NL

Tumping Through the Transfinite: The Master Code Hierarchy of Turing Degrees
Author(s): Harold T. Hodes
Source: The Tournal of Symbolic Logic, Jun., 1980, Vol. 45, No. 2 (Jun., 1980), pp. 204220

Published by: Association for Symbolic Logic
Stable URL: https://www.jstor.org/stable/2273183

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms \& Conditions of Use, available at https://about.jstor.org/terms

JUMPING THROUGH THE TRANSFINITE: THE MASTER CODE HIERARCHY OF TURING DEGREES ${ }^{1}$

HAROLD T. HODES

Abstract

Where \underline{a} is a Turing degree and ξ is an ordinal $<\left(\boldsymbol{\aleph}_{1}\right)^{L^{e}}$, the result of performing ξ jumps on $\underline{a}, \underline{a}^{(\epsilon)}$, is defined set-theoretically, using Jensen's fine-structure results. This operation appears to be the natural extension through $\left(\aleph_{1}\right)^{L^{\varrho}}$ of the ordinary jump operations. We describe this operation in more degree-theoretic terms, examine how much of it could be defined in degree-theoretic terms and compare it to the single jump operation.

§1. Basic definitions and results. For $A \leq \omega$, let:

$$
\begin{aligned}
& L_{0}[A]=M_{0}[A]=\{x \mid x \text { is hereditarily finite }\} ; \\
& L_{\alpha+1}[A]=\left\{x \mid x \text { is first-order definable over }\left\langle L_{\alpha}[A] ; \in \upharpoonright L_{\alpha}[A], A ; L_{\alpha}[A]\right\rangle\right\} ; \\
& L_{\lambda}[A]=\bigcup L_{\alpha}[A] ; \\
& M_{\omega \alpha+n}[A]=\Delta_{n}\left(\left\langle L_{\alpha}[A] ; \in \upharpoonright L_{\alpha}[A], A ; L_{\alpha}[A]\right\rangle\right) \text { for } n \geq 1 ; \\
& M_{\omega \alpha}[A]=L_{\alpha}[A] .
\end{aligned}
$$

Clearly $M_{\omega(\alpha+1)}[A]-M_{\omega \alpha}[A]=L_{\alpha+1}[A]-L_{\alpha}[A] .\left\langle M_{\alpha}[A]\right\rangle_{\alpha}$ is introduced only for perspicacious statement of results. All proofs will use $\left\langle L_{\alpha}[A]\right\rangle_{\alpha}$. Note that if $A \equiv{ }_{\Gamma} B$ then $M_{\alpha}[A]=M_{\alpha}[B]$. Thus for a Turing degree \underline{a}, we may define $M_{\alpha}^{\underline{a}}=$ $M_{\alpha}[A]$ and $L_{\bar{\alpha}}^{\underline{\alpha}}=L_{\alpha}[A]$, for $A \in \underline{a}$. We let $M_{\alpha}[\varnothing]=M_{\alpha}^{0}=M_{\alpha}$ and $L_{\alpha}[\varnothing]=$ $L_{\bar{\alpha}}^{0}=L_{\alpha}$. All of the following definitions are given for $\underline{a}=\underline{0}$. They relativize to arbitrary \underline{a} in the obvious way. As usual, $L_{\alpha}^{0}=L_{\alpha}, M_{\alpha}^{0}=M_{\alpha}$. Unless otherwise indicated, lower case Greek letters range over $\left(\kappa_{1}\right)^{L} ; \lambda$ always ranges over limit ordinals.
$[\alpha, \beta)=\{\gamma \mid \alpha \leq \gamma<\beta\} .[\alpha, \beta)$ is an M-gap iff $\left(M_{\beta}-M_{\alpha}\right) \cap \omega^{\omega}=\varnothing ;[\alpha, \beta)$ is an M-gap iff $\left(L_{\beta}-L_{\alpha}\right) \cap \omega^{\omega}=\varnothing . \alpha$ is an M-gap ordinal iff $[\alpha, \alpha+1)$ is an M-gap; α is an L-gap ordinal iff $[\alpha, \alpha+1$) is an L-gap. α is an M-index iff α is not an M-gap ordinal; α is an L-index iff α is not an L-gap ordinal. α starts an M-gap iff α is an M-gap ordianl and is the supremum of M-indices; α starts an L-gap iff α is an L-gap ordinal and is the supremum of L-indices. Let $F(\alpha)$ be the maximum β such that $[\alpha, \alpha+\beta$) is an M-gap. Thus α is an M-gap ordinal iff $F(\alpha) \neq$ 0 . If α starts an M-gap, $F(\alpha)$ is the length of that gap.

Let Ind: $\left(\aleph_{1}\right)^{L} \rightarrow\left(\aleph_{1}\right)^{L}$ enumerate the M-indices in increasing order. Clearly

Received September 8, 1977.

${ }^{1}$ Thanks to the referee for finding several major and many minor errors. Special thanks to F . Abramson for suggesting the use of modified Steel conditions in the proofs of Lemmas 1 and 2 under Case 3. Writing of this paper was in part supported by a Fellowship from the Mellon Foundation.
$\alpha \leq \operatorname{Ind}(\alpha)$. If $\alpha<\operatorname{Ind}(\alpha)$, it is because Ind was temporarily "thrown off" by an M-gap. $A \subseteq \omega$ is a master code for α iff $M_{\alpha+1} \cap 2^{\omega}=\left\{B \subseteq \omega \mid B \leq_{\top} A\right\}$. Clearly this notion is invariant under Turing equivalence. Thus a Turing degree \underline{b} is a master code for ξ iff \underline{b} is the degree of a master code for ξ.
The Fundamental Theorem. ξ is an M-index iff there is a master code for ξ; furthermore, if \underline{b} is the master code for ξ then \underline{b}^{\prime} is the master code for $\xi+1$.

We are now ready to extend the jump operation through $\left(\aleph_{1}\right)^{L}$. Let $\underline{0}^{(\xi)}=$ the master code for $\operatorname{Ind}(\xi)$. The previous definitions and the Fundamental Theorem relativize to an arbitrary degree \underline{a}. Thus we may define $\underline{a}(\xi)=$ the \underline{a}-master code for $\operatorname{Ind}(\xi)$, for $\xi<\left(\aleph_{1}\right)^{L \underline{a}}$.

The central results of this paper characterize the function $\xi \mapsto \underline{0}^{(\xi)}$ in more degree-theoretic terms. We now introduce the machinery needed to state these results.
$\operatorname{Ind}(\alpha) \neq \alpha$ iff $(\exists \beta)(\beta$ starts an M-gap and $\beta \leq \alpha<\beta+F(\beta) \cdot \omega)$. Let $J(\alpha)=$ the least strict upper-bound on $\{\operatorname{Ind}(\xi) \mid \xi<\alpha\}$. $\alpha \leq J(\alpha)$. In fact, $J(\alpha)>\alpha$ iff $\operatorname{Ind}(\alpha)>\alpha$ and α does not start an M-gap. $J(\alpha) \neq \operatorname{Ind}(\alpha)$ iff α starts an M-gap. $\operatorname{Ind}(\alpha)=J(\alpha)+F(J(\alpha))$.

We divide limit ordinals below $\left(\aleph_{1}\right)^{L}$ into three cases.
Case 1. $J(\lambda)$ is not a limit of M-gaps.
Case 2. $J(\lambda)$ is a limit of M-gaps and $F(J(\lambda))<\omega$.
Case 3. Otherwise.
Notice that $F(J(\lambda)) \geq \omega$ iff λ falls under Case 3 .
In subsequent proofs, further subdivision is needed.
Case 1.1. λ falls under Case 1 and $J(\lambda)$ is an M-index.
Case 1.2. λ falls under Case 1 but not Case 1.1.
$J(\lambda)$ is an M-gap ordinal iff $J(\lambda)$ is admissible iff λ is admissible and locally countable. Notice that if λ is not under Case 1.1, then $J(\lambda)=\lambda=\omega \lambda$. For λ under Case $1, \lambda$ falls under Case 1.1 iff $F(J(\lambda))=0$, and λ falls under Case 1.2 iff $F(J(\lambda))$ $=F(\lambda)=1$. The least Case 1.1 ordinal is ω, and $\operatorname{Ind}(\omega)=\omega$. The least Case 1.2 ordinal is $\omega_{1}^{C K}=\omega_{1}$ and $\operatorname{Ind}\left(\omega_{1}\right)=\omega_{1}+1$. The least Case 2 ordinal is $\sup \left\{\omega_{n}^{C K} \mid n<\omega\right\}$ $=\omega_{\omega}$, and $\operatorname{Ind}\left(\omega_{\omega}\right)=\omega_{\omega}$. The least Case 3 ordinal is β_{0}, and $\operatorname{Ind}\left(\beta_{0}\right)=\beta_{0}+\omega$.

Between terms denoting Turing degrees, " \leq " represents Turing reducibility. A set I of Turing degrees is an ideal iff it is closed under join and downward-closed under \leq. If I is an ideal, the pair $(\underline{b}, \underline{c})$ is I-exact iff for any $\underline{a}, \underline{a} \in I$ iff $\underline{a} \leq \underline{b}$ and $\underline{a} \leq \underline{c}$. If $(\underline{b}, \underline{c})$ is I-exact we shall also call $(\underline{b} \vee \underline{c}) I$-exact. Let I_{λ} be the minimal ideal containing $\left\{\underline{0}^{(\xi)} \mid \xi<\lambda\right\}$. By definitions, $\bigcup I_{\lambda}=M_{J(\lambda)} \cap \omega^{\omega}=L_{r} \cap \omega^{\omega}=$ $L_{\beta} \cap \omega^{\omega}$ where $\omega \cdot \gamma=J(\lambda)$ and $\operatorname{Ind}(\lambda)=\omega \cdot \beta+n$ for $n<\omega$.

The following results extend the characterization of $\left(\lambda \xi . \underline{0}^{(\xi)}\right) \upharpoonright \beta_{0}$ provided in [6]. Let $\mu_{\lambda}=$ the least μ such that $\left\{\underline{a}^{(\mu)} \mid \underline{a}\right.$ is I_{λ}-exact $\}$ has a least member.

Theorem 1. μ_{λ} exists. In fact,

$$
\mu_{\lambda}= \begin{cases}2+F(J(\lambda)) & \text { for } \lambda \text { under Case } 1, \\ 3+F(J(\lambda)) & \text { for } \lambda \text { under Case } 2 \text { or Case } 3 .\end{cases}
$$

Thus $\mu_{\lambda}=3+F(\lambda)$ for λ under Cases 2 or 3 , and $\mu_{\lambda}=F(\lambda)$ in Case 3.

Theorem 2. $\underline{0}^{(\lambda)}$ is the least member of $\left\{\underline{a}^{\left(\mu_{\nu}\right)} \mid \underline{a}\right.$ is I_{λ}-exact $\}$. Moreover, it is the least member of $\left\{\underline{a}^{\left(\mu_{\lambda}\right)} \mid \underline{a}\right.$ is I_{λ}-exact and $\operatorname{Ind}(\lambda)$ is recursive in $\left.\underline{a}\right\}$.

Where U is a predicate of Turing degrees, \underline{a} is a ξ-low U iff \underline{a} is a U and for any $\underline{b} \in U, \underline{a} \leq \underline{b}^{(\xi)}$.

Theorem 3. For $\xi<\mu_{\lambda}$, there is no ξ-low I_{λ}-exact degree.
These theorems shall all be derived from the following lemmas. Let

$$
G(\lambda)= \begin{cases}2+F(J(\lambda)) & \text { if } \lambda \text { falls under Case } 1 \\ 3+F(J(\lambda)) & \text { if } \lambda \text { falls under Case } 2 \text { or Case } 3\end{cases}
$$

Lemma 1. There is an I_{λ}-exact pair $(\underline{b}, \underline{c})$ such that $(\underline{b} \vee \underline{c})^{(G(\lambda))} \leq \underline{0}^{(\lambda)}$ and $\operatorname{Ind}(\lambda)$ is recursive in \underline{b} and in \underline{c}.

Lemma 2. For any $\underline{d} \notin I_{\lambda}$ there is an I_{λ}-exact pair $(\underline{b}, \underline{c})$ such that for any $\xi<G(\lambda)$, $\underline{d} \not \lessgtr(\underline{b} \vee \underline{c})^{(\xi)}$ and $\operatorname{Ind}(\lambda)$ is recursive in \underline{b} and in \underline{c}.

Lemma 3. If $(\underline{b}, \underline{c})$ is I_{λ}-exact, then $\underline{0}^{(\lambda)} \leq(\underline{b} \vee \underline{c})^{(G(\lambda))}$.
By Lemmas 1 and $3, \underline{0}^{(\lambda)}$ is the least member of $\left\{\underline{a}^{(G(\lambda))} \mid \underline{a}\right.$ is I_{λ}-exact $\}$ and of $\left\{\underline{a}^{(G(\lambda))} \mid \underline{a}\right.$ is I_{λ}-exact and $\left.\operatorname{Ind}(\lambda)<\omega_{1}^{(\underline{I} \backslash g)}\right\}$. Thus μ_{λ} exists. By definition of μ_{λ}, $\left\{\underline{a}^{\left(\mu_{\lambda}\right)} \mid \underline{a}\right.$ is I_{λ}-exact $\}$ has a least member \underline{d}. Since $\underline{d} \notin I_{\lambda}$, by Lemma 2 if $\mu_{\lambda}<G(\lambda)$, \underline{d} is not least. Thus $\mu_{\lambda}=G(\lambda)$. Lemma 2 easily proves Theorem 3.

