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Abstract

We show that the loosely guarded and packed fragments offidatr logic have the finite
model property. We use a construction of Herwig. We pointsmurhe consequences in temporal
predicate logic and algebraic logic.
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1 Introduction

Perhaps because beginning students of modal logic aretoftbthat modal logic is more expressive
than first-order logic and indeed has some second-ordeessipe power, or perhaps because they are
hoping for something new, it can come as a surprise to thetretlesty modal formula has a ‘standard
translation’ into first-order logic. For examplé(p — [Jq) is translated to

FY(RXY) A (PlY) = VZR(Y,2) = Q(2)))- 1)

The translation mimics the Kripke semantics for modal loghot every first-order formula (with
one free variable in the appropriate signature) is the taéios of a modal formula; so the formulas
that are form a propdragmentof first-order logic, and one that inherits the nice progsrtdf modal
logic, such as decidability with reasonable complexityeipolation, and the finite model property.
The situation is similar for various multimodal, temporahd dynamic logics — each corresponds by
standard translation to a well-behaved modal-style fragroéclassical logic.

Finding ‘modal fragments’ of first-order logic is an old pftetn in modal correspondence theory.
One way to take it is to try to identify the first-order formsl¢hat are equivalent to translations of
modal formulas. Van Benthem [22, 25] proved that a first-ofdenula is equivalent to the translation
of a modal one iff it is preserved under bisimulation. Howewvee cannot effectively identify these
formulas, since it is undecidable whether a first-order f@aris bisimulation-invariant [23, remark
4.19]. In certain restricted situations, this difficultysdppears. For example, the expressive complete-
ness results of Kamp [16] show that over Dedekind-complatat time everyfirst-order formula is
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equivalent to the translation of a temporal formula writteith the binary modalities Until and Since.
In such cases, the whole of first-order logic can be viewed m®dal fragment. But the situation
here is rather special, and the lowish computational coxitylef temporal logic (BPACEcOmMplete
over a wide range of flows of time including the natural nunshbés not matched by first-order logic
(non-elementary over the natural numbers). These probdgento be expected if we do not explicitly
bound the complexity of proving the equivalence of a firstesrformula to a modal one.

Let us focus instead on first-order formulas that are not iperguivalent to but actually are the
translations of modal formulas of various kinds. The aimehsrto define syntactically fragments of
first-order logic containing the standard translations aiiaus modal logics, and sharing their nice
properties ‘for the same reasons’. Gabbay [4] suggestddtibarue modal fragments of first-order
logic in this sense were the finite-variable fragments,esihe standard translation of modal formulas
can always be done with a bounded number of variables (bgirgsihem — in (1), we could have
usedx instead ofz). This proposal is natural from the first-order viewpoingngral in that it is not
confined to special situations, and for many-dimensionatiah@ogic it is provably correct (cf. [4,
lemma 3, p.115]); but it suffered the objection that finitetable fragments do not share the nice
properties that (one-dimensional) modal logic has.

A different kind of (hopefully) modal fragment of first-ordegic, theguarded fragmentyas put
forward by Andréka, van Benthem, and Németi [2]. Theiradeas to look at quantification patterns
instead. Only relativised quantification (along the adbd#y relation of the Kripke frame) is allowed
in modal formulas; so in the guarded fragment, all quantiicamust be relativised to some atomic
formula. Thus, if¢(x,y,z) is a formula of the guarded fragment, then soZ&ygR(X,y,2) A (X, Y,2))
andvyz(R(x,y,z) — ¢(x,y,2)), becausex and the quantifieg, z are ‘guarded’ by the relation symbol
R. The plaindyzp(x,y, z) would not be acceptable.

The guarded fragment does have the hoped-for nice properbecidability, and other results
such as a toS-Tarski theorem, were proved in [2, 23, 24]. @exity results are established in
[5, 18]: deciding validity for sentences of the guarded fnggt, with or without equality, is complete
for double-exponential time, butvariable fragments of the guarded fragment (for fimite 2) are
ExPTIME-complete, and some 2-variable guarded fragments are evBarRACE It was proved in
[5] that the guarded fragment has the finite model property ry-g@uarded sentence with a model
has a finite model. (For further discussion of surroundirgyés, see, e.g., [3, 19, 26] as well as
the citations already given.) Because of these results #rets) the guarded fragment and various
extensions of it (e.g., by fixed-point operators) have bexaather popular. But the guarded fragment
also was objected to on the ground that the standard traoreadf some quite respectable modal-
style formulas, such as temporal formulas involving Sinaé &ntil, fall outside the fragment. (The
translation ol (p,q) is

W(X<YAP(Y)AVZ(X< zAZ< Yy — Q(2))) 2)

— this is not in the guarded fragment becaygéx < zAz <y — Q(2)) is not.) However, th&/zis
clearly guarded to some extent in (2)doesn’t occur withx, y in a single atomic formula, but each pair
of variables fromx,y,z do (x andy become guarded in this way higher up the formulaxbyy). So
van Benthem [24] proposed thaosely guarded fragmeniyhich he also calls thpairwise guarded
fragment.This fragment is our main topic here.

Roughly speaking, in the loosely guarded fragment, quadtifariables must be pairwise guarded
by atomic formulas. For example, ¢f(x,y,z) is a formula of the loosely guarded fragment then so
is IyzZR(x,y) AR(Y,2) A S(X,2) Ad(X,Y,2)). (See definition 3.1 for details.) The loosely guarded
fragment does contain (2). It is much more powerful than tharded fragment, but still has many
nice properties, such as decidability and reasonable @tpl[2, 5, 18, 24]: identical complexity
results to those already cited for the guarded fragment tuolthe loosely guarded fragment.
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Our results In the current paper (corollary 3.4), we prove that the lbpggiarded fragment has
the finite model property. In theorem 3.3, we do the same fer'placked fragment’, in which the
guards themselves may be existentially quantified — thignfient was defined by Marx in order to
characterise the loosely guarded fragment in terms of laackforth systems of partial isomorphisms
defined on packed sets [19]. Our proofs use a slight modificatiather along the lines of [9], of
part of a model-theoretic construction of Herwig [8]. Thenstuction is effective and yields the
decidability of these fragments, but we have not tried to-furee it to obtain smallest possible models
or the complexity results already cited.

Our results add weight to the idea that these fragments @&felushough of course they do not
exclude the possibility that larger ‘modal’ fragments &xi8s a bonus, we derive some corollaries
for predicate temporal logic, algebraic logic, and arrogidéo concerning decidability and the finite
base/model property. Some of them were already known.

In a recent technical report [10], a tableau decision prodetor the ‘clique guarded fragment’ is
given. This fragment is related to the packed fragment re€eto above. It is claimed that the finite
model property for this fragment and the loosely guardedrfrant follows from the proof, though
the current version (May 19, 2000) states that there isasgihp in one of the lemmas needed for this
corollary.

Outline of paper In section 2 we explain the modified Herwig construction, #meh in section 3
we use it to derive the finite model property for the packedrinant and (as a corollary) the loosely
guarded fragment. Some consequences in temporal, algehrai arrow logic are given in section 4.

NOTATION 1.1 We writea € A to denote thaa is ann-tuple of elements of the sét for some finite
n. For a tuplea = (ay,...,an), we letrng(a) denote the sefas,...,a,}. We write|a] for the length
of the tuplea (soalis an|aj-tuple). Ifa= (ay,...,an) andb = (by,...,by) are tuples, we writab for
their concatenatiofay, ..., an, b1,...,by). We often regard an element as a 1-tuple, sodbhaenotes
the tuple(a, by,...,bm), for example.

All maps are treated formally (as sets of ordered pairs, scavewritef C g, f Ug, etc), and are
written on the left of their arguments -x) rather tharx f, so thatfg(x) and f og(x) denotef (g(x)).
For partial mapsp, g, compositionpo g (or just pg) and inversgp* (for one-onep) are defined in the
obvious way; note that is associative. We write the domain and range of a rhasdom f,rng f
respectively. Iff is a map defined omg(a), wherea = (ay,...,a,), we let f(a) denote the tuple
(f(ag),..., f(an)), and if A C dom f, we write f (A) for {f(a) : a € A}. (The potential ambiguity i&
or Aiis a member oflom fis never a problem here.)

We usually use the same notation for a structMras for its domain. Unless otherwise stated,
when we write a formula ag(X) it is implicit that x is a tuple of distinct variables containing at least
the free variables af.

