

More About Uniform Upper Bounds on Ideals of Turing Degrees

Author(s): Harold T. Hodes

Source: The Journal of Symbolic Logic, Jun., 1983, Vol. 48, No. 2 (Jun., 1983), pp. 441-457

Published by: Association for Symbolic Logic

Stable URL: https://www.jstor.org/stable/2273561

REFERENCES

Linked references are available on JSTOR for this article: https://www.jstor.org/stable/2273561?seq=1&cid=pdfreference#references_tab_contents You may need to log in to JSTOR to access the linked references.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at https://about.jstor.org/terms $\ensuremath{\mathsf{Conditions}}$

Association for Symbolic Logic is collaborating with JSTOR to digitize, preserve and extend access to The Journal of Symbolic Logic

MORE ABOUT UNIFORM UPPER BOUNDS ON IDEALS OF TURING DEGREES¹

HAROLD T. HODES

Abstract. Let I be a countable jump ideal in $\mathscr{D} = \langle \text{The Turing degrees, } \leq \rangle$. The central theorem of this paper is:

a is a uniform upper bound on I iff **a** computes the join of an I-exact pair whose double jump $a^{(1)}$ computes.

We may replace "the join of an *I*-exact pair" in the above theorem by "a weak uniform upper bound on *I*".

We also answer two minimality questions: the class of uniform upper bounds on I never has a minimal member; if $\bigcup I = L_{\alpha}[A] \cap {}^{\omega}\omega$ for α admissible or a limit of admissibles, the same holds for nice uniform upper bounds.

The central technique used in proving these theorems consists in this: by trial and error construct a generic sequence approximating the desired object; simultaneously settle definitely on finite pieces of that object; make sure that the guessing settles down to the object determined by the limit of these finite pieces.

Fix recursive pairing and unpairing functions on ω , such that $x = \langle (x)_0, (x)_1 \rangle$. For $f: \omega \to \omega$, let $(f)_x(y) = f(\langle x, y \rangle)$. If $\mathscr{F} \subseteq {}^{\omega}\omega$, f parametrizes \mathscr{F} iff $\mathscr{F} = \{(f)_x | x \in \omega\}$. We depart from standard practice and view Turing degrees as equivalence classes on ${}^{\omega}\omega$, not $\mathscr{P}(\omega)$, under \equiv_T . This has no importance; the following definitions could be rephrased to apply to Turing degrees as usually defined. All degrees in this paper are Turing degrees.

A degree *a* is a uniform upper bound (u.u.b.) on a class *I* of degrees iff some $f \in a$ parametrizes $\bigcup I$; *a* is a weak u.u.b. iff some $f \in a$ parametrizes $\bigcup I \cap {}^{\omega}2$. *I* is an ideal iff *I* is downward closed under \leq and closed under join. *I* is a jump ideal iff *I* is an ideal closed under jump. Where *I* is an ideal, the pair (b, c) is *I*-exact iff $I = \{d | d \leq b \& d \leq c\}$. Recent results of Shore imply that there is a degree-theoretic definition of the relation: *a* is a u.u.b. on *I*, where *I* is a countable jump ideal; it is obtained by encoding the analytic definition of a u.u.b. into degree-theoretic terms. The central result of this paper provides a more natural degree-theoretic definition of this relation.

THEOREM 1. Where I is a countable jump ideal: **a** is a u.u.b. on I iff there is an I-exact pair $(\mathbf{b}, \mathbf{c}), \mathbf{b} \lor \mathbf{c} \le \mathbf{a}$ and $(\mathbf{b} \lor \mathbf{c})^{(2)} \le \mathbf{a}^{(1)}$.

The technique used in proving the hard direction (\Rightarrow) is then extended to answer further questions about u.u.b.s, some of which were raised in [2].

For $\mathscr{F} \subseteq \{(f)_x | x \in \omega\}$, f is a subparametrization of \mathscr{F} . Let $f = f_0 \oplus \cdots \oplus f_{n-1}$ iff for all $x, f(x) = f_i((x)_1)$ if $(x)_0 = i < n, f(x) = 0$ otherwise.

0022-4812/83/4802-0021/\$02.70

441

Received May 10, 1981.

¹I wish to thank David Posner for an illuminating discussion which led to all these theorems. © 1983, Association for Symbolic Logic

GUESSING LEMMA. Let I be an ideal of degrees, f subparametrizes $\bigcup I$. There are two and three-place partial f-recursive functions G and H such that:

(1) if $(f)_{x_0} \oplus \cdots \oplus (f)_{x_{m-1}} \in \bigcup I$ then $\lim_n H(m, \langle x_0, \ldots, x_{m-1} \rangle, n)$ exists and if it is $z, (f)_z = (f)_{x_0} \oplus \cdots \oplus (f)_{x_{m-1}};$ (2) if $(f)_x^{(1)} \in \bigcup I$, then $\lim_n G(x, n)$ exists and if it is $z, (f)_z = (f)_x^{(1)}$. (Here $\langle x_0, \ldots, x_{m-1} \rangle$ is a recursive coding of finite sequences from ω into ω .)

PROOF. We construct G.

Let

$$g(x, u) = \begin{cases} \text{the least } t \text{ such that } \{u\}^{(f)_x}(u) \text{ converges in } t \text{ steps} \\ & \text{if there is such a } t; \\ 0 \quad \text{otherwise.} \end{cases}$$

 $\lambda u. g(x, u) \equiv_T (f)_x^{(1)}$. Thus if $(f)_x^{(1)} \in \bigcup I$, $\lambda u. g(x, u) \in \bigcup I$. Let *h* be a nondecreasing function which eventually dominates each member of $\bigcup I$, $h \leq_T f$: for example, $h(z) = \max_{u \leq z} (f)_u(u)$. We shall say that *z* is a candidate for *x* at step *n* iff for every u < n:

$$(f)_{z}(u) = \begin{cases} 1 & \text{if } \{u\}^{(f)_{x}}(u) \text{ converges in } h(u) + n \text{ steps,} \\ 0 & \text{if not.} \end{cases}$$

Given x, select u_0 such that for all $u \ge u_0$, $h(u) \ge g(x, u)$. Let $n_0 = \max\{g(x, u) | u < u_0\}$. For $n \ge n_0$, if z is a candidate for x at step n, $(f)_z \upharpoonright n = (f)_x^{(1)} \upharpoonright n$, since for all $u, g(x, u) \le h(u) + n$. Let G(x, n) = the least z which is a candidate for x at step n. Suppose that $(f)_x^{(1)} \in \bigcup I$, z_0 is the least z such that $(f)_z = (f)_x^{(1)}$, and n_1 is the least n such that for each $z < z_0$, $(f)_z(n) \ne (f)_{z_0}(n)$ for some $n < n_1$. Then for $n \ge \max(n_0, n_1)$ and any $z < z_0$, z is not a candidate for x at step n. But z_0 is one as of step n. So $G(x, n) = z_0$ for such n. The construction of H is easier and we omit it. Q.E.D.

We note the following. Suppose f parametrizes $\bigcup I \cap \mathscr{O}2$ and $0 \in I$. deg(f) is a u.u.b. on I iff there is a $G \leq_T f$ as above which guesses at the location of jumps. This is easy to prove.

Let g = h iff for all but finitely many x, g(x) = h(x).

LEMMA 1. If I is a set of degrees and f is a function such that for every $g \in \bigcup I$ there is an e such that $g = *(f)_e$, and for every $e, (f)_e \in \bigcup I$, then $\deg(f)$ is a u.u.b. on I.

PROOF. Let Seq be the set of sequence numbers, letting $s = \langle (s)_0, \ldots, (s)_{lh(s)-1} \rangle$. Let

$$(\hat{f})_{\langle e,s \rangle}(x) = \begin{cases} (f)_0(x) & \text{if } s \notin \text{Seq,} \\ (s)_x & \text{if } s \notin \text{Seq } \& x < \text{lh}(s), \\ (f)_e(x) & \text{if otherwise.} \end{cases}$$

 $\hat{f} \leq_T f$ and \hat{f} parametrizes $\bigcup I$. Since the class of u.u.b's on I is closed upwards, $\deg(f)$ is a u.u.b. on I. Q.E.D.

PROOF OF THEOREM 1 (\Leftarrow). Suppose (b, c) is *I*-exact, $b \lor c \le a$ and ($b \lor c$)⁽²⁾ $\le a^{(1)}$, $A \in a$, $B \in b$, $C \in c$. Since $(B \oplus C)^{(2)} \le A^{(1)}$, recursively in A we may guess

at the truth of Π_2^0 sentences about B and C so that in the limit these guesses are correct. Let f be such that

$$(f)_{\langle\langle e_1, e_2\rangle, n\rangle}(x) = \begin{cases} 0 & \text{if for some } t \ge \max(x, n), \text{ the } t\text{th guess is that for some } y, \text{ either } \{e_1\}^B(y) \text{ is undefined } \\ \text{or } \{e_1\}^B(y) \ne \{e_2\}^B(y), \text{ and either } t = \\ \max(x, n) \text{ or } \{e_1\}^B(x) \text{ is undefined }; \\ \{e_1\}^B(x) \text{ otherwise.} \end{cases}$$

 $f \leq_T A$. In the otherwise case, $\{e_1\}^B(x)$ is defined, since in the limit our guesses at whether $\neg (\forall y)(\{e_1\}^B(y) \text{ is defined } \& \{e_1\}^B(y) = \{e_2\}^C(y))$ are right. If $\{e_1\}^B$ is total and $\{e_1\}^B = \{e_2\}^C$, then $(f)_{\langle\langle e_1, e_2\rangle, n\rangle} =^* \{e_1\}^B$; otherwise $(f)_{\langle\langle e_1, e_2\rangle, n\rangle} =^* \lambda x$. 0. By Lemma 1, a is a u.u.b. on *I*.

(⇒). Let Str be the set of finite strings of 0's and 1's, coded into ω . For σ , $\tau \in$ Str, $\sigma^{\tau}\tau$ is the concatenation of σ and τ ; $\sigma \preccurlyeq \tau$ iff σ extends τ ; $\sigma \prec \tau$ iff $\sigma \preccurlyeq \tau$ and $\sigma \neq \tau$. *P* is a tree iff *P*: Str → Str and for all σ , $\tau \in$ Str, if $\tau \preccurlyeq \sigma$ then $P(\tau) \preccurlyeq P(\sigma)$. A tree *P* is perfect iff for all $\sigma \in$ Str, $P(\sigma^{\langle 0 \rangle})$ is strictly left of $P(\sigma^{\langle 1 \rangle})$ in the lexicographic ordering of Str. For $C \in \omega^2$, $C \preccurlyeq \sigma$ if σ codes an initial segment of *C*. Let $B \in [P]$ iff *B* is a branch of *P* iff for some $C \in \omega^2$, $B = \lim \{P(\sigma) | C \preccurlyeq \sigma\}$. *P* is uniformly recursively pointed iff for some *e*: for all $B \in [P]$, $P = \{e\}^B$. We code $B \in \omega^2$ into a tree *P*, yielding a tree Code(*P*, *B*), as follows:

 $\operatorname{Code}(P, B)(\langle \rangle) = P(\langle \rangle),$

 $\operatorname{Code}(P, B)(\sigma) = P(\langle B(0), (\sigma)_0, \dots, B(\operatorname{lh}(\sigma) - 1), (\sigma)_{\operatorname{lh}(\sigma)-1} \rangle) \text{ for } \operatorname{lh}(\sigma) \ge 1.$ Abusing notation, we write $\operatorname{Code}(P, f)$ for $\operatorname{Code}(P, \operatorname{graph}(f))$.