Corollary. $\underline{0}^{(\lambda)}$ is the least member of $\left\{\underline{a}^{\left(-1+\mu_{\lambda}\right)} \mid \underline{a}\right.$ is a u.u.b.on $\left.I_{\lambda}\right\}$ and of $\left\{\underline{a}^{\left(\mu_{\lambda}\right)} \mid\right.$ \underline{a} is a weak u.u.b. on $\left.I_{\lambda}\right\}$. For $\xi<\left(-1+\mu_{\lambda}\right)$ there is no ξ-low u.u.b. on I_{λ}; for $\xi<\mu_{\lambda}$ there is no ξ-low weak u.u.b. on I_{λ}.
(See [4] for the definition of a u.u.b. and a weak u.u.b.) This corollary connects these results with the apparatus of [2].
We state, mostly without proof, some basic facts about gaps.

1. If α starts an M-gap or an L-gap, α is a limit ordinal and $\omega \alpha=\alpha$.
2. If α starts an L-gap, then α starts an M-gap.
3. If α is a supremum of L-indices, $L_{\alpha} \models V=H C$ (i.e. "everything is countable").
4. If α starts an M-gap, α is the supremum of L-indices.

A Δ_{n} comprehension axiom is a sentence of the form:

$$
(\forall x \in \omega)(\phi x \leftrightarrow \psi x) \rightarrow(\exists y)(y \subseteq \omega \&(\forall x)(x \in y \leftrightarrow \phi x))
$$

where ϕ is Σ_{n} and ψ is $I_{n} . \Delta_{n}$ CA is the set of Δ_{n} comprehension axioms.
5. If $F(\omega \alpha) \geq n$ then $L_{\alpha} \vDash \Delta_{n}$ CA.
6. If α starts an M-gap then α starts an L-gap iff $F(\alpha) \geq \omega$.
7. If α starts an M-gap and $F(\alpha) \geq n$ then α is Σ_{n}-admissible.

Proof. Use Jensen's result on the Σ_{n} uniformizability of L_{α}.
8. α starts an L-gap iff $L_{\alpha}=\mathrm{ZF}^{-}+V=H C$; if α starts an L-gap, $L_{\alpha} \cap \omega^{\omega}$ is a β-model of analysis. (ZF- $=\mathbf{Z F}-$ \{Power Set $\}$.) See [8].
9. λ is a limit of M-gaps iff M_{λ} is closed under hyperjump iff $M_{\lambda} \cap \omega^{\omega}$ is Π_{1}^{1} absolute.

We freely identify binary relations on ω with subsets of ω via the coding scheme $n=\left\langle(n)_{0},\left(n_{1}\right)\right\rangle$. Thus for $X \subseteq \omega$, structures $\langle X, R, A\rangle, R \subseteq X^{2}, A \subseteq X$, may be
identified with reals. An arithmetic copy of $\left\langle L_{\alpha}[A] ; \in \uparrow\left(L_{\alpha}\left[A^{2}\right]\right), A\right\rangle$ hereafter called an arithmetic copy of $L_{\alpha}[A]$, is a structure $\langle X, R, A\rangle, X \subseteq \omega$, isomorphic to $\left\langle L_{\alpha}[A] ; \in \uparrow\left(L_{\alpha}[a]\right)^{2}, A\right\rangle$, coded as single real. Hereafter $E_{\alpha}[A]$ ranges over arithmetic copies of $L_{\alpha}[A]$. Let $\mathrm{Th}_{n}(\langle X ; R, A\rangle)$ be $\operatorname{Th}(\langle X ; R, A ; X\rangle) \cap\left(\Sigma_{n} \cup I_{n}\right)$, the n quantifier theory of $\langle X ; R, A ; X\rangle$, with each member of X viewed as a name of itself. For $X \subseteq \omega, \mathrm{Th}_{n}(\langle X ; R, A\rangle)$ may be viewed as a single real. The following standard facts about the arithmetic hierarchy provide motivation for this paper: if $E_{0}[A] \leq_{\top} A$, then $\mathrm{Th}_{n}\left(E_{0}[A]\right) \equiv_{\top} A^{(n)}$, and there is an $E_{1}[A]$ canonically constructed from $E_{0}[A]$ such that $\operatorname{Th}\left(E_{0}[A]\right) \equiv{ }_{T} \operatorname{Th}_{0}\left(E_{1}[A]\right) \equiv{ }_{T} A^{(\omega)}$.

The Fundamental Theorem is proved in [6]. The proof makes use of Jensen's Σ_{n} uniformization theorem, transferred from the J to the L hierarchy. The proof of that uses Jensen's notion of a Σ_{n} master code for an arbitrary L_{α}. It might seem more direct to imitate Jensen's proof, which proves Σ_{n} uniformization and the existence of Σ_{n} master codes simultaneously, with Δ_{n} uniformization and Δ_{n} master codes, thereby avoiding mention of Σ_{n} master codes. But this seems to be impossible.

The proof of the Fundamental Theorem proceeds by proving the following fact, which we shall misleadingly call a corollary.
If $L_{\alpha} \neq \Delta_{n+1}$ CA then $\Delta_{n+1}\left(L_{\alpha}\right)$ contains a real of the form $\mathrm{Th}_{n}\left(E_{\alpha}\right)$. Thus the master code for $\omega \alpha+n$ is the least degree of the form $\operatorname{deg}\left(\operatorname{Th}_{n}\left(E_{\alpha}\right)\right)$.

The ordinary jump on \mathscr{D} corresponds to a canonical jump function * on $P \omega$: $\operatorname{deg}(A)^{\prime}=\operatorname{deg}\left(A^{*}\right)$. Unfortunately, an arbitrary transfinite jump on \mathscr{D} seems to be associated with no canonical such function on $P \omega$.
§2. Proofs of Lemmas 1, 2 and 3. Lemmas 1 and 2 for λ under Cases 1 or 2 are proved in [6]. For the sake of a complete presentation we sketch those proofs here.

Suppose λ falls under Cases 1 or 2 . Let $n=F(J(\lambda))$; let $J(\lambda)=\omega \alpha$. Thus for some $E_{\alpha}, \underline{0}^{(\lambda)}=\operatorname{deg}\left(\mathrm{Th}_{n}\left(E_{\alpha}\right)\right)$. To prove Lemma 1 it suffices to construct B and $C \in 2^{\omega}$ such that
(1) (B, C) is exact for $L_{\alpha} \cap \omega^{\omega}$;
(2.1) if λ falls under Case 1 then

$$
(B \oplus C)^{(2+n)} \in \Delta_{n+1}\left(L_{\alpha}\right) ;
$$

(2.2) if λ falls under Case 2 then

$$
(B \oplus C)^{(3+n)} \in \Delta_{n+1}\left(L_{\alpha}\right) .
$$

To prove Lemma 2 it suffices, given $\underline{d} \notin I_{\lambda}$ and $f \in \underline{d}$, to construct B and $C \in 2^{\omega}$ such that (1) is true and
(3.1) if λ falls under Case 1 then $f \mathbb{~}_{\top}(B \oplus C)^{(1+n)}$;
(3.2) if λ falls under Case 2 then $f \mathbb{Z}_{T}(B \oplus C)^{(2+n)}$.

We now prove Lemmas 1 and 2 , using forcing with uniformly recursively pointed perfect trees in an arithmetic setting. Fix a forcing language built from number variables, numerals, predicate constants for primitive recursive predicates on $2^{\omega} \times$ $2^{\omega} \times \omega$, and generic predicate constants \underline{B} and \underline{C}. Build prenex sentences from \exists and \neg, with the usual $\Pi_{i}^{0}, \Sigma_{i}^{0}$ classification. Conditions are as in [6]: pairs (P, Q) where P and Q are uniformly recursively pointed perfect trees from $L_{\alpha} \cap \omega^{\omega}$ and
$P \equiv{ }_{\top} Q .(P, Q)$ extends (R, S) iff P and Q are subtrees of R and S respectively. $[P]$ is the set of characteristic functions, identified with members of $P \omega$, which lie along branches of $P .[P, Q]=[P] \times[Q] .(P, Q) H \varnothing$ iff for any $(B, C) \in[P, Q]$, $(B, C) \vDash \varnothing$, where $\varnothing \in \Pi_{i \leq 2}^{0}$. The other clauses are standard:

$$
\begin{gathered}
(P, Q) H(\exists x) \varnothing \text { iff for some } n<\omega(P, Q) H \varnothing(x / \underline{n}) \\
(P, Q) H \neg \varnothing \text { iff for every }(R, S) \text { extending }(P, Q), \\
(R, S) H \varnothing, \text { for } \varnothing \in \Sigma_{i>2}^{0}
\end{gathered}
$$

By Lemma 3.5 of [6], some condition extending (P, Q) decides \varnothing.
We must compute the definitional complexity over L_{α} of forcing restricted to $\left(\Sigma_{G(\lambda)}^{0} \cup \Pi_{G(\lambda)}^{0}\right)$. The class of conditions and the extends relation are Σ_{3}^{0} and I_{2}^{0} respectively. By Lemma 3.8 of [6], forcing restricted to $\left(\Sigma_{0}^{2} \cup \Pi_{2}^{0}\right)$ is Σ_{3}^{0}. So if λ falls under Case 1.1, forcing restricted to $\left(\Sigma_{G(\lambda)} \cup \Pi_{G(\lambda)}\right)$ is Δ_{1} over L_{α}. Forcing restricted to ($\Sigma_{3} \cup \Pi_{3}$) is Π_{1}^{1} over $L_{\alpha} \cap \omega^{\omega}$, so clearly Δ_{2} over L_{α}. So for λ under Case 1, forcing for $\left(\Sigma_{G(\lambda)} \cup \Pi_{G(\lambda)}\right)$ is $\Delta_{F(J(\lambda))+1}$ over $\left.L_{\alpha}\right)$.

Suppose λ falls under Case 2. $L_{\alpha} \cap \omega^{\omega}$ is Π_{1}^{1} absolute. So forcing restricted to ($\Sigma_{3}^{0} \cup \Pi_{3}^{0}$) is Π_{1} over L_{α}. But by the Kleene basis theorem we can show that it is also Σ_{1} over $L_{\alpha} ; \operatorname{suppose}(P, Q) H \varnothing$ if and only if $\left(\forall f \in \omega^{\omega}\right) R(f, P, Q, \varnothing)$, where $R \in \Sigma_{1}^{0}$, W^{X} is the hyperjump of X. Then $\left(\forall f \in \omega^{\omega}\right) R(f, P, Q, \varnothing)$ iff $\left(\forall f \leq_{T} W^{(P \oplus Q)}\right)$ $\cdot R(f, P, Q, \varnothing)$ iff $L_{\alpha} H(\exists \xi)\left(\xi\right.$ admissible \& $(P, Q) \in L_{\xi} \&\left(\forall f \in L_{\xi+1} \cap \omega^{\omega}\right)$ $\cdot R(f, P, Q, \varnothing))$. So in Case 2, following up the definition of forcing, forcing for $\left(\Sigma_{i+3}^{0} \cup \Pi_{i+3}^{0}\right)$ is Δ_{i+1} over L_{α}, thus for $\left(\Sigma_{G(\lambda)}^{0} \cup \Pi_{G(\lambda)}^{0}\right)$ is $\Delta_{F(J(\lambda))+1}$ over L_{α}.

Let $\left\langle\varnothing_{i}\right\rangle_{i \in \omega}$ and $\left\langle A_{i}\right\rangle_{i \in \omega}$ be $\Delta_{n+1}\left(L_{\alpha}\right)$ enumerations of $\left(\Sigma_{G(\lambda)} \cup \Pi_{G(\lambda)}\right)$ and $L_{\alpha} \cap$ 2^{ω} respectively. The latter exists by the corollary to the Fundamental Theorem. Let

$$
\begin{gathered}
P_{0}=Q_{0}=\mathrm{id}, \quad\left(P_{2 i+1}, Q_{2 i+1}\right)=\left(P_{2 i} * A_{i}, Q_{2 i} * A_{i}\right) ; \\
\left(P_{2 i+2}, Q_{2 i+2}\right)=\text { the }<_{L} \text { least extension of }\left(P_{2 i+1}, Q_{2 i+1}\right) \text { deciding } \varnothing_{i},
\end{gathered}
$$

where $P * A$ is the canonical result of coding A into P; see [6, Lemma 3.3]. $\left\langle\left(P_{i}, Q_{i}\right)\right\rangle_{i \in \omega} \in \Delta_{n+1}\left(L_{\alpha}\right)$. Let $(B, C)=\bigcap_{i<\omega}\left(P_{i}, Q_{i}\right]$. The usual forcing $=$ truth lemma states that $(B, C) H \varnothing_{i}$ iff $\left(P_{2 i+1}, Q_{2 i+1}\right) H \varnothing_{i}$. (1) follows easily from the odd steps and Lemma 3.7 of [6]. Since $(B \oplus C)^{(G(\lambda))}$ is defined by a $\Sigma_{G(\lambda)}$ formula, (2.1) and (2.2) are satisfied.

To prove Lemma 2 it shall be necessary to prove the following.
Sublemma 1. For any i and any condition (P, Q) there is an m and a condition (R, S) extending (P, Q) such that either

$$
\left.(R, S) H \text { " } \neg\{\underline{i}\}^{(B \oplus \subseteq)}\right)^{(G(\lambda)-1)}(\underline{m}) \text { converges" }
$$

or

Suppose (P, Q) and i are a counterexample, i.e. for any m and any (R, S) extending (P, Q):
(4) $\left(\exists\left(R^{*}, S^{*}\right)\right.$ extending $\left.(R, S)\right)\left(R^{*}, S^{*}\right) H^{"}\{i\}^{(B \oplus \underline{C})^{(G(1)-1)}(\underline{m}) \text { converges"; }}$ and
(5) $(\forall k)$ (if $\left.(R, S) \nmid+"\{i\}^{(B \oplus \subseteq)}\right)^{(G(\lambda)-1)}(\underline{m})=k "$ then $\left.f(m)=\underline{k}\right)$.