2 Herwig’s construction

Herwig's theorems [7, 8] give a way of extending a finite stmwe to a larger one, still finite and
inheriting some properties of the original structure, islsa way that all partial isomorphisms of the
smaller structure extend to automorphisms of the larger &wlier results in this direction include
[21], and in particular, those of Hrushovski [15]; the cumitg-used construction originated in [15]
and the techniques used by Herwig are based on it. The cotistriconsists of a ‘type-realising’
step and a second, ‘amalgamation’ step. In the Herwig—Ilrgsagzer [9], the amalgamation step was
absorbed into the more general context of free groups — tigiepestablished striking equivalences



between partial isomorphism extension results and knowordms in free groups, and proved a very
strong extension theorem.

This work was motivated by pure model-theoretic considenst Using it to prove the finite
model property originated in joint work with several peofl8, 1], and in Gradel [5] the finite model
property for the guarded fragment was proved this way. Fptliegtions in other areas, see, e.g., [6].

Here, we will only need (a modification of) the type-realgsipart of the construction. Our ap-
proach is based on both [8, 9] but our notation is closer tb dfidhe latter paper. The main new
features are theorem 2.2(2) and definition 2.7. We need tlenviag definition; the first four items
are standard in model theory.

DEFINITION 2.1 LetL be a finite relational signature (i.e., with no function onstant symbols),
andM, N belL-structures.

1. We writeM C N, and say thaM is a substructureof N and thatN is anextensionof M, if
domM) C domN), and for alln-ary R € L and alln-tuplesa € M, we haveM |~ R(a) iff
N = R(a). An expansiorof M is a structure in a larger signature got by adding interpicaia
of the new symbols; no new elements are added to the domaireddct of M to a smaller
signature is got by forgetting the interpretations of thgokis symbols; no domain elements
are removed.

2. A partial mapp: M — N is said to be gartial isomorphismif it is one-one, and for alRe€ L,
of arity n, say, and for alh-tuplesa € dom(p), we haveM = R(a) iff N |=R(p(a)).

3. Anautomorphisnof M is a bijective partial isomorphism frold to M. The set of all automor-
phisms ofM is written Aut M; it is a group under composition of maps.

4. A homomorphisnfrom M to N is a total mapf : M — N such that for alln-ary R € L and
n-tuplesae€ M, if M = R(a) thenN = R(f(a)).

5. Forn > 0, ann-tuplea € M is said to bdive (in M) if n=1 or there is am-ary relation symbol
Re L with M |= R(a).

6. A subse® of M is said to bgpacked(in M) if whenevera, b € A are distinct, there is € A which
is live in M and witha, b € rng(c). A tuplea e M is said to be packed ihg(a) is packed.

The dependence au in (6) is really only a dependence on the signaturdigfwe will use that a
set packed iM is packed in any expansion M. Every subset oM of size at most 1 is vacuously
packed. Note that for non-binary signatures, with relagmbols of higher arity than two, not every
subset of a packed set need be packed.

We aim to prove the following, which (we repeat) is a modificatof work in [8, 9].

THEOREM 2.2 Let L be a finite relational signature and K a finite L-stru@ut.et r< w. Then there
is a finite L-structure H= H, (K), a substructuréK C H, and a surjective homomorphism K — K,
with the following properties:

1. For every partial isomorphism p of K, therefis= AutH such that if = K andmi(a) € dom p
thenp(a) € K and pi(a) = mp(a). That is, po Tt C TI0 .

2. If AC H and Ais packed in H then there issgAut H with gA) C K.



3. For every prenex universal L-formux) = Vyd(x,y), where¢ is quantifier-free andy is a
non-repeating tuple of variables of length at most r, andrgvac K such thatm| rng(a) is
one-one and rn@) C A for some packed & H, we haveK = 6(a) = K = 6(1(a)).

This will be proved in section 2.3.

PrOBLEM 2.3 (MARX) For L,K as above, is there a finite L-structure BIK such that any partial
isomorphism of K extends to an automorphism of H, and anygobsi4bset of H can be mapped by
an automorphism of H into K?

Theorem 2.2 is an approximation to this, as is one of the nesults in [8], which (roughly speaking)
constructsH such that any partial isomorphism iéfextends to an automorphism df any live tuple
of H can be mapped by an automorphismtbinto K, and any packed subset df can be mapped
by a homomorphism inté&. A positive solution to problem 2.3 would allow a simpler pf@f our
results.

2.1 The construction informally

It may help to outline the proof of theorem 2.2 to be given ictisas 2.2 and 2.3. Those readers not
interested may of course skip this section. Those who arbereby warned that while we will make
every effort not to mislead, because of lack of space we willbe able to discuss every detail of the
proof, nor even to be completely accurate about the detalslovdiscuss. Nothing said here should
be taken as contradicting the formal definitions given ingheof later on.

2.1.1 The structureK(") and its parts
To prove the theorem, we will construct an auxiliary struetd(") D K.

o K will consist of disjoint blocks ocomponents K= Kg,Kj, ..., K;.

)

e Part of each component is (roughly speaking) a c0|dy.df(r will denote the the substructure

of K(") whose domain is the union of these copieof

e We letK(") denote the substructure kf") with domainK (" \ K this structure will be thed, (K)
of theorem 2.2.

e The part ofk") insideK(") will be the substructur& of theorem 2.2. The fact th& consists
of ‘copies’ of K yields part 3 of theorem 2.Zt(projects each copy back onk9.

See figure 1.

2.1.2 Extending partial isomorphisms ofK to K (")

K (") is stretchedin that no componerk; for i > 0 contains more than one element of any live tuple
of elements oK ("), though this element can crop up several times in the tufilee ferm ‘stretched’

is from [9]. Note thatkg has a special status.) The ‘copy’ Kfin a componenkK; (i > 0) is therefore
not an exact copy, because it contains no live tuple of lengih We call it a ‘copy’ because #;,
...,ay are elements oKk and its copies, the corresponding elements of the origfnbkingby, ...,

by, then for anyn-ary Re L, R(ay, ..., an) will hold in K iff R(by,....b,) holds inK and|{ay,...,
an} NK;| < 1 foreach > 0.



}K(” (= KUK)

K K1 Kz e Ky

Figure 1: The structur& "), component, K, .., K; and substructure€(® K",

Stretchedness #f(") means that the only ‘definable’ relations that hold withitirgye component
are essentially unary. This makes it quite easy to extencparyal isomorphisnp of K to the new
components oK("), and even so as to form a permutation of each component émtgtite map
induced byp on the ‘copy’ ofK in the component. To do it, we will build the componeHts.. ., K,
by induction, ensuring that each new component has justighé mumber of elements of any given
isomorphism type over the existing components.

Let us discuss in more detail what this means. Suppose indlycthat we have builk ("), for
somer > 0, and extendeg to a partial isomorphisng of K(*) such thaip|K; is a permutation oK;
for 1 <i <r. K1 will be some stretched extensionkf”), including a new componet; ;. Here
we discuss what properties it needs to have.

Let Y be any extension o such thaty/'[K,,, is a permutation oK, 1. Consider what is
required fon' to be a partial isomorphism #"*+%. By stretchedness, it is sufficient (and necessary)
that for anya € K 1, the tuplesab andy’ (a)y(b) satisfy exactly the same atomic formulas K+
of course), for any tuplé € domy. Here and below, ‘atomic’ formulas exclude equalities.

The sett of atomic formulasa(x,b), for b € domy, satisfied bya is called thetype of a (over
domy), andb is a tuple ofparametersof t. Abstractly, a type over a s& C K(") is a set of atomic
formulas with parameters fro. Now Y ‘translates’t to the typey(t) = {a(x, Y(b)) : a(x,b) € t}.
So what we require foy to be a partial isomorphism & +1) is that for anya € K, 1 with typet
overdomy, Y/ (a) has typay(t) overrngy.

For anyD C K(") and typet overD, let EP denote the set of elementskf, ; with typet overD.

Kr.1 is both the disjoint union of th&€®°™ and the disjoint union of thElT(?)‘“, ast ranges over
domy
E

types overdomy. Theny' is a partial isomorphism df (3 iff @' | EZ°™ is a bijection fromE
to EMIY

J;(t) for each type overdomy. So to have any hope of extendidgto such ay/, we need to

construct , 1 so thatfor any type t over domp, EC°™ and ”(%L“ have the same sizBut given this,
since the ‘copy’q of p induced on the copy & in K, is necessarily a partial one-one map from

ESO™ o EJJ”(?)L“, we may extend to a bijection EZ°™ — EJJ”(?)L". This can be done for | yielding

a partial isomorphism ok "+ extending bothp and the copy of and acting as a permutation on
K1 In fact, this argument works for anysuch thatp U g is a partial isomorphism df ("+1).

