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Abstract
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model property. We use a construction of Herwig. We point outsome consequences in temporal
predicate logic and algebraic logic.
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1 Introduction

Perhaps because beginning students of modal logic are oftentold that modal logic is more expressive
than first-order logic and indeed has some second-order expressive power, or perhaps because they are
hoping for something new, it can come as a surprise to them that every modal formula has a ‘standard
translation’ into first-order logic. For example,�(p!�q) is translated to9y(R(x;y)^ (P(y)!8z(R(y;z)!Q(z)))): (1)

The translation mimics the Kripke semantics for modal logic. Not every first-order formula (with
one free variable in the appropriate signature) is the translation of a modal formula; so the formulas
that are form a properfragmentof first-order logic, and one that inherits the nice properties of modal
logic, such as decidability with reasonable complexity, interpolation, and the finite model property.
The situation is similar for various multimodal, temporal,and dynamic logics — each corresponds by
standard translation to a well-behaved modal-style fragment of classical logic.

Finding ‘modal fragments’ of first-order logic is an old problem in modal correspondence theory.
One way to take it is to try to identify the first-order formulas that are equivalent to translations of
modal formulas. Van Benthem [22, 25] proved that a first-order formula is equivalent to the translation
of a modal one iff it is preserved under bisimulation. However, we cannot effectively identify these
formulas, since it is undecidable whether a first-order formula is bisimulation-invariant [23, remark
4.19]. In certain restricted situations, this difficulty disappears. For example, the expressive complete-
ness results of Kamp [16] show that over Dedekind-complete linear time,everyfirst-order formula is�Research partially supported by UK EPSRC grants GR/K54946,GR/L85978. Thanks tóAgnes Kurucz and Maarten
Marx for stimulating discussions and helpful comments on drafts of this paper.
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equivalent to the translation of a temporal formula writtenwith the binary modalities Until and Since.
In such cases, the whole of first-order logic can be viewed as amodal fragment. But the situation
here is rather special, and the lowish computational complexity of temporal logic (PSPACE-complete
over a wide range of flows of time including the natural numbers) is not matched by first-order logic
(non-elementary over the natural numbers). These problemsare to be expected if we do not explicitly
bound the complexity of proving the equivalence of a first-order formula to a modal one.

Let us focus instead on first-order formulas that are not merely equivalent to but actually are the
translations of modal formulas of various kinds. The aim here is to define syntactically fragments of
first-order logic containing the standard translations of various modal logics, and sharing their nice
properties ‘for the same reasons’. Gabbay [4] suggested that the true modal fragments of first-order
logic in this sense were the finite-variable fragments, since the standard translation of modal formulas
can always be done with a bounded number of variables (by re-using them — in (1), we could have
usedx instead ofz). This proposal is natural from the first-order viewpoint, general in that it is not
confined to special situations, and for many-dimensional modal logic it is provably correct (cf. [4,
lemma 3, p. 115]); but it suffered the objection that finite-variable fragments do not share the nice
properties that (one-dimensional) modal logic has.

A different kind of (hopefully) modal fragment of first-order logic, theguarded fragment,was put
forward by Andréka, van Benthem, and Németi [2]. Their idea was to look at quantification patterns
instead. Only relativised quantification (along the accessibility relation of the Kripke frame) is allowed
in modal formulas; so in the guarded fragment, all quantification must be relativised to some atomic
formula. Thus, ifϕ(x;y;z) is a formula of the guarded fragment, then so are9yz(R(x;y;z)^ϕ(x;y;z))
and8yz(R(x;y;z)! ϕ(x;y;z)), becausex and the quantifiedy;z are ‘guarded’ by the relation symbol
R. The plain9yzϕ(x;y;z) would not be acceptable.

The guarded fragment does have the hoped-for nice properties. Decidability, and other results
such as a Łoś–Tarski theorem, were proved in [2, 23, 24]. Complexity results are established in
[5, 18]: deciding validity for sentences of the guarded fragment, with or without equality, is complete
for double-exponential time, butn-variable fragments of the guarded fragment (for finiten� 2) are
EXPTIME-complete, and some 2-variable guarded fragments are even in PSPACE. It was proved in
[5] that the guarded fragment has the finite model property — any guarded sentence with a model
has a finite model. (For further discussion of surrounding issues, see, e.g., [3, 19, 26] as well as
the citations already given.) Because of these results and others, the guarded fragment and various
extensions of it (e.g., by fixed-point operators) have become rather popular. But the guarded fragment
also was objected to on the ground that the standard translations of some quite respectable modal-
style formulas, such as temporal formulas involving Since and Until, fall outside the fragment. (The
translation ofU(p;q) is 9y(x< y^P(y)^8z(x< z^z< y!Q(z))) (2)

— this is not in the guarded fragment because8z(x< z^ z< y! Q(z)) is not.) However, the8z is
clearly guarded to some extent in (2):zdoesn’t occur withx;y in a single atomic formula, but each pair
of variables fromx;y;z do (x andy become guarded in this way higher up the formula, byx< y). So
van Benthem [24] proposed theloosely guarded fragment,which he also calls thepairwise guarded
fragment.This fragment is our main topic here.

Roughly speaking, in the loosely guarded fragment, quantified variables must be pairwise guarded
by atomic formulas. For example, ifϕ(x;y;z) is a formula of the loosely guarded fragment then so
is 9yz(R(x;y) ^R(y;z) ^S(x;z) ^ ϕ(x;y;z)). (See definition 3.1 for details.) The loosely guarded
fragment does contain (2). It is much more powerful than the guarded fragment, but still has many
nice properties, such as decidability and reasonable complexity [2, 5, 18, 24]: identical complexity
results to those already cited for the guarded fragment holdfor the loosely guarded fragment.
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Our results In the current paper (corollary 3.4), we prove that the loosely guarded fragment has
the finite model property. In theorem 3.3, we do the same for the ‘packed fragment’, in which the
guards themselves may be existentially quantified — this fragment was defined by Marx in order to
characterise the loosely guarded fragment in terms of back-and-forth systems of partial isomorphisms
defined on packed sets [19]. Our proofs use a slight modification, rather along the lines of [9], of
part of a model-theoretic construction of Herwig [8]. The construction is effective and yields the
decidability of these fragments, but we have not tried to fine-tune it to obtain smallest possible models
or the complexity results already cited.

Our results add weight to the idea that these fragments are useful, though of course they do not
exclude the possibility that larger ‘modal’ fragments exist. As a bonus, we derive some corollaries
for predicate temporal logic, algebraic logic, and arrow logic, concerning decidability and the finite
base/model property. Some of them were already known.

In a recent technical report [10], a tableau decision prodecure for the ‘clique guarded fragment’ is
given. This fragment is related to the packed fragment referred to above. It is claimed that the finite
model property for this fragment and the loosely guarded fragment follows from the proof, though
the current version (May 19, 2000) states that there is stilla gap in one of the lemmas needed for this
corollary.

Outline of paper In section 2 we explain the modified Herwig construction, andthen in section 3
we use it to derive the finite model property for the packed fragment and (as a corollary) the loosely
guarded fragment. Some consequences in temporal, algebraic, and arrow logic are given in section 4.

NOTATION 1.1 We writeā2 A to denote that ¯a is ann-tuple of elements of the setA, for some finite
n. For a tuple ¯a = (a1; : : : ;an), we letrng(ā) denote the setfa1; : : : ;ang. We write jāj for the length
of the tuple ¯a (so ā is anjāj-tuple). If ā= (a1; : : : ;an) andb̄= (b1; : : : ;bm) are tuples, we write ¯ab̄ for
their concatenation(a1; : : : ;an;b1; : : : ;bm). We often regard an element as a 1-tuple, so thatab̄ denotes
the tuple(a;b1; : : : ;bm), for example.

All maps are treated formally (as sets of ordered pairs, so wecan write f � g, f [g, etc), and are
written on the left of their arguments —f (x) rather thanx f , so thatf g(x) and f Æg(x) denotef (g(x)).
For partial mapsp;q, compositionpÆq (or just pq) and inversep�1 (for one-onep) are defined in the
obvious way; note thatÆ is associative. We write the domain and range of a mapf asdom f; rng f
respectively. If f is a map defined onrng(ā), whereā = (a1; : : : ;an), we let f (ā) denote the tuple( f (a1); : : : ; f (an)), and ifA� dom f, we write f (A) for f f (a) : a2 Ag. (The potential ambiguity if ¯a
or A is a member ofdom f is never a problem here.)

We usually use the same notation for a structureM as for its domain. Unless otherwise stated,
when we write a formula asϕ(x̄) it is implicit that x̄ is a tuple of distinct variables containing at least
the free variables ofϕ.

2 Herwig’s construction

Herwig’s theorems [7, 8] give a way of extending a finite structure to a larger one, still finite and
inheriting some properties of the original structure, in such a way that all partial isomorphisms of the
smaller structure extend to automorphisms of the larger one. Earlier results in this direction include
[21], and in particular, those of Hrushovski [15]; the currently-used construction originated in [15]
and the techniques used by Herwig are based on it. The construction consists of a ‘type-realising’
step and a second, ‘amalgamation’ step. In the Herwig–Lascar paper [9], the amalgamation step was
absorbed into the more general context of free groups — this paper established striking equivalences
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between partial isomorphism extension results and known theorems in free groups, and proved a very
strong extension theorem.

This work was motivated by pure model-theoretic considerations. Using it to prove the finite
model property originated in joint work with several people[13, 1], and in Grädel [5] the finite model
property for the guarded fragment was proved this way. For applications in other areas, see, e.g., [6].