Thus $f(m)=k$ iff

$$
L_{\alpha} \vDash(\exists(R, S))(R, S) \text { extends }(P, Q) \&(R, S) H \text { " }\{\underline{i}\}^{(\underline{B} \oplus \underline{C})^{(G(\lambda-1)]}}(\underline{m})=\underline{k} " .
$$

By the previous results on the definitional complexity of forcing, the above definition is Σ_{n}. Thus, because f is a function, $f \in \Delta_{n}\left(L_{\alpha}\right)$. But $L_{\alpha} \vDash \Delta_{n}$ CA. So $f \in$ L_{α}, contrary to choice of f.

We now finish the proof of Lemma 2. Let $\left\langle\varnothing_{i}\right\rangle_{i \in \omega}$ and $\left\langle A_{i}\right\rangle_{i \in \omega}$ be enumerations of $\left(\Sigma_{G(\lambda)-1} \cup \Pi_{G(\lambda)-1}\right)$ and $L_{\alpha} \cap 2^{\omega}$ respectively; let

$$
\begin{aligned}
P_{0}= & Q_{0}=\mathrm{id} \\
\left(P_{3 i+1}, Q_{3 i+1}\right)= & \left(P_{3 i} * A_{i}, Q_{3 i} * A_{i}\right) ; \\
\left(P_{3 i+2}, Q_{3 i+2}\right)= & \text { an extension of }\left(P_{3 i+1}, Q_{3 i+1}\right) \text { deciding } \varnothing ; \\
\left(P_{3 i+3}, Q_{3 i+3}\right)= & \text { an extension of }\left(P_{3 i+2}, Q_{3 i+2}\right) \text { such that for some } m, \\
& \text { either }
\end{aligned}
$$

$$
\left(P_{3 i+3}, Q_{3 i+3}\right)+\cdots \neg\{i\}^{(B \oplus \underline{C})^{(G(\lambda-1))}(\underline{m}) \text { converges } " \text { or }}
$$

$$
\text { for some } k \neq f(m),
$$

$$
\left(P_{3 i+3}, Q_{3 i+3}\right)+"\{i\}^{(B \oplus \underline{C})^{(G(\lambda-1))}(\underline{m})=\underline{k} " . . . ~}
$$

Let $(B, C)=\bigcap_{i<\omega}\left[P_{i}, Q_{i}\right] .(1)$ is immediate as in Lemma 1. Stages of the form $3 i$ insure the truth of (3.1) and (3.2). Note that if $f \in \Delta_{n+1}\left(L_{\alpha}\right)$ the above construction can be made Δ_{n+1} over L_{α}. So for $\underline{d} \leq \underline{0}^{(\lambda)}$ we could choose $(\underline{b}, \underline{c})$ so that $\underline{d} \notin$ $(\underline{b} \vee \underline{c})^{(G(\lambda)-1)}$ and $(\underline{b} \vee \underline{c})^{(G(\lambda))} \leq \underline{0}^{(\lambda)}$, so $(\underline{b} \vee \underline{c})^{(G(\lambda))}=\underline{0}^{(\lambda)}$ by Lemma 3.

Suppose that λ falls under Case 3. Recall that $J(\lambda)=\lambda=\omega \lambda$. Let $F(\lambda)=\omega \beta+$ n. For some $E_{\lambda+\beta}, \underline{0}^{(\lambda)}=\operatorname{deg}\left(\operatorname{Th}_{n}\left(E_{\lambda+\beta}\right)\right)$. To prove Lemma 1 it suffices to construct B and $C \in 2^{\omega}$ such that (1) is true and
(8) For some $E_{\beta}[B \oplus C], \mathrm{Th}_{n}\left(E_{\beta}[B \oplus C]\right) \in \Delta_{n+1}\left(L_{\lambda+\beta}\right)$;
(9) $\lambda+\beta<\omega_{1}^{B}$ and $\lambda+\beta<\omega_{1}^{C}$;
(9) implies that $\operatorname{Ind}(\lambda)<\omega_{1}^{(B \oplus C)}$. Its purpose is more than decorative. Let $\underline{b}=$ $\operatorname{deg}(B), \underline{c}=\operatorname{deg}(C) . \operatorname{Ind}^{(\underline{b} V \underline{\varepsilon})}(F(\lambda))=\operatorname{Ind}^{(\underline{b} V \varepsilon)}(\omega \beta)+n$. Suppose $\operatorname{Ind}^{(\underline{b} V()}(\omega \beta)=$ $\omega \gamma+m$. Then for some $E_{\gamma}[B \oplus C],(\underline{b} \vee \underline{c})^{(G(\lambda))}=\operatorname{deg}\left(\operatorname{Th}_{m+n}\left(E_{\gamma}[B \oplus C]\right)\right)$. If $\omega \beta+n<\omega \gamma+m$, we have no reason to expect that we can find B, C and $E_{\gamma}[B \oplus C]$ such that $\mathrm{Th}_{m+n}\left(E_{\gamma}[B \oplus C]\right) \in \Delta_{n+1}\left(L_{\lambda+\beta}\right)$. However, (9) insures that $\operatorname{Ind}^{(\underline{b} \vee()}(\omega \beta)=\omega \beta$. Thus (8) suffices for Lemma 1. For Lemma 2, suppose that $\underline{d} \notin I_{\lambda}$ and $f \in \underline{d}$. If λ falls under Case 3 it suffices to construct B and $C \in 2^{\omega}$ such that (1) and (9) are true and
(10) $f \notin \Sigma_{n}\left(L_{\beta}[B \oplus C]\right)$.

As before, (9) insures that $(\underline{b} \vee \underline{c})^{(F(\lambda))}=\operatorname{deg}\left(\operatorname{Th}_{n}\left(E_{\beta}[B \oplus C]\right)\right)$ for some $E_{\beta}[B \oplus C]$. Furthermore, $\bigcup^{I_{B}^{(b \vee c)}}=L_{\beta}[B \oplus C] \cap \omega^{\omega}$.

For both Lemmas 1 and 2 we shall obtain $B=B_{0} \oplus B_{1}$ and $C=C_{0} \oplus C_{1}$, such that B_{0} and C_{0} are Turing upper-bounds on $L_{\lambda} \cap \omega^{\omega}$ and such that B_{1} and C_{1}
are wellfounded trees of height high enough to insure that $\omega_{1}^{B_{1}}$ and $\omega_{1}^{C_{1}}$ are greater than $\lambda+\beta$.

In Case 3, the proofs of Lemmas 1 and 2 use forcing for a ramified language. Fix a set \boldsymbol{P} of one-place predicate constants. Let the lexicon of $\boldsymbol{L}_{\eta}^{*}[\boldsymbol{P}]$ consist of members of $\boldsymbol{P}, \neg, \&, \exists$, parentheses, countably many unranked variables, and for each $\xi<\eta$, countably many variables of rank ξ. Let the formation rules be as usual, except that $\ulcorner\underline{P}(v)\urcorner$ for $\underline{P} \in \boldsymbol{P}$ is well-formed iff v has rank 0 . Call a formula with no bound unranked variables "ranked". Let $C_{0}[P]$ be a set of standard names for members of L_{0}. Let $C_{\xi+1}[\boldsymbol{P}]$ be the set of terms $\hat{x}^{\xi} \phi\left(x_{1} / c_{1}, \ldots, x_{k} / c_{k}\right)$ such that ϕ is ranked with exactly the free variables $x^{\xi}, x_{1}, \ldots, x_{k}$, no bound variables of rank $>\xi, c_{1}, \ldots, c_{k} \in \bigcup_{\alpha \leq \xi} C_{\alpha}[\boldsymbol{P}]$. If ξ is a limit, let $C_{\xi}[\boldsymbol{P}]=\bigcup_{\alpha<\xi} C_{\alpha}[\boldsymbol{P}]$. Let $\boldsymbol{L}_{\eta}[\boldsymbol{P}]$ be the language which results by supplementing $\boldsymbol{L}_{\eta}^{*}[\boldsymbol{P}]$ by the constants in $C_{\eta}[P]$.

Identify terms and formulae of $\boldsymbol{L}_{\eta}[\boldsymbol{P}]$ with members of L_{η} in some fixed way. The rank of term $c, \rho(c)$, is the least ξ such that $c \in C_{\xi}[\boldsymbol{P}]$. A formula ϕ of $L_{\eta}[\boldsymbol{P}]$ is ranked iff it has no bound unranked variables. Its rank, $\rho(\phi)$, is the supremum of the ranks of its contained constants, predicate constants, and bound variables, where members of \boldsymbol{P} have rank 1. Suppose $\boldsymbol{P}=\left\{\underline{P}_{0}, \ldots, \underline{P}_{k}\right\}$. For $i \leq k$, suppose \underline{P}_{i} is assigned to $P_{i} \subseteq \omega . L_{\eta}\left[P_{0}, \ldots, P_{k}\right]$ is defined in the obvious way, and obviously equals $L_{\eta}\left[P_{0} \oplus \cdots \oplus P_{k}\right] .\left\langle L_{\eta}\left[P_{0}, \ldots, P_{k}\right] ; \in \mid L_{\eta}\left[P_{0}, \ldots, P_{k}\right], P_{0}, \ldots, P_{k} ; L_{\eta}\left[P_{0}, \ldots, P_{k}\right]\right\rangle$ is the intended structure for $\boldsymbol{L}_{\eta}[P]$. Note that for $\eta>0$, the intended structure contains each P_{i} both as an extension of \underline{P}_{i} and as an individual denoted by " $\hat{x}^{0}\left(P_{i}\left(x^{0}\right)\right.$)". Variables of rank $\xi<\eta$ range over $L_{\xi}\left[P_{0}, \ldots, P_{k}\right] . c \in C_{\eta}[\boldsymbol{P}]$ denotes a member of $L_{\rho(c)}\left[P_{0}, \ldots, P_{k}\right]$. Thus if ϕ is ranked, ϕ is interpretable over $L_{\rho(\phi)}\left[P_{0}, \ldots, P_{k}\right]$.

Let $\Pi_{0}=\Sigma_{0}=\left\{\phi \mid \phi\right.$ is ranked formula of $\left.\boldsymbol{L}_{\eta}[\boldsymbol{P}]\right\}$. Define Σ_{n} and Π_{n} as usual. For the proofs to follow, let $\boldsymbol{P}=\left\{\underline{B}_{0}, \underline{B}_{1}, \underline{C}_{0}, \underline{C}_{1}\right\}$ and let $L_{\beta}[\boldsymbol{P}]=L$; let $C_{\xi}[\boldsymbol{P}]=$ C_{ξ}.

To insure the truth of (9) we need conditions more complicated than those used up to now. Let δ be the maximum ordinal $\leq \lambda+\beta$ which is either admissible or a limit of admissibles.

A modified Steel condition is a finite function z into δ such that $\operatorname{dom}(z) \subseteq$ Seq $-\{\langle \rangle\}, \operatorname{dom}(z)$ is closed under initial segments, and for $\sigma, \tau \in \operatorname{dom}(z)$, if σ properly extends τ then $z(\sigma)<z(\tau)$. (Think of $\langle>$ as belonging to dom (z) and $z(\rangle)=\delta$.) If y and z are such conditions, z extends y iff $z \upharpoonright \operatorname{dom}(y)=y$.

Let a condition be a quadruple (P, Q, y, z), where P and Q are Turing equivalent uniformly recursively pointed perfect trees in L_{λ} and y and z are modified Steel conditions. Understand "extends" componentwise. Hereafter, " K " etc. shall range over conditions. Let the height of $K, \operatorname{ht}(K),=\max ($ range $(y) \cup$ range (z)). Let $\boldsymbol{K}=$ the set of conditions; $\boldsymbol{K}_{\xi}=\{K \mid \operatorname{ht}(K)<\xi\}$, where ξ is a limit ordinal.

Let $<^{*}$ be the wellfounded relation on sentences of L introduced by Cohen in his definition of forcing [3, p. 115]. Forcing for sentences in L is defined by induction on $<^{*}$. Let $K=(P, Q, y, z)$.
$K H \quad$ iff $\rho(\varnothing)=0$ and \varnothing is true;
$K H \underline{B}_{0}(\underline{k}) \quad$ iff for every $X \in[P], k \in X$;
$K H C_{0}(\underline{k}) \quad$ iff for every $X \in[Q], k \in X ;$

```
\(K H \underline{B}_{1}(\underline{k}) \quad\) iff \(k \in \operatorname{dom}(y)\) or \(k=\langle \rangle ;\)
\(K H \underline{C}_{1}(\underline{k}) \quad\) iff \(k \in \operatorname{dom}(z)\) or \(k=\langle \rangle ;\)
\(K H-\varnothing \quad\) iff for every \(K^{\prime}\) extending \(K, K^{\prime} H \varnothing\), for \(\rho(-\varnothing)>0\);
\(K H \varnothing \& \psi \quad\) iff \(K H \varnothing\) and \(K H \psi\) for \(\rho(\varnothing \& \psi)>0\);
\(K H\left(\exists x^{\xi}\right) \varnothing\) iff for some \(c \in C_{\xi}, K H \varnothing\left(x^{\xi} / c\right)\), for \(\rho\left(\left(\exists x^{\xi}\right) \varnothing\right)>0\);
\(K H(\exists x) \varnothing \quad\) iff for some \(c \in C, K H \varnothing(x / c)\);
\(K H c_{1} \in c_{2} \quad\) iff either (i) \(\rho\left(c_{1}\right)<\rho\left(c_{2}\right)\) and \(c_{2}\) is \(\hat{x}^{\xi} \varnothing\) and
\(K H \varnothing\left(x^{\xi} / c_{1}\right)\), or (ii) for some \(c_{3}, \rho\left(c_{3}\right)<\rho\left(c_{2}\right)\)
and \(K H\left(\left(\forall x^{\xi}\right)\left(x^{\xi} \in c_{1} \leftrightarrow x^{\xi} \in c_{3}\right) \& c_{3} \in c_{2}\right)\)
where \(\rho\left(c_{1}\right)=\xi+1\), and in either case \(\rho\left(c_{1} \in c_{2}\right)>0\).
```

Let $|\varnothing|$ be the ordinal for the position of \varnothing in $<* \upharpoonright\left\{\psi \mid \psi \in \Pi_{0}\right.$ and $\left.\rho(\psi)>0\right\}$. Thus sup $|\varnothing| \leq \omega \cdot(\lambda+\beta)$. In order to refer to $|\varnothing|$ in $L_{\lambda+\beta}$, code $\omega \cdot(\lambda+\beta)$ into $\omega \times(\lambda+\beta)$ in the canonical way; we shall freely identify $|\varnothing|$ with the appropriate member of $\omega \times(\lambda+\beta)$. For $\eta<\lambda+\beta$ and \varnothing such that $\rho(\varnothing)>0,|\varnothing|<\omega \cdot \eta$ iff $\rho(\varnothing)<\eta$. From right to left this is clear; if $|\varnothing|<\omega \cdot \eta$, then for some $k<\omega$, $|\varnothing|=\omega \cdot \rho(\varnothing)+k$; so $\omega \cdot \rho(\varnothing)<\omega \eta$; so $\rho(\varnothing)<\eta$.