A condition is a pair $\langle P, Q \rangle$ of uniformly recursively pointed perfect trees belonging to $\bigcup I$ such that $P \equiv_T Q$. *P* is a subtree of *Q* iff for all $\sigma \in \text{Str}$, $P(\sigma) \preccurlyeq Q(\sigma)$. Where $\langle P, Q \rangle$ and $\langle R, S \rangle$ are conditions, $\langle P, Q \rangle$ extends $\langle R, S \rangle$ iff *P* and *Q* are subtrees of *R* and *S*, respectively. Code($\langle P, Q \rangle$, f) = $\langle \text{Code}(P, f), \text{Code}(Q, f) \rangle$. For $f \in \bigcup I$, this is a condition.

Let $\operatorname{Str}(l) = \{\sigma \mid \sigma \in \operatorname{Str} \& \operatorname{lh}(\sigma) \leq l\}$. A function $P: \operatorname{Str}(l) \to \operatorname{Str}$ is a pretree iff P fulfills the definition of a perfect tree, except with domain restricted to $\operatorname{Str}(l)$; l is the height of $P = \operatorname{ht}(P)$. If P is a perfect tree, $P \upharpoonright \operatorname{Str}(l)$ is a pretree of height l. If for each $l < \omega$, P_l is a pretree of height l and $P_l \subseteq P_{l+1}$, $\bigcup_l \langle P_l \rangle$ is a perfect tree. A precondition of height l is a pair of pretrees of height l. Since pretrees and preconditions are finite objects, we code them into ω . A pretree P is a subpretree of a tree or pretree R iff for each $\sigma \in \operatorname{dom}(P)$ there is a $\tau \in \operatorname{dom}(R)$, $\tau \preccurlyeq \sigma$ and $P(\sigma) = R(\tau)$. If P is a subpretree of R and $\sigma \in \operatorname{dom}(P)$, $\sigma \in \operatorname{dom}(R)$ and $P(\sigma) \preccurlyeq R(\sigma)$; if, furthermore, R is a pretree, $\operatorname{ht}(P) \le \operatorname{ht}(R)$. $\langle P, Q \rangle$ is a subprecondition of a condition or precondition $\langle R, S \rangle$ iff P and Q are subpretrees of R and S, respectively. Suppose that for each $l < \omega \langle P_l, Q_l \rangle$ is a subprecondition of a condition $\langle R, S \rangle$, $l = \operatorname{ht}(\langle P_l, Q_l \rangle), \langle P_{l+1}, Q_{l+1} \rangle$ is a subprecondition of $\langle P_l, Q_l \rangle$ is a condition extending $\langle R, S \rangle$.

For P a pretree and $B \in \omega^2$, we may code as much of B as possible into P, letting: Code(P, B)($\langle \rangle$) = P($\langle \rangle$),

 $\operatorname{Code}(P, B)(\sigma) \simeq P(\langle B(0), (\sigma)_0, \ldots, B(\operatorname{lh}(\sigma) - 1), (\sigma)_{\operatorname{lh}(\sigma)-1} \rangle), \text{ for } \operatorname{lh}(\sigma) \ge 1.$ Note that if $\operatorname{ht}(P) = 2l \text{ or } = 2l + 1$, $\operatorname{Code}(P, B)$ has height *l*. We define "Code(P, f)" and Code($\langle P, Q \rangle, f$) where $\langle P, Q \rangle$ is a precondition, as one would expect.

For P a tree or pretree and $\sigma \in Str$, we shall say that σ is on P iff for some $\tau \in dom(P)$, $P(\tau) \leq \sigma$. Full is the tree id \upharpoonright Str. Where P is a tree or pretree, Full(P, σ) is the tree or pretree determined by Full(P, σ)(τ) = $P(\sigma^{\tau}\tau)$. Note that if P is a pretree of height l, Full(P, σ) is totally undefined, and so technically not a pretree, if $l < lh(\sigma)$.

Fix a listing $\langle \phi_j \rangle_{j < \omega}$ of all primitive recursive relations on $\omega_2 \times \omega_2 \times \omega \times \omega$. Introducing "<u>B</u>" and "<u>C</u>" as uninterpreted predicate constants, let φ_j be "($\exists x$) \neg ($\exists y$) ϕ_j (<u>B</u>, <u>C</u>, x, y)." We now define forcing, for $\langle P, Q \rangle$ a condition.

 $\langle P, Q \rangle \Vdash \neg \varphi_j$ iff for all $\langle B, C \rangle \in [P] \times [Q], \langle B, C \rangle \vDash \neg \varphi_j;$

 $\langle P, Q \rangle \Vdash \varphi_j$ iff for some *n* for all $\langle B, C \rangle \in [P] \times [Q]$,

$$\langle B, C \rangle \models \neg (\exists y) \phi_j(\underline{B}, \underline{C}, \underline{n}, y).$$

[3] contains a proof of the crucial density theorem: any condition extends to a condition deciding φ_j . Implicit in that proof is the construction of a function force $(j, \langle P, Q \rangle)$ with domain $\leq \omega$ such that, letting force $(j, \langle P, Q \rangle)(l) = \langle \hat{P}(l), \hat{Q}(l) \rangle$:

(1) force $(j, \langle P, Q \rangle)(l)$ is, if defined, a subprecondition of $\langle P, Q \rangle$ of height l;

(2) if $l + 1 \in \text{dom}(\text{force}(j, \langle P, Q \rangle))$,

force $(j, \langle P, Q \rangle)(l) = \langle \hat{P}(l+1) \upharpoonright \operatorname{Str}(l), \hat{Q}(l+1) \upharpoonright \operatorname{Str}(l) \rangle;$

(3) for $l \in \text{dom}(\text{force}(j, \langle P, Q \rangle)), \sigma, \tau$ strings of length l, there is a $y_{\sigma,\tau}$ such that $\psi(\hat{P}(l)(\sigma), \hat{Q}(l)(\tau), l, y_{\sigma,\tau})$. (Following a standard convention, " $\psi_i(\sigma, \tau, x, y)$ " means "For all $B \prec \sigma$, $C \prec \tau$, $\psi_j(B, C, x, y)$ ".) To compute force $(j, \langle P, Q \rangle)(0)$, we search for strings σ and τ of the same length and for a $y_{\langle i, \langle i \rangle}$ so that $\psi_i(P(\sigma), Q(\tau), 0)$, $y_{(\lambda, \langle \rangle)}$, and let $\hat{P}(0)(\langle \rangle) = P(\sigma)$, $\hat{Q}(0)(\langle \rangle) = Q(\tau)$. Call these chosen σ and τ , if they exist, $\langle \rangle'$ and $\langle \rangle''$, respectively. Now suppose that force $(j, \langle P, Q \rangle)(l)$ $= \langle \hat{P}(l), \hat{Q}(l) \rangle$ has been computed; for $\rho \in \text{Str}(l)$, we suppose that ρ' and ρ'' have been defined, $\hat{P}(l)(\rho) = P(\rho')$, $\hat{Q}(l)(\rho) = Q(\rho'')$. We now try to compute $\hat{P}(l+1)$ and $\hat{Q}(l+1)$ on all of Str(l+1). By our computation of $\hat{P}(l)$ and $\hat{Q}(l)$ and (2), it suffices to do this for strings of length l + 1. Let $\sigma_1, \ldots, \sigma_{2^{l+1}}, \tau_1, \ldots, \tau_{2^{l+1}}$ be two lists of all strings of length l + 1. We search for strings $\sigma'_1, \ldots, \sigma'_{2^{l+1}}, \ldots, \tau''_1, \ldots$ $\tau_{2^{l+1}}^{"}$ all of the same length, and for witnesses y_{σ_i,τ_k} , $i, k \in \{1, \ldots, 2^{l+1}\}$, such that for $\sigma_i = \sigma^{\langle m \rangle}$ and $\tau_k = \tau^{\langle n \rangle}$, $\sigma'_i \preccurlyeq \sigma'^{\langle m \rangle}$ and $\tau''_k \preccurlyeq \tau''^{\langle n \rangle}$, and $\psi_i(P(\sigma'_i),$ $Q(\tau''_k), l+1, y_{\sigma_i,\tau_k})$; we let $\hat{P}(l+1)(\sigma_i) = P(\sigma'_i), \hat{Q}(l+1)(\tau_k) = Q(\tau''_k)$. For details on this search, see [3]. This search is recursive in $P \oplus Q$. So force $(j, \langle P, Q \rangle)$ is partial recursive in $P \oplus Q$, uniformly in j and $\langle P, Q \rangle$, by the procedure outlined. "Force $(j, \langle P, Q \rangle)(l)$ is defined in q steps" means that according to the procedure just outlined, that computation converges in q steps. If force $(i, \langle P, Q \rangle)$ is total, $\lim_{l} \text{force } (j, \langle P, Q \rangle)(l) = \langle \bigcup_{l} \hat{P}(l), \bigcup_{l} \hat{Q}(l) \rangle \text{ is a condition forcing } \neg \varphi_{i}.$

On the other hand, suppose force $(j, \langle P, Q \rangle)$ is not total. Call $\langle l, \sigma, \tau \rangle$ a *j*-witness for $\langle P, Q \rangle$ iff $\sigma, \tau \in Str$, $h(\sigma) = h(\tau)$, and $\langle Full(P, \sigma), Full(Q, \tau) \rangle \Vdash$ $\neg (\exists y) \phi_j(\underline{B}, \underline{C}, l, y)$. We now find a *j*-witness for $\langle P, Q \rangle$. Let *l* be the least $l \notin$ dom(force($j, \langle P, Q \rangle$)). If l = 0, let $\sigma = \tau = \langle \rangle$. If l = x + 1, let $\langle \sigma_i, \tau_k \rangle$ be the least pair selected from the lists $\sigma_i, \ldots, \sigma_{2^l}; \tau_1, \ldots, \tau_{2^l}$, for which we cannot find appropriate σ'_i , τ''_k and y_{σ_i,τ_k} . Letting $\sigma_i = \sigma^0 \langle n \rangle$, $\tau_k = \tau^0 \langle m \rangle$, let $\sigma = (\sigma^0)' \langle n \rangle$, $\tau = (\tau^0)' \langle m \rangle$. $\langle l, \sigma, \tau \rangle$ is easily seen to be a *j*-witness for $\langle P, Q \rangle$. Notice that $lh(\sigma) = lh(\tau)$, since in defining $\hat{P}(x)$ and $\hat{Q}(x)$ we required that $lh((\sigma^0)') = lh((\tau^0)')$. We have just described a procedure recursive in $(P \oplus Q)^{(1)}$ which halts iff force $(j, \langle P, Q \rangle)$ is partial, and, if it halts, delivers a *j*-witness for $\langle P, Q \rangle$. Call this procedure Wit $(j, \langle P, Q \rangle)$.

