
More About Uniform Upper Bounds on Ideals of Turing Degrees

Author(s): Harold T. Hodes

Source: The Journal of Symbolic Logic , Jun., 1983, Vol. 48, No. 2 (Jun., 1983), pp. 441-
457

Published by: Association for Symbolic Logic

Stable URL: https://www.jstor.org/stable/2273561

REFERENCES
Linked references are available on JSTOR for this article:
https://www.jstor.org/stable/2273561?seq=1&cid=pdf-
reference#references_tab_contents
You may need to log in to JSTOR to access the linked references.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide
range of content in a trusted digital archive. We use information technology and tools to increase productivity and
facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at
https://about.jstor.org/terms

Association for Symbolic Logic is collaborating with JSTOR to digitize, preserve and extend
access to The Journal of Symbolic Logic

This content downloaded from
������������132.174.252.179 on Wed, 16 Feb 2022 02:29:07 UTC������������

All use subject to https://about.jstor.org/terms

https://www.jstor.org/stable/2273561
https://www.jstor.org/stable/2273561?seq=1&cid=pdf-reference#references_tab_contents
https://www.jstor.org/stable/2273561?seq=1&cid=pdf-reference#references_tab_contents

 THE JOURNAL OF SYMBOLIC LOGIC

 Volume 48, Number 2, June 1983

 MORE ABOUT UNIFORM UPPER BOUNDS ON IDEALS OF

 TURING DEGREES1

 HAROLD T. HODES

 Abstract. Let I be a countable jump ideal in 9 = <The Turing degrees, <>. The

 central theorem of this paper is:

 a is a uniform upper bound on I iff a computes the join of an I-exact pair whose double
 jump a"1' computes.

 We may replace "the join of an I-exact pair" in the above theorem by "a weak

 uniform upper bound on I".

 We also answer two minimality questions: the class of uniform upper bounds on I

 never has a minimal member; if U I = La[A] n Aw for a admissible or a limit of
 admissibles, the same holds for nice uniform upper bounds.

 The central technique used in proving these theorems consists in this: by trial and error

 construct a generic sequence approximating the desired object; simultaneously settle
 definitely on finite pieces of that object; make sure that the guessing settles down to the

 object determined by the limit of these finite pieces.

 Fix recursive pairing and unpairing functions on co, such that x = <(x)0, (x)1>.

 For f: () w-), let (f)x(y) = f(<x, y>). If F c wWc, f parametrizes A iff be =
 {(f)XIx E w}. We depart from standard practice and view Turing degrees as equiv-
 alence classes on WcW, not 9(cw), under T. This has no importance; the following
 definitions could be rephrased to apply to Turing degrees as usually defined. All

 degrees in this paper are Turing degrees.

 A degree a is a uniform upper bound (u.u.b.) on a class I of degrees iff some

 f E a parametrizes UI; a is a weak u.u.b. if some f E a parametrizes U I n rw2. I is
 an ideal if I is downward closed under ? and closed under join. I is a jump ideal
 iff I is an ideal closed under jump. Where I is an ideal, the pair (b, c) is I-exact iff

 I = {dld < b & d < c}. Recent results of Shore imply that there is a degree-theore-
 tic definition of the relation: a is a u.u.b. on I, where I is a countable jump ideal;

 it is obtained by encoding the analytic definition of a u.u.b. into degree-theoretic
 terms. The central result of this paper provides a more natural degree-theoretic

 definition of this relation.

 THEOREM 1. Where I is a countable jump ideal: a is a u.u.b. on I iff there is an I-
 exact pair (b, c),b v c < aand (b v c) (2) -< ab.

 The technique used in proving the hard direction (=) is then extended to an-
 swer further questions about u.u.b.s, some of which were raised in [2].

 For Y c {(f)XIxe wo}, f is a subparametrization of -. Let f = fo ? * * fn1
 iff for all x, f(x) = fi((x)1) if (x)0 = i < n, f(x) = 0 otherwise.

 Received May 10, 1981.