Sublemma 2. Forcing restricted to $\left(\Sigma_{n} \cup \Pi_{n}\right)$ sentences is Δ_{n+1} over $L_{\lambda+\beta}$.
Let H be the characteristic function for forcing. We shall prove that $H i$ $\left(\boldsymbol{K} \times \Pi_{0}\right) \in \Sigma_{1}\left(L_{\lambda+\beta}\right)$. Because it is a function, it then belongs to $\Delta_{1}\left(L_{\lambda+\beta}\right)$.

For $\omega \eta \leq \delta$, let $H_{\omega \eta}=H \uparrow\left(\boldsymbol{K}_{\omega \eta} \times\{\varnothing \mid \rho(\varnothing)=0\right.$ or $\left.|\varnothing|<\eta\}\right)$. For $\delta \leq \eta<$ $\lambda+\beta$ and $k<\omega$, let $H^{\omega \eta+k}=H \uparrow(\boldsymbol{K} \times\{\varnothing| | \varnothing \mid<\omega \eta+k$ or $\rho(\varnothing)=0\})$. We shall find Σ_{1} formulas $\Phi_{1}(f)$ and $\Phi_{2}(f, K, \varnothing, i)$ such that for $\omega \xi \leq \delta$:
(12) if $\eta<\xi$, $H_{\omega \eta} \in L_{\omega \xi}$;
(13) $L_{\omega \xi} \models \Phi_{1}(f)$ iff for some $\eta<\xi, f=H^{\omega}$;
(14) if ξ is a successor, $H_{\omega \xi}(K, \varnothing)=i$ iff

$$
L_{\omega \xi} \vDash(\exists f)\left(\Phi_{1}(f) \& \Phi_{2}(f, K, \varnothing, i)\right) ;
$$

(15) if ξ is a limit, $H_{\omega \xi}(K, \varnothing)=i$ iff

$$
L_{\omega \xi} \vDash(\exists f)\left(\Phi_{1}(f) \& f(K, \varnothing)=i\right) .
$$

We shall find a Σ_{1} formula $\Phi_{3}(f)$ and for each $k<\omega$ a formula $\chi_{k}(f, K, \varnothing, i)$ such that:
(16) for $k<\omega H^{\delta+k}(K, \varnothing)=i$ iff $L_{\delta} \models(\exists f)\left(\Phi_{1}(f) \& \chi_{k}(f, K, \varnothing, i)\right)$; and for ξ such that $\delta<\xi \leq \lambda+\beta$;
(17) for $\delta \leq \eta<\xi$ and $k<\omega$, $H^{\omega \eta+k} \in L_{\xi}$;
(18) $L_{\xi} \models \Phi_{3}(f)$ iff for some η and $k, \delta \leq \eta<\xi$ and $k<\omega, f=H^{\omega \eta+k}$;
(19) for ξ such that $\delta<\xi<\lambda+\beta$ and $k<\omega$,

$$
H^{\omega \xi+k}(K, \varnothing)=i \quad \text { iff } L_{\xi} \models(\exists f)\left(\Phi_{3}(f) \& \chi_{k}(f, K, \varnothing, i)\right) ;
$$

and finally for $\varnothing \in \Pi_{0}$;
(20) $H(K, \varnothing)=i$ iff $L_{\lambda+\beta} \models(\exists f)\left(\Phi_{3}(f) \& \chi(f, K, \varnothing, i)\right)$.

As a first approximation to $\Phi_{1}(f)$, consider
(21) f is a function into $2 \&(\exists \eta)\left(\omega \eta\right.$ exists $\& \operatorname{dom}(f)=\boldsymbol{K}_{\omega \eta} \times\{\varnothing| | \varnothing \mid<\eta\} \&$ $(\forall\langle K, \varnothing\rangle \in \operatorname{dom} f)$:
(1) $\rho(\varnothing)=0 \Rightarrow(f(K, \varnothing)=1$ iff \varnothing is true $)$,
(2) $(\forall k \in \omega)\left(\varnothing=\left\ulcorner\underline{B}_{0}(\underline{k})\right\urcorner \Rightarrow(f(K, \varnothing)=1\right.$ iff $\left.\ldots)\right)$,

```
            :
\(\left(\forall \psi \in\{\varnothing|0<|\varnothing|<\eta\})\left(\varnothing=\ulcorner\neg \psi\urcorner \Rightarrow\left(f(K, \varnothing)=1\right.\right.\right.\) iff \(\left(\forall K^{\prime}\right)\left(K^{\prime}\right.\) extends
                        \(\left.K \Rightarrow f\left(K^{\prime}, \psi\right)=0\right)\) ),
```

(8) $(\forall \xi)\left(\forall \psi \in\{\varnothing||\varnothing|<\eta\})\left(\varnothing=\left\ulcorner\left(\exists x^{\xi}\right) \psi\right\urcorner \Rightarrow\left(f(K, \varnothing)=1\right.\right.\right.$ iff $\left(\exists c \in C_{\xi}\right)$ $\left.\left.\left(f\left(K, \psi\left(X^{\xi} / c\right)=1\right)\right)\right)\right)$
$\vdots)$.
What are the failings of (1)? The ' $(\forall \xi)$ ' in clause (8) is unrestricted. But for $|\varnothing|<$ η, if $\varnothing=\left(\exists^{\xi} x\right) \psi, \xi \leq \rho(\varnothing) \leq|\varnothing|<\eta$. Thus it may be replaced by ' $(\forall \xi<\eta)$ '. More seriously, the quantifier over conditions in clause (6) is not only unrestricted within $L_{\omega \xi}$ for $\omega \xi \leq \delta$, but if $\omega \xi<\delta$, its intended range includes more than $L_{\omega \xi}$. We shall show that in fact it may be replaced by ' $\left(\forall K^{\prime} \in \boldsymbol{K}_{\omega \eta}\right)$ '. This shall require several facts about modified Steel conditions due, essentially, to Steel [10].

If x and y are modified Steel conditions and η is a limit ordinal, then x is an η retag of y iff: $\operatorname{dom}(x)=\operatorname{dom}(y)$; if $x(\sigma)<\eta$ then $x(\sigma)=y(\sigma)$; if $x(\sigma) \geq \eta$ then $y(\sigma) \geq \eta$. Notice that 'is an η-retag of' is symmetric.

Retagging Lemma. Suppose that x, x^{\prime} and y are modified Steel conditions, x^{\prime} extends x, and $\xi<\eta$ are two limit ordinals. If y is an η-retag of x then some modified Steel condition y^{\prime} extends y, and is a ξ-retag of x^{\prime}.

Proof. Let

$$
r(\sigma)=\left\{\begin{array}{l}
0 \text { if } x^{\prime}(\sigma)<\xi \\
1+\max \left\{r\left(\sigma^{\wedge} j\right) \mid \sigma^{\wedge} j \in \operatorname{dom} x^{\prime}\right\} \quad \text { otherwise. }
\end{array}\right.
$$

Clearly $\operatorname{dom}(r)=\operatorname{dom}\left(x^{\prime}\right)$, since $\operatorname{dom}\left(x^{\prime}\right)$ is finite and wellfounded under \prec, where $\sigma \prec \tau$ iff τ properly extends σ.
Let

$$
y^{\prime}(\sigma)=\left\{\begin{array}{l}
x^{\prime}(\sigma) \quad \text { if } r(\sigma)=0, \\
1+\max \left\{y^{\prime}\left(\sigma^{\wedge} j\right) \mid \sigma^{\wedge} j \in \operatorname{dom} x^{\prime}\right\} \quad \text { if } r(\sigma) \neq 0 \text { and } \sigma \notin \operatorname{dom} y, \\
y(\sigma) \text { otherwise }
\end{array}\right.
$$

Clearly $\operatorname{dom}\left(y^{\prime}\right)=\operatorname{dom}\left(x^{\prime}\right)$.
Claim. If $\sigma<\tau \in \operatorname{dom}\left(y^{\prime}\right)$ then $y^{\prime}(\sigma)>y^{\prime}(\tau)$.
This is straightforward unless $\sigma \in \operatorname{dom}(y)$ and $\tau \notin \operatorname{dom}(y)$. Then, by induction on $r(\tau), y^{\prime}(\tau) \leq x^{\prime}(\tau)$. But $x^{\prime}(\tau)<x^{\prime}(\sigma)=x(\sigma)$. If $x(\sigma)<\eta, x(\sigma)=y(\sigma)=y^{\prime}(\sigma)$, yielding $y^{\prime}(\tau)<y^{\prime}(\sigma)$. If $x(\sigma) \geq \eta, y^{\prime}(\sigma) \geq \eta$. But by induction on $r(\tau), y^{\prime}(\tau)<\xi+$ $\omega \leq \eta$. So again $y^{\prime}(\tau)<y^{\prime}(\sigma)$. Thus y^{\prime} is a modified Steel condition. Clearly y^{\prime} is a ξ-retag of x^{\prime}. Suppose $\sigma \in \operatorname{dom}(y)$. If $r(\sigma) \neq 0, y^{\prime}(\sigma)=y(\sigma)$. If $r(\sigma)=0, y^{\prime}(\sigma)=$ $x^{\prime}(\sigma)=x(\sigma)=y(\sigma)$ because $x(\sigma)<\xi<\eta$ and y is an η-retag of x. Thus y^{\prime} extends y. Note that if $\eta \leq \operatorname{ht} y, \operatorname{ht}\left(y^{\prime}\right)=\operatorname{ht}(y)$; if $\operatorname{ht}(y)<\eta, \operatorname{ht}\left(y^{\prime}\right)<\xi+\omega$.

Corollary 1. If x^{\prime} and x are modified Steel conditions, x^{\prime} extending x, and ξ is a limit ordinal, then there is a modified Steel condition y extending x such that y is a ξ-retag of x and $\operatorname{ht}(y)<\max (\mathrm{ht}(x)+\omega, \xi+\omega)$.

Proof. Because x is a $(\xi+\omega)$-retag of itself, the desired y exists by the retagging lemma and the concluding remark in its proof.

Let condition $\langle P, Q, x, y\rangle$ be a ξ-retag of $\left\langle P, Q, x^{\prime}, y^{\prime}\right\rangle$ iff x and y are ξ-retags of x and y^{\prime} respectively. The previous lemma and corollary remain true when modified Steel conditions are replaced by conditions.

Corollary 2. For $\varnothing \in \Pi_{0}$ such that $|\varnothing| \leq \xi$ or $\rho(\varnothing)=0$ and K^{\prime} an $\omega \cdot \xi$-retag of $K: K H \varnothing$ iff $K^{\prime} H \varnothing$.

Proof. If $\rho(\varnothing)=0$, this is trivial. We now induce on $|\varnothing|$. Clearly $K H \underline{B}_{0}(\underline{k})$ iff $K^{\prime} H \underline{B}_{0}(\underline{k})$.

Similarly for the other base clauses. All induction steps except the one for negation are trivial. Suppose $K H \neg \varnothing$. Let K_{0} extend K such that $K_{0} H \varnothing$. Since $|\neg \varnothing| \leq \xi,|\varnothing|<\xi$. The retagging lemma provides K_{0}^{\prime} extending K^{\prime} which is an $\omega \cdot|\varnothing|$-retag of K. By induction hypothesis, $K_{0} H \varnothing$ iff $K_{0}^{\prime} H \varnothing$. Thus $K^{\prime} H \neg \varnothing$. The converse follows symmetrically.

Corollary 3. For $K \in \boldsymbol{K}_{\omega \xi}$ and \varnothing such that $|\varnothing|<\xi, K H \neg \varnothing$ iff for any $K^{\prime} \in$ $\boldsymbol{K}_{\omega \xi}$, if K^{\prime} extends $K, K^{\prime} H \varnothing$.

Proof. (\Rightarrow) is clear. (\leftarrow) Suppose K^{*} extends $K, K^{*} H \varnothing$. By Corollary 1 there is a K^{\prime} extending K, K^{\prime} an $\omega \cdot|\varnothing|$-retag of K^{*}, and $\mathrm{ht}\left(K^{*}\right)<\max (\mathrm{ht}(K)+\omega$, $\omega \cdot|\varnothing|+\omega) \leq \omega \xi$. Thus $K^{*} H \not \varnothing$ by Corollary 2 and $K^{*} \in \boldsymbol{K}_{\omega \xi}$. So the quantifier restriction in (*) (6) may be introduced.