The construction of force $(j, \langle P, Q \rangle)(0)$, and then of force $(j, \langle P, Q \rangle)(l + 1)$ given force $(j, \langle P, Q \rangle)(l)$, proceeds by working down P and Q, thinking of trees as growing downwards. Thus we may extend our definition of force $(j, \langle P, Q \rangle)$ to apply to the case in which $\langle P, Q \rangle$ is a precondition. In this case, dom(force $(j, \langle P, Q \rangle)$) is finite, and in fact, $\leq ht(\langle P, Q \rangle)$.

Fix $f \in a$, parametrizing $\bigcup I$. We wish to construct $B, C \in \mathbb{Q}^2$, $\langle \deg(B), \deg(C) \rangle$ *I*-exact, $(B \oplus C)^{(2)} \leq_T f^{(1)}$ and $B \oplus C \leq_T f$.

A natural strategy suggests that we try to construct a sequence of conditions $\{\langle P_j, Q_j \rangle\}_{j \le \omega}$, and an auxiliary sequence $\{\langle x_j, \sigma_j, \tau_j \rangle\}_{j \le \omega}$ such that:

(1) $P_0 = Q_0 = \text{Full};$ (2) for all j: (2a) if $x_j \ge 0$ then

$$\langle x_j, \sigma_j, \tau_j \rangle = \operatorname{Wit}(j, \langle P_{2j}, Q_{2j} \rangle)$$

and

$$\langle P_{2j+1}, Q_{2j+1} \rangle = \langle \operatorname{Full}(P_{2j}, \sigma_j), \operatorname{Full}(Q_{2j}, \tau_j) \rangle;$$
(2b) if $x_j = -1, \sigma_j = \tau_j = \langle \rangle$ and force $(j, \langle P_{2j}, Q_{2j} \rangle)$ is total and $\langle P_{2j+1}, Q_{2j+1} \rangle = \lim_{i} \operatorname{force}(j, \langle P_{2j}, Q_{2j} \rangle)(l);$

(3) for all *j*,

$$\langle P_{2j+2}, Q_{2j+2} \rangle = \operatorname{Code}(\langle P_{2j+1}, Q_{2j+1} \rangle, (f)_j).$$

Then we shall let $\{B\} = \bigcap_{i} [P_{i}], \{C\} = \bigcap_{i} [Q_{i}]$. Choice of $\langle P_{2i+2}, Q_{2i+2} \rangle$ insures that $(f)_{i} \leq_{T} B$ and $(f)_{i} \leq_{T} C$. The genericity of the sequence of conditions insures that if $g \leq_{T} B$ and $g \leq_{T} C, g \in \bigcup I$.

We also want our construction to be recursive in f. But choice of $\langle P_{2j+1}, Q_{2j+1} \rangle$ or, equivalently, of $\langle x_j, \sigma_j, \tau_j \rangle$, depends on facts about $(P_{2j} \oplus Q_{2j})^{(2)}$ which cannot be decided uniformly in j and recursively in f. A further difficulty appears when we specify the sense in which we would like $\{\langle P_j, Q_j \rangle\}_{j < \omega}$ to be recursive in f. We want an f-recursive function $j \mapsto \langle n_j, m_j \rangle$ such that $P_j = (f)_{n_j}, Q_j = (f)_{m_j}$, and such a function may not exist. Instead we proceed by gue sing, recursively in f, at the previously described construction.

For $x \ge 1$, let d(x) = y iff x = 2y + 1 or x = 2y + 2. At stage *i* of our construction we will have a number $z_i \ge 1$ and, for each $j \le z_i$, a guess $\langle P_j^i, Q_j^i \rangle$ at $\langle P_j, Q_j \rangle$, and, for each $j \le d(z_i)$, guesses x_j^i, σ_j^i and τ_j^i at x_j, σ_j and τ_j . P_j^i and Q_j^i are functions, dom $(P_j^i) = \text{dom}(Q_j^i) \le \omega$ such that, letting $\langle P_j^i, Q_j^i \rangle(l) = \langle P_j^i(l), Q_j^i(l) \rangle$, $\langle P_j^i, Q_j^i \rangle(l)$ is, if defined, a precondition of height *l* such that:

(1') $\langle P_0^i, Q_0^i \rangle$ (l) = $\langle \text{Full} \upharpoonright \text{Str}(l), \text{Full} \upharpoonright \text{Str}(l) \rangle$; (2') for all $j \leq d(z_i)$, if $x_j^i \geq 0$,

$$\langle P_{2i+1}^i, Q_{2i+1}^i \rangle (l) \simeq \langle \text{Full} (P_{2i}^i(k+l), \sigma_i^i), \text{Full} (Q_{2i}^i(k+l), \tau_i^i) \rangle$$

where $h(\sigma_j^i) = h(\tau_j^i) = k$;

if $x_j^i = -1$, $\sigma_j^i = \tau_j^i = \langle \rangle$ and

 $\langle P_{2j+1}^i, Q_{2j+1}^i \rangle(l) \simeq \text{force}(j, \langle P_{2j}^i, Q_{2j}^i \rangle(l'))(l)$

for an $l' \in \text{dom}(\langle P_{2j}^i, Q_{2j}^i \rangle)$, but large enough for the right-hand side to be defined, if such there be;

(3') for all $2j + 2 \leq z_i$,

$$\langle P_{2j+2}^i, Q_{2j+2}^i \rangle(l) \simeq \operatorname{Code}(\langle P_{2j+1}^i, Q_{2j+1}^i \rangle(2l), (f)_j).$$

For reasons to appear shortly, we need to modify this outline in one respect. In the sequence described by (1)-(3) we shall add, between consecutive conditions $\langle P_j, Q_j \rangle$ and $\langle P_{j+1}, Q_{j+1} \rangle$, an intermediate condition $\langle P_j^*, Q_j^* \rangle$, determined by strings δ_j and ε_j of equal length, so that:

(4*) for all j,

$$\langle P_j^*, Q_j^* \rangle = \langle \operatorname{Full}(P_j, \delta_j), \operatorname{Full}(Q_j, \varepsilon_j) \rangle,$$

with (2) and (3) revised to (2^{*}) and (3^{*}), (2^{*}) saying that $\langle P_{2j+1}, Q_{2j+1} \rangle$ is formed from $\langle P_{2j}^*, Q_{2j}^* \rangle$ in the way in which (2) says it is formed from $\langle P_{2j}, Q_{2j} \rangle$, and (3^{*}) saying that $\langle P_{2j+2}, Q_{2j+2} \rangle$ is formed from $\langle P_{2j+1}, Q_{2j+1}^* \rangle$ in the way in which (3) says it is formed from $\langle P_{2j}, Q_{2j} \rangle$. In our guessing construction, at stage *i* for all $j < z_i$ we shall have guesses δ_j^i and ε_j^i at δ_j and ε_j and guesses $\langle P_j^{i*}, Q_j^{i*} \rangle$ at $\langle P_j^*, Q_j^* \rangle$ given by: (4^{*}) for $j < z_i$,

$$\langle P_j^{i*}, Q_j^{i*} \rangle \langle l \rangle \simeq \langle \operatorname{Full}(P_j^i(k+l), \delta_j^i), \operatorname{Full}(Q_j^i, (k+l), \varepsilon_j^i) \rangle,$$

for $k = \ln(\delta_j^i) = \ln(\varepsilon_j^i).$

(2') and (3') are now revised to $(2'^*)$ and $(3'^*)$, following the obvious analogy with (2^*) and (3^*) .

If our guess converges appropriately, we shall have $(B \oplus C)^{(2)} \leq_T f^{(1)}$. To insure that $B \oplus C \leq_T f$, we must supplement the guessing procedure just described with a nonguessing process such that for each *n* we can *f*-recursively find a stage *i* which definitely settles the questions " $n \in B$?" and " $n \in C$?".

To this end we construct sequences $\{\beta_i\}_{i < \omega}$ and $\{\gamma_i\}_{i < \omega}$ of strings $\beta_{i+1} \leq \beta_i$, $\gamma_{i+1} \leq \gamma_i$, and we make sure that $B = \lim_i \beta_i$, $C = \lim_i \gamma_i$. β_i and γ_i will be fixed at stage *i* on the basis of our guesses as of stage *i*. But thereafter any further guesses, including revisions of guesses on the basis of which β_i and γ_i were fixed, must honor the commitments that $B < \beta_i$ and $C < \gamma_i$. This is where δ_i^j and ε_i^j come in; when we make a decision at stage *i* about what $\langle P_{j+1}, Q_{j+1} \rangle$ looks like, we shall choose δ_i^j , ε_i^j to "protect" β_i and γ_i ; that is, we shall try to make sure that $P_{j+1}(\langle \rangle) \leq$ $P_j^*(\langle \rangle) \leq \beta_i$ and $Q_{j+1}(\langle \rangle) \leq Q_{j+1}^*(\langle \rangle) \leq \gamma_i$. To carry all this out, at stage *i* we shall actually have to compute, for each $j = z_i$, $\langle P_i^j, Q_j^i \rangle \langle k_j^i \rangle$ for a certain k_j^i . To this end, we introduce functions l_j^i , $j \leq z_i$, and l_j^* , $j < z_i$. Intuitively, $l_j^i(q)$ is the largest *l* such that we can compute $\langle P_j^i, Q_j^i \rangle \langle l \rangle$ in $\leq q$ steps; $l_j^i * (q)$ is the largest *l* such that we can compute $\langle P_j^i, Q_j^i \rangle \langle l \rangle$ in $\leq q$ steps. l_j^i or $l_j^i *$ may be undefined on an initial segment of ω , since it can take a while even to compute $\langle P_j^i, Q_j^i \rangle$ (0) or $\langle P_j^{i*}, Q_j^{i*} \rangle$ (0). But if defined, $l_j^i(q) \in \text{dom}(\langle P_j^i, Q_j^i \rangle)$, and for $q < q', l_j^i(q')$ is defined and $\geq l_j^i(q)$; similarly for l_i^{i*} . If $l_{j+1}^i(q)$ is defined, $\langle P_{j+1}^i, Q_{j+1}^i \rangle (l_{j+1}^i(q))$ is a subprecondition of $\langle P_j^{i*}, Q_j^{i*} \rangle (l_j^{i*}(q))$ with $l_j^{i*}(q)$ defined; if $l_j^{i*}(q)$ is defined, $\langle P_j^i, Q_j^i \rangle (l_j^{i*}(q))$ is a subprecondition of $\langle P_j^i, Q_j^i \rangle (l_j^i(q))$, with $l_j^i(q)$ defined. Furthermore, for $j < z_i$, if $\lim_q l_j^i(q) = \omega$ then $\lim_q l_j^{i*}(q) = \omega$; for $2j + 1 < z_i$, if $\lim_q l_{2j+1}^{i*}(q) = \omega$; if $x_j^i = -1$, $\lim_q l_{2j+1}^i(q) = \omega$ iff force $(j, \langle P, Q \rangle)$ is total, for $\langle P, Q \rangle = \lim_i \langle P_{2j}^i, Q_{2j}^{i*} \rangle (l)$.