So we want to construd,1 so thatEX°™ and ELT(?‘“ have the same cardinalitjor every t
and for the extensio of each partial isomorphism p og KThe type ovedomy of a new element

introduced intoK,, 1 is determined once and for all at the time we add it, for e@cland its types



over differentdomys interact. For example, if we add elements satisfyng pegcibe formulas in
the typet, the setéE{jomL" increase in size for alb defined on the parameters of So it seems we
have a difficult problem here. The ingenious method used lkeesbcomes from [15, 7, 8, 9], and
constitutes the most crucial idea in the proof. We shiftraite from an elementavinga given type,
to itsrealising a type.

An element realises typef it satisfies all the formulas it Clearly, it may satisfynoreformulas
than these. WritdR for the set of elements df, , that realiset. Unlike EP, R depends only on
t, not on any seD. Because of this simpler situation, we can easily arrangettie numbefR;| of
elements oK, ;1 realising a given typédepends only oit|, the number of formulas ih This can be
done as follows. We construkt . ; starting with a fresh copy df. The copies of elements &f have
the same types ovét(") as the originals. We then add further elements in stagebsirggfirst the
largest possible types ov&("), then the next largest, and so on, down to the empty type. Sage
is used to ‘pad out’ the numbers of elements realising thedygd the currently-considered size to be
the same. In this way we can control the interaction betwgpest elements added at earlier stages
may realise types considered later, but not vice versa,usectne sizes of types are decreasing. So
our work in the current stage will not be destroyed in latagss. The totality of elements added in
this way (after deleting any that violate stretchednessjtitute the new componeht . 1, and these
elements plus the old oneskd") constitute the extensiak ("1,

It can now be shown by induction th& ™| = \ELT(?)‘H for all Y.t as above, using the obvious

fact that|t| = |@(t)|. Assume inductively thafE{"™| = \ELT(?J;H for all typesu over domy with

uDt. The elements oEtdomL" are those elements &, 1 that (a) realis¢, and (b) are not il’nEffomLIJ

for anyu D t. Similarly, ESJ”(?)‘“ is the set of elements &, that (a) realisep(t) and (b) are not in

Ego¥ for anyu O t. By construction, the number of (a)-elements is the sameotin sides, and by
the inductive hypothesis the same goes for the number ofegitsrexcluded by (b). So we obtain
[EO™) = |ELr|J"(%L"|. See lemma 2.15 for details.

2.1.3 Admissible types

We can get this far, proving part 1 of theorem 2.2, withoutr@awhichtypes oveK (") the elements of
Kr+1 have, but onljhow manyelements have a given type. To impose extra properties csiriingtures

K () — in particular, to obtain part 2 of the theorem, that any atckubset oK (") is mapped by an
automorphism oK) into the union K" of the copies ofK — we need to control which types are
realised inK; 1. This is in fact quite easy to dd, 1 is built in stages and we have great freedom at
each stage to choose which types to realise, so long as wedjatise the numbers of realisations as
already described.

Much of the evolution of the construction through [15, 7, Bcln be viewed (at least by the
author) as refining the selection of types to realiskin;. We will call the types chosen to be realised
the admissibletypes. To extend partial isomorphisms as already descrilbeésl sufficient that the
chosen notion of admissibility satisfies the following ar®(cf. lemmas 2.8-2.11):

1. the type oveK (") of any element oK is admissible [so we can stat}; with a copy ofK],
2. no tuple of parameters in an admissible type violateschteelness ok ("+1),

3. any restriction of an admissible type to a smaller paransst is admissible,

4

. if Y is a partial isomorphism ok (") inducing a permutation of each non-zero component, and
t is an admissible type ovelomy, theny(t) is also admissible.



In the construction oK1, we now arrange at each stage that all types of new elemeatK&V
are admissible and that the number of elements realisingean gidmissible typé depends only on
t|. The axioms (especially the last two) allow us to replichedrgument of section 2.1.2 and obtain
theorem 2.2(1). But they do not appear to be sufficient to @rbneorem 2.2(2): we need further
restrictions on which types are realiseddp, 1.

Roughly, we will define a type overK(") to be admissible if there is a partial isomorphignof
K(") inducing a permutation of each non-zero component, defingdand such thal(t) is the type
of some element KK (i.e.,Kg). The above axioms all easily follow from this. Furthermaassuming
that all elements oK,1 have admissible types ovi(") in this sense, we can show that any packed
subset oK (") is mapped intd” by a partial isomorphisny of K(") that induces (by restriction) an
automorphism oK ("). This clearly implies theorem 2.2(2).

The way we show this constitutes the second most crucialofiéze proof. Again, we assume
the property inductively fok (") and try to prove it fork"+1). So letA C K1) be a packed set. If
A C K, the result is easily proved using the inductive hypotheSis assume that ¢ K('). As A
is packed an& ("*1) is stretched AN K1 consists of a single element, say By packedness, the
definition of admissibility, and the argument of section.2,ve can assume without loss of generality
thata e K", LetB C K(") be obtained by replacing by the corresponding element, sayof the
original K ( = Ko). ThenBiis also packed, so inductively we may take a partial isomierplp of K ()
that induces by restriction a permutation of e&GHi > 0), and satisfieg(B) C K. Let p=0oK,
and letq be the map induced by on the copy oK in the new componerK; ;. By construction
of K,,1, U q is a partial isomorphism ok("+1) so by the argument of section 2.1.2, it extends to
a partial isomorphisng of K("+1) that induces a permutation ¢ 1. Now a corresponds td, so

¢ (a) = q(a) corresponds t@(b). Sincep(b) € K, we haveg(a) ¢ K" ™. Sog@(A) c K", as
required.
2.2 The construction formally
We adopt these conventions for the proof:
CONVENTION 2.4
1. All structures mentioned are finitestructures.

2. Byatomic formulawe will mean an atomit.-formula other than an equality. We writgX) for
such a formula (see notation 1.1 here).

We prove theorem 2.2 by establishing an auxiliary propasitwhich also gives more information
about the structure dfl; (K). Figure 1 may help in picturing it.

PROPOSITION2.5 Let L be a finite relational signature and K a finite L-struauiFor each r< w,
there is a finite L-structure K O K, whose domain is the disjoint union of ‘components=Ko,
Ki,...,Kr, and one-one mapg : K — K; for each i< r (wherevy is the identity map on K), with
properties 1— 4 below. We use the following notation:

e We writeK(") for the substructure of K with domain K" \ K.
o We writeK" for the substructure of K) with domain{J;, vi(K).

o AsetAof elements oflK is said to bestretchedin K (") if JANK;| < 1 for every iwithl <i<r.
A tupleais stretched if rnép) is stretched. (This notion occurs in about the same formJr) [9



1. Any live tuple of K is stretched.

2. For each i< r, each atomic formulax(x,y), and each & K, be Uj<iKj, we have

K" = a(a b) < a(vi(a),b).

3. For every partial isomorphism p of K and each i witk i <'r, there is a permutation jof K;
such that:

e piovj extends)jo p. Thatis, p(vi(a)) = vi(p(a)) for all a € dom(p).
e The map Ui, Pi is a partial isomorphism of K.

4. If AC K" is packed (in K) then there is a partial isomorphist of K(*) such thatp| K; is a
permutation of Kfor all i with 1 <i <r, and satisfyingp(A) C K",

PrROOF The proof will occupy maost of this section. For the duratio, fix L, K as in the formulation
of the proposition. The proof is by induction enForr = 0, we may leK (% = K; for condition 4 we
takel to be the identity map ok. Assume inductively that ("), v, ..., v, have been constructed, sat-
isfying the conditions of the proposition. We will obtaii"+1) from K (") by adding a new component
K, 1 disjoint fromK ("), To do this, we will useypes.

2.2.1 Types
DEFINITION 2.6

1. Atype over K", or for short,type,is a set of atomic formulas with one free variable, always
x, and parameters iK("): i.e., formulas of the formu(x, ), wherea(x,y) is atomic (not an
equality — see convention 2.4) in whistoccurs free, and € K(7).

2. For atypd, |t| denotes the cardinality of (i.e., number of formulastirgndbase tdenotes the
set of all elements df that genuinely occur in formulas tr— sobase t={ac K:a(x,a,b) et
for someb € K(") and atomia(x,y,Z) in whichx,y occur freg.