We now construct Φ_{2}. Let t be a Σ_{1} term such that for any $\eta, L_{\omega(\eta+1)} \models t=\eta$. As a first approximation let $\Phi_{2}(f, K, \varnothing, i)$ be:
$(|\varnothing|<t \& f(K, \varnothing)=i) \vee\left(|\varnothing|=t \& \operatorname{dom}(f)=\left(\boldsymbol{K}_{\omega \cdot t} \times\{\varnothing| | \varnothing \mid<t\} \&\right.\right.$
(1) $\rho(\varnothing)=0 \Rightarrow(i=1$ iff \varnothing is true $)$
(2) $(\forall k \in \omega)\left(\varnothing=\left\ulcorner\underline{B}_{0}(\underline{k})\right\urcorner \Rightarrow(i=1\right.$ iff $\left.\ldots)\right)$
(6) $\left(\forall \psi \in\{\varnothing||\varnothing|<t\})\left(\varnothing=\ulcorner\neg \psi\urcorner \Rightarrow\left(i=1 \mathrm{iff}\left(\forall K^{\prime} \in \boldsymbol{K}_{\omega t}\right)\left(f\left(K^{\prime}, \psi\right)=0\right)\right)\right)\right.$
$\vdots)$.
The arguments used in revising (*) show that for $|\varnothing|=\eta$,

$$
L_{\omega(\eta+1)} \vDash \Phi_{1}(f) \& \Phi_{2}(f, K, \varnothing, i) \quad \text { iff } f=H_{\omega \eta} \text { and } H_{\omega(\eta+1)}(K, \varnothing)=i
$$

We now prove (12)-(15) by simultaneous induction. (12) is vacuously true for $\xi=0$. For any ξ such that $\omega \xi \leq \delta$, if (12) is true, so is (13). Then so are (14) and (15). Thus $H_{\omega \xi} \in L_{\omega \xi+1}$, implying (12) for $\xi+1$. If ξ is a limit, (12) holds for ξ induction. Thus (12)-(15) are all true. Consequently $H_{\delta} \in \Sigma_{1}\left(L_{\delta}\right)$ and thus $H_{\delta} \in L_{\delta+1}$. If $\delta=\lambda+\beta$, this proves Sublemma 2.

If $\delta<\lambda+\beta$, notice that $K \in L_{\delta+1} \subseteq L_{\lambda+\beta} . \Phi_{3}(f)$ may be taken to have the form:

$$
\left(f=H_{\delta}\right) \vee(\exists \eta)(\exists k<\omega)\left(\delta \leq \eta \& \operatorname{dom}(f)=\boldsymbol{K} \times\{\varnothing| | \varnothing \mid<\omega \eta+k\} \& \Phi^{\prime}(f)\right),
$$

where the construction of Φ^{\prime} is easy. Notice that the quantifier $(\forall K)$ in clause (6)
may be restricted to K. Let $\chi_{0}(f, K, \varnothing, i)$ be $f(k, \varnothing)=i$. Suppose χ_{k} has been constructed. Let $\chi_{k+1}(f, K, \varnothing, i)$ be
(5) $(\forall \psi)\left(\varnothing=\left\ulcorner-\psi^{\prime} \Rightarrow\left(i=1\right.\right.\right.$ iff $\left(\forall K^{\prime}\right.$ extending $\left.\left.\left.K\right)\left(X_{k}\left(F, K^{\prime}, \psi, 0\right)\right)\right)\right) \&$
(6) $(\forall \psi)\left(\forall \psi^{\prime}\right)\left(\varnothing=\left\ulcorner\psi \wedge \psi^{\prime}\right\urcorner \Rightarrow\left(i=1\right.\right.$ iff $\left.\left(X_{k}(F, K, \psi, 1) \&\left(X_{k}\left(F, K, \psi^{\prime}, 1\right)\right)\right)\right)$,

$$
\vdots
$$

(16) is clear, using (13), yielding (17) for $\xi=\delta+1$. Assume (17) for arbitrary ξ. By construction, (18) and (19) are true for ξ. Thus (17) is true for $\xi+1$. If ξ is a limit and (17) is true for all $\xi^{\prime}<\xi$, (17) is true for ξ. Thus (17)-(19) are true for all ξ such that $\delta<\xi \leq \lambda+\beta$. So (20) is also true, proving that $H \uparrow\left(\boldsymbol{K} \times \Pi_{0}\right) \in$ $\Sigma_{1}\left(L_{\lambda+\beta}\right)$. Sublemma 2 is proven.

Suppose $\left\langle K_{i}\right\rangle_{i \in \omega}$ is a Σ_{n} generic sequence, i.e. for each $i \in \omega, K_{i+1}$ extends K_{i} and for every $\varnothing \in \Sigma_{n}$ there is an i such that K_{i} decides \varnothing. Where $K_{i}=\left\langle P_{i}, Q_{i}\right.$, $\left.x_{i}, y_{i}\right\rangle$, let $T_{0}=\bigcup x_{i}, T_{1}=\bigcup y_{i}, B_{1}=\operatorname{dom}\left(T_{0}\right)$ and $C_{1}=\operatorname{dom}\left(T_{1}\right)$. By the usual forcing = truth lemma, for any $k \in \omega, k \in B_{1}$ iff for some $i, K_{i} H \underline{B}_{1}(\underline{k})$, and similarly for C_{1}. By definition of modified Steel conditions, $T_{0}: \subseteq$ seq $-\{\langle \rangle\} \rightarrow \delta$ such that if $\sigma<\tau \in \operatorname{dom}\left(T_{0}\right), \sigma \in \operatorname{dom}\left(T_{0}\right)$ and $T_{0}(\sigma)>T_{0}(\tau)$. Similarly for T_{1}. Thus $\left\langle B_{1}, \prec\right\rangle$ and $\left\langle C_{1}, \prec\right\rangle$ are wellfounded.

Sublemma 3. If $\sigma \in B_{1}$, for any ξ, $|\sigma|_{B_{1}}=\xi$ iff for some $i, x_{i}(\sigma)=\xi$.
Furthermore, the order type of $\left\langle B_{1},\langle \rangle=\delta\right.$. Similarly for C_{1} and y_{i}. Proof by induction on $|\sigma|_{B_{1}}$. Suppose $|\sigma|_{B_{1}}=\xi$. For some $i, \sigma \in \operatorname{dom}\left(x_{i}\right)$ and $K_{i} H$ " $|\underline{\sigma}|_{\underline{B}_{1}}=\underline{\underline{\xi}}$ ". By the induction hypothesis $(\leftrightarrow),|\sigma|_{B_{1}} \leq x_{i}(\sigma)$. So $x_{i}(\sigma) \geq \xi$. If $x(\sigma)>\xi$, let $K=$ $\left\langle P_{i}, Q_{i}, x_{i} \cup\left\{\left\langle\sigma^{\wedge} j, \xi\right\rangle\right\}, y_{i}\right\rangle$, for some j such that $\sigma^{\wedge} j \notin \operatorname{dom}\left(x_{i}\right)$, and form another generic sequence extending K and yielding \hat{B}_{1} in place of B_{1}. By choice of i and forcing $=$ truth, $|\sigma|_{\hat{B}_{1}}=\xi$. But by the induction hypothesis $(\Leftrightarrow),\left|\sigma^{\wedge} j\right|_{\hat{B}_{1}}=\xi$. Contradiction. Thus $x_{i}(\sigma)=\xi$. Now suppose that $x_{i}(\sigma)=\xi$. If $|\sigma|_{\hat{B}_{1}}>\xi$, for some $j, \sigma^{\wedge} j \in B_{1}$ and $\left|\sigma^{\wedge} j\right|_{\hat{B}_{1}} \geq \xi$. By the induction hypothesis (\Rightarrow) there is an $i^{\prime} \geq i$ such that $x_{i^{\prime}}\left(\sigma^{\wedge} j\right) \geq \xi$, which is impossible. If $\eta=|\sigma|_{B_{1}}<\xi$, select $i^{\prime} \geq i$ such that K_{i}, H " $|\underline{\sigma}|_{B_{1}}=\underline{\eta}$ ". Where $K=\left\langle P_{i^{\prime}}, Q_{i^{\prime}}, x_{i} \cup\left\{\left\langle\sigma^{\wedge} j, \eta\right\rangle\right\}, y_{i^{\prime}}\right\rangle$ for j such that $\sigma^{\wedge} j \notin \operatorname{dom} x_{i}$, form another generic sequence extending K and yielding \hat{B}_{1} in place of B. By choice of i and forcing $=$ truth, $|\sigma|_{\hat{B}_{1}}=\eta$. By the induction hypothesis $(\Leftarrow),\left|\sigma^{\wedge} j\right|_{\hat{B}_{1}}=\eta$. Contradiction. Thus $|\sigma|_{B_{1}}=\xi$. Suppose sup $\left\{|\sigma|_{B_{1}} \mid \sigma \in B_{1}\right\}=\xi<\delta$. For some $i, K_{i} H \quad " \sup \left\{|\sigma|_{B_{1}} \mid \underline{B}_{1}(\sigma)\right\}=\underline{\xi} "$. Let $K=\left\langle P_{i}, Q_{i}, x_{i} \cup\{\langle\langle j\rangle, \xi+1\rangle\}\right.$, $\left.y_{i}\right\rangle$ for $\langle j\rangle \in \operatorname{dom}\left(x_{i}\right)$. Form a generic sequence extending K and yielding \hat{B}_{1} in place of B_{1}. By forcing $=\operatorname{truth}, \sup \left\{|\sigma|_{\hat{B}_{1}} \mid \sigma \in \hat{B}_{1}\right\}=\xi$. But by previous parts of this sublemma, $|\langle j\rangle|_{\hat{B}_{1}}=\xi+1$. Contradiction. A symmetric argument applies to C_{1}.

We now construct B and C. Let $\left\langle A_{i}\right\rangle_{i \in \omega}$ and $\left\langle\varnothing_{i}\right\rangle_{i \in \omega}$ be enumerations of $L_{\lambda} \cap 2^{\omega}$ and the Σ_{n} sentences of L, both members of $\Delta_{n+1}\left(L_{\lambda+\beta}\right)$. Such enumerations exist by the corollary to the Fundamental Theorem. Define $\left\langle K_{i}\right\rangle_{i \in \omega} \in \Delta_{n+1}\left(L_{\lambda+\beta}\right)$ by:

$$
K_{0}=\langle\mathrm{id}, \mathrm{id}, \wedge, \wedge\rangle ;
$$

$K_{2 i+1}=$ the $<_{L}$-least condition extending $K_{2 i}$ and deciding \varnothing_{i};

$$
K_{2 i+2}=\left\langle P * A_{i}, Q * A_{i}, x, y\right\rangle \quad \text { where } K_{2 i+1}=\langle P, Q, x, y\rangle .
$$

Letting $K_{i}=\left\langle P_{i}, Q_{i}, x_{i}, y_{i}\right\rangle$, let $B_{0}=\bigcap_{i<\omega}\left[P_{i}\right], C_{0}=\bigcap_{i<\omega}\left[Q_{i}\right]$ and B_{1}, C_{1}, T_{0} and T_{1} as above. Let $B=B_{0} \oplus B_{1}$ and $C=C_{0} \oplus C_{1}$. By the standard argument, if $f \leq_{\top} B$ and $f \leq_{\top} C, f \in L_{\lambda+\beta}$, and so $f \in L_{\lambda}$. By the even stages of the construction, for any $f \in L_{\lambda}, f \leq_{T} B_{0}$ and $f \leq_{T} C_{0}$. Thus(1) is true. Because $\delta<\omega_{1}^{B_{1}}$ and $\delta<\omega_{1}^{C_{1}}$, (9) is true. Because $\left\langle K_{i}\right\rangle_{i \in \omega} \in \Delta_{n+1}\left(L_{\lambda+\beta}\right)$, there is an M, a term-model copy of $L_{\beta}[B, \oplus C]$, such that the $\mathrm{Th}_{n}(M) \in \Delta_{n+1}\left(L_{\lambda+\beta}\right)$. Because $\Delta_{n+1}\left(L_{\lambda+\beta}\right)$ contains a counting of the set of terms C, the preimage of ε_{M} under this counting is the desired $E_{\beta}[B \oplus C]$, verifying (8).

We now prove Lemma 2 for Case 3. Recall that $f \in \omega^{\omega}-L_{\lambda}$. The language \boldsymbol{L} is as before. We now extend Sublemma 1 to this setting.

Sublemma 4. $\varnothing\left(x^{0}, y^{0}\right) \in \Sigma_{n}, K \in \boldsymbol{K}$. There are $k<\omega$ and K^{\prime} extending K such that either $K^{\prime} H \neg\left(\exists y^{0}\right) \varnothing\left(\underline{k}, y^{0}\right)$ or for some $m \neq f(k), K^{\prime} \vDash \varnothing(\underline{k}, \underline{m})$.

Proof. Suppose not. Then for any $k \in \omega$ and any K^{\prime} extending K there is a K^{*} extending K^{\prime} s.t. $K^{*} H\left(\exists y^{0}\right) \varnothing\left(\underline{k}, y^{0}\right)$, and for any such K^{\prime}, if $K^{\prime} H \varnothing(\underline{k}, \underline{m})$ then $f(k)=m$. This gives us a Σ_{n} definition of f over $L_{\lambda+\beta}$. Thus $f \in \Delta_{n}\left(L_{\lambda+\beta}\right)$. But $L_{\lambda+\beta} \vDash \Delta_{n}$ CA. So $f \in L_{\lambda+\beta}$. Contradiction. Select such a k and K^{\prime} and call them $k(K, \varnothing)$ and $K^{\prime}(K, \varnothing)$ respectively.