Here, we will only need (a modification of) the type-realising part of the construction. Our ap-
proach is based on both [8, 9] but our notation is closer to that of the latter paper. The main new
features are theorem 2.2(2) and definition 2.7. We need the following definition; the first four items
are standard in model theory.

DEFINITION 2.1 Let L be a finite relational signature (i.e., with no function or constant symbols),
andM;N beL-structures.

1. We writeM � N, and say thatM is a substructureof N and thatN is anextensionof M, if
dom(M) � dom(N), and for all n-ary R2 L and all n-tuples ā 2 M, we haveM j= R(ā) iff
N j= R(ā). An expansionof M is a structure in a larger signature got by adding interpretations
of the new symbols; no new elements are added to the domain. Areduct of M to a smaller
signature is got by forgetting the interpretations of the surplus symbols; no domain elements
are removed.

2. A partial mapp : M ! N is said to be apartial isomorphismif it is one-one, and for allR2 L,
of arity n, say, and for alln-tuplesā2 dom(p), we haveM j= R(ā) iff N j= R(p(ā)).

3. An automorphismof M is a bijective partial isomorphism fromM to M. The set of all automor-
phisms ofM is writtenAut M; it is a group under composition of maps.

4. A homomorphismfrom M to N is a total mapf : M ! N such that for alln-ary R2 L and
n-tuplesā2M, if M j= R(ā) thenN j= R( f (ā)).

5. Forn> 0, ann-tuple ā2M is said to belive (in M) if n= 1 or there is ann-ary relation symbol
R2 L with M j= R(ā).

6. A subsetA of M is said to bepacked(in M) if whenevera;b2A are distinct, there is ¯c2A which
is live in M and witha;b2 rng(c̄). A tuple ā2M is said to be packed ifrng(ā) is packed.

The dependence onM in (6) is really only a dependence on the signature ofM; we will use that a
set packed inM is packed in any expansion ofM. Every subset ofM of size at most 1 is vacuously
packed. Note that for non-binary signatures, with relationsymbols of higher arity than two, not every
subset of a packed set need be packed.

We aim to prove the following, which (we repeat) is a modification of work in [8, 9].

THEOREM 2.2 Let L be a finite relational signature and K a finite L-structure. Let r< ω. Then there
is a finite L-structure H= Hr(K), a substructureK � H, and a surjective homomorphismπ : K ! K,
with the following properties:

1. For every partial isomorphism p of K, there isbp2 Aut H such that if a2 K andπ(a) 2 dom p
thenbp(a) 2 K and pπ(a) = πbp(a). That is, pÆπ� πÆ bp.

2. If A� H and A is packed in H then there is g2 Aut H with g(A)� K.

4



3. For every prenex universal L-formulaθ(x̄) = 8ȳϕ(x̄; ȳ), whereϕ is quantifier-free and̄xȳ is a
non-repeating tuple of variables of length at most r, and every ā 2 K such thatπ� rng(ā) is
one-one and rng(ā)� A for some packed A� H, we haveK j= θ(ā)) K j= θ(π(ā)).

This will be proved in section 2.3.

PROBLEM 2.3 (MARX) For L;K as above, is there a finite L-structure H� K such that any partial
isomorphism of K extends to an automorphism of H, and any packed subset of H can be mapped by
an automorphism of H into K?

Theorem 2.2 is an approximation to this, as is one of the main results in [8], which (roughly speaking)
constructsH such that any partial isomorphism ofK extends to an automorphism ofH, any live tuple
of H can be mapped by an automorphism ofH into K, and any packed subset ofH can be mapped
by a homomorphism intoK. A positive solution to problem 2.3 would allow a simpler proof of our
results.

2.1 The construction informally

It may help to outline the proof of theorem 2.2 to be given in sections 2.2 and 2.3. Those readers not
interested may of course skip this section. Those who are arehereby warned that while we will make
every effort not to mislead, because of lack of space we will not be able to discuss every detail of the
proof, nor even to be completely accurate about the details we do discuss. Nothing said here should
be taken as contradicting the formal definitions given in theproof later on.

2.1.1 The structureK(r) and its parts

To prove the theorem, we will construct an auxiliary structure K(r) � K.� K(r) will consist of disjoint blocks orcomponents K= K0;K1; : : : ;Kr .� Part of each component is (roughly speaking) a copy ofK. K
(r)

will denote the the substructure
of K(r) whose domain is the union of these copies ofK.� We let bK(r) denote the substructure ofK(r) with domainK(r)nK; this structure will be theHr(K)
of theorem 2.2.� The part ofK

(r)
inside bK(r) will be the substructureK of theorem 2.2. The fact thatK consists

of ‘copies’ of K yields part 3 of theorem 2.2 (π projects each copy back ontoK).

See figure 1.

2.1.2 Extending partial isomorphisms ofK to K(r)
K(r) is stretchedin that no componentKi for i > 0 contains more than one element of any live tuple
of elements ofK(r), though this element can crop up several times in the tuple. (The term ‘stretched’
is from [9]. Note thatK0 has a special status.) The ‘copy’ ofK in a componentKi (i > 0) is therefore
not an exact copy, because it contains no live tuple of length> 1. We call it a ‘copy’ because ifa1;: : : ;an are elements ofK and its copies, the corresponding elements of the originalK beingb1; : : : ;
bn, then for anyn-ary R2 L, R(a1; : : : ;an) will hold in K(r) iff R(b1; : : : ;bn) holds inK andjfa1; : : : ;
ang\Kij � 1 for eachi > 0.
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K(r)z }| {bK(r) (= Hr(K))z }| {
. . .

. . . KrK2K1K

o
K
(r) (= K[K)

Figure 1: The structureK(r), componentsK;K1; : : : ;Kr and substructuresbK(r);K(r)
.

Stretchedness ofK(r) means that the only ‘definable’ relations that hold within a single component
are essentially unary. This makes it quite easy to extend anypartial isomorphismp of K to the new
components ofK(r), and even so as to form a permutation of each component extending the map
induced byp on the ‘copy’ ofK in the component. To do it, we will build the componentsK1; : : : ;Kr

by induction, ensuring that each new component has just the right number of elements of any given
isomorphism type over the existing components.

Let us discuss in more detail what this means. Suppose inductively that we have builtK(r), for
somer � 0, and extendedp to a partial isomorphismψ of K(r) such thatψ�K i is a permutation ofKi

for 1� i � r. K(r+1) will be some stretched extension ofK(r), including a new componentKr+1. Here
we discuss what properties it needs to have.

Let ψ0 be any extension ofψ such thatψ0�Kr+1 is a permutation ofKr+1. Consider what is
required forψ0 to be a partial isomorphism ofK(r+1). By stretchedness, it is sufficient (and necessary)
that for anya2Kr+1, the tuplesab̄ andψ0(a)ψ(b̄) satisfy exactly the same atomic formulas (inK(r+1)
of course), for any tuplēb2 domψ. Here and below, ‘atomic’ formulas exclude equalities.

The sett of atomic formulasα(x; b̄), for b̄ 2 domψ, satisfied bya is called thetypeof a (over
domψ), andb̄ is a tuple ofparametersof t. Abstractly, a type over a setD � K(r) is a set of atomic
formulas with parameters fromD. Now ψ ‘translates’t to the typeψ(t) = fα(x;ψ(b̄)) : α(x; b̄) 2 tg.
So what we require forψ0 to be a partial isomorphism ofK(r+1) is that for anya2 Kr+1 with type t
overdomψ, ψ0(a) has typeψ(t) overrngψ.

For anyD� K(r) and typet overD, let ED
t denote the set of elements ofKr+1 with typet overD.

Kr+1 is both the disjoint union of theEdomψ
t and the disjoint union of theErngψ

ψ(t) , as t ranges over

types overdomψ. Thenψ0 is a partial isomorphism ofK(r+1) iff ψ0�Edomψ
t is a bijection fromEdomψ

t

to Erngψ
ψ(t) for each typet over domψ. So to have any hope of extendingψ to such aψ0, we need to

constructKr+1 so thatfor any type t over domψ, Edomψ
t and Erngψ

ψ(t) have the same size.But given this,
since the ‘copy’q of p induced on the copy ofK in Kr+1 is necessarily a partial one-one map from
Edomψ

t to Erngψ
ψ(t) , we may extendq to a bijection :Edomψ

t ! Erngψ
ψ(t) . This can be done for allt, yielding

a partial isomorphism ofK(r+1) extending bothψ and the copy ofp and acting as a permutation on
Kr+1. In fact, this argument works for anyq such thatψ[q is a partial isomorphism ofK(r+1).

So we want to constructKr+1 so thatEdomψ
t and Erngψ

ψ(t) have the same cardinality,for every t
and for the extensionψ of each partial isomorphism p of K.The type overdomψ of a new element
introduced intoKr+1 is determined once and for all at the time we add it, for eachψ, and its types
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over differentdomψs interact. For example, if we add elements satisfyng precisely the formulas in
the typet, the setsEdomψ

t increase in size for allψ defined on the parameters oft. So it seems we
have a difficult problem here. The ingenious method used to solve it comes from [15, 7, 8, 9], and
constitutes the most crucial idea in the proof. We shift attention from an elementhavinga given type,
to its realisinga type.

An element realises typet if it satisfies all the formulas int. Clearly, it may satisfymoreformulas
than these. WriteRt for the set of elements ofKr+1 that realiset. Unlike ED

t , Rt depends only on
t, not on any setD. Because of this simpler situation, we can easily arrange that the numberjRt j of
elements ofKr+1 realising a given typet depends only onjtj, the number of formulas int. This can be
done as follows. We constructKr+1 starting with a fresh copy ofK. The copies of elements ofK have
the same types overK(r) as the originals. We then add further elements in stages, realising first the
largest possible types overK(r), then the next largest, and so on, down to the empty type. Eachstage
is used to ‘pad out’ the numbers of elements realising the types of the currently-considered size to be
the same. In this way we can control the interaction between types: elements added at earlier stages
may realise types considered later, but not vice versa, because the sizes of types are decreasing. So
our work in the current stage will not be destroyed in later stages. The totality of elements added in
this way (after deleting any that violate stretchedness) constitute the new componentKr+1, and these
elements plus the old ones inK(r) constitute the extensionK(r+1).