3. Iftis atype and C K, we writet| D for {a(x,a) et :ae K UD}.
4. LetM D K anda e M.

(a) Iftis atypeais said torealise tif M |= a(a,c) for all a(x,cC) € t.
(b) If D C K, we writetp(a/D) for the set

{a(x,€) : a(x,y) atomic withx among its free variables,c K" UD, M = a(a,&)}.

The definition ofbasereflects our interest in parameters frdd) use of parameters frod(") in
types is unrestricted and the reader should always bear md ithiat formulas in a type can have
parameters that are not in the base of the type. Itis criticabte that realisingt does not imply that
tp(a/base § =t, but onlytp(a/base D t. Also, basgtp(a/D)) C D, but we may not have equality.
These and other simple facts about bases, sutp(agD) = tp(a/base(tp(a/D))) for anya € K,

D C K, will be used without mention later on.

Strictly, the definitions in (4) depend avl, so we should say that realisest in M, and write
tpy (a/D). But formulas in types are atomic, sgealised in M iff arealises in M, for anyM’ D M,
and similarly fortp(a/D). Consequently, the dependence never makes a differencadtige, and
therefore we refrain from overloading the notation.

9



2.2.2 Admissible types

There is a lot of freedom in the construction to choose thdkiof type we wish to realise. We will
choose the ‘admissible’ types.

DEFINITION 2.7

1. We writeW(") for the set of all partial isomorphismg of K(") such that| K; is a permutation
of Kiforall1<i<r.

2. If g e W) andt is a type withbase tC domy, we writeds(t) for the type{a(x, P(a)) : a(x,a) €
t}. A conjugateof t is any type of the formj(t) for € W) with base tC domy.

3. Atypet is said to beadmissibleif it is a conjugate otp(a/D) for somea € K andD C K.

Soift is admissible theh= Y(tp(a/D)) for somey, a, D as above; sbasgtp(a/D)) C domy, butD
may be larger thabasgtp(a/D)) and we may not have C domy. The only properties of admissible
types needed to extend partial isomorphisms are encapdutathe following simple lemmas.

LEMMA 2.8 Any conjugate of an admissible type is admissible.

PrROOF SinceW(") contains the identity map ok(") and is closed under inverse and composition,
conjugacy is an equivalence relation on types. The lemnbai#slimmediately from this. O

LEMMA 2.9 If a € K then tda/K) is admissible.
PROOF Trivial. a

LEMMA 2.10 If t is an admissible typeg(x,y) is an atomic formula in which all variables ofyx
occur, anda(x,€) € t, thenc is stretched in K,

PROOF Lett,a,C be as stated. Asis admissible, there ara € K, D C K, andy € Y1) with
base(tp(a/D)) C domy andy(tp(a/D)) =t. Soa(x,y~%(C)) € tp(a/D) andK ") = a(a,y~(c)).
Sorng(ap—1(c)) = rng(b) for some live tupleb € K. Inductively, by proposition 2.5(1) fdt("), b,
and hencey1(c), ¢~ 1(€), andc, are stretched iK("). 0

LEMMA 2.11 Lett be any admissible type. Theitis admissible for every @ K.

PROOF We havet = Yi(tp(a/E)) for somea € K, E C K and @ € W(") with base(tp(a/E)) C
domy. LetD’' = y~1(DNrngy). Thenbase tC rngy, so clearlyt D =t (DNrgy) =t[P(D') =
Y(tp(a/E) | D') = Y(tp(a/END')). This is of the required form, and $0D is admissible. a

2.2.3 Building the structure K("+1)

We are going to start the construction I§f'*%) now, by building its new compone, ;. This
component will itself be built by an inductive constructiome build a chain of set§ C § C --- C
§ = K41, and a chain of structures(”) ¢ K™Y c kY ¢ ... ¢ Kl(r“) — K+ wherel is the
largest cardinality of any admissible type. See figure 2.

We will also define a bijectiom, ;1 : K -+ &. The structurer”’l) (for eachj =0,1,...,I) will have
the following properties:

10



e

Figure 2: The new componehg 1 of K"+

(r+1)

() The domain oij(r”) is the disjoint union ofK(") and Sj. The components ok; "™ are

K,Kq,...,Kt, andS;. (Soin Kj(”’l), the notion of stretched tuple makes sense.)

(r+1)

(i) Any live tuple in K; is stretched.

(i) For any atomic formulax(x,y), a€ K, andb € K", we haveK(r”) = a(a,b) < a(vr,1(a),b).

(iv) For any admissible typewith |t| > | — j, the number of elements & that realiset in K}r“)

depends only oft|.
(v) tp(a/K) is admissible for everg € S;.

Below, we will refer to these as ‘property (i)’, etc.
S is obtained simply by taking a new copy Kf disjoint fromK (). Formally, we may le& =
K x {K™}. Thus,K{™ has domairk () US, for i < r, its ith component is defined to be the same
as that ofK("), and its(r + 1)th component is defined to &. We letv,,1 : K — S be given by
vr1(a) = (a,K(M), forae K.
We defineK((,r”) as anL-structure as follows. Lai: K™ — K1) be the map that is the identity
(r+1)

onK( and ISVr+1 onS. ThenifRe Lisn-ary anda€ K, " is ann-tuple, we define
K™ =R@ iff ais stretched iK"Y andK ") = R(u(a)). 3)
Note thatu is a homomorphism.

LEmmA 2.12 K™ D K, and K™ satisfies properties (i)—(v) above.

PROOF By the definition oK " ((3) above)K{ ™ 2 K (). Clearly,K{ "™ has components K,

., Kr, S and all live tuples in it are stretched.

We check property (iii). Take(x, ﬂ a, b as in property (iii); We may assume that all variables
in Xy occur ina. Then K(r“) = a(a, b) iff ab is stretched andK = a(a, b) [by (3), noting as
in Iemma 2.10 that the change frofto a does not affect stretchedness] \ff, 1(a)b is stretched
andK = ol (vr+1(a)),5) [by definition of ‘stretched’ and becauggv, . 1(a)) = a, iff Kj('“) =
a(vr+1( a), )[by (3)], as required.

Property (iv) holds vacuously since there is no admissiget with |t| > |. To check property (v),
letae & and lett = tp(a/K). By property (iii), tp(pu(a) /K) =t. By lemma 2.9t is admissible. a
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Assume now thaj < | and thatKj(”l) is defined. We will construcKJ(rjll) along the lines of

section 2.1.2, which the reader may wish to review. Remertiiatypes have parametersdif).

First, a definition. IfM D K(") andt is an admissible type, we writél +t for the L-structure
extendingM obtained by adding t®/ a single new poinb, say, and definindVl +t |~ a(b,c) iff
a(x,c) e t, for all atomic formulagi(x, y) and allc e M. Of course, as the parameters afre inK ("),
M+t |= a(b,¢) impliesce K. M+t is unique up to isomorphism. For typss...,t, we define
Mty +--+thtobe(--- (M+1tg) +12) + ) + o

Let the admissible types of cardinality- | bety,...,ts 1, say, enumerated without repetitions.
Let

m = [{a€S;:arealised;in K}r“)}\, for eachi < s,
m = ma{m:i<s},
K = K rottot Attt at et
—
m—mg times m— wl times
and defineS;, 1 to consist ofS; plus all the new points oIKJfl1 \K (") S0Sj,1 = Jfll \ K(")

Define the components Kfj(fil) to beKo, ..., K, Sjy1.

LEMMA 2.13 Kj(fll) D Kj(r+1), and |<‘(r++11) satisfies properties (i)—(v).

ProoF Clearly, Kffll) D) K(r“). Property (i) holds forKJ(fll) by construction. For property (ii),
(r+1)

assuming inductively that the property holds fq@“’ we need only show that & is live in Kii1
andrng(a) Z K (1) thenais stretched. We assume for notational simplicity that bc where

beSii1\S andc € Kjf:il , and thaIKJr;l = a(b, €) for some atomia(x,y) in which all variables
in xy occur free. But then by definition d{frﬂl), a(x,c) € t; for somei < s. Ast; is admissible,

lemma 2.10 yields thatis stretched irk"). Asb € Sj..1, bCis clearly stretched i ;"

Property (iii) is immediate, because it holds for the suittirek " of K\"% Y.

We now check property (iv). First, note thatiii’ < sandi # i’ then|t| = |ty], t; # ty, so that
ty  ti. Because by construction the element$gf; \ S; realise exactly the formulas in sorhgand

no more, each of them realises exactly one ty|fr somei < s). So, any point o5 ;1 realisingt; is

in factin Kf”’l) +1t +t+--- 1 (in the obvious sense). There angsuch points irf;, and we added
m—m more toS; 1. So the number of realisations ®in S;, 1, for anyi < s, is exactlym.