 'I wish to thank David Posner for an illuminating discussion which led to all these theorems.
 ? 1983, Association for Symbolic Logic

 0022-4812/83/4802-0021 /$02.70

 441

This content downloaded from
������������132.174.252.179 on Wed, 16 Feb 2022 02:29:07 UTC������������

All use subject to https://about.jstor.org/terms

 442 HAROLD T. HODES

 GUESSING LEMMA. Let I be an ideal of degrees,f subparametrizes UI. There are two
 and three-place partialf-recursive functions G and H such that:

 (1) if(f)x0 ED - - - (f)xm-i E UI then limH(m, <xo, ..., Xml>, n) exists and
 if it is Z, (A = (f)0 ... 0 (f)xm-1;

 (2) if (f)I) E U 1, then limG(x, n) exists and if it is z, (f)z = (f)(T.
 (Here <xo, .. . , xm> is a recursive coding offinite sequences from wo into w.)
 PROOF. We construct G.

 Let

 (the least t such that {u}(f)x(u) converges in t steps

 g(x, u) = if there is such a t;

 Lo otherwise.

 AU. g(X, u) =T(f)(X). Thus if (f)(1) e UI Au. g(x, u) e UL' Let h be a non-
 decreasing function which eventually dominates each member of UI' h <T f:

 for example, h(z) = max,<Z(f)J(u). We shall say that z is a candidate for x at step
 n iff for every u < n:

 I if {u}(f)x(u) converges in h(u) + n steps,
 (f~u 0 if not.

 Given x, select uo such that for all u ? uo, h(u) ? g(x, u). Let no = max{g(x, u)j
 u < uQ}. For n ? no, if z is a candidate for x at step n, (f)z r n = (f)(1) r n, since
 for all u, g(x, u) < h(u) + n. Let G(x, n) = the least z which is a candidate for x

 at step n. Suppose that (f)(1) E UI' zo is the least z such that (f)z = (f)(1), and n1
 is the least n such that for each z < zo, (f)z(n) + (f)zo(n) for some n < n1. Then for
 n ? max(no, n1) and any z < zo, z is not a candidate for x at step n. But zo is one
 as of step n. So G(x, n) = zo for such n. The construction of H is easier and we
 omit it. Q.E.D.

 We note the following. Suppose f parametrizes Ui n f2 and 0 E I. deg(f) is
 a u.u.b. on I iff there is a G < Tf as above which guesses at the location of jumps.
 This is easy to prove.

 Let g = * h iff for all but finitely many x, g(x) = h(x).
 LEMMA 1. If I is a set of degrees and f is a function such that for every g E UI

 there is an e such that g = * (f)e, and for every e, (f)e E ULI then deg(f) is a u.u.b.
 on L

 PROOF. Let Seq be the set of sequence numbers, letting s = <(s)o, * , (S)1h(,)-1>*
 Let

 ((f)o(x) if s ? Seq,

 ()es> (X) = l(s). if s 0 Seq & x < lh(s),

 t(f)e(X) if otherwise.

 / < Tf and / parametrizes UL Since the class of u.u.b's on I is closed upwards,
 deg(f) is a u.u.b. on L Q.E.D.

 PROOF OF THEOREM 1 (I). Suppose (b, c) is I-exact, b v c < a and (b V C) (2) <
 a(?, A E a, B E b, C E c. Since (B (C)(2) < T A (1), recursively in A we may guess

This content downloaded from
������������132.174.252.179 on Wed, 16 Feb 2022 02:29:07 UTC������������

All use subject to https://about.jstor.org/terms

 UNIFORM UPPER BOUNDS ON IDEALS OF TURING DEGREES 443

 at the truth of 1I sentences about B and C so that in the limit these guesses are
 correct. Letf be such that

 0 if for some t ? max(x, n), the tth guess is

 J that for some y, either {e1}B(y) is undefined

 (f)?eIe2>,n>(x) =W or {e1}B(y) ? {e2}B(y), and either t =
 max(x, n) or {e1}B(x) is undefined;

 ,{eC}B(X) otherwise.