Our informal description of l_j^i and l_j^{i*} could serve as a definition of these functions, but we offer definitions anyway:

 $l_{0}^{i}(q) = q;$ $l_{j}^{i*}(q) \simeq l_{j}^{i}(q) - \ln(\delta_{j}^{i}), \text{ if } l_{j}^{i}(q) \text{ is defined and } \geq \ln(\delta_{j}^{i});$ if $x_{j}^{i} = -1, l_{2j+1}^{i}(q) \simeq \text{ the maximum } l \text{ such that}$

force $(j, \langle P_{2j}^{i*}, Q_{2j}^{i*} \rangle (l_{2j}^{i*}(q)))(l)$

is defined in $\leq q$ steps;

 $l_{2i+2}^{i}(q) \simeq l$ if $l_{2i+1}^{1}(q) = 2l$ or = 2l + 1.

We shall have an *f*-recursive increasing function *g* which serves as a clock, telling us when to stop computing preconditions and move on the stage i + 1. The relevant k_j^i will be $k_j^i = l_j^i(g(i))$.

We shall arrange our construction so that at each stage *i*:

(1.i) $l_{z_i}^i(g(i))$ is defined, with β_i on $P_{z_i}^i(l_{z_i}^i(g(i)))$ and γ_i on $Q_{z_i}^i(l_{z_i}^i(g(i)))$.

In addition to the sequences so far described, we also need a sequence $\{\langle n_j, m_j \rangle\}_{j < \omega}$ such that:

(5) for all
$$j$$
, $\langle P_j, Q_j \rangle = \langle (f)_{n_i}, (f)_{m_j} \rangle$.

We shall also need guess $\langle n_j^i, m_j^i \rangle$ at $\langle n_j, m_j \rangle$ for $j \leq z$. Let $[n, m/\delta, \varepsilon]$ abbreviate $\langle \text{Full}((f)_n, \delta), \text{Full}((f)_m, \varepsilon) \rangle$. For $2j + 1 \leq z_i$, let 2j + 1 have property 1 at stage i iff $[n_{2j}^i, m_{2j}^i/\delta_{2j}^i, \varepsilon_{2j}^i]$ is a condition, and: if $x_j^i \geq 0$,

$$\langle x_j^i, \, \delta_j^i, \, \tau_j^i \rangle = \operatorname{Wit}(j, \, [n_{2j}^i, \, m_{2j}^i/\delta_{2j}^i, \, \varepsilon_{2j}^i]);$$

if $x_{ij}^{i} = -1$, Wit $(j, [n_{2j}^{i}, m_{2j}^{i}/\delta_{2j}^{i}, \varepsilon_{2j}^{i}])$ is undefined. Note that "2j + 1 has property 1 at stage *i*" is Σ_{3}^{0} in $((f)_{n_{2j}^{i}} \oplus (f)_{m_{2j}^{i}})$. It would be nice at stage *i* to have all $2j + 1 \le z_{i}$ with property 1. But to keep the construction recursive in *f* we can only guess at whether a given 2j + 1 has property 1. We do this by asking the question of our g(i)th guess at $((f)_{n_{2j}^{i}} \oplus (f)_{m_{2j}^{i}})^{(3)}$, namely

$$(f)_{G(G(G(H(n_{2j}^{i}, m_{2j}^{i}, g(i)), g(i)), g(i)), g(i)), g(i))}$$

We content ourselves with insuring that at each stage *i*:

(2.1) for each $2j + 1 \le z_i$ our g(i)th guess at $((f)_{n_{2j}^i} \oplus (f)_{m_{2j}^i})^{(3)}$ says that 2j + 1 has property 1 at stage *i*.

This can be checked recursively in f.

For $j \leq z_i$, let j have property 2 at stage i iff $\lim_i \langle P_j^i, Q_j^i \rangle(l) = \langle (f)_{n_{2j}^i}, (f)_{m_{2j}^i} \rangle$, which is a condition. Again, "j has property 2 at stage i" is Σ_3^0 in $((f)_{n_{2j}^i} \oplus (f)_{m_{2j}^j})$. It would be nice to have all $j \le z_i$ with property 2 at stage *i*, so that our guesses at $\langle n_j, m_j \rangle$ accurately reflect our guesses at $\langle P_j, Q_j \rangle$. But, to keep the construction recursive in *f*, the best we can do is to insure that at each stage *i*:

(3.*i*) for each $j \leq z_i$,

$$\langle P_j^i, Q_j^i \rangle \left(l_j^i(g(i)) \right) = \langle (f)_{n_j^i} \upharpoonright \operatorname{Str}(l_j^i(g(i))), (f)_{m_j^i} \upharpoonright \operatorname{Str}(l_j^i(g(i))) \rangle$$

Checking this will be recursive in f.

After such extensive previewing, the presentation of the construction may, at least, be brief.

Stage 0. $z_0 = 0$, g(0) = 0, $\beta_0 = \gamma_0 = \langle \rangle$; for all l, $P_0^0(l) = Q_0^0(l) = \text{Full} \upharpoonright \text{Str}(l)$; select $\langle n_0^0, m_0^0 \rangle$ so that $(f)_{n_0^0} = (f)_{m_0^0} = \text{Full}$.

Stage i + 1. Suppose we already have z_i , g(i), $\{\langle P_j^i, Q_j^i \rangle\}_{j \le z_i}$, $\{\langle \delta_j^i, \varepsilon_j^i \rangle\}_{j < d(z_i)}$, $\{\langle x_j^i, \sigma_j^i, \tau_j^i \rangle\}_{j \le d(z_i)}$, β_i and γ_i , with (1.*i*)-(3.*i*) all true. For $2j + 1 \le z_i$, let 2j + 1 be 1-bad at (i, q) iff our (g(i) + q + 1)st guess at $((f)_{n2j}^i \oplus (f)_{m2j}^{(3)})^{(3)}$ says that 2j + 1 lacks property 1 at stage *i*. For $j \le z_i$, *j* is 2-bad at $\langle i, q \rangle$ iff

$$\langle P_j^i, Q_j^i \rangle \left(l_j^i(g(i) + q + 1) \right) \\ \neq \langle (f)_{n_j^i} \upharpoonright \operatorname{Str}(l_i^j(g(i) + q + 1)), (f)_{m_j^i} \upharpoonright \operatorname{Str}(l_j^i(g(i) + q + 1)) \rangle.$$

Let (δ, ε) be a q-combination for $2j \le z_i$ iff $\ln(\delta) = \ln(\varepsilon) \le l_{2j}^i (g(i) + q + 1) = l$ and

(6) either:

(a) our (g(i) + q + 1) st guess at $((f)_{n_{2i}}^{i} \oplus (f)_{m_{2i}}^{i})^{(3)}$ says that

Wit
$$(j, [n_{2j}^i, m_{2j}^i | \delta, \varepsilon]) = \langle x, \sigma, \tau \rangle$$

in $\leq g(i) + q + 1$ steps for some $\langle x, \sigma, \tau \rangle$ with $\ln(\delta) + \ln(\sigma) \leq l$; or

(b) our (g(i) + q + 1)st guess at $((f)_{n_{2j}^i} \oplus (f)_{m_{2j}^{i}})^{(3)}$ says that Wit $(j, [n_{2j}^i, m_{2j}^i / \sigma, \varepsilon])$ is undefined, and force $(j, \langle P, Q \rangle)(0)$ is defined in $\leq g(i) + q + 1$ steps for

$$\langle P, Q \rangle = \langle \operatorname{Full}(P_{2i}^{i}(l), \delta), \operatorname{Full}(Q_{2i}^{i}(l), \varepsilon) \rangle.$$

Whether (δ, ε) is a q-combination, in fact whether there is a q-combination for a given 2*j*, is decidable recursively in *f*. We shall say that q changes the primary guess at $2j + 1 \le z_i$ iff: for k < 2j + 1, k is neither 1-bad nor 2-bad at (i, q); 2j + 1 is 1-bad at (i, q); and

(7) there is a q-combination (δ, ε) such that

$$P_{2j}^{i}(l_{2j}^{i}(g(i)+q+1))(\delta) \leq \beta_{i}$$

and

$$Q_{2j}^i(l_{2j}^i(g(i) + q + 1))(\varepsilon) \leq \gamma_i.$$

We shall say that q changes the secondary guess at $j \le z_i$ iff: for all k < j, k is neither 1-bad nor 2-bad at (i, q); j is 2-bad but not 1-bad at (i, q); and

(8) there are strings β and γ on $P_j^i(l_j^i(g(i) + q + 1))$ and $Q_j^i(l_j^i(g(i) + q + 1))$, respectively, $\beta \leq \beta_i$ and $\gamma \leq \gamma_i$. We shall say that q creates a guess at $z_i + 1 = z$ iff for all $j \leq z_i$, j is neither 1-bad nor 2-bad at (i, q), and

(9) there are strings δ and ε such that

(9.1)
$$P_{z_i}^i(l_{z_i}^i(g(i)+q+1))(\delta) \leq \beta_i$$

and

$$Q_{z_i}^i(l_{z_i}^i(g(i)+q+1))(\varepsilon) \leq \gamma_i;$$

(9.2) if z = 2j + 1, (δ, ε) is a *q*-combination for 2*j*.

LEMMA 2. There is a q which either changes or creates a guess.