We must check that we have not destroyed the inductive hegwtl{for larger types than ttig
by adding the new points. For any admissible typeith |ul > | — j, we haveu ¢ t; for anyi < s.

Because the points &1\ S; satisfy only the formulas of some uniqtienone of them realisa. So

all realisations otiin Sj;1 are in fact inS;. By property (iv) forKj(rH), the number of them depends
only on|ul. Thus, property (iv) holds for all admissible types of sizé — (j+1).
Property (v) is easily seen. Inductively, it holds forak S;. Leta € S;;1\ Sj, and suppose that

arealises typé; for (unique)i < s. Thentp(a/K) = t;, which is admissible. a
We now definek ("3 = K™Y andK,,; = §. AsK(+D 3 K1), the inductive hypothesis and

properties (i)—(iii) above imply that the first two conditi® of proposition 2.5 hold and that the com-
ponents oK ("t are as demanded.
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2.2.4 Defining permutations ofK; . 1

Here, we show how to take any extension of a mggip W) to a partial isomorphism df("*+%), and
extend it to an element 6P("+1. (Here, as for, ¥("+1 is the set of all partial isomorphismgg of
K(+1) such thaty' [ K; is a permutation oK; for eachi with 1 <i <r +1.) The crucial observation
needed to do it is property (iv) of the constructionkgf,; — that inK("+1), the number of realisations
of any admissible type depends only on the cardinality oftyppe. This extension result will be used
in section 2.2.5 to establish conditions 3 and 4 of propasifl.5.

Fix ¢ € W), and define:

D = Kndomy,

D' = (D),
A4 = {t:tanadmissible type withase tC D},
andfort€ 4, E = {acK1:tp(a/D)=t},

and B = {aeKi1:tp(a/D’) =Y(t)}.

E; is the set of elements &, ; whose type oveD is Exactlyt. TheE; (t € 4) are pairwise disjoint, as
are theE{. By property (v) of the construction &'V, and lemma 2.12;, 1 = Usc 4 Bt = Ui 2 Ef-

LEMMA 2.14 Let q be a 1-1 partial mapK;;1 — K;;+1. Then in the notation above, the following
are equivalent:

1. yUqis a partial isomorphism of K+1).

2. Wheneveuo (x,y) is atomic, x occurs free io, a€ domq, ancc € dom(y)), we have
K |= a(a,€) « a(q(@), y(e))-

3. Y(tp(a/D)) =tp(q(a)/D’) for any ac domq.

4. Forany te 4, q|E; is a 1-1 partial map from go E.

PROOF As s a partial isomorphism df ("), K(") C K(r+1) and all live tuples ifK ("+1) are stretched,
itis clear thatp U qis a partial isomorphism df "+ iff condition 2 holds.

Now let a,a,¢ be as in (2). The("*V |= a(a,¢) iff a(x,C) € tp(a/D), sincec e domy) =
DUK®. Similarly, K = a(q(a), $(c)) iff a(x,W(c)) € tp(q(a)/D'). We conclude that (2) holds
iff a(x,c) € tp(a/D) < a(x,W(c)) € tp(q(a)/D’) for all a,a,c as above. But this just says that
W(tp(a/D)) =tp(q(a)/D’) for all a € dom g Hence, (2) and (3) are equivalent.

For (3) = (4), if t € 4 anda € E;ndom qthentp(a/D) =t, and assuming (3), we obtain
tp(gq(a)/D’) = W(t), soq(a) € E{. Thus, (4) holds. For the converse, assume (4) and éetlom g
As K11 = Uieq Et, @ € E; for some (unique) € 4, so thattp(a/D) =t. By (4), q(a) € E so
tp(q(a)/D’) = Y(t), giving (3). O

The following originated in [7] and is the heart of the matter
LEMMA 2.15 Lette 4. Then|E| = |E|.

PrRoOOF Fort € 4 let

R = {aeKy1:arealisesin K1)},
R = {aeK;1:arealisesy(t)in K(r+1)}.
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If a€ K41, thena € R iff tp(a/D) D t, and becaus#(a/D) is by property (v) and lemma 2.11
admissible, this is iffa € E,, for someu € 4 with u D t. Similarly, a € R iff a € E|, for someu € 4
with u D t. We obtain

R=|JE ad R=|JE, foraltea

tCueAa tCueAa

As 4 is finite, (4, D) is well-founded; we now proceed by induction on it. ket 4, and assume
inductively that E,| = |E/,| for anyu € 4 with u D t. We show tha{E;| = |E/|. As theE, for varying
u € 4 are pairwise disjoint, and similarly for tHe/,, we have

E=R\ J Eu and E=R\ [J E,

tcuea tcuea

Obviously, |t| = |@(t)|, andy(t) is admissible (by lemma 2.8). So by constructiorkéf), we have
'R| = |R{|]. With the inductive hypothesis, this gives:

Bl = RI- Y El = RI- Y El = ElL

tCueAa tcueAa

This completes the induction and the proof. O

We now obtain:

PROPOSITION2.16 Letqbe a 1-1 partial mapK;. 1 — K1 such thatpuq s a partial isomorphism
of K'Y, Theny U q extends to a partial isomorphism W1,

PrRoOOF We know that theE; are pairwise disjoint, as are titg. For any typet € 4, lemma 2.15
shows thatE;| = |E{|, and by lemma 2.14q[ E; is a partial 1-1 mapE; — E{. So for eacht, we
may extendq| E; to a bijection :E; — E/. We letq" be the union of all these extensions. Since
Kiyi=U{E :t e 4} =U{E :t € 4}, q" is a well-defined permutation ¢, ;. By lemma 2.14,
PuUqt is a partial isomorphism df "tV and sapuU gt € W+, a

This has a corollary:

COROLLARY 2.17 Any g € W) extends ta)’ € Y1 such thatv,, 14/ (a) = Y'v,,1(a) for all
ae€ Kndomy (thatis,vr 1oy C Y ovyg).

PrROOF Let be as in the formulation of the corollary. Define a partial-ame mam: K11 — K11
by
q= Vr+1wVF4.11-
By proposition 2.16, we need only show thatJ g is a partial isomorphism ok ("1 For this, it
suffices by lemma 2.14 to prove that for any atomia, y) in which x is free, and any € dom gand
¢ € domy,
K'Y = a(a,€) « a(q(a), w(c)).

Well, takea € K with v,,1(a') = a. Note thata’ € domy. ThenK ™+ |= a(a,¢) iff K'Y |= a (', )
(by property (iii)), iff KD = a(g(a), P(€)) (asy is a partial isomorphism df("+1)), iff K(+1) =
a(ve1P(a@), P(c)) (by property (iii) again), iffkK("+1 = a(q(a), P(€)) (by definition ofg). a
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2.2.5 Proving conditions 3 and 4 of proposition 2.5

We now obtain condition 3 of proposition 2.5 f&"*1 by taking  in corollary 2.17 to bepU
U1<i<r Pi, for any partial isomorphisnp of K, whereps, ..., pr are given inductively. Letting)’ be
as in the corollary, we may lat 1 = /| Ky 1.

We also obtain the last condition (condition 4) of the propwms, in the manner sketched in

section 2.1.3. LeA C K1 be packed. We must find € W +1 with A C domy andy(A) c K'Y,

If AC K, then by condition 4 foK ("), there isw € W) with A C domy andy(A) € K"; by
corollary 2.17,p extends tay’ € W+, and clearlyy/ (A) € K" We are done.

So assume thaN K, # 0. As A is packed and live tuples iK"Y are stretched, we have
ANK;;1 = {a} for somea. Let

=tp(a/K), and D =baset

By property (v),t is admissible, so there atec K, E C K, andy € W) with D C domy and
tp(b/E) = W(t). By restrictingy andE, we may assume th&tndomy = D andE = basgtp(b/E)) =
Y(D). By property (i), we havep(v,1(b)/E) = W(t), too. Letq be the partial mapK; 1 — K1
defined only ora and withq(a) = v, 41(b). SinceK Ndomy = D, lemma 2.14(3) applies, telling that
YuUqis a partial isomorphism ok("+1), By proposition 2.16p U g extends ta)’ € W('+1) (which
may not commute withv, ;7).