 f < T A. In the otherwise case, {eC}B(X) is defined, since in the limit our guesses
 at whether 1 (Vy)({ei}B(y) is defined & {e1}B(y) = {e2}C(y)) are right. If {eC}B is

 total and {e1}B = {e2}C, then (f)(e41e2>,n> =* {e1}B; otherwise (fAe1,e2>,n> =* {x- 0
 By Lemma 1, a is a u.u.b. on L

 (=-). Let Str be the set of finite strings of O's and l's, coded into c). For a, IC E Str,

 ^z is the concatenation of a and v; a - - iff a extends v; a -< - iff a v - and

 o z . P is a tree iff P: Str -k Str and for all a, - e Str, ifc -i a then P(r) P(a).
 A tree P is perfect iff for all a E Str, P(ao<0>) is strictly left of P(o^< 1 >) in the lexico-
 graphic ordering of Str. For C E w2, C < a if a codes an initial segment of C. Let
 B E [P] iff B is a branch of P iff for some C E w2, B = lim{P(a) IC ? ac}. P is
 uniformly recursively pointed iff for some e: for all B E [P], P = {e}B. We code
 B E 02 into a tree P, yielding a tree Code(P, B), as follows:

 Code(P, B)(< >) = P(< >),

 Code(P, B)(a) = P(<B(O), (O)0, ..., B(lh(o) - 1), (o)1h(,)-1>) for lh (a) ? 1.
 Abusing notation, we write Code(P, f) for Code(P, graph(f)).

 A condition is a pair <P, Q> of uniformly recursively pointed perfect trees be-
 longing to UI such that P T Q. P is a subtree of Q iff for all a E Str, P(a) < Q(a).
 Where <P, Q> and <R, S> are conditions, <P, Q> extends <R, S> iff P and Q are
 subtrees of R and S, respectively. Code(<P, Q>, f) = <Code(P, f), Code(Q, f)>.
 Forfe UI, this is a condition.

 Let Str(l) = {a I e Str & lh(a) < l}. A function P: Str(l) -- Str is a pretree iff
 P fulfills the definition of a perfect tree, except with domain restricted to Str(l); I is
 the height of P = ht(P). If P is a perfect tree, P r Str(l) is a pretree of height 1. If

 for each I < c), PI is a pretree of height I and PI c P1+1, UK<Pl> is a perfect tree.
 A precondition of height I is a pair of pretrees of height 1. Since pretrees and pre-

 conditions are finite objects, we code them into c). A pretree P is a subpretree of a
 tree or pretree R iff for each a E dom(P) there is a - EC dom(R), - < a and P(a) =
 R(i). If P is a subpretree of R and a E dom(P), a E dom(R) and P(a) < R(a); if,
 furthermore, R is a pretree, ht(P) < ht(R). <P, Q> is a subprecondition of a con-
 dition or precondition <R, S> if P and Q are subpretrees of R and S, respectively.

 Suppose that for each I < wo <PI, QI> is a subprecondition of a condition <R, S>,
 I = ht(<Pl, QI>), <PI1+, Ql+i> is a subprecondition of <PI, Ql>, and <<PI, Q?>>1<C,
 is recursive in R dg) S; then lim(<Pl, QI> = <UIPI, UIQI> is a condition extending
 <R, S>.

 For P a pretree and B E w2, we may code as much of B as possible into P, letting:
 Code(P, B)(< >) = P(< >),

 Code(P, B)(a) - P(<B(O), (a)0, ..., B(lh(a) - 1), ()1h()-1>), for lh(a) 2 1.
 Note that if ht(P) = 21 or = 21 + 1, Code (P, B) has height 1. We define

This content downloaded from
������������132.174.252.179 on Wed, 16 Feb 2022 02:29:07 UTC������������

All use subject to https://about.jstor.org/terms

 444 HAROLD T. HODES

 "Code(Pf)" and Code(<P, Q>,f) where <P, Q> is a precondition, as one would
 expect.