PROOF. Let \hat{j} = the least $j \leq z_i$ which lacks either property 1 or 2, if there is one; $\hat{j} = z_i + 1$ otherwise. If \hat{j} lacks property 1, we find a q changing the primary guess at \hat{j} ; if \hat{j} has property 1 but not property 2, we find a q changing the secondary guess at \hat{j} ; if $\hat{j} = z_i + 1$, we find a q creating a guess at \hat{j} . Consider the first situation. Suppose that for $q \geq q_0$, our (g(i) + q + 1)st guess at $((f_{n_{2j}^i} \oplus (f)_{m_{2j}^i})^{(3)})$ is correct for all $2j \leq \hat{j}$. So for $q \geq q_0$, all $k < \hat{j}$ are neither 1-bad nor 2-bad at (i, q), and \hat{j} is 1-bad at (i, q). For $j < \hat{j}$, $\lim_i l_i^i(l) = \omega$. If not, let j be the least counterexample; by remarks preceding the definition of l_j^i , j = 2j' + 1, $x_{j'}^i = -1$ and force $(j', \lim_i \langle P_{2j}^i, Q_{2j}^{i*} \rangle (l))$ is partial; so Wit $(j', [n_{2j'}^i, m_{2j'}^i/\delta_{2j'}^i, \varepsilon_{2j'}^i])$ is defined, and j lacks property 1; contradiction with $j < \hat{j}$. Now let $\hat{j} = 2j + 1$. For sufficiently large q we may increase $l = l_{2j}^i(g(i) + q + 1)$ large enough to find (δ, ε) , $P_{2j}^i(l)(\delta) \leq \beta_i$ and $Q_{2j}^i(l)(\varepsilon) \leq \gamma_i$, $h(\delta) = h(\varepsilon) = l$. Note that

$$[n_{2j}^{i}, m_{2j}^{i}/\delta, \varepsilon] = \lim_{l} \langle \operatorname{Full}(P_{2j}^{i}(l), \delta), \operatorname{Full}(Q_{2j}^{i}(l), \varepsilon) \rangle.$$

If Wit $(j, [n_{2j}^i, m_{2j}^i)(\delta, \varepsilon)$ is defined, then for $q \ge q_0$ our (g(i) + q + 1)st guess at $((f)_{n_{2j}^i} \oplus (f)_{m_{2j}^i})^{(3)}$ says it is; so for sufficiently large $q \ge q_0$, it truthfully says that Wit $(j, [n_{2j}^i, m_{2j}^i)(\delta, \varepsilon)] = \langle x, \sigma, \tau \rangle$ in $\le g(i) + q + 1$ steps, and $\ln(\sigma) + \ln(\delta) \le l_{2j}^i(g(i) + q + 1)$. On the other hand, if Wit $(j, [n_{2j}^i, m_{2j}^i)(\delta, \varepsilon)]$ is undefined, our (g(i) + q + 1)st guess at $((f)_{n_{2j}^i} \oplus (f)_{m_{2j}^i})^{(3)}$ says so. For sufficiently large q, force $(j, \langle P, Q \rangle)$ (0) is defined in $\le g(i) + q + 1$ steps, for

$$\langle P, Q \rangle = \langle \operatorname{Full}(P_{2j}^i(l_{2j}^i(q(i) + q + 1)), \delta), \operatorname{Full}(Q_{2j}^i(l_{2j}^i(q(i) + q + 1)), \varepsilon) \rangle.$$

So a sufficiently large $q \ge q_0$ is as desired. Similar arguments apply in the other two situations. Q.E.D.

Notice that we can *f*-recursively decide whether *q* is as described in Lemma 2. We proceed as follows, recursively in *f*. Search for the least *q* as described in Lemma 2. Let g(i + 1) = g(i) + q + 1. If *q* changes the primary or secondary guess at *j*, let $j = z_{i+1} = z$. Otherwise let $z_{i+1} = z = z_i + 1$. Now we preserve some earlier guesses: for j < z, let

$$\langle P_j^{i+1}, Q_j^{i+1} \rangle = \langle P_j^i, Q_j^i \rangle, \quad \langle n_j^{i+1}, n_j^{i+1} \rangle = \langle n_j^i, m_j^i \rangle;$$

for 2j + 1 < z, let

$$x_{j}^{i+1} = x_{j}^{i}, \quad \sigma_{j}^{i+1} = \sigma_{j}^{i}, \quad \tau_{j}^{i+1} = \tau_{j}^{i};$$

for j < z - 1, let

$$\delta^{i+1}_j = \delta^i_j, \quad \varepsilon^{i+1}_j = \varepsilon^i_j.$$

The situation in which q changes the secondary guess at z is easiest to handle.

Here our guesses $\langle n_z^i, m_z^i \rangle$ have been found to be wrong relative for $\langle P_z^i, Q_z^i \rangle$. We let $\delta_{z-1}^{i+1} = \delta_{z-1}^i, \varepsilon_{z-1}^{i+1} = \varepsilon_{z-1}^i, \langle P_z^{i+1}, Q_z^{i+1} \rangle = \langle P_z^i, Q_z^i \rangle$ and, if z = 2j + 1, $x_j^{i+1} = x_j^i$, $\sigma_j^{i+1} = \sigma_j^i, \tau_j^{i+1} = \tau_j^i$. Select β and γ as in (8) and let $\beta_{i+1} = \beta, \gamma_{i+1} = \gamma$. Note that $l_z^i = l_z^{i+1}$. Now find the least $\langle n, m \rangle$ such that

$$\langle P_{z}^{i+1}, Q_{z}^{i+1} \rangle (l_{z}^{i+1}(g(i+1))) = \langle (f)_{n} \upharpoonright \operatorname{Str}(l_{z}^{i+1}(g(i+1))), (f)_{m} \upharpoonright \operatorname{Str}(l_{z}^{i+1}(g(i+1))) \rangle,$$

and let $\langle n_z^{i+1}, m_z^{i+1} \rangle$ = that $\langle n, m \rangle$.

Next easiest is the case in which q creates a new guess at z = 2j + 2. Select strings δ and ε as described in (9.1) to be δ_{z-1}^{i+1} and ε_{z-1}^{i+1} , respectively. Let $\beta_{i+1} = P_{z-1}^{i}(l_{z-1}^{i}(g(i+1)))(\delta)$ and $\gamma_{i+1} = Q_{z-1}^{i}(l_{z-1}^{i}(g(i+1)))(\varepsilon)$. So $\langle P_{z-1}^{i*}, Q_{z-1}^{i*} \rangle$ and $\langle P_{z}^{i}, Q_{z}^{i} \rangle$ are defined as described before the construction began. Now select $\langle n_{z}^{i+1}, m_{z}^{i+1} \rangle$ as in the previous case.

The cases in which q changes the primary guess at z and in which q creates a new condition at z = 2j + 1 are similar. Select δ and ε as described in (7) or in (9), and let $\delta_{z-1}^{i+1} = \delta$, $\varepsilon_{z-1}^{i+1} = \varepsilon$, $\beta_i = P_{z-1}^i(l_{z-1}^i(g(i+1)))(\delta)$, $\gamma_i = Q_{z-1}^i(l_{z-1}^i(g(i+1)))(\varepsilon)$. $\langle P_{z-1}^{i*}, Q_{z-1}^{i*} \rangle$ is now determined. If (δ, ε) is a q-combination by virtue of (6)(a), let $\langle x_j^{i+1}, \sigma_j^{i+1}, \tau_j^{i+1} \rangle =$ the $\langle x, \sigma, \tau \rangle$ described in (6)(a). If (δ, ε) is a q-combination by (6)(b), let $x_j^{i+1} = -1$, $\sigma_j^{i+1} = \tau_j^{i+1} = \langle \rangle$. Form $\langle P_z^i, Q_z^i \rangle$ as indicated in the preparatory remarks. We now select $\langle n_z^i, m_z^i \rangle$ as in the previous two cases.

Notice that $\langle \delta_{z-1}^{i+1}, \varepsilon_{z-1}^{i+1} \rangle$ is changed from $\langle \delta_{z-1}^{i}, \varepsilon_{z-1}^{i} \rangle$ only if we changed a primary guess; $\langle \delta_{z-1}^{i+1}, \varepsilon_{z-1}^{i+1} \rangle$ is defined while $\langle \delta_{z-1}^{i}, \varepsilon_{z-1}^{i} \rangle$ was undefined iff we created a new guess at z. It is easy to verify that (1.i + 1), (2.i + 1) and (3.i + 1) are true. We now show that all our guesses settle down to sequences as described in (1), (2*), (3*), and (4*) and (5).

LEMMA 3. There are sequences $\{\langle P_j, Q_j \rangle\}_{j \leq \omega}$, $\{\langle \delta_j, \varepsilon_j \rangle\}_{j < \omega}$, $\{\langle x_j, \sigma_j, \tau_j \rangle\}_{j < \omega}$, $\langle\langle n_j, m_j \rangle\rangle_{j < \omega}$ making (1), (2*), (3*), (4*), and (5) true; and for any k there is an i_k such that for all $i \geq i_k$:

(10) for $j \le k, j$ has properties 1 and 2 at $i; k < z_i;$

(11) for $j \leq k$, $\langle n_j^i, m_j^i \rangle = \langle n_j, m_j \rangle$;

(12) for $j \leq k$, $\lim_{l} \langle P_{j}^{i}, Q_{j}^{i} \rangle (l) = \langle P_{j}, Q_{j} \rangle;$

(13) for j < k, $\langle \delta_j^i, \varepsilon_j^i \rangle = \langle \delta_j, \varepsilon_j \rangle$;

(14) for $2j + 1 \leq k$, $\langle x_j^i, \sigma_j^i, \tau_j^i \rangle = \langle x_j, \sigma_j, \tau_j \rangle$.

PROOF. The crucial fact here is that g is increasing. For k = 0, $i_k = 0$. Assume for k. Select $i \ge i_k$ such that for all $q \ge g(i)$ and all $2j \le k$, our qth guess at $((f)_{n_j} \oplus (f)_{m_j})^{(3)}$ is correct. For all $i \ge i$, if k is even, k + 1 has property 1 at i, is not 1-bad at any (i, q'), and so is not selected for a primary change. We may let $\langle P_{k+1}, Q_{k+1} \rangle = \lim_i \langle P_{k+1}^i, Q_{k+1}^i \rangle (l)$, and let $\langle n_{k+1}, m_{k+1} \rangle$ be least $\langle n, m \rangle$ such that $\langle (f)_n, (f)_m \rangle = \langle P_{k+1}, Q_{k+1} \rangle$. For each $\langle n', m' \rangle < \langle n_{k+1}, m_{k+1} \rangle$ there is an $l_{\langle n', m' \rangle} = l$ such that

$$\langle (f)_{n'} \upharpoonright \operatorname{Str}(l), (f)_{m'} \upharpoonright \operatorname{Str}(l) \rangle \neq \langle P_{k+1} \upharpoonright \operatorname{Str}(l), Q_{k+1} \upharpoonright \operatorname{Str}(l) \rangle.$$

Let i_{k+1} be an $i \ge i$ such that $l_{k+1}^i(g(i)) \ge l_{\langle n',m' \rangle}$ for all such $\langle n',m' \rangle$. For $i \ge i_{k+1}$, we have $\langle n_{k+1}^i, m_{k+1}^i \rangle = \langle n_{k+1}, m_{k+1} \rangle$. k + 1 has property 2 at such a stage *i*, so is not 1-bad at any (i, q'), and so is not selected for a secondary change. So

 $k + 1 < z_i$. (13) and (14) are obviously true, letting $\delta_k = \delta_k^{i_k+1}$, $\varepsilon_k = \varepsilon_k^{i_k+1}$, and $x_j = x_j^{i_k+1}$, $\delta_j = \delta_j^{i_k+1}$, $\tau_j = \tau_j^{i_k+1}$ if k + 1 = 2j + 1. Q.E.D.