Now ANK C D. To see this, letl e ANK. AsAis packed, there is atoma(x,y, z) in whichx,y
occur, andb € ANK ™), with K+ = a(a,d, b). Thena(x,d,b) € t andd € base t= D, as required.
Hence A\ {a} C doqu, and we may define

= Y(A\{a})u{b} c K

Then by property (iii), the mapy’'[A: A — B preserves alL-relations, soB is packed. So by
proposition 2.5(4) foK ("), there isp € W) with B C domg and@(B) C K", By corollary 2.17,¢
extends tap € W+1 such thaw,,10¢ C @ ovy11.

Now we havegy’ € W+ A C dom(¢'y'), andgy'(A) C . The first statement is clear.
For the others, we consider elementsfoin turn. First conS|dea. We havegy/(a) = @v,,1(b).
Becauseb € domg, we havev, 1@ (b) = ¢v;,1(b) by choice ofg. Hence,@gy'(a) = v, 1@ (b) €
K™Y, Force A\ {a}, we havegy/'(c) € ¢(B) C K" c K", This completes the proof of
condition 4 of proposition 2.5 faK ("1,

We have now finished the induction omnd proved proposition 2.5. O

(r+1)

2.3 Proof of theorem 2.2

PROOF LetK,L,r be as in the formulation of the theorem. We assume0, setH = H, (K) £'K (")

as in proposition 2.5, I be the substructure ¢f with domainkK'"”’ NK("), and letn ' Uy vi L

K — K. ThenTttis obviously surjective. To check that it is a homomorphlsm will show a little
more: that

() if a € K is stretched theK ") |= a(a) « a(m(a)) for all atomica ().

We may assume that= (ao, .. .,a, 1) With a; € K, for eachj < n, where 0<ip <iy <--- <in 1 <T.
Then for eachj < n, we havevj;T(a;) = aj andao,....aj-1,T(aj+1),...,T(@-1) € Ui, Ki, so by

15



proposition 2.5(2) we obtain

K = a(ag....,an 1) < a(ag,...,an 2. T(a@ 1)),
= a(a,...,an 2,T(an 1)) <+ A(Qg,...,an 3,T(@2),T(@ 1)),

K = (0, (@) .., T(@n_1)) > A(T(@0) . T(En-1)).

proving (). Now, if Re L andK = R(a) thenK (") = R(a); by proposition 2.5(1)a must be stretched,
so by(1), K = R((a)). AsK C K("), we getk = R(1(a)), and hencetis a homomorphism.
We check the other requirements of the theorem.

1. If pis a partial isomorphism &, letp= p1U...Upr asin proposition 2.5(3). Theie AutH.
Leta € K with i(a) € dom p We requirepri(a) = p(a). Say,a € K; (somei, 1< i <r). Then
by the proposition agai; pri(a) = pv;(T(a)) = p(a). Sincev; is one-oneprm(a) = v; *p(a) =
mp(a).

2. This is immediate from proposition 2.5(4).

3. Take a universal formul@(x) = Yy (x,y), where¢ is quantifier-freexy is non-repeating|x] =
n, [yl = m, say, anch+m<r. Takea= (ay,...,a,-1) € K with rng(a) contained in a packed
subset ofK(") and such thatt/rng(a) is one-one, and witlK |= 6(a). Write b for m(a), so
bi = (&) fori < n. We showK = 6(b).

Letc= (cCo,...,Cm 1) € K be anym-tuple; we requirk = ¢(b,c). Choose K lp,...,Im-1 <
satisfying, for alli, j < mandk < n:

if ¢ = by thena, € Ki.,
if ¢ ¢ rng(b) thenK;, Nrng(a) = 0,
if ¢ = Cj thenl; = |j,

if ¢ # ¢ andc;, ¢j ¢ rng(b) thenl; # 1;.

This is possible sincg| rng(a) is one-one and+m<r. Letd; = v (c) fori <m, andd = (do,
e ,dmfl) .

Claim. The maprtrng(ad) preserves all quantifier-free formulas.

Proof of claim. Becausatis one-one onng(a), by choice of thd; it is one-one orrng(ad)
too, so preserves all equalities and inequalities. Furthecausea is contained in a packed
subset oK ("), it is stretched irk("); by choice of thd;, it follows thatad is also stretched. By
(1) above,mtf rng(ad) preserves all atomic relations in both directions. Thisvpeothe claim.

ButK = 6(a), soK |= ¢(a,d). Sinced is quantifier-free, and by definition(ad) = bc, the
claim givesK |~ ¢(b,c), as required.

This completes the proof of theorem 2.2. O

3 Loosely guarded and packed fragments

Here we apply the combinatorics of section 2, together withe simple, tedious syntactic manipula-
tions, to prove the finite model property for the loosely gleat and packed fragments. Convention 2.4

is no longer in force, so that ‘atomic’ formulas may be edigsi but notationg(x) still indicate by
default thatxis non-repeating and contains the free variableg.of
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3.1 The loosely guarded and packed fragments
We begin by recalling the definition of the loosely guardexyment.

DEFINITION 3.1 (VAN BENTHEM, [24, p.9]) Let L be a signature without function symbols. The
loosely guarded fragmemiGF (L) overL consists of (just) the following kinds &f-formula:

e Any atomicL-formula is inLGF(L).
e LGF(L) is closed under Boolean combinations.

o If

— vy (the ‘guard’) is a conjunction of atomlc-formulast
— ¢ € LGF(L),

— every free variable d is free iny,

— yis a tuple of free variables §f

— if x is a free variable of, y is a variable frony, andx # y,? then there is a conjunct gfin
whichx.y both occur,

then3y(yA ) € LGF(L).

Note thaty may have more free variables thgénand more than two variables may be ‘guarded’ by
a single conjunct of. The reader may check that the standard translatidn(pf q) (formula (2) of
section 1) is loosely guarded.

We will also prove the finite model property for the ‘packeddment’.

DEFINITION 3.2 (MARX, [19]) LetL be a signature without function symbols. AAformulay is

said to be gpacking guardf y is a conjunction of atomic and existentially-quantifiedraio formulas

such that for any distinct free variabless ofy, there is a conjunct of in whichx,y both occur free.
The packed fragmen®F (L) consists of (just) the following formulas:

e Any atomicL-formula is inPF(L).
e PF(L) is closed under boolean combinations.

e Ifthe L-formulay is a packing guardp € PF(L), every free variable df is free iny, andy is a
tuple of free variables of, then3y(yA ¢) € PF(L).2

LGF(L) is not a subfragment d?F(L) because guardgof PF(L) must bindeverypair of free
variables of$. For example, the standard translationdfp, q) (formula (2) of section 1) is loosely
guarded but not packed. However, as we will see in lemma 89y & GF(L)-sentence is equivalent
to a sentence d?F(L). An example, due to Marx, of a packed sentence which is navalgat to a
loosely guarded sentencedgyz IwR(X, y,w) A IWR(X, z,w) A IWR(z y,w) A —=R(X,Y, 2)).

Note that ify is a quantifier-free packing guard with free variables melyixg, ...,X,_1, M is an
L-structureag, . ..,a,-1 € M, andM = y(ap,...,a,-1), then{ap,...,a,_1} is packed inM.

1The original definition [24] did not allow equalities in gats; but their presence does not affect the expressive power
or the finite model property so we include them.

2[5, definition 2.2] omits the restrictior # y; this does not reduce the expressive power if equalitiesaboeved as
conjuncts ofy.

3[19] requires thay and¢ have exactly the same free variables. We do not need thisctest, but adding it does not
reduce the expressive power since we may add conjunetg to ¢ until its free variables are the sameys Also, [19]

does not allow existentially-quantified equalities in gigrand not all variables inneed be free iry; it is plain that these
differences do not change the expressive power either.
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Packed subformulas It is convenient to introduce the notion packed subformulaf a formula
¢ € PF(L). This is done by induction on the constructiongof If ¢ is atomic thend is a packed
subformula of itself. The packed subformulas of a booleanttoation¢ of formulas inPF(L) are¢
and the packed subformulas of the combinants. ArddfPF(L) andy is a packing guard, then the
packed subformulas afy(yA ¢) are itself and those df.

3.2 Finite model property

In section 3.3 we will prove:

THEOREM 3.3 For any relational signature L, the packed fragméft(L) has the finite model prop-
erty.

This easily gives the following, which will be proved in sect 3.4:

COROLLARY 3.4 For any relational signature L, the loosely guarded fragmie@F (L) has the finite
model property.