We may now construct B and C. Let $\left\langle A_{i}\right\rangle_{i \in \omega}$ and $\left\langle\varnothing_{i}\right\rangle_{i \in \omega}$ enumerate $L_{\lambda} \cap 2^{\omega}$ and the Σ_{n} sentences of \boldsymbol{L}. Let $\left\langle K_{i}\right\rangle_{i \in \omega}$ be such that:
$K_{0}=\langle\mathrm{id}, \mathrm{id}, \wedge, \wedge\rangle$;
$K_{3 i+1}$ decides \varnothing_{i};
$K_{3 i+2}\left(P * A_{i}, Q * A_{i}, x, y\right)$ where the $K_{3 i+1}=(P, Q, x, y)$;
$K_{3 i+3}=K_{3 i+2}$ if \varnothing_{i} does not contain exactly the free variables x^{0} and y^{0}, $K^{\prime}\left(K_{3 i+2}, \varnothing_{i}\right)$ otherwise.

Form $B_{0}, B_{1}, C_{0}, C_{1}, B, C$ from $\left\langle K_{i}\right\rangle_{i \in \omega}$ as before. As with Lemma 1, (1) and (9) are true. Suppose $f \in \Sigma_{n}\left(L_{\beta}[B \oplus C]\right)$. Then f is defined over $L_{\beta}[B \oplus C]$ by some $\varnothing_{i}\left(x^{0}, y^{0}\right)$. For some $j, K_{j} H \varnothing_{i}(\underline{k}, \underline{f}(\underline{k}))$ where $k=k\left(K_{3 i+2}, \varnothing_{i}\right)$. But either $K_{i} H \neg\left(\exists y^{0}\right) \varnothing_{i}\left(\underline{k}, y^{0}\right)$ or $K_{i} H \varnothing_{i}(\underline{k}, \underline{m})$ for $m \neq f(k)$. Contradiction. Thus (10) is also true.

Again we note that if $\underline{d} \leq \underline{0}^{(\lambda)},(\underline{b}, \underline{c})$ could be constructed so that $(\underline{b} \vee \underline{c})^{(G(\lambda))} \leq$ $\underline{0}^{(\lambda)}$, thus $(\underline{b} \vee \underline{c})^{(G(\lambda))}=\underline{0}^{(\lambda)}$ by Lemma 3.

We now turn to Lemma 3. Suppose that (\underline{b}, c) is I_{λ}-exact, $B \in \underline{b}$ and $C \in \underline{c}$. Let $J(\lambda)=\omega \gamma$. In Cases 1 and 2 we want to construct a real $\operatorname{Th}_{F(J(\lambda))}\left(E_{\gamma}\right)$ which is recursive in $(B \oplus C)^{(G(\lambda))}$. By an easy modification of Definition 8 from [1], there is an operator $*$ on $2^{\omega} \times \omega$ such that (i) $(X, y)^{*} \leq_{\top} X^{(\omega)}$ uniformly in y, and (ii) for any E_{ξ} and $b \in \omega$ such that for no $x \in \operatorname{Fld}\left(E_{\xi}\right),(x)_{1}=b,\left(\operatorname{Th}_{0}\left(E_{\xi}\right), b\right)^{*}=$ $\mathrm{Th}_{0}\left(E_{\xi+1}\right)$ for an $E_{\xi+1}$ extending E_{ξ}. We also note that the relation $X=Y^{(\omega)}$ is Π_{1}^{0} over $2^{\omega} \times 2^{\omega}$ (although it is only Π_{2}^{0} over $P \omega \times P \omega!$).

Case 1.1. $F(\lambda)=0$ and $G(\lambda)=2$. If $\gamma=\gamma^{\prime}+1, \gamma^{\prime}$ is an L-index for otherwise λ falls under Case 3. Applying the corollary to the Fundamental Theorem to γ^{\prime}, there is a real $\mathrm{Th}_{0}\left(E_{\gamma^{\prime}}\right) \in L_{r} . E_{\gamma^{\prime}}$ may be chosen so that for any $x \in \operatorname{Fld}\left(E_{\gamma^{\prime}}\right),(x)_{1} \neq$ 0 . Let $\mathrm{Th}_{0}\left(E_{\gamma}\right)=\left(\mathrm{Th}_{0}\left(E_{\gamma^{\prime}}\right), 0\right)^{*} \leq_{T} \mathrm{Th}_{0}\left(E_{\gamma^{\prime}}\right)^{(\omega)}$. By results in [4], $(B \oplus C)^{(2)}$ can compute a nice parametrization of $L_{r} \cap \omega^{\omega}$. Thus $\mathrm{Th}_{0}\left(E_{\gamma^{\prime}}\right)^{(\omega)} \leq_{\top}(B \oplus C)^{(2)}$.

Now suppose that γ is a limit. Select a $\gamma^{\prime}<\gamma$ such that $\left[\gamma^{\prime}, \gamma\right)$ contains no M-gaps. As before, select a real $\mathrm{Th}_{0}\left(E_{\gamma^{\prime}}\right) \in L_{\gamma^{\prime}+1}$. By choice of γ^{\prime}, there is a linear
system of notation $R \in L_{\gamma^{\prime}+1}$ of height ($\gamma-\gamma^{\prime}$). Working over L_{γ} we construct a sequence $\left\langle\mathrm{Th}_{0}\left(E_{x}\right)\right\rangle_{x \in \operatorname{Fld}(R)}$, each E_{x} is an $E_{|x| R}$, as follows.

$$
\begin{aligned}
& \mathrm{Th}_{0}\left(E_{x}\right)= \begin{cases}\mathrm{Th}_{0}\left(E_{\gamma^{\prime}}\right) & \text { if }|x|_{R}=0 ; \\
\left(\mathrm{Th}_{0}\left(E_{y}\right), y\right)^{*} & \text { if }|x|_{R}=|y|_{R}+1 ; \\
\bigcup_{y<R} \mathrm{Th}_{0}\left(E_{y}\right) & \text { if }|x|_{R} \text { is a limit. }\end{cases} \\
& \mathrm{Th}_{0}\left(E_{\gamma}\right)=\bigcup_{x \in \operatorname{Fld}(R)} \mathrm{Th}_{0}\left(E_{x}\right) .
\end{aligned}
$$

To show that $\mathrm{Th}_{0}\left(E_{\gamma}\right) \leq_{\top}(B \oplus C)^{(2)}$, we introduce another such sequence.

$$
\begin{aligned}
& H_{x}(R)= \begin{cases}\operatorname{Th}_{0}\left(E_{\gamma^{\prime}}\right) & \text { if }|x|_{R}=0 \\
H_{y}(R)^{(\omega)} & \text { if }|x|_{R}=|y|_{R}+1, \\
\left\{\langle y, z\rangle \mid z \in H_{y}(R) \& y<_{R} x\right\} .\end{cases} \\
& H(R)=\left\{\langle x, z\rangle \mid z \in H_{x}(R) \& x \in \operatorname{Fld}(R)\right\} .
\end{aligned}
$$

By induction along $R, \mathrm{Th}_{0}\left(E_{x}\right) \leq_{T} H_{x}(R)$ uniformly in x and $H_{x}(R) \in L_{\gamma}$ for each $x \in \operatorname{Fld}(R)$. Thus $\mathrm{Th}_{0}\left(E_{\gamma}\right) \leq_{T} H(R)$ and $H(R) \in \Delta_{1}^{1}\left(L_{\gamma} \cap \omega^{\omega}\right)$. Again because $(B \oplus C)^{(2)}$ computes a nice parametrization of $L_{T} \cap \omega^{\omega}, H(R) \leq_{\top}(B \oplus C)^{(2)}$.

Case 1.2. $\lambda=\gamma, F(\lambda)=1$ and $G(\lambda)=3$. We use the previous argument with a twist. Let $\gamma^{\prime}<\gamma$ be maximum such that γ^{\prime} is admissible or a limit of admissibles. L_{λ} contains no system of notation for λ. But because $(B \oplus C)^{(2)}$ computes a nice parametrization of $L_{\lambda} \cap \omega^{\omega}$, there is a linear system of notation R of $\lambda=\lambda-\gamma^{\prime}$ such that $H(R) \leq_{T}(B \oplus C)^{(2)}$ and each initial segment of R belongs to L_{λ}. This follows from Theorem 2 of [4], replacing the ordinary jump by the ω-jump. Select $\mathrm{Th}_{0}\left(E_{\gamma^{\prime}}\right) \in L_{r^{\prime}+1}$ and construct $\left\langle\mathrm{Th}_{0}\left(E_{x}\right)\right\rangle_{x \in \mathrm{Fld}(R)}$ and $\mathrm{Th}_{0}\left(E_{\lambda}\right)$ as before, with E_{x} an $E_{\gamma^{\prime}+|x|_{R}}$. Again $\mathrm{Th}_{0}\left(E_{\lambda}\right) \leq_{\mathrm{T}} H(R) \leq_{\mathrm{T}}(B \oplus C)^{(2)}$. But then $\mathrm{Th}_{1}\left(E_{\lambda}\right) \leq_{\mathrm{T}} \mathrm{Th}_{0}\left(E_{\lambda}\right)^{\prime} \leq_{\mathrm{T}}$ $(B \oplus C)^{(3)}$.

Case 2. $\lambda=\gamma$. Let $F(\lambda)=n, G(\lambda)=n+3$. Again, by a slight revision of Theorem 3 of [4], we may select a linear system of notation R for λ, such that $H(R)$ $\leq_{T}(B \oplus C)^{(3)}$. Select $\mathrm{Th}_{0}\left(E_{0}\right) \in L_{1}$. We construct $\left\langle\mathrm{Th}_{0}\left(E_{x}\right)\right\rangle$, with E_{x} an $E_{|x| R}$, and $\mathrm{Th}_{0}\left(E_{\lambda}\right)$ as before. Again $\mathrm{Th}_{0}\left(E_{\lambda}\right) \leq_{T} H(R)$. Thus $\mathrm{Th}_{n}\left(E_{\lambda}\right) \leq_{\mathrm{T}} \mathrm{Th}_{0}\left(E_{\lambda}\right)^{(n)} \leq_{T}$ $(B \oplus C)^{(G(\lambda))}$.

Case 3. $\lambda=\gamma, F(\lambda)=G(\lambda)=\omega \beta+n$. The argument divides into two subcases. Suppose $\beta<\lambda+\beta$. Thus $\beta<\omega \lambda$, $\operatorname{Ind}^{(b \vee \varepsilon)}(G(\lambda))=G(\lambda)$. We wish to find an $E_{\lambda+\beta}$ such that $\mathrm{Th}_{n}\left(E_{\lambda+\beta}\right) \in \Delta_{n+1}\left(L_{\beta}[B \oplus C]\right)$. By the argument for Case 2, there is a real $\mathrm{Th}_{0}\left(E_{\lambda}\right) \leq_{\top}(B \oplus C)^{(3)}$, and so belonging to $L_{1}[B \oplus C]$. Let R be a linear system of notation for β such that $R \leq_{T}(B \oplus C)^{(3)}$ and all initial segments of R belong to L_{λ}. Within $L_{\beta}[B \oplus C]$ we construct a sequence $\left\langle\mathrm{Th}_{0}\left(E_{x}\right)\right\rangle_{x \in \operatorname{Fld}(R)}$ starting with $\mathrm{Th}_{0}\left(E_{x}\right)$ and such that E_{x} is an $E_{\lambda+|x| R} . \mathrm{Th}_{0}\left(E_{\lambda+\beta}\right)=\bigcup_{x \in \operatorname{Fld}(R)} \mathrm{Th}_{0}\left(E_{x}\right)$ as before; so $\mathrm{Th}_{0}\left(E_{\lambda+\beta}\right) \leq_{\top} H(R) . H(R) \in \Delta_{1}\left(L_{\beta}[B \oplus C]\right)$; so $H(R)^{(n)} \in \Delta_{n+1}\left(L_{\beta}[B \oplus c]\right)$ and $\mathrm{Th}_{n}\left(E_{\lambda+\beta}\right) \leq_{T} \mathrm{Th}_{0}\left(E_{\lambda+\beta}\right)^{(n)} \leq_{T} H(R)^{(n)}$.

Now suppose that $\beta=\lambda+\beta$. Let $\operatorname{Ind}^{(b \vee \varepsilon)}(G(\lambda)) \omega \cdot \delta+m$. The strategy used up to now is no longer available, for we cannot count on there being a system of
notation for β belonging to $L_{1}[B \oplus C]$. Let $\hat{L}=\left\{\langle\xi, x\rangle \mid x \in L_{\xi+1}-L_{\xi}\right.$ for $\xi<$ $\lambda+\beta\}$ and let $\langle\xi, x\rangle \hat{\epsilon}\langle\eta, y\rangle$ iff $x \in y$. Thus $\langle\hat{L}, \hat{\epsilon} \mid(\hat{L} \times \hat{L})\rangle$ is isomorphic to $\left\langle L_{\lambda+\beta}, \in\right\rangle$ and $\hat{L} \in \Delta_{1}\left(L_{\beta}[B \oplus C]\right)$. Select $\mathrm{Th}_{m}\left(E_{\delta}[B \oplus C]\right) \in(\underline{b} \vee \underline{c})^{(G(\lambda))}$. Let $E_{\lambda+\beta}$ be the copy within $E_{\delta}[B \oplus C]$ of $\langle\hat{L}, \hat{\epsilon} \upharpoonright(\hat{L} \times \hat{L})\rangle$. Because $\omega \beta+n \leq \omega \delta+m$, $\mathrm{Th}_{n}\left(E_{\lambda+\beta}\right) \leq_{\mathrm{T}} \mathrm{Th}_{m}\left(E_{\delta}[B \oplus C]\right)$.
$\S 3$. Defining $\lambda \xi . \underline{0}^{(\xi)}$ inductively. $\lambda \xi .0^{(\xi)}$ has been defined set-theoretically. In [6] $\left(\lambda \xi .0^{(\xi)}\right) \upharpoonright \beta_{0}$ is shown to have a sort of degree-theoretic inductive definition over $\left\langle\mathscr{D} ; \leq,{ }^{\prime}\right\rangle$; viz. there is a sequence of formulae $\left\langle\psi_{i}(x)\right\rangle_{i<\omega}$ in the language of $\left\langle\mathscr{D} ; \leq,^{\prime}, I\right\rangle$ such that for any $\lambda<\beta_{0}$ there is an i such that $\left\langle\mathscr{D} ; \leq,{ }^{\prime}, I_{\lambda}\right\rangle \vDash$ $(\exists x) \psi_{i}(x)$ and for the least such $i,\left\langle\mathscr{D} ; \leq,^{\prime}, I_{\lambda}\right\rangle \vDash \underline{0}^{(\lambda)}=(2 x) \psi_{i}(x)$. Allowing the appearance of $\lambda \underline{a} \cdot \underline{a}^{(\xi)}$ for $\xi<\beta_{0}$ in the structure, we can bootstrap up to a larger initial segment of $\lambda \xi \cdot 0^{(\xi)}$. How far may this be iterated? We define a sequence of suchinitial segments $\left\langle d_{i}\right\rangle_{i \leq \omega}$ as follows.