We finally must check that $B = \lim_{i} \beta_i$, $C = \lim_{i} \gamma_i$. For any *j* there is a least *i* at which either we create a new guess at *j* or make a primary change at *j*. For such an *i*, we have arranged that $P_j(l_j(g(i))) \leq \beta_i$, $Q_j(l_j(g(i))) \leq \gamma_i$. But for sufficiently large *j*, these $P_j(g(i))$ and $Q_j(l_j(g(i)))$ may be made arbitrarily long. This insures the desired limits. Q.E.D.

COROLLARY. Where I is a countable jump ideal and **a** is an u.u.b. on I then there is an I exact $(\underline{b}, \underline{c})$ with $(\underline{b} \lor \underline{c}) < \underline{a}$.

PROOF. With $\underline{a}, \underline{b}, \underline{c}$ as above, if $b \lor c = a$, $(b \lor c)^{(2)} \le a^{(1)} = (b \lor c)^{(1)}$, a contradiction. Thus $(b \lor c) < a$.

The construction of Theorem 1 may be altered, using Sacks' technique for constructing minimal upper bounds, to insure that \underline{b} and \underline{c} are both minimal.

Recall that a is high over b iff $b \le a \le b^{(1)} < b^{(2)} \le a^{(1)}$. Can Theorem 1 be improved to: a is an u.u.b. on I iff a is high over the join of an I-exact pair? Perhaps. But we see no way to modify the previous construction to make $f \le {}_{T}(B \oplus C)^{(1)}$. Furthermore, for all we know now Theorem 1 may be strengthened to: a is an u.u.b. on I iff for some I-exact $\{b, c\}, (b \lor c)^{(1)} = a$; this is equivalent to: if a is an u.u.b. on I, for some I-exact $\{b, c\}, (b \lor c)^{(1)} \le a$.

We now characterize u.u.b.s in terms of weak u.u.b.s.

THEOREM 2. For a countable jump ideal I, **a** is an u.u.b. on I iff for some $b \le a$, **b** is a weak u.u.b. on I and $b^{(2)} \le a^{(1)}$.

PROOF (\Leftarrow). Let $B \in b$ parametrize $\bigcup I \cap \omega^2$. Fix $A \in a$. $X \subseteq \omega$ is total iff for every x there is a y such that $\langle x, y \rangle \in X$. Since $B^{(2)} \leq_T A^{(1)}$, we may guess recursively in A at whether $(B)_e$ is total and in the limit we are correct. Fix such a guessing procedure. Let h(x, e, n) = the least y such that either $\langle x, y \rangle \in (B)_e$ or the (n + y)th guess is that $(B)_e$ is not total. Define f by:

$$(f)_{\langle e,n\rangle}(x) = \begin{cases} 0 & \text{if the } (n + h(x, e, n)) \text{th guess} \\ & \text{is that } (B)_e \text{ is not total}; \\ & h(x, e, n) & \text{otherwise.} \end{cases}$$

If $(B)_e$ is total, $(B)_e = * \operatorname{graph}((f)_{\langle e,n \rangle})$; if $(B)_e$ is not total, $(f)_{\langle e,n \rangle} = *\lambda x.0$. By Lemma 1, deg(f) is an u.u.b. on *I*. Since $f \leq_T A$, so is *a*.

(⇒) Let $f \in a$ parametrize $\bigcup I$. Let $\langle \psi_j \rangle_{j < \omega}$ be a recursive enumeration of primitive recursive relations on $^{\omega}2 \times \omega \times \omega$. Introducing "<u>B</u>" as an uninterpreted one place predicate constant, let φ_j be " $(\exists x) \neg (\exists y) \psi_j(\underline{B}, x, y)$." Let a condition be a finite sequence of members of $\bigcup I \cap ^{\omega}2$. Where $\langle f_0, \ldots, f_{k-1} \rangle = K$ is a condition, let

 $K \Vdash \underline{B}(\underline{m})$ iff $(m)_0 < k$ and $f_{(m)_0}((m)_1) = 1$.

Other clauses in the definition of forcing run as usual. Note that

$$K \Vdash \neg \underline{B}(m)$$
 iff $(m)_0 < k$ and $f_{(m)_0}((m)_1) = 0$.

Conditions may be coded as sequence numbers:

 $\langle n_0, \ldots, n_{k-1} \rangle$ codes $\langle \operatorname{sg}((f)_{n_0}), \ldots, \operatorname{sg}((f)_{n_{k-1}}) \rangle$,

where for any $x \in \omega$ and $h \in {}^{\omega}\omega$,

$$sg(h)(x) = \begin{cases} 0 & \text{if } h(x) = 0, \\ 1 & \text{otherwise.} \end{cases}$$

We abuse terminology and call sequence numbers conditions.

For $X \subseteq \omega$, $X^{(<k)} = \{\langle x, y \rangle \in X | x < k\}$. For a condition $K = \langle f_0, \ldots, f_{k-1} \rangle$, $\hat{K} = f_0 \oplus \cdots \oplus f_{k-1}$. If *B* is generic and extends *K*, we shall have $B^{(<k)} = \hat{K}$. For $\sigma \in \text{Str}$, σ is consistent with *K* iff for all $x < \text{lh}(\sigma)$, if $(x)_0 < k$, $(\sigma)_x = f_{(x)_0}((x)_1)$; *K* includes σ iff σ is consistent with *K* and for all $x < \text{lh}(\sigma)$, $(x)_0 < k$. All these definitions carry over to where *K* is a sequence number via the encoding previously described. From now on, conditions are sequence numbers.

The use of sg in this encoding leads to another abuse of terminology. For $K = \langle n_0, \ldots, n_{k-1} \rangle$, our qth guess at $X = ((f)_{n_0} \oplus \cdots \oplus (f)_{n_{k-1}})^{(2)}$ is $Y = (f)_{G(G(H(k, K, q), q), q)}$. Since $\hat{K}^{(2)}$ is clearly 1-reducible to X, we shall call Y our qth guess at $\hat{K}^{(2)}$.

LEMMA 4. " $K \Vdash \varphi_i$ " and " $K \Vdash \neg \varphi_i$ " are Σ_2^0 and \prod_2^0 in \hat{K} , respectively.

PROOF. $K \Vdash \neg (\exists y) \phi_j(n, y)$ iff for any $\sigma \in \text{Str and any } y$, if σ is consistent with K, " $\neg \phi_j(\underline{\sigma}, \underline{n}, \underline{y})$ " is true. Thus " $K \Vdash \phi_j$ " is Σ_2^0 in \hat{K} . For $X \subseteq \omega$ and $\ln(K) = k$, let $\Phi(K, X, m) = \hat{K} \cup \{\langle x + k, y \rangle | \langle x, y \rangle \in X^{(<m)}\}$. Notice that K' extends K iff for some $X \in \bigcup I \cap \omega^2$ and some m, $\hat{K}' = \Phi(K, X, m)$. Using this fact we can show that $K \Vdash \neg \phi_j$ iff for every $x, m \in \omega$ and $X \in \bigcup I \cap \omega^2$:

(†) there are $\sigma \in \text{Str}$ and y such that σ is consistent with $\Phi(K, X, m)$ and $\psi_i(\sigma, x, y)$.

(†) has the form " $(\exists \sigma)(\exists y)P(\hat{K}, X, m, \sigma, x, y)$ ", with P recursive. So $K \Vdash \neg \varphi_j$ iff for all x and m:

(††) for all $X \in \bigcup I \cap \omega^2$, $(\exists \sigma)(\exists y)P(\hat{K}, X, m, \sigma, x, y)$.

(††) is equivalent to a Σ_1^0 in \hat{K} formula by the Kreisel basis theorem and the fact that $\hat{K}^{(1)} \in \bigcup I$. Notice that here is where the difference between $\bigcup I$ and $\bigcup I \cap \mathscr{A}^2$ appears. We now have " $K \Vdash \neg \varphi_i$ " in a Π_2^0 in \hat{K} form. Q.E.D.

Our goal is to construct sequences $\{K_j\}_{j \le \omega}$, $\{x_j\}_{j \le \omega}$ and $\{\beta_i\}_{i \le \omega}$ such that:

(1) for all j, K_j is a condition and K_{j+1} extends K_j ;

(2) for all *j*,

if
$$x_j \ge 0$$
, $K_{2j+1} \Vdash \neg(\exists y) \phi_j(\underline{x}_j, y)$;
if $x_j = -1$, $K_{2j+1} \Vdash \neg \varphi_j$;

(3) for all j, $K_{2j+2} = K_{2j+1} \cap \langle j \rangle$;

(4) for all *i* and *j*, $\beta_i \in \text{Str}$, $\beta_{i+1} \preccurlyeq \beta_i$ and β_i is consistent with K_j .

Notice that (2) implies $\lim_{j \to 0} \ln(K_j) = \omega$, which with (4) implies that $\lim_{i \to 0} \beta_i = \bigcup_{j \in K_j} \hat{K}_j$.

Of course, such a construction cannot be carried out recursively in f. We resort to guessing at the sequences $\langle K_j \rangle_{j < \omega}$ and $\langle x_j \rangle_{j < \omega}$. At stage *i* we shall have z_i , for $j \le 2z_i$ guesses K_j^i at K_j , and for $j < z_i$ guesses x_j^i at x_j . Revising previous terminology, let (K', x) be a *j*-witness for K iff K' extends K and forces " $\neg(\exists y)$ $\psi_j(\underline{B}, \underline{x}, y)$ ". "(K', x) is a *j*-witness for K" and "K has a *j*-witness" are Π_1^0 and Σ_2^0 in \hat{K} , respectively. Clearly if K" extends K' and (K', x) is a *j*-witness for K, (K'', x)is also a *j*-witness for K. We shall say that (K, x) is consistent with a string β iff K is consistent with β . Notice that if K has no *j*-witness consistent with β , any condition extending K and including β forces φ_j . Fix an *f*-recursive function Incl such that: for β consistent with K, Incl(K, β) extends K and includes β . For example, where $\ln(K) = k$, and β is consistent with K, let

Incl(K,
$$\beta$$
) =

$$\begin{cases}
K & \text{if } K \text{ includes } \beta, \\
K^{\wedge} \langle n_k, \dots, n_l \rangle & \text{otherwise,}
\end{cases}$$

where for $k \le i \le l$, n_i is the least *n* such that for all $x < \ln(\beta)$ with $(x)_0 = i$, $(\beta)_x = sg((f)_{n_i})((x)_0)$. For $j < z_i$, we shall say that 2j + 1 has property 1 at stage *i* iff:

if $x_j^i \ge 0$ then (K_{2j+1}^i, x_j^i) is a *j*-witness for K_{2j}^i ;

if $x_{j}^{i} = -1$, then there is no *j*-witness for K_{2j}^{i} consistent with β_{i} .