It can now be shown by induction thatjEdomψ
t j = jErngψ

ψ(t) j for all ψ; t as above, using the obvious

fact that jtj = jψ(t)j. Assume inductively thatjEdomψ
u j = jErngψ

ψ(u) j for all typesu over domψ with

u� t. The elements ofEdomψ
t are those elements ofKr+1 that (a) realiset, and (b) are not inEdomψ

u

for any u� t. Similarly, Erngψ
ψ(t) is the set of elements ofKr+1 that (a) realiseψ(t) and (b) are not in

Erngψ
ψ(u) for any u� t. By construction, the number of (a)-elements is the same on both sides, and by

the inductive hypothesis the same goes for the number of elements excluded by (b). So we obtainjEdomψ
t j= jErngψ

ψ(t) j. See lemma 2.15 for details.

2.1.3 Admissible types

We can get this far, proving part 1 of theorem 2.2, without caring whichtypes overK(r) the elements of
Kr+1 have, but onlyhow manyelements have a given type. To impose extra properties on thestructures
K(r) — in particular, to obtain part 2 of the theorem, that any packed subset ofbK(r) is mapped by an

automorphism ofbK(r) into the union ‘K
(r)

’ of the copies ofK — we need to control which types are
realised inKr+1. This is in fact quite easy to do:Kr+1 is built in stages and we have great freedom at
each stage to choose which types to realise, so long as we thenequalise the numbers of realisations as
already described.

Much of the evolution of the construction through [15, 7, 8, 9] can be viewed (at least by the
author) as refining the selection of types to realise inKr+1. We will call the types chosen to be realised
the admissibletypes. To extend partial isomorphisms as already described, it is sufficient that the
chosen notion of admissibility satisfies the following axioms (cf. lemmas 2.8–2.11):

1. the type overK(r) of any element ofK is admissible [so we can startKr+1 with a copy ofK],

2. no tuple of parameters in an admissible type violates stretchedness ofK(r+1),
3. any restriction of an admissible type to a smaller parameter set is admissible,

4. if ψ is a partial isomorphism ofK(r) inducing a permutation of each non-zero component, and
t is an admissible type overdomψ, thenψ(t) is also admissible.
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In the construction ofKr+1, we now arrange at each stage that all types of new elements over K(r)
are admissible and that the number of elements realising a given admissible typet depends only onjtj. The axioms (especially the last two) allow us to replicate the argument of section 2.1.2 and obtain
theorem 2.2(1). But they do not appear to be sufficient to prove theorem 2.2(2): we need further
restrictions on which types are realised inKr+1.

Roughly, we will define a typet overK(r) to be admissible if there is a partial isomorphismψ of
K(r) inducing a permutation of each non-zero component, defined on t, and such thatψ(t) is the type
of some element ofK (i.e.,K0). The above axioms all easily follow from this. Furthermore, assuming
that all elements ofKr+1 have admissible types overK(r) in this sense, we can show that any packed

subset ofK(r) is mapped intoK
(r)

by a partial isomorphismψ of K(r) that induces (by restriction) an
automorphism ofbK(r). This clearly implies theorem 2.2(2).

The way we show this constitutes the second most crucial ideaof the proof. Again, we assume
the property inductively forK(r) and try to prove it forK(r+1). So letA� K(r+1) be a packed set. If
A� K(r), the result is easily proved using the inductive hypothesis. So assume thatA 6� K(r). As A
is packed andK(r+1) is stretched,A\Kr+1 consists of a single element, saya. By packedness, the
definition of admissibility, and the argument of section 2.1.2, we can assume without loss of generality

thata2 K
(r+1)

. Let B� K(r) be obtained by replacinga by the corresponding element, sayb, of the
original K ( = K0). ThenB is also packed, so inductively we may take a partial isomorphism φ of K(r)
that induces by restriction a permutation of eachKi (i > 0), and satisfiesφ(B) � K

(r)
. Let p = φ�K,

and letq be the map induced byp on the copy ofK in the new componentKr+1. By construction
of Kr+1, φ[q is a partial isomorphism ofK(r+1), so by the argument of section 2.1.2, it extends to
a partial isomorphismφ0 of K(r+1) that induces a permutation onKr+1. Now a corresponds tob, so

φ0(a) = q(a) corresponds top(b). Sincep(b) 2 K, we haveφ0(a) 2 K
(r+1)

. Soφ0(A) � K
(r+1)

, as
required.

2.2 The construction formally

We adopt these conventions for the proof:

CONVENTION 2.4

1. All structures mentioned are finiteL-structures.

2. Byatomic formulawe will mean an atomicL-formula other than an equality. We writeα(x̄) for
such a formula (see notation 1.1 here).

We prove theorem 2.2 by establishing an auxiliary proposition, which also gives more information
about the structure ofHr(K). Figure 1 may help in picturing it.

PROPOSITION2.5 Let L be a finite relational signature and K a finite L-structure. For each r< ω,
there is a finite L-structure K(r) � K, whose domain is the disjoint union of ‘components’ K= K0,
K1; : : : ;Kr , and one-one mapsνi : K ! Ki for each i� r (whereν0 is the identity map on K), with
properties 1– 4 below. We use the following notation:� We writebK(r) for the substructure of K(r) with domain K(r) nK.� We writeK

(r)
for the substructure of K(r) with domain

S
i�r νi(K).� A set A of elements of K(r) is said to bestretched(in K(r)) if jA\Kij � 1 for every i with1� i� r.

A tupleā is stretched if rng(ā) is stretched. (This notion occurs in about the same form in [9].)
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1. Any live tuple of K(r) is stretched.

2. For each i� r, each atomic formulaα(x; ȳ), and each a2 K, b̄2S j<i K j , we have

K(r) j= α(a; b̄)$ α(νi(a); b̄):
3. For every partial isomorphism p of K and each i with1� i � r, there is a permutation pi of Ki

such that:� pi Æνi extendsνi Æ p. That is, pi(νi(a)) = νi(p(a)) for all a 2 dom(p).� The map p[S1�i�r pi is a partial isomorphism of K(r).
4. If A� K(r) is packed (in K(r)) then there is a partial isomorphismψ of K(r) such thatψ�Ki is a

permutation of Ki for all i with 1� i � r, and satisfyingψ(A)� K
(r)

.

PROOF The proof will occupy most of this section. For the duration,we fix L;K as in the formulation
of the proposition. The proof is by induction onr. Forr = 0, we may letK(0) = K; for condition 4 we
takeψ to be the identity map onK. Assume inductively thatK(r);ν0; : : : ;νr have been constructed, sat-
isfying the conditions of the proposition. We will obtainK(r+1) from K(r) by adding a new component
Kr+1 disjoint fromK(r). To do this, we will usetypes.

2.2.1 Types

DEFINITION 2.6

1. A type over K(r), or for short,type,is a sett of atomic formulas with one free variable, always
x, and parameters inK(r): i.e., formulas of the formα(x; c̄), whereα(x; ȳ) is atomic (not an
equality — see convention 2.4) in whichx occurs free, and ¯c2 K(r).

2. For a typet, jtj denotes the cardinality of (i.e., number of formulas in)t, andbase tdenotes the
set of all elements ofK that genuinely occur in formulas int — sobase t= fa2K : α(x;a; b̄)2 t
for someb̄2 K(r) and atomicα(x;y; z̄) in which x;y occur freeg.

3. If t is a type andD� K, we writet�D for fα(x; ā) 2 t : ā2 bK(r)[Dg.
4. LetM � K(r) anda2M.

(a) If t is a type,a is said torealise t if M j= α(a; c̄) for all α(x; c̄) 2 t.

(b) If D� K, we writetp(a=D) for the setfα(x; c̄) : α(x; ȳ) atomic withx among its free variables, ¯c2 bK(r)[D; M j= α(a; c̄)g:
The definition ofbasereflects our interest in parameters fromK; use of parameters frombK(r) in
types is unrestricted and the reader should always bear in mind that formulas in a type can have
parameters that are not in the base of the type. It is criticalto note thata realisingt does not imply that
tp(a=base t) = t, but onlytp(a=base t)� t. Also, base(tp(a=D)) � D, but we may not have equality.
These and other simple facts about bases, such astp(a=D) = tp(a=base(tp(a=D))) for any a 2 K,
D� K, will be used without mention later on.

Strictly, the definitions in (4) depend onM, so we should say thata realisest in M, and write
tpM(a=D). But formulas in types are atomic, soa realisest in M iff a realisest in M0, for anyM0 �M,
and similarly fortp(a=D). Consequently, the dependence never makes a difference in practice, and
therefore we refrain from overloading the notation.
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2.2.2 Admissible types

There is a lot of freedom in the construction to choose the kinds of type we wish to realise. We will
choose the ‘admissible’ types.

DEFINITION 2.7

1. We writeΨ(r) for the set of all partial isomorphismsψ of K(r) such thatψ�K i is a permutation
of Ki for all 1� i � r.

2. If ψ2Ψ(r) andt is a type withbase t� domψ, we writeψ(t) for the typefα(x;ψ(ā)) : α(x; ā)2
tg. A conjugateof t is any type of the formψ(t) for ψ 2Ψ(r) with base t� domψ.