Given any partial function d on ordinals, let dom*(d) be the maximal initial segment of the ordinals on which d is defined.
$d_{0}(n)=\underline{0}^{(n)}$ for $n \in \omega$.
$d_{i+1}(\lambda)=$ the least member of $\left\{d_{i}^{a}\left(\mu_{\lambda}\right) \mid \underline{a}\right.$ is I_{λ}-exact $\}$ if for every I_{λ}-exact $\underline{a}, \mu_{\lambda} \in$ $\operatorname{dom}^{*}\left(d_{i}^{\alpha}\right)$; undefined, otherwise;
$d_{i+1}(\lambda+n)=d_{i+1}(\lambda)^{(n)}$.
$d_{\omega}(\lambda)=$ the least member of $\left\{d_{i}^{a}\left(\mu_{\lambda}\right) \mid \underline{a}\right.$ is I_{λ}-exact, $\left.i \in \omega\right\}$ if there is an $i \in \omega$ such that for every $I_{\lambda}-\operatorname{exact} \underline{a}, \mu_{\lambda} \in \operatorname{dom}\left(d_{i}^{(\underline{q})}\right)$;

$$
d_{\omega}(\lambda+n)=d_{\omega}(\lambda)^{(n)} .
$$

Notice that $d_{i+1}(\lambda)=\max \left\{\underline{d} \mid\right.$ for any I_{λ}-exact $\left.\underline{a}, \underline{d} \leq d_{i}^{a}\left(\mu_{\lambda}\right)\right\}$, under the above conditions for definition. So the definition of d_{1} in terms of d_{0} coincides with the inductive degree-theoretic definition of $\lambda \xi<\beta_{0} .0^{(\xi)}$ provided in [6].
α is a local κ_{ξ} iff $L_{\alpha+1} \vDash \alpha=\kappa_{\xi}$. Let δ_{ξ} be the least local κ_{ξ}. Let $\delta_{<\omega}$ be the least α such that $L_{\alpha} \models(\forall n \in \omega)\left(\aleph_{n}\right.$ exists). Note that $\sup \left\{\delta_{n} \mid n \in \omega\right\}<\delta_{<\omega}<$ δ_{ω}. For $n \geq 1$, let λ_{n} be that λ such that $L_{\delta_{n}+1} \models \lambda=\kappa_{1}$. Let λ_{ω} be that λ such that $L_{\delta<\omega} \vDash \lambda=\kappa_{1}$. Again, $\lambda_{\omega}<\lambda$ for that λ such that $L_{\delta_{\omega}} \vDash \lambda=\kappa_{1}$.

Theorem 4. For $\xi \leq \omega$, $\operatorname{dom}^{*}\left(d_{\xi}\right)=\lambda_{\xi}$.
This approach to defining $\underline{0}^{(\lambda)}$ in terms of I_{λ} stops at λ_{ω}. This follows from the following.

Theorem 5. There is an $I_{\lambda_{\omega}}$-exact a such that $d_{\tilde{\omega}}^{\underline{\omega}}\left(\mu_{\lambda_{\omega}}\right)$ is undefined. Thus if $d_{\omega+1}$ is defined in terms of d_{ω} just as d_{i+1} is defined in terms of d_{i}, then $\operatorname{dom}^{*}\left(d_{\omega+1}\right)=\lambda_{\omega}$.

We simultaneously prove Theorem 4 and the following lemma.
Lemma 4. Suppose that $[\lambda, \lambda+\alpha$) is a maximal L-gap. $[\lambda, \lambda+\alpha$) contains a local \aleph_{i+1} iff for the some I_{λ}-exact $\underline{a}, \mu_{\lambda} \notin \operatorname{dom}^{*}\left(d_{i}^{\underline{q}}\right)$.

Proof. $\lambda_{0}=\omega$. Thus for $\xi=0$, Theorem 4 is trivial. For $i=0$, by results from $\S 2$, both sides of the biconditional in Lemma 4 are true. $\lambda_{1}=\beta_{0}$. By results in $\S 2$, for $\xi=1$, Theorem 4 follows. Suppose $1<\xi<\omega$ and $\xi=i+1$. We assume as our induction hypothesis that for any \underline{a}, $\operatorname{dom}^{*}\left(d_{i}^{q}\right)=\lambda_{i}^{\underline{a}}$. This is legitimate because this proof, though presented relative to $\underline{0}$, may be relativized to any degree. In what follows, we write $L_{\bar{\alpha}}^{\underline{a}}$ as $\left(L^{\underline{a}}, \alpha\right)$.

We first prove Lemma 4 for i as above. (\Leftarrow). Let \underline{a} be I_{λ}-exact, $\mu_{\lambda} \notin \operatorname{dom}^{*}\left(d_{i}^{\underline{a}}\right)$. By induction hypothesis relativized to \underline{a}, dom* $\left(d_{i}^{\underline{a}}\right)=\lambda_{i}^{\underline{a}}$. So $\mu_{\lambda} \geq \lambda_{i}^{\underline{a}}$.

Claim. $\delta_{i}^{a} \in[\lambda, \lambda+\alpha)$.
First we show that $\lambda_{i}^{\underline{q}} \leq \lambda+\alpha$. If $\lambda+\alpha<\lambda_{i}^{\underline{q}}$, then $\alpha<\lambda_{i}^{\underline{q}}$; so $\omega \alpha<\omega \lambda_{i}^{\underline{q}}=$ $\lambda_{i}^{\underline{q}}$. For some $n, \in \omega, \mu_{\lambda}=\omega \alpha+n$ and $\lambda_{i}^{\underline{q}}$ is a limit; so $\mu_{\lambda}<\lambda_{i}^{\underline{q}}$. Now we show that $\delta_{i}^{\underline{g}}<\lambda+\alpha$. Suppose $\lambda+\alpha \leq \delta_{i}^{\underline{a}} . \lambda+\alpha$ is an L-index. But ($L^{\underline{\underline{a}},} \delta_{i}^{\underline{a}}$) $\vDash \mathbf{Z F}^{-}$; thus $\left(L, \delta_{i}^{a}\right) \models \mathrm{ZF}^{-}$. So δ_{i}^{a} is not an L-index. Thus $\lambda_{i}^{\underline{a}}<\lambda+\beta<\delta_{i}^{a}$. $L_{\lambda+\alpha+1}$ contains a wellordering of height $\lambda+\alpha$. So does $\left(L^{\underline{a}}, \lambda+\alpha+1\right)$. But $\left[\lambda_{i}^{\underline{a}}, \delta_{i}^{a}+1\right)$ is an $L^{\underline{a}}$-gap. Contradiction. Therefore $\delta_{i}^{\underline{a}}<\lambda+\alpha$.

Claim. $\left[\lambda, \delta_{i}^{\underline{a}}+1\right)$ contains a local \aleph_{i+1}. Let $\alpha_{1}, \ldots, \alpha_{i-1}$, be such that:

$$
\left(L^{\underline{a}}, \delta_{i}^{\underline{a}}+1\right) \models \alpha_{1}=\kappa_{1} \& \cdots \& \alpha_{i-1}=\aleph_{i-1} \& \delta_{i}^{\underline{a}}=\aleph_{i}
$$

Thus

$$
\left(L, \delta_{i}^{a}+1\right) \models \lambda=\aleph_{1} \& \alpha_{1} \geq \kappa_{2} \& \cdots \& \alpha_{i-1} \geq \kappa_{i} \& \delta_{i}^{a} \geq \aleph_{i+1} .
$$

Thus $\left[\lambda, \lambda+\alpha\right.$) contains a local κ_{i+1}.
(\Rightarrow). Suppose that $[\lambda, \lambda+\alpha)$ contains a local κ_{i+1}. Thus there are $\alpha_{1}, \ldots, \alpha_{i} \in$ $[\lambda, \lambda+\alpha)$ such that

$$
L_{\alpha_{i}+1} \models \lambda=\kappa_{1} \& \alpha_{1}=\kappa_{2} \& \cdots \& \alpha_{i}=\kappa_{i+1} .
$$

Clearly $\lambda+\alpha_{1}=\alpha_{1}$. We construct an I_{λ}-exact pair $(\underline{b}, \underline{c})$ such that $\lambda_{i}^{(b \underline{b} \underline{c})} \leq \mu_{\lambda}$. By the induction hypothesis, $\lambda_{i}^{(b \vee G)}=\operatorname{dom}^{*}\left(d_{i}^{(b \vee c)}\right)$. So this suffices. We construct B and $C \in 2^{\omega}$ such that $\underline{b}=\operatorname{deg}(B)$ and $\underline{c}=\operatorname{deg}(C)$. Let conditions be as in the proof of Lemmas 1 and 2 under Cases 1 and 2. Let the forcing language L be $L_{\alpha_{i}+1}[\underline{B}, \underline{C}]$. Let $\left\langle\left(P_{j}, Q_{j}\right)\right\rangle_{j \in \omega}$ be a sequence of conditions such that

$$
P_{0}=Q_{0}=\mathrm{id}
$$

$\left(P_{2 i+1}, Q_{2 i+1}\right)$ extends $\left(P_{2 i}, Q_{2 i}\right)$ and decides \varnothing_{i};
$\left(P_{2 i+2}, Q_{2 i+2}\right)=\left(P_{2 i+1} * A_{i}, Q_{2 i+1} * A_{i}\right)$;
where $\left\langle\varnothing_{i}\right\rangle_{i \in \omega}$ and $\left\langle A_{i}\right\rangle_{i \in \omega}$ are enumerations of the sentences of \boldsymbol{L} and of $\boldsymbol{L}_{\lambda} \cap 2^{\omega}$ respectively. Let $(B, C)=\bigcap_{j}\left[P_{j}, Q_{j}\right] . \lambda \leq \omega_{1}{ }^{(B \oplus C)}$. By the standard argument, all cardinals of $L_{\alpha_{i}+1}$ except for κ_{1} are preserved.

$$
L_{\alpha_{i}+1}[B \oplus C] \models \alpha_{1}=\kappa_{1} \& \cdots \& \alpha_{i}=\kappa_{i} .
$$

Thus $\alpha_{i} \geq \delta_{i}^{(b \vee \subseteq)}$. So $\lambda_{i}^{(b \vee \subseteq)} \leq \alpha_{1}<\alpha \leq \omega \alpha \leq \mu_{\lambda}$. Thus Lemma 4 is proved for this choice of i.

We now prove that $\operatorname{dom}^{*}\left(d_{i+1}\right)=\lambda_{i+1}$. If $\lambda<\lambda_{i+1}, \lambda$ does not start an L-gap containing a local κ_{i+1}. By Lemma 4, for any \underline{a} which is I_{λ}-exact, $\mu_{\lambda} \in \operatorname{dom}{ }^{*}\left(d_{i}^{q}\right)$. Thus $d_{i+1}(\lambda)$ is defined. λ_{i+1} starts an L-gap containing a local κ_{i+1}. By Lemma 4, $d_{i+1}\left(\lambda_{i+1}\right)$ is undefined.

Finally, suppose $\xi=\omega$. If $\lambda<\lambda_{\omega}$, for some $i \in \omega$, λ does not start an L-gap containing a local κ_{i+1}. By Lemma 4, for any I_{λ}-exact $\underline{a}, \mu_{\lambda} \in \operatorname{dom}{ }^{*}\left(d_{i}^{\underline{q}}\right)$. Thus $d_{\omega}(\lambda)$ is defined. λ_{ω} starts an L-gap containing a local κ_{i+1} for every $i \in \omega$. Thus for any $i \in \omega$ there is an $I_{\lambda_{\omega}}$-exact \underline{a} such that $\mu_{\lambda_{\omega}} \notin \operatorname{dom}^{*}\left(d_{i}^{\underline{q}}\right)$. Thus $d_{\omega}\left(\lambda_{\omega}\right)$ is undefined.

Proof of Theorem 5. Let $\left\langle\alpha_{i}\right\rangle_{i \in \omega}$ be such that for all $i \in \omega,\left(L, \delta_{<\omega}\right) \models \alpha_{i}=\aleph_{i+1}$. It suffices to construct $(\underline{b}, \underline{c}) I_{\lambda_{\omega}}$-exact such that $\alpha_{1}=\lambda_{\omega}^{(b) V} v$. Because $\mu_{\lambda_{\omega}}>\omega \alpha_{1}=$ α_{1}, by Theorem 4, $\mu_{\lambda_{\omega}} \notin \operatorname{dom}^{*}\left(d_{\omega}^{(b \vee G)}\right)$. Thus $d_{\omega+1}\left(\lambda_{\omega}\right)$ is undefined. As in the proof of Lemma $4(\Rightarrow)$, we construct $(\underline{b}, \underline{c})$ such that for all $i \in \omega,\left(L^{(b \vee c)}, \delta_{<\omega}\right) \models \alpha_{i}=\kappa_{i}$. Thus $\delta_{<\omega}=\delta_{<\omega}^{(b \vee \vee)}$. So $\alpha_{1}=\lambda_{\omega}^{(b \vee \varepsilon)}$.