We would like to have all 2j + 1 with property 1 at stage *i* for $j < z_i$. But to keep our construction recursive in *f*, we cannot be so straightforward. Instead we insure that for all stages *i*:

(1.*i*) for all $j < z_i$ our g(i)th guess at $(K_{2j}^i)^{(2)}$ says that 2j + 1 has property 1. Furthermore, we insure that for all stages *i*:

(2.*i*) if $z_i > 0$, β_i is included in $K_{2z_i-1}^i$. (This permits us to have $K_{2z_i}^i = K_{2z_i-1}^i \langle z_i \rangle$ without fear of destroying consistency with β_i .)

We now sketch the construction.

Stage 0. $z_0 = 0$, $K_0^0 = \langle \rangle$; $\beta_0 = \langle \rangle$, g(0) = 0. (1.0) and (2.0) are vacuously true.

Stage i + 1. Assume that z_i , g(i), β_i , $\langle K_j^i \rangle_{j \le 2z_i}$ and $\langle x_j^i \rangle_{j < z_i}$ are defined with (1.i) and (2.i) true. For $j < z_i$, 2j + 1 is bad at (i, q) iff our (g(i) + q + 1)st guess at $(K_{2j}^i)^{(2)}$ says that 2j + 1 lacks property 1. Call β a q-combination for 2j at stage i, where $j \le z_i$, iff $\beta \preccurlyeq \beta_i$, $\beta \le g(i) + q + 1$, β is consistent with K_{2j}^i , and: if our (g(i) + q + 1)st guess at $(K_{2j}^i)^{(2)}$ says that 2j + 1 lacks property 1. Call β a q-combination for 2j at stage i, where $j \le z_i$, iff $\beta \preccurlyeq \beta_i$, $\beta \le g(i) + q + 1$, β is consistent with K_{2j}^i , and: if our (g(i) + q + 1)st guess at $(K_{2j}^i)^{(2)}$ says that K_{2j}^i has a j-witness consistent with β , it identifies one in $\le g(i) + q + 1$ steps. This property is decidable in f. We shall say that q changes the guess at 2j + 1, for $j \le z_i$, iff for all k < j, 2k + 1 is not bad at (i, q), 2j + 1 is bad at (i, q), and there is a q-combination for 2j. We shall say that q creates a guess at $2z_i + 1$ iff for all $k \le z_i$, 2k + 1 is not bad at (i, q) and there is a q-combination for $2z_i$.

LEMMA 5. There is a q such that for some $j \leq z_i$, q either changes or creates a guess at 2j + 1.

PROOF. Fix $j^* =$ the least $j < z_i$ for which 2j + 1 lacks property 1, if there is one; $j^* = z_i$ otherwise. Suppose that for all $q \ge q_0$, our (g(i) + q + 1)st guess at $(K_{2k}^i)^{(2)}$ for any $k \le j^*$ is correct. Thus for $q \ge q_0$ if k < j, 2k + 1 is not bad at (i, q); if $j^* < z_i$, $2j^* + 1$ is bad at (i, q). Select a $\beta \le \beta_i$ which is consistent with $K_{2j^*}^i$. Thus for $k \le 2j^*$, β is consistent with K_k^i . If there is a j^* -witness for $K_{2j^*}^i$ consistent with β , let $q \ge q_0$ be large enough so that $(K_{2j}^i)^{(2)}$ identifies one in $\le g(i) + q + 1$ steps. β is a q-combination for $2j^*$. If $j^* < z_i$, q indicates a change at $2j^* + 1$; if $j^* = z_i$, q creates a guess at $2j^* + 1$. Q.E.D.

Notice that whether q is as described in Lemma 5 is decidable in f. So we may search, recursively in f, for the least such q. Let g(i + 1) = g(i) + q + 1; where j corresponds to q as required by Lemma 5, let $z_{i+1} = j + 1$. We abbreviate " z_{i+1} " as "z". Select β_{i+1} to be a q-combination for 2z - 2. We preserve previous guesses

as follows: $K_{k}^{i+1} = K_{k}^{i}$ for $k \le 2z - 2$; $x_{k}^{i+1} = x_{k}^{i}$ for k < z - 1. We now define x_{z-1}^{i+1} and K_{2z-1}^{i+1} .

If our g(i + 1)st guess at $(K_{2z-2}^{i})^{(2)}$ says that K_{2z-2}^{i+1} has a (z - 1)-witness consistent with β_{i+1} , it actually identifies some (K, x) as such a witness in $\leq g(i + 1)$ steps. Select the least such $\langle K, x \rangle$ and let $x_{z-1}^{i+1} = x$, $K_{2z-1}^{i+1} = \text{Incl}(K_{2z-2}^{i+1}, \beta_{i+1})$. Otherwise our guess says that K_{2z-2}^{i} has no (z - 1)-witness consistent with β_{i+1} . Let $x_{z-1}^{i+1} = -1$ and $K_{2z-1}^{i+1} = \text{Incl}(K_{2z-2}^{i+1}, \beta_{i+1})$. Notice that (1.i + 1) and (2.i + 1) are true. Let $K_{2z}^{i+1} = K_{2z-1}^{i+1} \langle z \rangle$. This construction settles down.

LEMMA 6. There are sequences $\{K_j\}_{j < \omega}$ and $\{x_j\}_{j < \omega}$, with $\{\beta_i\}_{i < \omega}$ as just constructed, such that (1)–(4) are true; furthermore for any k there is an i_k such that for all $i \ge i_i$:

(5) $z_i > k;$

(6) for all $j \le 2k, K_j^i = K_j$;

(7) for all $j < k, x_j^i = x_j$.

The proof is very much like that of Lemma 3, except easier, so we omit it.

Letting $B = \bigcup_{i} \hat{K}_{i}$, B is a parametrization of $\bigcup I \cap {}^{\omega}2$. Since $B = \lim_{i} \beta_{i}$, $B \leq_{T} f$. Since $f^{(1)}$ can tell us when our guesses at $(K_{2j}^{i})^{(2)}$ are correct, $B^{(2)} \leq_{T} f^{(1)}$. Q.E.D.

We do not know whether this theorem may be improved to: a is an u.u.b. on *I* iff for some weak u.u.b. b on *I*; $a = b^{(1)}$.

Combining this construction with the exact-pair construction we may obtain \underline{b} and \underline{c} in Theorem 1 which are both weak u.u.b.s on *I*.

. Clearly the **b** constructed in Theorem 2 (\Rightarrow) is strictly below **a**. This observation is strengthened by the following.

THEOREM 3. For a countable jump ideal I, $\{a \mid a \text{ is an } u.u.b. \text{ on } I\}$ has no minimal member.

PROOF. Let $f \in a$ parametrize $\bigcup I$. We construct $h <_T f$, h parametrizing $\bigcup I$. Let $\langle \phi_j \rangle_{j < \omega}$ be as in the previous proof; we introduce an uninterpreted binary predicate letter " \underline{H} " intended to denote the graph of a generic function. Let a condition be a sequence $K = \langle f_0, \ldots, f_{k-1} \rangle$ of members of $\bigcup I$. Let

$$K \Vdash \underline{H}(\underline{n}, \underline{m})$$
 iff $(n)_0 < k$ and $f_{(n)_0}((n)_1) = m$.

The other clauses in the definition of forcing are as usual. Again we note that

 $K \Vdash \neg H(\underline{n}, \underline{m})$ iff $(n)_0 < k$ and $f_{(n)_0}((n)_1) \neq m$.

Let \hat{K} be the partial function with domain $\omega^{(<k)}$ such that $\hat{K}(\langle i, x \rangle) = f_i(x)$. Since \hat{K} is partial, $\hat{K}^{(1)}$ is undefined; therefore we shall abuse notation and write " $\hat{K}^{(1)}$ " for " $(f_0 \oplus \cdots \oplus f_{k-1})^{(1)}$ ".

Notice that Lemma 1 provides a fixed f-recursive way of guessing at an f-index for that set, uniformly in a code for K. A finite function shall be one from a member of ω into ω . A finite function h is consistent with K iff for all $x \in \text{dom}(h)$ with $(x)_0 < k$, $\hat{K}(x) = h(x)$; K includes h iff $\text{dom}(h) \subseteq \omega^{(<k)}$ and h is consistent with K. R_j is the requirement $\{j\}^H \neq f$. K meets R_j with x in t steps iff for some y, $K \Vdash \{j\}^H(x)$ converges to y in t steps'' and $f(x) \neq y$. Where h is a partial function, we understand a computation in graph(h) to halt as soon as the oracle for graph(h) is asked: "Is $\langle x, y \rangle \in \text{graph}(h)$?" for $x \notin \text{dom}(h)$. With this understanding, observe that K has an extension meeting R_j with x in t steps iff there is a finite function consistent with K and a $y \neq f(x)$ such that $\{j\}^{graph(h)}(x)$ converges to y in t steps; we may search for such an h recursively in \hat{K} , since finite functions code as sequence numbers.

Let sequence numbers encode conditions by $\langle n_0, \ldots, n_{k-1} \rangle \mapsto \langle (f)_{n_0}, \ldots, (f)_{n_{k-1}} \rangle$. So we freely abuse our terminology and treat sequence numbers as conditions.

Fix an *f*-recursive function Incl such that for a finite h consistent with K, Incl(K, h) extends K and includes h. (For example, vary the corresponding definition in the previous proof.)

Let (K', x) be a *j*-witness for K iff K' extends K and meets R_j with $(x)_0$ in $\leq (x)_1$, steps. Call h consistent with (K, x) iff consistent with K. Suppose K has no *j*-witness consistent with a finite function h, K' extends K and includes h. Then for some x, $K' \models ``\{j\}^{H}(x)$ is undefined.'' Suppose not. We may define f by f(x) = y iff

(*) some finite function h' is consistent with K' and $\{j\}^{\operatorname{graph}(h')}(x) = y$.