3. A typet is said to beadmissibleif it is a conjugate oftp(a=D) for somea2 K andD� K.

So if t is admissible thent = ψ(tp(a=D)) for someψ;a;D as above; sobase(tp(a=D))� domψ, butD
may be larger thanbase(tp(a=D)) and we may not haveD� domψ. The only properties of admissible
types needed to extend partial isomorphisms are encapsulated in the following simple lemmas.

LEMMA 2.8 Any conjugate of an admissible type is admissible.

PROOF SinceΨ(r) contains the identity map onK(r) and is closed under inverse and composition,
conjugacy is an equivalence relation on types. The lemma follows immediately from this. �
LEMMA 2.9 If a 2 K then tp(a=K) is admissible.

PROOF Trivial. �
LEMMA 2.10 If t is an admissible type,α(x; ȳ) is an atomic formula in which all variables of x̄y
occur, andα(x; c̄) 2 t, thenc̄ is stretched in K(r).
PROOF Let t;α; c̄ be as stated. Ast is admissible, there area 2 K, D � K, and ψ 2 Ψ(r) with
base(tp(a=D)) � domψ andψ(tp(a=D)) = t. Soα(x;ψ�1(c̄)) 2 tp(a=D) andK(r) j= α(a;ψ�1(c̄)).
Sorng(aψ�1(c̄)) = rng(b̄) for some live tuplēb2 K(r). Inductively, by proposition 2.5(1) forK(r), b̄,
and henceaψ�1(c̄), ψ�1(c̄), andc̄, are stretched inK(r). �
LEMMA 2.11 Let t be any admissible type. Then t�D is admissible for every D� K.

PROOF We havet = ψ(tp(a=E)) for somea 2 K, E � K and ψ 2 Ψ(r) with base(tp(a=E)) �
domψ. Let D0 = ψ�1(D\ rngψ). Thenbase t� rngψ, so clearly,t�D = t�(D\ rngψ) = t�ψ(D0) =
ψ(tp(a=E)�D0) = ψ(tp(a=E\D0)). This is of the required form, and sot�D is admissible. �
2.2.3 Building the structure K(r+1)
We are going to start the construction ofK(r+1) now, by building its new componentKr+1. This
component will itself be built by an inductive construction: we build a chain of setsS0 � S1 � �� � �
Sl = Kr+1, and a chain of structuresK(r) � K(r+1)

0 � K(r+1)
1 � �� � � K(r+1)

l = K(r+1), wherel is the
largest cardinality of any admissible type. See figure 2.
We will also define a bijectionνr+1 : K ! S0. The structuresK(r+1)

j (for each j = 0;1; : : : ; l ) will have
the following properties:
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. . .

. . . KrK2K1K

...

Kr+1

...

S0

S1

S2

...

Sl

Figure 2: The new componentKr+1 of K(r+1)
(i) The domain ofK(r+1)

j is the disjoint union ofK(r) and Sj . The components ofK(r+1)
j are

K;K1; : : : ;Kr , andSj . (So inK(r+1)
j , the notion of stretched tuple makes sense.)

(ii) Any live tuple in K(r+1)
j is stretched.

(iii) For any atomic formulaα(x; ȳ), a2K, andb̄2K(r), we haveK(r+1)
j j= α(a; b̄)$α(νr+1(a); b̄):

(iv) For any admissible typet with jtj > l � j, the number of elements ofSj that realiset in K(r+1)
j

depends only onjtj.
(v) tp(a=K) is admissible for everya2 Sj .

Below, we will refer to these as ‘property (i)’, etc.
S0 is obtained simply by taking a new copy ofK, disjoint fromK(r). Formally, we may letS0 =

K�fK(r)g. Thus,K(r+1)
0 has domainK(r)[S0, for i � r, its ith component is defined to be the same

as that ofK(r), and its(r +1)th component is defined to beS0. We let νr+1 : K ! S0 be given by
νr+1(a) = (a;K(r)), for a2 K.

We defineK(r+1)
0 as anL-structure as follows. Letµ : K(r+1)

0 ! K(r) be the map that is the identity

on K(r) and isν�1
r+1 onS0. Then ifR2 L is n-ary and ¯a2 K(r+1)

0 is ann-tuple, we define

K(r+1)
0 j= R(ā) iff ā is stretched inK(r+1)

0 andK(r) j= R(µ(ā)): (3)

Note thatµ is a homomorphism.

LEMMA 2.12 K(r+1)
0 � K(r), and K(r+1)

0 satisfies properties (i)–(v) above.

PROOF By the definition ofK(r+1)
0 ((3) above),K(r+1)

0 �K(r). Clearly,K(r+1)
0 has componentsK;K1;: : : ;Kr ;S0 and all live tuples in it are stretched.

We check property (iii). Takeα(x; ȳ);a; b̄ as in property (iii); we may assume that all variables

in xȳ occur in α. ThenK(r+1)
j j= α(a; b̄) iff ab̄ is stretched andK(r)

j j= α(a; b̄) [by (3), noting as
in lemma 2.10 that the change fromR to α does not affect stretchedness], iffνr+1(a)b̄ is stretched

andK(r)
j j= α(µ(νr+1(a)); b̄) [by definition of ‘stretched’ and becauseµ(νr+1(a)) = a], iff K(r+1)

j j=
α(νr+1(a); b̄) [by (3)], as required.

Property (iv) holds vacuously since there is no admissible typet with jtj> l . To check property (v),
let a2S0 and lett = tp(a=K). By property (iii),tp(µ(a)=K) = t. By lemma 2.9,t is admissible. �
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Assume now thatj < l and thatK(r+1)
j is defined. We will constructK(r+1)

j+1 along the lines of

section 2.1.2, which the reader may wish to review. Rememberthat types have parameters inK(r).
First, a definition. IfM � K(r) and t is an admissible type, we writeM + t for the L-structure

extendingM obtained by adding toM a single new pointb, say, and definingM + t j= α(b; c̄) iff
α(x; c̄) 2 t, for all atomic formulasα(x; ȳ) and allc̄2M. Of course, as the parameters oft are inK(r),
M + t j= α(b; c̄) implies c̄2 K(r). M + t is unique up to isomorphism. For typest1; : : : ; tn, we define
M+ t1+ � � �+ tn to be(� � � ((M + t1)+ t2)+ � � �)+ tn.

Let the admissible types of cardinalityl � j be t0; : : : ; ts�1, say, enumerated without repetitions.
Let

mi = jfa2 Sj : a realisesti in K(r+1)
j gj; for eachi < s;

m = maxfmi : i < sg;
K(r+1)

j+1 = K(r+1)
j + t0+ t0+ � � �+ t0| {z }

m�m0 times

+ � � �+ ts�1+ ts�1+ � � �+ ts�1| {z }
m�ms�1 times

;
and defineSj+1 to consist ofSj plus all the new points ofK(r+1)

j+1 nK(r+1)
j . SoSj+1 = K(r+1)

j+1 nK(r).
Define the components ofK(r+1)

j+1 to beK0; : : : ;Kr ;Sj+1.

LEMMA 2.13 K(r+1)
j+1 � K(r+1)

j , and K(r+1)
j+1 satisfies properties (i)–(v).

PROOF Clearly, K(r+1)
j+1 � K(r+1)

j . Property (i) holds forK(r+1)
j+1 by construction. For property (ii),

assuming inductively that the property holds forK(r+1)
j , we need only show that if ¯a is live in K(r+1)

j+1

and rng(ā) 6� K(r+1)
j then ā is stretched. We assume for notational simplicity that ¯a = bc̄ where

b2 Sj+1nSj andc̄2 K(r+1)
j+1 , and thatK(r+1)

j+1 j= α(b; c̄) for some atomicα(x; ȳ) in which all variables

in xȳ occur free. But then by definition ofK(r+1)
j+1 , α(x; c̄) 2 ti for somei < s. As ti is admissible,

lemma 2.10 yields that ¯c is stretched inK(r). As b2 Sj+1, bc̄ is clearly stretched inK(r+1)
j+1 .

Property (iii) is immediate, because it holds for the substructureK(r+1)
0 of K(r+1)

j+1 .
We now check property (iv). First, note that ifi; i0 < s and i 6= i0 then jti j = jti0 j, ti 6= ti0 , so that

ti0 6� ti. Because by construction the elements ofSj+1nSj realise exactly the formulas in someti , and
no more, each of them realises exactly one typeti (for somei < s). So, any point ofSj+1 realisingti is

in fact inK(r+1)
j + ti + ti + � � �+ ti (in the obvious sense). There aremi such points inSj , and we added

m�mi more toSj+1. So the number of realisations ofti in Sj+1, for any i < s, is exactlym.
We must check that we have not destroyed the inductive hypothesis (for larger types than theti)

by adding the new points. For any admissible typeu with juj > l � j, we haveu 6� ti for any i < s.
Because the points ofSj+1nSj satisfy only the formulas of some uniqueti , none of them realiseu. So

all realisations ofu in Sj+1 are in fact inSj . By property (iv) forK(r+1)
j , the number of them depends

only on juj. Thus, property (iv) holds for all admissible types of size> l � ( j +1).
Property (v) is easily seen. Inductively, it holds for alla2 Sj . Let a2 Sj+1 nSj , and suppose that

a realises typeti for (unique)i < s. Thentp(a=K) = ti, which is admissible. �
We now defineK(r+1) = K(r+1)

l andKr+1 = Sl . As K(r+1) � K(r), the inductive hypothesis and
properties (i)–(iii) above imply that the first two conditions of proposition 2.5 hold and that the com-
ponents ofK(r+1) are as demanded.
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2.2.4 Defining permutations ofKr+1

Here, we show how to take any extension of a mapψ in Ψ(r) to a partial isomorphism ofK(r+1), and
extend it to an element ofΨ(r+1). (Here, as forr, Ψ(r+1) is the set of all partial isomorphismsψ0 of
K(r+1) such thatψ0�Ki is a permutation ofKi for eachi with 1� i � r +1.) The crucial observation
needed to do it is property (iv) of the construction ofKr+1 — that inK(r+1), the number of realisations
of any admissible type depends only on the cardinality of thetype. This extension result will be used
in section 2.2.5 to establish conditions 3 and 4 of proposition 2.5.

