a. By the procedure used
 in the proof of Lemma 3, Case 3, in the final paragraph, there is a uniform way of

 obtaining an Ep from any EJ[A] such that Th"(Ep) < T Thm(EJ[AI). This suffices.
 PROOF OF THEOREM 8. If Ind(O) = I, Theorem 8 is trivial. So suppose Ind() >

 I. It suffices to construct a b such that b(Ind()) < 0(C). Let Ind(O) = Oax + n. Let
 L be La[B]. Let a be the maximum ordinal < a which is admissible or a limit of
 admissibles. We force with modified Steel conditions, with ordinal labels <a.

 Let <0j>jcE, E ln+l(Lca) enumerate the (In U II") sentences of L. Let <Zi>e(=,-J nln+i(Lat)
 be a sequence of modified Steel conditions such that for any i, zj+1 extends zi and
 zi decides Hi. By the standard construction, such a sequence exists. Let B be the
 extension of B determined by this sequence. Let b = deg(B). Because <zj>i, E
 Jn+i(La), for any Ea there is an Ea[B] such that Thn(Ea[B]) < T Thn(Ea). Select Ea
 such that Thn(Ea) E QOV); let Ea[B] be determined by Ea. As in the proof of Lem-
 mas I and 2 under Case 3, B is a wellfounded tree of sequence numbers of height J.

 Thus Ind(O) < a)B. Thus boa+n) < deg(Thn(Ea[B])).
 We finish this section with an application of Theorem 6.

 COROLLARY. For anti A, fd I d ? Q(A)} = {a(P) 1 a is I-exact}.
 PROOF. Let (b, c) be an IA-exact pair such that (b V C)(Q2) > Q(0). Suppose d 2

 By Theorem 6, for some d* > (b V c) (2), (d*)(-2+yI) = d. By (J) of [4, ?2], for some

 IA-exact pair (b*, c*), (b* V C*)(2) - d*. The other direction is just Lemma 3.
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