Here is why. By our assumption, for any x, K' has an extension K'' forcing " $\{j\}^{H}(x)$ is defined." Since K'' includes h, (K'', x) is not a *j*-witness for K. So if $K'' \Vdash$ " $\{j\}^{H}(x) = y$ ", y = f(x). The existence of such a K'' is equivalent with (*). We would like to define sequences $\{K_i\}_{i \le \omega}$, $\{x_i\}_{i \le \omega}$ and $\{h_i\}_{i \le \omega}$ such that:

(1) for each j, K_j is a condition;

(2) for each j,

if $x_j \ge 0$, (K_{2j+1}, x_j) is a *j*-witness for K_{2j} ; if $x_j = -1$, K_{2j+1} , \Vdash " $\{\underline{j}\}^{\underline{H}}(x)$ is undefined" for some x;

(3) for each j, $K_{2j+2} = K_{2j+1} \langle j \rangle$;

(4) for each *i* and *j*, h_i is a finite function, h_{i+1} properly extends h_i , and h_i is consistent with K_i .

(3) implies that $h = \lim_{i \to j} \hat{K}_{i}$ is total;

(4) implies that $h = \lim_{i} h_i$. By (3), h parametrizes ()I. By (2) $f \not\leq_T h$.

To make this construction recursive in f, we resort to guessing. At stage i, we shall have z_i , h_i , g(i), for $j \le 2z_i$ a guess K_j^i at K_j , and for $j \le z_i$ a guess x_j^i at x_j . We make sure that at each stage i:

(1.i) for $j < z_i$, if $x_j^i \ge 0$, (K_{2j+1}^i, x_j^i) is a j-witness for K_{2j}^i ;

(2.*i*) for $j < z_i$, if $x_i^i = -1$, our g(i)th guess at $(K_{2i}^i)^{(1)}$ says

(*, *i*, *j*) for some $x \le g(i)$ for all finite *h* consistent with K_{2j}^i and h_i , $\{j\}^{\operatorname{graph}(h)}(x)$ is undefined.

(3.*i*) $K_{2z_i-1}^i$ includes h_i .

We now describe the construction.

Stage 0. $z_0 = 0$, $h_0 =$ the null function, $K_0^0 = \langle \rangle$, g(0) = 0.

Stage i + 1. Suppose we have t_i , h_i , g(i), $\langle K_j^i \rangle_{j \le 2z_i}$, $\langle x_j^i \rangle_{j \le z_i}$, with (1.i)-(3.i) true. For $j < z_i$, 2j + 1 is bad at (i, q) iff $x_j^i = -1$ and our (g(i) + q + 1)st guess at $(\overline{K_{2j}})^{(1)}$ says that (*, i, j) is false. For a finite function h, (h, x) is a q-combination for 2j at i iff h properly extends h_i , $\langle h, x \rangle \le g(i) + q + 1$, and $\{j\}^{\text{graph}(h)}((x)_0)$ is defined in $(x)_1$ steps and has value $\neq f((x)_0)$.

We shall say that q changes the guess for 2j + 1 at stage i iff: for all k < j, 2k + 1 is not bad at (i, q), 2j + 1 is, and there is a q-combination for 2j. We shall say that q creates a guess for $2z_i = 1$ iff: for all $k < z_i$, 2k + 1 is not bad at (i, q), and either there is a q-combination for $2z_i$ or else q = 0 and our (g(i) + 1)st guess at $(K_{2j})^{(1)}$ says that $(*, i, z_i)$ is true.

LEMMA 7. Some q either changes or creates a guess.

Proof is very much like that of Lemma 5.

Whether q changes or creates a guess is decidable in f. So recursively in f we search for the least such q. Let g(i + 1) = g(i) + q + 1. If q changes or creates a guess at 2j + 1, let $j + 1 = z_{i+1}$. Letting $z = z_{i+1}$, we preserve earlier guesses:

for
$$j \le 2z - 2$$
, $K_i^{i+1} = K_j$; for $j < z - 1$, $x_i^{i+1} = x_i^i$.

If there is a q-combination for 2z - 2, let (h_{i+1}, x_{z-1}^{i+1}) be the least such. Otherwise let $x_{z-1}^{i+1} = -1$ and $h_{i+1} = h_i \cup \{ \langle \text{dom}(h_i), 0 \rangle \}$. Let $K_{2z-1}^{i+1} = \text{Incl}(K_{2z-2}^{i+1}, h_{i+1})$. Notice that (1.i + 1) - (3.i + 1) are true. Now let $K_{2z}^{i+1} = K_{2z-1}^{i+1} - \langle z \rangle$.

LEMMA 8. With $\langle h_i \rangle_{i < \omega}$ as just constructed, there are sequences $\langle K_j \rangle_{j < \omega}$ and $\langle x_j \rangle_{j < \omega}$ of which (1)–(4) are true; furthermore for each k there is an i_k such that for all $i \ge i_k$:

(5) for $j \le 2k$, $K_j = K_j^i$;

(6) for $j < k, x_j = x_j^i$.

The proof of this lemma should now be routine. Because this entire construction is recursive in f, and $h = \lim_{i} h_i$, $h \leq_T f$. So by preliminary remarks, we are done. Q.E.D.

Where *I* is a countable jump ideal *a* is a nice u.u.b. on *I* iff *a* is the degree of a nice parametrization of $\bigcup I$; a parametrization *f* of $\bigcup I$ is nice iff for some $G \leq_T f$, $H \leq_T f$, for all *x* and *y*: $(f)_{G(x)} = (f)_x^{(1)}$; $(f)_{H(x,y)} = (f)_x \oplus (f)_y$. This notion is introduced in [1]; in [2] it is shown that *a* is a nice u.u.b. on *I* iff for some u.u.b. *b* on *I*, $a = b^{(1)}$. In [2] the following notions are defined. *I* is a hierarchy ideal iff for some $A \subseteq \omega$ and some α , $\bigcup I = L_{\alpha}[A] \cap {}^{\omega}\omega$. *I* is a case 1 hierarchy ideal iff for some $B \in L_{\alpha}[A]$, $\alpha < \omega_1^B$ and $\bigcup I = L_{\alpha}[A] \cap {}^{\omega}\omega$; *I* is a case 2 hierarchy ideal iff for some $B \in L_{\alpha}[A]$, $\alpha = \omega_1^B$ and $\bigcup I = L_{\alpha}[A] \cup {}^{\omega}\omega$; *I* is a case 3 hierarchy ideal iff it is a hierarchy ideal not falling under cases 1 or 2. Any case 1 hierarchy ideal has a least nice u.u.b.; for example, if $\bigcup I = \{f | f \text{ is arithmetic}\}$, that nice u.u.b. is $0^{(\omega)}$. In [2] it is asked whether any case 2 or case 3 hierarchy ideals have a minimal nice u.u.b. The technique of Theorem 3 may be modified to provide a negative answer.

THEOREM 4. For I a case 2 or case 3 hierarchy ideal, $\{a \mid a \text{ is a nice u.u.b. on } I\}$ has no minimal member.

PROOF. Let $f \in a$ be a nice parametrization of $\bigcup I$. It suffices to construct a parametrization h of $\bigcup I$ with $h^{(1)} <_T f$. Let conditions and forcing be as in the previous proofs except that " \underline{H} " is monadic, and:

$$K \Vdash \underline{H}(\underline{x})$$
 iff for $= \langle n, m \rangle$, $\langle n \rangle_0 < k$ and for $K = \langle f_0, \dots, f_{k-1} \rangle$, $f_{\langle n \rangle_0}(\langle n \rangle_1) = m$.

This way " $x \in \underline{H}^{(1)}$ " makes sense. Let R_j be the requirement $\{j\}^{H^{(1)}} \neq f$. K meets R_j with x iff for some $y \neq f(x)$, $K \Vdash "\{j\}^{\underline{H}^{(1)}}(\underline{x}) = y$." Because f is nice, whether

 $K \Vdash ``\{j\}^{\underline{H}^{(1)}}(\underline{x}) = \underline{y}$ '' is decidable in f. Let (K', x) be a j-witness for K iff K' extends K and meets R_i with x.

LEMMA 9. Suppose K is consistent with a finite function h. If there is no j-witness for K consistent with h, and K' extends K and includes h, then for some x, $K' \Vdash$ " $\{j\}^{\underline{H}^{(1)}}(x)$ is undefined."

PROOF. If not, we may define f by f(x) = y iff some extension of K' forces " $\{j\}^{H^{(1)}}(x) = y$ ". " $\langle f_0, \ldots, f_{k-1} \rangle \Vdash$ " $\{j\}^{H^{(1)}}(x) = y$ " is Σ_2^0 in $f_0 \oplus \cdots \oplus f_{k-1}$. So f is Σ_1^1 over $\bigcup I$ with graph(K') as a parameter. Since f is a function, f is even Δ_1^1 over $(\bigcup I$ in that parameter.

By familiar facts about hyperarithmeticity, in case 2, $f \leq_{\text{HYP}} \text{graph}(\widehat{K'})$; in case 3, f is recursive in the hyperjump of $\text{graph}(\widehat{K'})$ which belongs to $\bigcup I$. Either way, $f \in \bigcup I$, contradiction. Q.E.D.

The construction of h is much like that used for Theorem 3, with " $\{j\}_{i}^{H^{(1)}}$ " replacing " $\{j\}_{i}^{H^{(1)}}$ ". But (2.*i*) must be changed to: if $j < z_i$, if $x_j^i = -1$ then there is no *j*-witness for K_{2i}^i which is consistent with h_i and $\leq g(i)$.

The notion of being bad at (i, q) is correspondingly changed. (We are forcing Σ_2^0 and Π_2^0 sentences; so $K_{2j}^{i(1)}$ cannot tell us how to select K_{2j+1}^i . Since f is nice, "K has a *j*-witness consistent with h_i " is Σ_1^0 in f; thus guessing at $K_{2j}^{i(1)}$ is replaced by a search recursive in f.) The rest is routine. Q.E.D.

In conclusion, we note that weak u.u.b.s remain shrouded in mystery. For example: are any weak u.u.b.s also minimal u.b.s? The technique of Theorem 3 does not yield a negative answer, for it cannot construct objects recursive in weak u.u.b.s which are not also u.u.b.s. It essentially involves guessing at jumps as described in the guessing lemma; thus by the remark immediately following the proof of the guessing lemma, the previous claim follows. Hopefully the techniques involved in answering questions like the one just posed will suggest a degreetheoretic definition of a weak u.u.b. in some way analogous to that of Theorem 1.

BIBLIOGRAPHY

[1] G. HENSEL and H. PUTNAM, On the notational independence of various hierarchies of degrees of unsolvability, this JOURNAL, vol. 30 (1965), pp. 64–86.

[2] H. HODES, Uniform upper bounds on ideals of Turing degrees, this JOURNAL, vol. 43 (1978), pp. 601-612.

[3] C. JOCKUSCH and S. SIMPSON, A degree-theoretic characterization of the ramified analytical hierarchy, Annals of Mathematical Logic, vol. 10 (1976), pp. 1–32.

DEPARTMENT OF PHILOSOPHY CORNELL UNIVERSITY ITHACA, NEW YORK 14853