Fix ψ 2Ψ(r), and define:

D = K\domψ;
D0 = ψ(D);
A = ft : t an admissible type withbase t� Dg;

and fort 2A , Et = fa2 Kr+1 : tp(a=D) = tg;
and E0

t = fa2 Kr+1 : tp(a=D0) = ψ(t)g:
Et is the set of elements ofKr+1 whose type overD is Exactly t. TheEt (t 2A) are pairwise disjoint, as
are theE0

t . By property (v) of the construction ofK(r+1), and lemma 2.11,Kr+1 =St2A Et =St2A E0
t .

LEMMA 2.14 Let q be a 1–1 partial map: Kr+1 ! Kr+1. Then in the notation above, the following
are equivalent:

1. ψ[q is a partial isomorphism of K(r+1).
2. Wheneverα(x; ȳ) is atomic, x occurs free inα, a2 dom q, and̄c2 dom(ψ), we have

K(r+1) j= α(a; c̄)$ α(q(a);ψ(c̄)):
3. ψ(tp(a=D)) = tp(q(a)=D0) for any a2 dom q.

4. For any t2 A , q�Et is a 1–1 partial map from Et to E0t .
PROOF As ψ is a partial isomorphism ofK(r), K(r)�K(r+1), and all live tuples inK(r+1) are stretched,
it is clear thatψ[q is a partial isomorphism ofK(r+1) iff condition 2 holds.

Now let α;a; c̄ be as in (2). ThenK(r+1) j= α(a; c̄) iff α(x; c̄) 2 tp(a=D), since ¯c 2 dom(ψ) =
D[ bK(r). Similarly, K(r+1) j= α(q(a);ψ(c̄)) iff α(x;ψ(c̄)) 2 tp(q(a)=D0). We conclude that (2) holds
iff α(x; c̄) 2 tp(a=D) () α(x;ψ(c̄)) 2 tp(q(a)=D0) for all a;α; c̄ as above. But this just says that
ψ(tp(a=D)) = tp(q(a)=D0) for all a2 dom q. Hence, (2) and (3) are equivalent.

For (3) ) (4), if t 2 A and a 2 Et \ dom q then tp(a=D) = t, and assuming (3), we obtain
tp(q(a)=D0) = ψ(t), soq(a) 2 E0

t . Thus, (4) holds. For the converse, assume (4) and leta 2 dom q.
As Kr+1 = St2A Et , a 2 Et for some (unique)t 2 A , so thattp(a=D) = t. By (4), q(a) 2 E0

t so
tp(q(a)=D0) = ψ(t), giving (3). �

The following originated in [7] and is the heart of the matter.

LEMMA 2.15 Let t2 A . ThenjEt j= jE0
t j.

PROOF For t 2 A let

Rt = fa2 Kr+1 : a realisest in K(r+1)g;
R0t = fa2 Kr+1 : a realisesψ(t) in K(r+1)g:
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If a 2 Kr+1, thena 2 Rt iff tp(a=D) � t, and becausetp(a=D) is by property (v) and lemma 2.11
admissible, this is iffa2 Eu for someu2 A with u� t. Similarly, a2 R0t iff a2 E0

u for someu2 A
with u� t. We obtain

Rt = [
t�u2AEu and R0t = [

t�u2AE0
u; for all t 2 A :

AsA is finite, (A ;�) is well-founded; we now proceed by induction on it. Lett 2 A , and assume
inductively thatjEuj= jE0

uj for anyu2 A with u� t. We show thatjEt j= jE0
t j. As theEu for varying

u2A are pairwise disjoint, and similarly for theE0
u, we have

Et = Rt n [
t�u2AEu; and E0

t = R0t n [
t�u2AE0

u:
Obviously,jtj= jψ(t)j, andψ(t) is admissible (by lemma 2.8). So by construction ofK(r+1), we havejRt j= jR0t j. With the inductive hypothesis, this gives:jEt j = jRt j� ∑

t�u2A jEuj = jR0t j� ∑
t�u2A jE0

uj = jE0
t j:

This completes the induction and the proof. �
We now obtain:

PROPOSITION2.16 Let q be a 1–1 partial map: Kr+1!Kr+1 such thatψ[q is a partial isomorphism
of K(r+1). Thenψ[q extends to a partial isomorphism inΨ(r+1).
PROOF We know that theEt are pairwise disjoint, as are theE0

t . For any typet 2 A , lemma 2.15
shows thatjEt j = jE0

t j, and by lemma 2.14,q�Et is a partial 1–1 map :Et ! E0
t . So for eacht, we

may extendq�Et to a bijection :Et ! E0
t . We let q+ be the union of all these extensions. Since

Kr+1 = SfEt : t 2 Ag = SfE0
t : t 2 Ag, q+ is a well-defined permutation ofKr+1. By lemma 2.14,

ψ[q+ is a partial isomorphism ofK(r+1), and soψ[q+ 2Ψ(r+1). �
This has a corollary:

COROLLARY 2.17 Any ψ 2 Ψ(r) extends toψ0 2 Ψ(r+1) such thatνr+1ψ0(a) = ψ0νr+1(a) for all
a2 K \domψ (that is,νr+1Æψ0 � ψ0 Æνr+1).

PROOF Let ψ be as in the formulation of the corollary. Define a partial one-one mapq : Kr+1!Kr+1

by
q= νr+1ψν�1

r+1:
By proposition 2.16, we need only show thatψ[q is a partial isomorphism ofK(r+1). For this, it
suffices by lemma 2.14 to prove that for any atomicα(x; ȳ) in which x is free, and anya2 dom qand
c̄2 domψ,

K(r+1) j= α(a; c̄)$ α(q(a);ψ(c̄)):
Well, takea0 2K with νr+1(a0) = a. Note thata0 2 domψ. ThenK(r+1) j= α(a; c̄) iff K(r+1) j= α(a0; c̄)
(by property (iii)), iff K(r+1) j= α(ψ(a0);ψ(c̄)) (asψ is a partial isomorphism ofK(r+1)), iff K(r+1) j=
α(νr+1ψ(a0);ψ(c̄)) (by property (iii) again), iffK(r+1) j= α(q(a);ψ(c̄)) (by definition ofq). �
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2.2.5 Proving conditions 3 and 4 of proposition 2.5

We now obtain condition 3 of proposition 2.5 forK(r+1) by taking ψ in corollary 2.17 to bep[S
1�i�r pi , for any partial isomorphismp of K, wherep1; : : : ; pr are given inductively. Lettingψ0 be

as in the corollary, we may letpr+1 = ψ0�Kr+1.
We also obtain the last condition (condition 4) of the proposition, in the manner sketched in

section 2.1.3. LetA�K(r+1) be packed. We must findψ2Ψ(r+1) with A� domψ andψ(A)�K
(r+1)

.

If A� K(r), then by condition 4 forK(r), there isψ 2 Ψ(r) with A� domψ andψ(A) � K
(r)

; by

corollary 2.17,ψ extends toψ0 2Ψ(r+1), and clearly,ψ0(A)� K
(r+1)

. We are done.
So assume thatA\Kr+1 6= /0. As A is packed and live tuples inK(r+1) are stretched, we have

A\Kr+1 = fag for somea. Let

t = tp(a=K); and D = base t:
By property (v), t is admissible, so there areb 2 K, E � K, and ψ 2 Ψ(r) with D � domψ and
tp(b=E) =ψ(t). By restrictingψ andE, we may assume thatK\domψ=D andE =base(tp(b=E)) =
ψ(D). By property (iii), we havetp(νr+1(b)=E) = ψ(t), too. Letq be the partial map :Kr+1 ! Kr+1

defined only ona and withq(a) = νr+1(b). SinceK\domψ = D, lemma 2.14(3) applies, telling that
ψ[q is a partial isomorphism ofK(r+1). By proposition 2.16,ψ[q extends toψ0 2 Ψ(r+1) (which
may not commute withνr+1).

Now A\K � D. To see this, letd 2 A\K. As A is packed, there is atomicα(x;y; z̄) in which x;y
occur, and̄b2 A\K(r), with K(r+1) j= α(a;d; b̄). Thenα(x;d; b̄) 2 t andd 2 base t= D, as required.
Hence,Anfag � domψ, and we may define

B= ψ(Anfag)[fbg � K(r):
Then by property (iii), the mapµψ0�A : A ! B preserves allL-relations, soB is packed. So by

proposition 2.5(4) forK(r), there isφ 2 Ψ(r) with B� domφ andφ(B) � K
(r)

. By corollary 2.17,φ
extends toφ0 2Ψ(r+1) such thatνr+1Æφ0 � φ0 Æνr+1.