REMARK 3.5 Itis not hard to see that we can add constantsdad keep the finite model property

for PF(L) and LGF(L). (Note that guards need not guard constants, so, &@x,= x — R(c,X))

is a loosely guarded sentence.) However, the loosely gddrdgment in signatures with function

symbols is undecidable (this follows from results in [20jdaherefore does not have the finite model

property.

3.3 Proof of the finite model property for the packed fragment

To prove theorem 3.3, it clearly suffices to show that for einige relational signaturé, any sentence
of PF(L) with a model has a finite model. Fix such BnThe proof proceeds in two stages: first, for
sentences with only quantifier-free packing guards, and thearbitrary sentences. The first stage is
done in two lemmas: first, assuming that the sentence hasedlexive model, and then the general
case.

DEFINITION 3.6 AnL-structureM is said to barreflexiveif wheneverR e L, as,...,a, € M, and
M= R(ag,...,an), thenay,...,a, are distinct.

LEMMA 3.7 Suppose that € PF(L), all guards inc are quantifier-free, ana has an irreflexive
model M. Thero has a finite model.

PrROOF Assume the hypotheses. L@be written with variablesy, ..., v, 1 only, where 0< r < ,
and writev for (vp,...,Vy_1). For any formulad written with variabless, and anyr-tuplea e M, we
will write M |= ¢(a) to mean thad is true inM whenv; is assigned ta; for eachi <r.

Introduce a new-ary relation symboRy for each packed subformuky of o, and define an
expansiorM* of M by interpreting eaclRy equivalently inM to ¢:

M+ |: R(I)(aOa"'aaf*l) — M |:¢(a0,---,ar,1),

foranyay,...,a,_1 € M. Of course, if some; is not free ing then we can changg without changing
the truth of or Ry; and if ¢ is a sentence theRy will hold for all r-tuples inM, or for none.M* is
in general not irreflexive. Take a finite substructéfrec M™ containing an isomorphic copy of every
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substructuréd C M* with |A| < 2r. LetH = H,(K), K, andmtbe as in theorem 2.X, K. H are finite
structures in the expanded language. We will show kthat o.

Claim. For every packed subformutaof o and anyr-tuplea € H that is packed in the-reductH | L
of H, we haveH |= Ry(a) <> ¢(a).

Proof of claim. First note that becauseis packed inrH [ L and hence iH, by theorem 2.2(2) there
is g € AutH with g(a) € K. Since automorphisms preserve all first-order formulasyveg assume
thatae K. Next, note that becaudd is irreflexive andrtis a homomorphism, if € K is packed in
H L thenttrng(a) is one-one. So by theorem 2.2(8j,rng(a) preserves forwards all ‘small’ prenex
universal formulas, and all quantifier-free formulas.

We prove the claim by induction of. For atomic¢ it is clear, sinceK = ¢(1(a)) <> Ry(11(a))
andrng(a) preserves quantifier-free formulas. For conjunction, aitkely assume the claim for
6., and leta’€ K be packed iH | L. Then inductivelyH = (6 A ¢)(a) iff H = Rg(a) A Ry(a). Since
nirng(a) preserves quantifier-free formulas, this is M* = Re(1(a)) A Ry(11(a)). By definition
of M* this is iff M = (6 A ¢)(T(@)), iff MT = Rene(T(@)). Again using preservation, this is iff
H = Reng (@), as required. Negation is handled similarly.

Now consider the cag¥(x) = Jy(y(X,y) Ad(X,y)), wherep € PF(L), yis a quantifier-free packing
guard,x, Xy are non-repeating tuples of variables freranumerating the free variables @fy respec-
tively, andy is non-empty. Letz enumerate the variables wfthat are not inxy, if any, and lety be
any variable iny. We will use the following notation: iftv = (vi,,...,V, ,) is a tuple of variables
fromv= (vo,...,V%_1), anda= (ao,...,a_1) is anyr-tuple, we writeay for the tuple(a,....,a; ,).
corresponding t@ asw does tov. Similarly, we writeay, for &.

Letae K be packed irH | L, and inductively assume the claim fpr

= First assume thatl |= Rg(a); we showH = 6(a). Write b for 1(a). As 1tis a homomorphism,
M* = Rg(b). By definition of Rg in M™, M |= 6(b), so there is am-tuple c € M with ¢y = bg
andM = (YA ¢)(c), and thusM™ = y(€) ARy (C). Since the variables afare not free inyA ¢,
we may assume that each elementzt equal tocy.

As |rng(bc)| < 2r, there ist'@ € K isomorphic tobC. Asy, Ry are quantifier-freeK = y(&) A
Ry (C). Letx(x) be the prenex existential formula

3y7(y/\ ( A z:y) /\R¢(vo,...,vr,1)).

zinz
Then clearlyK = x(bJ).

Let p: b— b/, a partial isomorphism oK, and takep € Aut H satisfying the provisions of
theorem 2.2(1). Letting! = p(a), it is clear thata” is packed inH [L and sort/ rngd is one-
one, and(d) = b'. Since|xyz] < r, by theorem 2.2(3Jt/rnga; preserves-x forwards, and
henceK = x(ap). AsK C H andy is existential,H = x(ak). As p € AutH andp(a) = &,
H = X(ax). So there is am-tupled € H with dy = ag, each element af; equal tody, and with
H = y(d) ARy(d). By the form ofy and becauseng(d) = rng(dxy), d is packed inH[L,* so
inductively,H = y(d) A¢(d). Thus,H |= 8(a) by definition of®.

< Conversely, suppose thet |= 6(a); we requireH |= Rg(a). There is arr-tuple be H with
by=agandH |= (yAd)(b). As before, we may assume that each elemebgisfequal tdoy. By
the form ofy, bis packed irH [ L (see footnote 4), and hencehh So by theorem 2.2(2) there is

4This fails in the loosely guarded fragment, which is why we tise packed fragment with quantifier-free packing
guards.
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g € AutH with g(b) € K. Write cfor g(b). Inductively,H = y(b) A @,(5), SoH = y(Cc) ARy(C).
Writing d = 11(C), becausetis a homomorphism we hawd™ = y(d) ARy (d). By definition of
relations inM*, we haveM = ¢(d). Hence, certainlyM = 6(d), soM™ = Rg(d) by definition
of M.

There are now two cases. @fis a sentence, then eventuple is related byRg in M. In
particular,K |= Rg(1(a)). By theorem 2.2(3)K = Rg(a), and scH |= Rg(a) as required.

Assume otherwise, sois non-empty. Choosein x; for anyr-tuple w, write w for ther-tuple
given bywk = wg, andw/, = wy for everyu in yz. Note that

(x) K E=Rs(m) +> Rg(m) for anyr-tupleme K that is packed i | L.

(x) follows becausenis packed sat|rng(m) preserves the formulBg(v) <+ Rg(V), andK =
WW(Rg(V) «+» Rg(V)) becauser,V agree on the free variables @f

We knowM™ = Rg(d), and ass certainly packed i | L, we obtainK |= Rg(C). By (), K =
Ro(C). Asg € AutH and (clearly)g(@) = ¢, we haveK = Rg(a). By (*) again,K = Rg(a),
soH |~ Rg(@) as required. This proves the claim.

Take any packed-tuplea e K (for example, a tuple of equal elements). Sihte= o, we have
M = Rs(1(a)). We now obtainH = Rs(a) by theorem 2.2(3), and thus, by the claibh,= 0. We
have found a finite model af, completing the proof of the lemma. O

LEmMMA 3.8 Leto be a sentence &fF (L) with only quantifier-free guards, and suppose tbdtas a
model, say M. Thea has a finite model.

PROOF We makeM into an irreflexive structure, adjust accordingly, and apply the preceding
lemma. This will show that has a finite model.

For eachn-ary R € L and each equivalence relatieron n, with k equivalence classes, say, intro-
duce a nevk-ary relation symboR;, and define an expansid’ of M interpreting the new symbols
as follows. Let 0= ey < €1 < ---&_1 < h be representatives of tlgeclasses, each being minimal in
its e-class. We call the; the canonical representatives &of For distinct elementby, . ..,bk_ 1 € M,
definea,...,an_1 € M by g = bj iff i € g}, for eachi < n, j <k, and define

M¥ = Re(bo, .., b1) iff M |= R(@o,- -, @n1)-

For example, ifn =5 and thee-classes ar€0,2},{1,3},{4}, theneg =0,e; =1, e, =4, and if
a,b,c € M are distinct, we definé1? = Re(a,b,c) iff M = R(a,b,a,b,c).

Write M7 for the reduct oM? to the new relation symboR; (for all n-ary R e L and equivalence
relationse onn). ThenM# is irreflexive.