Let A_{n}, for $n<\omega$, be n th-order number theory, i.e. Peano's axioms set in an nth order language, where variables of order $i, 1 \leq i \leq n$, range over sets of type $i-1$. Let $A_{\omega}=\bigcup_{n} A_{n}$, in the language with variables of all finite orders. A_{2} is analysis. For $\xi \leq \omega$, we imitate the construction of the ramified analytical hierarchy. A structure for A_{ξ} has the form $\left\langle\left\langle U_{i}\right\rangle_{1 \leq i<\xi} ;+, \cdot, S ; 0\right\rangle$ where $U_{0}=\omega$ and $U_{j+1} \subseteq$ $P\left(U_{j}\right)$; variables of order $j+1$ range over U_{j}. Let M_{δ}^{ξ} be the structure for A_{ξ} with all U_{j} 's, for $j \neq 0$, empty. Form the transfinite sequence $\left\langle M_{\eta}^{\xi}\right\rangle_{\eta}$ by iterating closure under definability in the language of A_{ξ}. This hierarchy stops. Let the final structure be M^{ξ} with domains $\left\langle U_{i}^{\xi}\right\rangle_{1 \leq i<n}$; let the closure ordinal be γ_{ξ}. Then $M^{\xi} \vDash A_{\xi}$. Let A_{ξ}^{*} be A_{ξ} translated into the language of set theory. $L_{\delta_{n}} \cap P^{n}(\omega)$ and $L_{\delta_{<\omega}} \cap P^{n}(\omega)$ are, respectively, the minimal models for A_{n+1}^{*} and A_{ω}^{*} in which wellfoundedness is absolute. Thus $U_{i+1}^{\dot{n}}=\left(L, \delta_{n}\right) \cap P^{i}(\omega) ; U_{i}^{\omega}=\left(L, \delta_{<\omega}\right) \cap P^{i}(\omega)$ where $U_{i}^{n+1}, U_{i}^{\omega}$ are from M^{n+1}, M^{ω} respectively. Thus for any $n<\omega, \gamma_{n}=\delta_{n-1}$; furthermore, $r_{\omega}=\delta_{<\omega}$. Let $I^{\xi}=\lambda_{\xi}$ for $\xi \leq \omega$. By Theorem $4, \bigcup I_{\xi} \cap 2^{\omega}=U_{1}^{\xi}$. Thus d_{ξ} classifies the degrees of reals in M^{ξ}.
§4. Comparison with the single jump operation. How similar is the single jump operation $\underline{a} \mapsto \underline{a}^{\prime}$ to an arbitrary operation of the form $\underline{a} \mapsto \underline{a}^{(\xi)}$ for $\xi<\left(\boldsymbol{K}_{1}\right)^{L \underline{q}}$? In this section we examine an analogy and a striking disanalogy. As usual, all results are stated for $\underline{a}=0$, but easily generalize to arbitrary \underline{a}.

The analogy: Friedberg's completeness theorem $\left(\left(\forall \underline{a} \geq \underline{0}^{\prime}\right)(\exists \underline{c})\left(\underline{a}=\underline{c}^{\prime}\right)\right)$ generalizes to arbitrary transfinite jumps:

Theorem 6. For any $\xi<\left(\boldsymbol{\aleph}_{1}\right)^{L}$ and any \underline{a}, if $\underline{a} \geq \underline{0}(\xi)$ then there is a \underline{c} such that \underline{a} $=\underline{c}^{(\xi)}$.

The disanalogy: the trivial fact that $\underline{0}^{\prime} \leq \underline{a}^{\prime}$ does not generalize in the most straightforward way.

Theorem 7. For any $\xi<\left(\boldsymbol{\Lambda}_{1}\right)^{L}$ and any $\underline{a}, \quad \underline{0}^{(\xi)} \leq \underline{a}^{(\mathrm{Ind}(\xi))}$.
Theorem 8. For any $\xi<\left(\aleph_{1}\right)^{L}$ there is a \underline{b} such that $\underline{0}^{(\xi)}=\underline{b}^{(\operatorname{Ind}(\xi))}$.
Before we present proofs, notice that if $\xi+\eta<\left(\kappa_{1}\right)^{L}, \underline{0}^{(\xi)}(\eta)=\underline{0}^{(\xi+\eta)}$. This follows by an easy induction on η.

Proof of Theorem 6. Suppose $\underline{a} \geq \underline{0}^{(\xi)}$. If $\xi=\alpha+1$, by the relativization of Friedberg's theorem to $\underline{0}^{(\alpha)}$, there is a $\underline{d} \geq \underline{0}^{(\alpha)}, \underline{d}^{\prime}=\underline{a}$. By the induction hypothesis on α, there is a \underline{c} such that $\underline{d}=\underline{c}^{(\alpha)}$. Thus $\underline{d}^{\prime}=\underline{c}^{(\alpha+1)}=\underline{a}$.

Suppose that ξ is a limit ordinal. By analogy with Friedberg's argument, we construct a $\underline{\underline{c}}$ such that $\underline{\boldsymbol{c}}^{(\xi)} \leq \underline{a} \leq \underline{\boldsymbol{c}} \vee \underline{0}^{(\xi)} \leq \underline{\underline{c}}^{(\xi)}$. Clearly such a $\underline{\underline{c}}$ is as desired. Suppose $\operatorname{Ind}(\xi)=\omega \beta+n$ and $A \in \underline{g}$. Let the forcing language L be $L_{\beta}[\underline{C}]$. Let $\left\langle\phi_{i}\right\rangle_{i \in \omega}$ be a $\Delta_{n+1}\left(L_{\beta}\right)$ enumeration of the $\Sigma_{n} \cup \Pi_{n}$ sentences of L. We shall force with Cohen condition, viewed as finite strings of 0 and 1 . There is a sequence of Cohen conditions $\left\langle\sigma_{i}\right\rangle_{i \in \omega} \in \Delta_{n+1}\left(L_{\beta}\right)$ such that for every i :

$$
\sigma_{i+1} \text { extends } \sigma_{i}
$$

$\sigma_{2 i}$ decides ϕ_{i};
$\sigma_{2 i+1}=\sigma_{2 i}^{\wedge} A(i)$.
Let $C=\lim _{i \rightarrow \omega} \sigma_{i}$; let $\underline{c}=\operatorname{deg}(C)$. For any $E_{\beta},\left\langle\sigma_{i}\right\rangle_{i \in \omega}$ is coded by a single real recursive in $\mathrm{Th}_{n}\left(E_{\beta}\right) \oplus A$. Select E_{β} such that $\mathrm{Th}_{n}\left(E_{\beta}\right) \in \underline{0}^{(\xi)}$. Because $\mathrm{Th}_{n}\left(E_{\beta}\right) \leq_{\mathrm{T}} A$, $C \leq_{T} A$. Because the even steps are determined only by $\mathrm{Th}_{n}\left(E_{\beta}\right)$ and A is coded into C at the odd steps, $A \leq_{T} C \oplus \mathrm{Th}_{n}\left(E_{\beta}\right)$. Thus $\underline{\underline{c}}^{(\xi)} \leq \underline{a} \leq \underline{c} \vee \underline{0}^{(\xi)}$. Finally
because all conditions belong to L_{0}, for any $\eta \leq \beta$ and any $m, L_{\eta} \models \Delta_{m}$ CA iff $L_{\eta}[C] \vDash \Delta_{m} \mathrm{CA}$. Thus for any $\eta \leq \xi, \underline{0}^{(\eta)} \leq \underline{c}^{(\eta)}$. Therefore $\underline{c} \vee \underline{0}^{(\xi)} \leq \underline{c}^{(\xi)}$. Q.E.D.

Proof of Theorem 7. Suppose $\xi=\gamma+1$. By induction hypothesis, $\underline{0}^{(r)} \leq \underline{a}^{(\operatorname{Ind}(r))}$. Thus $\underline{0}^{(\gamma+1)} \leq \underline{a}^{(\operatorname{Ind}(\gamma)+1)}$. But $\operatorname{Ind}(\xi)=\operatorname{Ind}(\gamma)+1$. Suppose ξ is a limit. Let $\operatorname{Ind}(\xi)=$ $\omega \beta+n$; let $\operatorname{Ind}^{q}(\operatorname{Ind}(\xi))=\omega \alpha+m \geq \omega \beta+n$. Let $A \in \underline{a}$. By the procedure used in the proof of Lemma 3, Case 3, in the final paragraph, there is a uniform way of obtaining an E_{β} from any $E_{\alpha}[A]$ such that $\mathrm{Th}_{n}\left(E_{\beta}\right) \leq^{\top} \mathrm{Th}_{m}\left(E_{\alpha}[A]\right)$. This suffices.

Proof of Theorem 8. If $\operatorname{Ind}(\xi)=\xi$, Theorem 8 is trivial. So suppose $\operatorname{Ind}(\xi)>$ ξ. It suffices to construct a \underline{b} such that $\underline{b}^{(\operatorname{Ind}(\xi))} \leq \underline{0}^{(\xi)}$. Let $\operatorname{Ind}(\xi)=\omega \alpha+n$. Let \boldsymbol{L} be $\boldsymbol{L}_{\alpha}[B]$. Let δ be the maximum ordinal $\leq \alpha$ which is admissible or a limit of admissibles. We force with modified Steel conditions, with ordinal labels $<\delta$. Let $\left\langle\phi_{i}\right\rangle_{i \in \omega} \in \Delta_{n+1}\left(L_{\alpha}\right)$ enumerate the $\left(\Sigma_{n} \cup I_{n}\right)$ sentences of \boldsymbol{L}. Let $\left\langle z_{i}\right\rangle_{i \in \omega} \in \Delta_{n+1}\left(L_{\alpha}\right)$ be a sequence of modified Steel conditions such that for any i, z_{i+1} extends z_{i} and z_{i} decides ϕ_{i}. By the standard construction, such a sequence exists. Let B be the extension of \underline{B} determined by this sequence. Let $\underline{b}=\operatorname{deg}(B)$. Because $\left\langle z_{i}\right\rangle_{i \in \omega} \in$ $\Delta_{n+1}\left(L_{\alpha}\right)$, for any E_{α} there is an $E_{\alpha}[B]$ such that $\mathrm{Th}_{n}\left(E_{\alpha}[B]\right) \leq_{\top} \mathrm{Th}_{n}\left(E_{\alpha}\right)$. Select E_{α} such that $\mathrm{Th}_{n}\left(E_{\alpha}\right) \in \underline{0}^{(\xi)}$; let $E_{\alpha}[B]$ be determined by E_{α}. As in the proof of Lemmas 1 and 2 under Case $3, B$ is a wellfounded tree of sequence numbers of height δ. Thus $\operatorname{Ind}(\xi)<\omega_{1}^{B}$. Thus $\underline{b}^{(\omega \alpha+n)} \leq \operatorname{deg}\left(\operatorname{Th}_{n}\left(E_{\alpha}[B]\right)\right)$.

We finish this section with an application of Theorem 6.
Corollary. For any $\lambda,\left\{\underline{d} \mid \underline{d} \geq \underline{0}^{(\lambda)}\right\}=\left\{\underline{a}^{\left(\mu_{\lambda}\right)} \mid \underline{a}\right.$ is I_{λ}-exact $\}$.
Proof. Let $(\underline{b}, \underline{c})$ be an I_{λ}-exact pair such that $(\underline{b} \vee \underline{c})^{\left(\mu_{\lambda}\right)} \geq \underline{0}^{(\lambda)}$. Suppose $\underline{d} \geq \underline{0}^{(\lambda)}$. By Theorem 6, for some $\underline{d}^{*} \geq(\underline{b} \vee \underline{c})^{(2)},\left(\underline{d}^{*}\right)^{\left(-2+\mu_{2}\right)}=\underline{d}$. By (J) of [4, §2], for some I_{λ}-exact pair $\left(\underline{b}^{*}, \underline{c}^{*}\right),\left(\underline{b}^{*} \vee \underline{c}^{*}\right)^{(2)}=d^{*}$. The other direction is just Lemma 3.

BIBLIOGRAPHY

[1] G. Boolos and H. Putnam, Degrees of unsolvability of constructible sets of integers, this Journal, vol. 33 (1968), pp. 497-513.
[2] R. Boyd, G. Hensel and H. Putnam, a recursion-theoretic characterization of the ramified analytical hierarchy, Transactions of the American Mathematical Society, vol. 141(1969), pp. 47-62.
[3] P. Сонen, Set theory and the continuum hypothesis, Benjamin, New York, 1966.
[4] H. Hodes, Uniform upper bounds on ideals of Turing degrees, this Journal, vol. 43 (1978), pp. 601-612.
[5] R. Jensen, The fine structure of the constructible universe, Annals of Mathematical Logic, vol. 8 (1972), pp. 1-32.
[6] C. Jockusch and S. Simpson, A degree-theoretic characterization of the ramified analytical hierarchy, Annals of Mathematical Logic, vol. 10 (1976).
[7] S. Leeds and H. Putnam, An intrinsic characterization of the hierarchy of the constructible sets of integers, Logic Colloquium '69, North-Holland, Amsterdam and London, 1971.
[8] W. Marak and M. Srebeny, Gaps in the constructible universe, Annals of Mathematical Logic, vol. 6 (1974), pp. 359-394.
[9] G. Sacks, Forcing with perfect closed sets, Proceedings of Symposia in Pure Mathematics, vol. 13, American Mathematical Society, Providence, R. I., 1971.
[10] J. Steel, Ph. D. Thesis, University of California, Berkeley, 1977.

[^0]
[^0]: CORNELL UNIVERSITY
 ithaca, new york 14853