Now we haveφ0ψ0 2 Ψ(r+1), A� dom(φ0ψ0), andφ0ψ0(A) � K
(r+1)

. The first statement is clear.
For the others, we consider elements ofA in turn. First considera. We haveφ0ψ0(a) = φ0νr+1(b).
Becauseb 2 domφ, we haveνr+1φ0(b) = φ0νr+1(b) by choice ofφ0. Hence,φ0ψ0(a) = νr+1φ0(b) 2
K
(r+1)

. For c 2 An fag, we haveφ0ψ0(c) 2 φ0(B) � K
(r) � K

(r+1)
. This completes the proof of

condition 4 of proposition 2.5 forK(r+1).
We have now finished the induction onr and proved proposition 2.5. �

2.3 Proof of theorem 2.2

PROOF Let K;L; r be as in the formulation of the theorem. We assumer > 0, setH = Hr(K) def= bK(r)
as in proposition 2.5, letK be the substructure ofH with domainK

(r)\ bK(r), and letπ def= S1�i�r ν�1
i :

K ! K. Thenπ is obviously surjective. To check that it is a homomorphism,we will show a little
more: that (†) if ā2 K is stretched thenK(r) j= α(ā)$ α(π(ā)) for all atomicα(x̄).
We may assume that ¯a= (a0; : : : ;an�1) with a j 2Ki j for eachj < n, where 0< i0 < i1 < � � �< in�1� r.
Then for eachj < n, we haveνi j π(a j) = a j anda0; : : : ;a j�1;π(a j+1); : : : ;π(an�1) 2 Sl<i j

Kl , so by

15



proposition 2.5(2) we obtain

K(r) j= α(a0; : : : ;an�1)$ α(a0; : : : ;an�2;π(an�1));
K(r) j= α(a0; : : : ;an�2;π(an�1))$ α(a0; : : : ;an�3;π(an�2);π(an�1));

...
K(r) j= α(a0;π(a1); : : : ; ;π(an�1))$ α(π(a0); : : : ;π(an�1));

proving(†). Now, if R2 L andK j=R(ā) thenK(r) j=R(ā); by proposition 2.5(1), ¯a must be stretched,
so by(†), K(r) j= R(π(ā)). As K � K(r), we getK j= R(π(ā)), and henceπ is a homomorphism.

We check the other requirements of the theorem.

1. If p is a partial isomorphism ofK, let bp= p1[ : : :[ pr as in proposition 2.5(3). Thenbp2AutH.
Let a2 K with π(a) 2 dom p. We requirepπ(a) = πbp(a). Say,a2 Ki (somei, 1� i � r). Then
by the proposition again,νi pπ(a) = bpνi(π(a)) = bp(a). Sinceνi is one-one,pπ(a) = ν�1

i bp(a) =
πbp(a).

2. This is immediate from proposition 2.5(4).

3. Take a universal formulaθ(x̄) = 8ȳϕ(x̄; ȳ), whereϕ is quantifier-free, ¯xȳ is non-repeating,jx̄j=
n, jȳj = m, say, andn+m� r. Takeā= (a0; : : : ;an�1) 2 K with rng(ā) contained in a packed
subset ofbK(r) and such thatπ� rng(ā) is one-one, and withK j= θ(ā). Write b̄ for π(ā), so
bi = π(ai) for i < n. We showK j= θ(b̄).
Let c̄= (c0; : : : ;cm�1) 2 K be anym-tuple; we requireK j= ϕ(b̄; c̄). Choose 1� l0; : : : ; lm�1 � r
satisfying, for alli; j < m andk< n:� if ci = bk thenak 2 Kli ,� if ci =2 rng(b̄) thenKli \ rng(ā) = /0,� if ci = c j thenl i = l j ,� if ci 6= c j andci ;c j =2 rng(b̄) thenl i 6= l j .

This is possible sinceπ� rng(ā) is one-one andn+m� r. Letdi = νli (ci) for i <m, andd̄= (d0;: : : ;dm�1).
Claim. The mapπ� rng(ād̄) preserves all quantifier-free formulas.

Proof of claim. Becauseπ is one-one onrng(ā), by choice of thel i it is one-one onrng(ād̄)
too, so preserves all equalities and inequalities. Further, because ¯a is contained in a packed
subset ofbK(r), it is stretched inK(r); by choice of thel i , it follows thatād̄ is also stretched. By(†) above,π� rng(ād̄) preserves all atomic relations in both directions. This proves the claim.

But K j= θ(ā), so K j= ϕ(ā; d̄). Sinceϕ is quantifier-free, and by definitionπ(ād̄) = b̄c̄, the
claim givesK j= ϕ(b̄; c̄), as required.

This completes the proof of theorem 2.2. �
3 Loosely guarded and packed fragments

Here we apply the combinatorics of section 2, together with some simple, tedious syntactic manipula-
tions, to prove the finite model property for the loosely guarded and packed fragments. Convention 2.4
is no longer in force, so that ‘atomic’ formulas may be equalities; but notationsϕ(x̄) still indicate by
default that ¯x is non-repeating and contains the free variables ofϕ.
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3.1 The loosely guarded and packed fragments

We begin by recalling the definition of the loosely guarded fragment.

DEFINITION 3.1 (VAN BENTHEM, [24, p. 9]) Let L be a signature without function symbols. The
loosely guarded fragmentLGF(L) over L consists of (just) the following kinds ofL-formula:� Any atomicL-formula is inLGF(L).� LGF(L) is closed under Boolean combinations.� If

– γ (the ‘guard’) is a conjunction of atomicL-formulas,1

– ϕ 2 LGF(L),
– every free variable ofϕ is free inγ,
– ȳ is a tuple of free variables ofγ,
– if x is a free variable ofγ, y is a variable fromȳ, andx 6= y,2 then there is a conjunct ofγ in

which x;y both occur,

then9ȳ(γ^ϕ) 2 LGF(L).
Note thatγ may have more free variables thanϕ, and more than two variables may be ‘guarded’ by
a single conjunct ofγ. The reader may check that the standard translation ofU(p;q) (formula (2) of
section 1) is loosely guarded.

We will also prove the finite model property for the ‘packed fragment’.

DEFINITION 3.2 (MARX , [19]) Let L be a signature without function symbols. AnL-formula γ is
said to be apacking guardif γ is a conjunction of atomic and existentially-quantified atomic formulas
such that for any distinct free variablesx;y of γ, there is a conjunct ofγ in which x;y both occur free.

The packed fragmentPF(L) consists of (just) the following formulas:� Any atomicL-formula is inPF(L).� PF(L) is closed under boolean combinations.� If the L-formulaγ is a packing guard,ϕ 2 PF(L), every free variable ofϕ is free inγ, andȳ is a
tuple of free variables ofγ, then9ȳ(γ^ϕ) 2 PF(L).3LGF(L) is not a subfragment ofPF(L) because guardsγ of PF(L) must bindeverypair of free

variables ofϕ. For example, the standard translation ofU(p;q) (formula (2) of section 1) is loosely
guarded but not packed. However, as we will see in lemma 3.9, every LGF(L)-sentence is equivalent
to a sentence ofPF(L). An example, due to Marx, of a packed sentence which is not equivalent to a
loosely guarded sentence is9xyz(9wR(x;y;w)^9wR(x;z;w)^9wR(z;y;w)^:R(x;y;z)).

Note that ifγ is a quantifier-free packing guard with free variables preciselyx0; : : : ;xn�1, M is an
L-structure,a0; : : : ;an�1 2M, andM j= γ(a0; : : : ;an�1), thenfa0; : : : ;an�1g is packed inM.

1The original definition [24] did not allow equalities in guards, but their presence does not affect the expressive power
or the finite model property so we include them.

2[5, definition 2.2] omits the restrictionx 6= y; this does not reduce the expressive power if equalities areallowed as
conjuncts ofγ.

3[19] requires thatγ andϕ have exactly the same free variables. We do not need this restriction, but adding it does not
reduce the expressive power since we may add conjunctsx= x to ϕ until its free variables are the same asγ’s. Also, [19]
does not allow existentially-quantified equalities in guards, and not all variables in ¯y need be free inγ; it is plain that these
differences do not change the expressive power either.
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Packed subformulas It is convenient to introduce the notion ofpacked subformulaof a formula
ϕ 2 PF(L). This is done by induction on the construction ofϕ. If ϕ is atomic thenϕ is a packed
subformula of itself. The packed subformulas of a boolean combinationϕ of formulas inPF(L) areϕ
and the packed subformulas of the combinants. And ifϕ 2 PF(L) andγ is a packing guard, then the
packed subformulas of9ȳ(γ^ϕ) are itself and those ofϕ.

3.2 Finite model property

In section 3.3 we will prove:

THEOREM 3.3 For any relational signature L, the packed fragmentPF(L) has the finite model prop-
erty.

This easily gives the following, which will be proved in section 3.4:

COROLLARY 3.4 For any relational signature L, the loosely guarded fragment LGF(L) has the finite
model property.

REMARK 3.5 It is not hard to see that we can add constants toL and keep the finite model property
for PF(L) andLGF(L). (Note that guards need not guard constants, so, e.g.,8x(x = x! R(c;x))
is a loosely guarded sentence.) However, the loosely guarded fragment in signatures with function
symbols is undecidable (this follows from results in [20]) and therefore does not have the finite model
property.

3.3 Proof of the finite model property for the packed fragment

To prove theorem 3.3, it clearly suffices to show that for anyfinite relational signatureL, any sentence
of PF(L) with a model has a finite model. Fix such anL. The proof proceeds in two stages: first, for
sentences with only quantifier-free packing guards, and then for arbitrary sentences. The first stage is
done in two lemmas: first, assuming that the sentence has an irreflexive model, and then the general
case.

DEFINITION 3.6 An L-structureM is said to beirreflexive if wheneverR2 L, a1; : : : ;an 2 M, and
M j= R(a1; : : : ;an), thena1; : : : ;an are distinct.

LEMMA 3.7 Suppose thatσ 2 PF(L), all guards inσ are quantifier-free, andσ has an irreflexive
model M. Thenσ has a finite model.