Write , for the set of all equivalence relations onFor each atomit-formula of the formR(x),
for n-ary R € L and anyn-tuplex= (xo, - .., Xn_1) Of variables, perhaps with repetitions, andéar %,
with canonical representatives, ..., e 1, defineR(x)® to be the following formula, with the same
free variables<:

(/\xi:xj)/\/\{Rg(xiO,...,xik 1) *io,.--,ik_1 < n, ij €g for eachl <k}.

i€j

Now defineR(X)7 = /.., R(X)®. Observe that for anf: {xo,...,Xn-1} = M, if h(x) =a (i <n),
a= (ag,...,an1), andn € %, is defined byi n j iff & = a;, thenM? |= R(a) «+» R(X)"(a). (That is,
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R(X) +» R(X)" is true inM* under assignmerfit) Also, for anye € ‘%, if M7 |= R(X)(a) then because
M7 is irreflexive,e = 1. Hence M* = VX(R(X) +> R(X)7).

For any formulad € PF(L) with quantifier-free guards, lgi” be obtained fromp by replacing
every atomic subformul®(x) of ¢ (for R € L) by R(X)* — this includes both packed subformulas
and formulas occurring in guards.

Claim. ¢7 is logically equivalent to a packed formula with quantifiere guards.

Proof of claim. This can be seen by induction ¢nWe sketch the argument. The case of atois
easy, as are the boolean cases. For formt§é@gx,y) A ¢ (X,y)), we observe that for eadRe L and
anyXx, every pair of free variables d®(x) also occur free in some conjunct of each disjuREx)® of
R(X)7. Hence, by distributing the conjunctions frgnover the disjunctions in thR(x)7#, we see that
y7(X,y) can be put in disjunctive normal forif; y; (X, y) such that each pair of distinct variables of

Xy occurs in a conjunct of eagh. So3y(y(X,y) A d(X,y))7 is equivalent toy/; Iy(yi (X, y) A d(X,y)7),
which inductively is equivalent to a packed formula with gtieer-free guards. This proves the claim.

We can now rapidly conclude the proof. Since forRJIR(x) andR(x)7# are equivalent irM*, and
M = o, we haveM” |= 7. AsM7 is irreflexive, by the claim and lemma 3.7 there is a finite niode
N = 7. Now makeN an L-structureN* by interpreting eaciR(x) asR(x)7. More formally, for
n-ary Re L, take am-tupley of distinct variables and lét* = R(@) iff N = R(y)7 (a), for anyn-tuple
ac N. Itis easily checked that i is anyn-tuple of variables, theiN! |= VX(R(X) <+ R(X)7). So
clearly,N* = . a

We can now prove theorem 3.3.

PROOF Let 0 be a sentence d¥F(L), and letM be a model ofo. For each existential conjunct
B(z) = 3va(z,v) of each guard iro, wherea(zv) is atomic with free variables just those m,
introduce a newz-ary relation symboRgz and interpret it inM in the same way aB(2): i.e., let
M = Ry () iff M = B(a), for all a€ M of length|z]. We continue to writéM for this definitional
expansion. Notice thd¥l = Xp(z, where

Xp@ = VURp(z (2 — IV(a(ZV) A T)) AV2V(a(Z,V) — Ryz(2)).

Of course,xg(z is logically equivalent to7z(Rg 3 (2) <> B(2)), but we write it in the above form to
obtain a sentence of the packed fragment with quantifier-gueards. Let’ be the result of replacing
each existential conjundd(z) of each guard of each subformula ofby Ry (2). Let ¢ be the
conjunction ofc’ and all the sentencegz, for each existential conjundi(z) of each guard iro.
Thenao” is a sentence of the packed fragment with only quantifiex-geards, ant |~ o”.

By lemma 3.8, there is a finite moddl = ¢”. For eachB as aboveN = Xg(z, SORgy3(2) is
equivalent inN to 3(z). Soitis clear thaN |~ o. O

3.4 Finite model property for the loosely guarded fragment

We can easily derive this from the finite model property far gjacked fragment.

LEMMA 3.9 Let L be a relational signature, let the L-formudabe a packing guard (definition 3.2)
with free variables precisely, and letd (v) € LGF(L). Thend A ¢ is logically equivalent t® A ¢’ for
some formula’(v) € PF(L).

PROOF By induction on¢. If ¢ is atomic, we letp’ = ¢. Assuming the result fod,, we let
(=0) = -¢' and (¢ AY)' = ¢’ AW, as usual. Thed A -0 is equivalent tad A —(dA ), which is
equivalent tddA —(0A ¢') and tod A —¢' = dA (—)’; the case of\ is similar.
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Finally let ¢(x) = 3y(y(x,y) AY(X,y)) be a loosely guarded-formula, where the free variables
of y are preciselyxy, andrng(x) C rng(v). Assume the result fap, and consided(v) A ¢(X). For
each pair of distinct variables x' from x, pick a conjuncixyx (x, X, Z) of & in which they both occur
free, and letx; (X, X') = FzXxx. Let & (X) = Axx Xzx- Thendk &°, anddA ¢ is equivalent to
SA YY) AS (X AP(XY)). NowyA & is a packing guard with free variablag, So inductively,
YA O AY(X,Y) is equivalent toyA d° A Y for somey/'(X,y) € PF(L). ThendA ¢ is equivalent to
OAJy(yA 8° AY); the second conjunct here isif (L) and its free variables are all from =~ O

PROOF OF COROLLARY3.4 It is immediate from the lemma that any sentenceGH(L) is logically
equivalent to a sentence BF(L). The corollary now follows from theorem 3.3. |

4 Applications

We end by outlining some applications of our results.

4.1 Decidable fragments of predicate temporal logic

In [14], certain decidable fragments of predicate templwgic with Until and Since (the ‘monodic’
fragments) were introduced. The idea is to restrict theipegd part of the logic to a known decidable
fragment of first-order logic (such as the loosely guardedgjinent) and restrict temporal operations
to formulas with at most one free variable. Monodic fragnseaute decidable over a wide range of
linear flows of time. Moreover, if it is decidable whether atence of the chosen first-order fragment
(roughly speaking) has a finite model, the correspondingadmntemporal logic with finite domains
is also decidable.

Since the loosely guarded fragment is decidable and hasnite rinodel property, it is decidable
whether a sentence of the loosely guarded fragment has e fiitel, and thus the loosely guarded
monodic fragment of predicate temporal logic and finite do®&s decidable.

4.2 Finite base property in algebraic logic

The *finite algebra on finite base property’ for weakly asatige algebras [17] follows easily from the
finite model property for the loosely guarded fragment. et (A,+,—,0,1,1',7,;) be afinite weakly
associative algebra. Regard each A as a binary relation symbol. Therrelativised representation
of 4 is a model of the following theory:

VXYl (X,y) <> X=Y

vxy[r (x,y) <> s(x,y) Vt(x,y)
UXy[1(x,y) = (r(x,y) <> =s(x,y))
VXY[r(x,y) < sy, X)

VXY[1(X,y) — (r(x,y) <> 3z(s(x,2) At(zy))
axy r(x,y

}

| foreachr,s;t € Awithr =s+t
| foreachr,se Awithr = —s

| foreachr,se Awithr=3$§

| foreachr,s;t € Awithr =s;t
) foreachr € Awith r #0.

Every weakly associative algebra has a relativised reptagen [17].

It is easily seen that the conjunction of the above theory lmanvritten as a loosely guarded
sentence. Thus, by corollary 3.4, any finite weakly assweialgebra has a finite relativised rep-
resentation. One may also show in much the same waytahas the finite base property: any
universal sentence true in every finite weakly associatlgelaa is true in all weakly associative
algebras. (These results were proved in [1].)
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Various related results can also be derived. For exampheilagi arguments will show that for
finite n > 3, any finite relation algebra iIRA,, has a finiten-square relativised representation, and that
if n > 4, any subalgebra of the relation algebra reduct of a fimitémensional cylindric algebra has
a finite n-flat relativised representation. For definitions of theses, see [12, 11]; these results solve
open problems stated there.

4.3 Finite model property for arrow logic in relativised int erpretation

Arrow logic is the logical counterpart of relation algebaad fits into the paradigm afynamic logic
see [23] for more information. Formulas of arrow logic candieen relativised semantics, corre-
sponding to weakly associative algebras. It is immediatmfthe finite base property foKA (above)
that any formula of arrow logic with a relativised model ha@ite relativised model.
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