PROOF Assume the hypotheses. Letσ be written with variablesv0; : : : ;vr�1 only, where 0< r < ω,
and writev̄ for (v0; : : : ;vr�1). For any formulaϕ written with variables ¯v, and anyr-tuple ā2M, we
will write M j= ϕ(ā) to mean thatϕ is true inM whenvi is assigned toai for eachi < r.

Introduce a newr-ary relation symbolRϕ for each packed subformulaϕ of σ, and define an
expansionM+ of M by interpreting eachRϕ equivalently inM to ϕ:

M+ j= Rϕ(a0; : : : ;ar�1) () M j= ϕ(a0; : : : ;ar�1);
for anya0; : : : ;ar�12M. Of course, if somevi is not free inϕ then we can changeai without changing
the truth ofϕ or Rϕ; and if ϕ is a sentence thenRϕ will hold for all r-tuples inM, or for none.M+ is
in general not irreflexive. Take a finite substructureK �M+ containing an isomorphic copy of every
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substructureA�M+ with jAj � 2r. Let H = Hr(K), K, andπ be as in theorem 2.2.K;K;H are finite
structures in the expanded language. We will show thatH j= σ.

Claim. For every packed subformulaϕ of σ and anyr-tuple ā2H that is packed in theL-reductH�L
of H, we haveH j= Rϕ(ā)$ ϕ(ā).
Proof of claim. First note that because ¯a is packed inH�L and hence inH, by theorem 2.2(2) there
is g2 Aut H with g(ā) 2 K. Since automorphisms preserve all first-order formulas, wemay assume
that ā2 K. Next, note that becauseM is irreflexive andπ is a homomorphism, if ¯a2 K is packed in
H�L thenπ� rng(ā) is one-one. So by theorem 2.2(3),π� rng(ā) preserves forwards all ‘small’ prenex
universal formulas, and all quantifier-free formulas.

We prove the claim by induction onϕ. For atomicϕ it is clear, sinceK j= ϕ(π(ā))$ Rϕ(π(ā))
andπ� rng(ā) preserves quantifier-free formulas. For conjunction, inductively assume the claim for
θ;ϕ, and letā2 K be packed inH�L. Then inductively,H j= (θ^ϕ)(ā) iff H j= Rθ(ā)^Rϕ(ā). Since
π� rng(ā) preserves quantifier-free formulas, this is iffM+ j= Rθ(π(ā))^Rϕ(π(ā)). By definition
of M+ this is iff M j= (θ^ ϕ)(π(ā)), iff M+ j= Rθ^ϕ(π(ā)). Again using preservation, this is iff
H j= Rθ^ϕ(ā), as required. Negation is handled similarly.

Now consider the caseθ(x̄) = 9ȳ(γ(x̄; ȳ)^ϕ(x̄; ȳ)), whereϕ2PF(L), γ is a quantifier-free packing
guard, ¯x; x̄ȳ are non-repeating tuples of variables from ¯v enumerating the free variables ofθ;γ respec-
tively, andȳ is non-empty. Let ¯z enumerate the variables of ¯v that are not in ¯xȳ, if any, and lety be
any variable in ¯y. We will use the following notation: if ¯w = (vi0; : : : ;vik�1) is a tuple of variables
from v̄= (v0; : : : ;vr�1), andā= (a0; : : : ;ar�1) is anyr-tuple, we write ¯aw̄ for the tuple(ai0; : : : ;aik�1),
corresponding to ¯a asw̄ does to ¯v. Similarly, we writeāvi for ai .

Let ā2 K be packed inH�L, and inductively assume the claim forϕ.) First assume thatH j= Rθ(ā); we showH j= θ(ā). Write b̄ for π(ā). As π is a homomorphism,
M+ j= Rθ(b̄). By definition ofRθ in M+, M j= θ(b̄), so there is anr-tuple c̄2 M with c̄x̄ = b̄x̄

andM j= (γ^ϕ)(c̄), and thus,M+ j= γ(c̄)^Rϕ(c̄). Since the variables of ¯zare not free inγ^ϕ,
we may assume that each element of ¯cz̄ is equal to ¯cy.

As jrng(b̄c̄)j � 2r, there isb̄0c̄0 2 K isomorphic tob̄c̄. As γ;Rϕ are quantifier-free,K j= γ(c̄0)^
Rϕ(c̄0). Let χ(x̄) be the prenex existential formula9ȳz̄

�
γ^�

ẑ in z̄

z= y
�^Rϕ(v0; : : : ;vr�1)�:

Then clearly,K j= χ(b̄0̄x).
Let p : b̄ 7! b̄0, a partial isomorphism ofK, and takebp 2 Aut H satisfying the provisions of
theorem 2.2(1). Letting ¯a0 = bp(ā), it is clear that ¯a0 is packed inH�L and soπ� rngā0 is one-
one, andπ(ā0) = b̄0. Sincejx̄ȳz̄j � r, by theorem 2.2(3)π� rngā0̄x preserves:χ forwards, and
henceK j= χ(ā0̄x). As K � H andχ is existential,H j= χ(ā0̄x). As bp 2 Aut H and bp(ā) = ā0,
H j= χ(āx̄). So there is anr-tuple d̄ 2 H with d̄x̄ = āx̄, each element of̄dz̄ equal tod̄y, and with
H j= γ(d̄)^Rϕ(d̄). By the form ofγ and becauserng(d̄) = rng(d̄x̄ȳ), d̄ is packed inH�L,4 so
inductively,H j= γ(d̄)^ϕ(d̄). Thus,H j= θ(ā) by definition ofθ.( Conversely, suppose thatH j= θ(ā); we requireH j= Rθ(ā). There is anr-tuple b̄ 2 H with
b̄x̄ = āx̄ andH j= (γ^ϕ)(b̄). As before, we may assume that each element ofb̄z̄ is equal tōby. By
the form ofγ, b̄ is packed inH�L (see footnote 4), and hence inH. So by theorem 2.2(2) there is

4This fails in the loosely guarded fragment, which is why we use the packed fragment with quantifier-free packing
guards.
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g2Aut H with g(b̄) 2K. Write c̄ for g(b̄). Inductively,H j= γ(b̄)^Rϕ(b̄), soH j= γ(c̄)^Rϕ(c̄).
Writing d̄ = π(c̄), becauseπ is a homomorphism we haveM+ j= γ(d̄)^Rϕ(d̄). By definition of
relations inM+, we haveM j= ϕ(d̄). Hence, certainly,M j= θ(d̄), soM+ j= Rθ(d̄) by definition
of M+.

There are now two cases. Ifθ is a sentence, then everyr-tuple is related byRθ in M+. In
particular,K j= Rθ(π(ā)). By theorem 2.2(3),K j= Rθ(ā), and soH j= Rθ(ā) as required.

Assume otherwise, so ¯x is non-empty. Choosex in x̄; for any r-tuple w̄, write w̄0 for the r-tuple
given byw̄0̄

x = w̄x̄, andw̄0
u = w̄x for everyu in ȳz̄. Note that(�) K j= Rθ(m̄)$ Rθ(m̄0) for anyr-tuplem̄2 K that is packed inH�L.(�) follows because ¯m is packed soπ� rng(m̄) preserves the formulaRθ(v̄)$ Rθ(v̄0), andK j=8v̄(Rθ(v̄)$ Rθ(v̄0)) because ¯v; v̄0 agree on the free variables ofθ.

We knowM+ j= Rθ(d̄), and as ¯c is certainly packed inH�L, we obtainK j= Rθ(c̄). By (�), K j=
Rθ(c̄0). As g2 Aut H and (clearly)g(ā0) = c̄0, we haveK j= Rθ(ā0). By (�) again,K j= Rθ(ā),
soH j= Rθ(ā) as required. This proves the claim.

Take any packedr-tuple ā2 K (for example, a tuple of equal elements). SinceM j= σ, we have
M j= Rσ(π(ā)). We now obtainH j= Rσ(ā) by theorem 2.2(3), and thus, by the claim,H j= σ. We
have found a finite model ofσ, completing the proof of the lemma. �
LEMMA 3.8 Letσ be a sentence ofPF(L) with only quantifier-free guards, and suppose thatσ has a
model, say M. Thenσ has a finite model.

PROOF We makeM into an irreflexive structure, adjustσ accordingly, and apply the preceding
lemma. This will show thatσ has a finite model.

For eachn-ary R2 L and each equivalence relationε on n, with k equivalence classes, say, intro-
duce a newk-ary relation symbolRε, and define an expansionM ℄ of M interpreting the new symbols
as follows. Let 0= e0 < e1 < � � �ek�1 < n be representatives of theε-classes, each being minimal in
its ε-class. We call theei the canonical representatives ofε. For distinct elementsb0; : : : ;bk�1 2 M,
definea0; : : : ;an�1 2M by ai = b j iff i ε ej , for eachi < n, j < k, and define

M ℄ j= Rε(b0; : : : ;bk�1) iff M j= R(a0; : : : ;an�1):
For example, ifn = 5 and theε-classes aref0;2g;f1;3g;f4g, thene0 = 0, e1 = 1, e2 = 4, and if
a;b;c2M are distinct, we defineM ℄ j= Rε(a;b;c) iff M j= R(a;b;a;b;c).

Write M 6= for the reduct ofM ℄ to the new relation symbolsRε (for all n-aryR2 L and equivalence
relationsε on n). ThenM 6= is irreflexive.

WriteEn for the set of all equivalence relations onn. For each atomicL-formula of the formR(x̄),
for n-aryR2 L and anyn-tuplex̄= (x0; : : : ;xn�1) of variables, perhaps with repetitions, and forε2En

with canonical representativese0; : : : ;ek�1, defineR(x̄)ε to be the following formula, with the same
free variables ¯x:�

îε j

xi = x j

�^^n
Rε(xi0; : : : ;xik�1) : i0; : : : ; ik�1 < n; i l ε el for eachl < k

o:
Now defineR(x̄) 6= = Wε2En

R(x̄)ε. Observe that for anyh : fx0; : : : ;xn�1g ! M, if h(xi) = ai (i < n),
ā= (a0; : : : ;an�1), andη 2 En is defined byi η j iff ai = a j , thenM ℄ j= R(ā)$ R(x̄)η(ā). (That is,
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R(x̄)$R(x̄)η is true inM ℄ under assignmenth.) Also, for anyε2En, if M 6= j=R(x̄)ε(ā) then because
M 6= is irreflexive,ε = η. Hence,M ℄ j= 8x̄(R(x̄)$ R(x̄) 6=).

For any formulaϕ 2 PF(L) with quantifier-free guards, letϕ 6= be obtained fromϕ by replacing
every atomic subformulaR(x̄) of ϕ (for R2 L) by R(x̄) 6= — this includes both packed subformulas
and formulas occurring in guards.

Claim. ϕ 6= is logically equivalent to a packed formula with quantifier-free guards.
Proof of claim. This can be seen by induction onϕ. We sketch the argument. The case of atomicϕ is
easy, as are the boolean cases. For formulas9ȳ(γ(x̄; ȳ)^ϕ(x̄; ȳ)), we observe that for eachR2 L and
any x̄, every pair of free variables ofR(x̄) also occur free in some conjunct of each disjunctR(x̄)ε of
R(x̄) 6=. Hence, by distributing the conjunctions fromγ over the disjunctions in theR(x̄) 6=, we see that
γ 6=(x̄; ȳ) can be put in disjunctive normal form

W
i γi(x̄; ȳ) such that each pair of distinct variables of

x̄ȳ occurs in a conjunct of eachγi . So9ȳ(γ(x̄; ȳ)^ϕ(x̄; ȳ)) 6= is equivalent to
W

i 9ȳ(γi(x̄; ȳ)^ϕ(x̄; ȳ) 6=),
which inductively is equivalent to a packed formula with quantifier-free guards. This proves the claim.

We can now rapidly conclude the proof. Since for allR, R(x̄) andR(x̄) 6= are equivalent inM ℄, and
M j= σ, we haveM 6= j= σ 6=. As M 6= is irreflexive, by the claim and lemma 3.7 there is a finite model
N j= σ 6=. Now makeN an L-structureN ℄ by interpreting eachR(x̄) asR(x̄) 6=. More formally, for
n-aryR2 L, take ann-tupleȳ of distinct variables and letN ℄ j= R(ā) iff N j=R(ȳ) 6=(ā), for anyn-tuple
ā 2 N. It is easily checked that if ¯x is anyn-tuple of variables, thenN ℄ j= 8x̄(R(x̄)$ R(x̄) 6=). So
clearly,N ℄ j= σ. �

We can now prove theorem 3.3.

PROOF Let σ be a sentence ofPF(L), and letM be a model ofσ. For each existential conjunct
β(z̄) = 9v̄α(z̄; v̄) of each guard inσ, whereα(z̄; v̄) is atomic with free variables just those in ¯zv̄,
introduce a newjz̄j-ary relation symbolRβ(z̄) and interpret it inM in the same way asβ(z̄): i.e., let
M j= Rβ(z̄)(ā) iff M j= β(ā), for all ā2 M of length jz̄j. We continue to writeM for this definitional
expansion. Notice thatM j= χβ(z̄), where

χβ(z̄) = 8z̄(Rβ(z̄)(z̄)!9v̄(α(z̄; v̄)^>))^8z̄v̄(α(z̄; v̄)! Rβ(z̄)(z̄)):
Of course,χβ(z̄) is logically equivalent to8z̄(Rβ(z̄)(z̄)$ β(z̄)), but we write it in the above form to
obtain a sentence of the packed fragment with quantifier-free guards. Letσ0 be the result of replacing
each existential conjunctβ(z̄) of each guard of each subformula ofσ by Rβ(z̄)(z̄). Let σ00 be the
conjunction ofσ0 and all the sentencesχβ(z̄), for each existential conjunctβ(z̄) of each guard inσ.
Thenσ00 is a sentence of the packed fragment with only quantifier-free guards, andM j= σ00.

By lemma 3.8, there is a finite modelN j= σ00. For eachβ as above,N j= χβ(z̄), so Rβ(z̄)(z̄) is
equivalent inN to β(z̄). So it is clear thatN j= σ. �
3.4 Finite model property for the loosely guarded fragment

We can easily derive this from the finite model property for the packed fragment.

LEMMA 3.9 Let L be a relational signature, let the L-formulaδ be a packing guard (definition 3.2)
with free variables preciselȳv, and letϕ(v̄) 2 LGF(L). Thenδ^ϕ is logically equivalent toδ^ϕ0 for
some formulaϕ0(v̄) 2 PF(L).
PROOF By induction onϕ. If ϕ is atomic, we letϕ0 = ϕ. Assuming the result forϕ;ψ, we let(:ϕ)0 = :ϕ0 and (ϕ^ψ)0 = ϕ0 ^ψ0, as usual. Thenδ^:ϕ is equivalent toδ^:(δ^ϕ), which is
equivalent toδ^:(δ^ϕ0) and toδ^:ϕ0 = δ^ (:ϕ)0; the case of̂ is similar.
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Finally let ϕ(x̄) = 9ȳ(γ(x̄; ȳ)^ψ(x̄; ȳ)) be a loosely guardedL-formula, where the free variables
of γ are precisely ¯xȳ, andrng(x̄) � rng(v̄). Assume the result forψ, and considerδ(v̄)^ϕ(x̄). For
each pair of distinct variablesx;x0 from x̄, pick a conjunctχx;x0(x;x0; z̄) of δ in which they both occur
free, and letχÆx;x0(x;x0) = 9z̄χx;x0 . Let δÆ(x̄) = Vx;x0 χÆx;x0 . Thenδ ` δÆ, andδ^ϕ is equivalent to
δ^9ȳ(γ(x̄; ȳ)^δÆ(x̄)^ψ(x̄; ȳ)). Now γ^δÆ is a packing guard with free variables ¯xȳ, so inductively,
γ^ δÆ ^ψ(x̄; ȳ) is equivalent toγ^ δÆ ^ψ0 for someψ0(x̄; ȳ) 2 PF(L). Thenδ^ϕ is equivalent to
δ^9ȳ(γ^δÆ^ψ0); the second conjunct here is inPF(L) and its free variables are all from ¯v. �
PROOF OF COROLLARY3.4 It is immediate from the lemma that any sentence ofLGF(L) is logically
equivalent to a sentence ofPF(L). The corollary now follows from theorem 3.3. �
4 Applications

We end by outlining some applications of our results.

4.1 Decidable fragments of predicate temporal logic

In [14], certain decidable fragments of predicate temporallogic with Until and Since (the ‘monodic’
fragments) were introduced. The idea is to restrict the predicate part of the logic to a known decidable
fragment of first-order logic (such as the loosely guarded fragment) and restrict temporal operations
to formulas with at most one free variable. Monodic fragments are decidable over a wide range of
linear flows of time. Moreover, if it is decidable whether a sentence of the chosen first-order fragment
(roughly speaking) has a finite model, the corresponding monodic temporal logic with finite domains
is also decidable.

Since the loosely guarded fragment is decidable and has the finite model property, it is decidable
whether a sentence of the loosely guarded fragment has a finite model, and thus the loosely guarded
monodic fragment of predicate temporal logic and finite domains is decidable.

4.2 Finite base property in algebraic logic

The ‘finite algebra on finite base property’ for weakly associative algebras [17] follows easily from the
finite model property for the loosely guarded fragment. LetA =(A;+;�;0;1;1,;˘; ;) be a finite weakly
associative algebra. Regard eacha2 A as a binary relation symbol. Then arelativised representation
of A is a model of the following theory:8xy[1,(x;y)$ x= y℄8xy[r(x;y)$ s(x;y)_ t(x;y)℄ for eachr;s; t 2 A with r = s+ t8xy[1(x;y)! (r(x;y)$:s(x;y))℄ for eachr;s2 A with r =�s8xy[r(x;y)$ s(y;x)℄ for eachr;s2 A with r = s̆8xy[1(x;y)! (r(x;y)$9z(s(x;z)^ t(z;y)))℄ for eachr;s; t 2 A with r = s; t9xy r(x;y) for eachr 2 A with r 6= 0:
Every weakly associative algebra has a relativised representation [17].

It is easily seen that the conjunction of the above theory canbe written as a loosely guarded
sentence. Thus, by corollary 3.4, any finite weakly associative algebra has a finite relativised rep-
resentation. One may also show in much the same way thatWA has the finite base property: any
universal sentence true in every finite weakly associative algebra is true in all weakly associative
algebras. (These results were proved in [1].)
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Various related results can also be derived. For example, similar arguments will show that for
finite n� 3, any finite relation algebra inRAn has a finiten-square relativised representation, and that
if n� 4, any subalgebra of the relation algebra reduct of a finiten-dimensional cylindric algebra has
a finiten-flat relativised representation. For definitions of these terms, see [12, 11]; these results solve
open problems stated there.

4.3 Finite model property for arrow logic in relativised int erpretation

Arrow logic is the logical counterpart of relation algebra,and fits into the paradigm ofdynamic logic:
see [23] for more information. Formulas of arrow logic can begiven relativised semantics, corre-
sponding to weakly associative algebras. It is immediate from the finite base property forWA (above)
that any formula of arrow logic with a relativised model has afinite relativised model.
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