 For P a tree or pretree and a E Str, we shall say that a is on P iff for some IC E
 dom(P), P(r) < a. Full is the tree id r Str. Where P is a tree or pretree, Full(P, a)
 is the tree or pretree determined by Full(P, o)(r) = P(ao<r). Note that if P is a pre-
 tree of height 1, Full(P, a) is totally undefined, and so technically not a pretree, if
 1 < lh(a).

 Fix a listing <(b>j<(,, of all primitive recursive relations on W2 x W2 x c) x c).
 Introducing "B" and "C" as uninterpreted predicate constants, let (pi be "(3x)
 (3y) oby (.8, C, x, y)." We now define forcing, for <P, Q> a condition.

 <P, Q> HF -q iff for all <B, C> E [P] x [Q], <B, C> I= fpj;
 <P, Q> HF f j iff for some n for all <B, C> E [P] x [Q],

 <B, C> 1= -'(3y)0j(BB C, Ci, y).

 [3] contains a proof of the crucial density theorem: any condition extends to a
 condition deciding qo. Implicit in that proof is the construction of a function

 force(j, <P, Q>) with domain ? co such that, letting force(j, <P, Q>)(l)=
 <Pl) I QYD):

 (1) force(j, <P, Q>)(l) is, if defined, a subprecondition of <P, Q> of height 1;
 (2) if 1 + 1 E dom(force(j, <P, Q>)),

 force(j, <P, Q>)(l) = <P(l + 1) r Str(l), Q(l + 1) r Str(l)>;

 (3) for 1 e dom(force(j, <P, Q>)), a, r strings of length 1, there is a y, , such that
 (P(l)(), Q(l)(T), 1, ya, r). (Following a standard convention, "Ob(o a, x, y)" means

 "For all B -< a, C -< z, Ob(B, C, x, y)".) To compute force (j, <P, Q>)(O), we search
 for strings a and r of the same length and for a y<,<, so that Obj(P(a), Q(j), 0,
 y< >, < >), and let P(O)(< >) = P(o), Q(O)(< >) = Q(zr). Call these chosen a and z,
 if they exist, < >' and < >", respectively. Now suppose that force(j, <P, Q>)(l)
 O mP(l), Q(l)> has been computed; for p E Str(l), we suppose that p' and p" have
 been defined, P(l)(N) = P(p'), Q(l)(p) = Q(p"). We now try to compute P(l + 1)
 and Q(l + 1) on all of Str(l + 1). By our computation of P(l) and Q(l) and (2), it
 suffices to do this for strings of length 1 + 1. Let ,,i .. *, 21+1, T1, * *** T21+1 be two
 lists of all strings of length 1 + 1. We search for strings a, . . ., 0+, .I if
 z'+i all of the same length, and for witnesses yuirk, i, k E {1, .. ., 21+1}, such that
 for ori = o^<m> and Zk = z-<n>, a' < o'-<m> and 4' < z"-<n>, and 0j(P(or),
 Q(z')' 1 + 1, Yai,rk); we let P(l + 1)(O,) = P(Or), Q(l + l)(Zk) = Q(z). For details
 on this search, see [3]. This search is recursive in P i) Q. So force(j, <P, Q>) is
 partial recursive in P E Q, uniformly in j and <P, Q>, by the procedure outlined.
 "Force (], <P, Q>)(l) is defined in q steps" means that according to the procedure
 just outlined, that computation converges in q steps. If force(j, <P, Q>) is total,
 lim~force (j, <P, Q>)(l) = <UIP(l), UIQ&()> is a condition forcing -'q.

 On the other hand, suppose force(j, <P, Q>) is not total. Call <1, a, r> aj-witness
 for <P, Q> iff a, r E Str, lh(a) = lh(r), and <Full(P, a), Full(Q, z)> IF
 -'(3y)0j(B, C, 1, y). We now find a]-witness for <P, Q>. Let 1 be the least 1 0
 dom(force(j,<P, Q>)). If 1 = 0, let or = = < >. If 1 = x + 1, let <pi,' k> be the
 least pair selected from the lists ao, ..*, o21; fl, . . * I2l, for which we cannot find

This content downloaded from
������������132.174.252.179 on Wed, 16 Feb 2022 02:29:07 UTC������������

All use subject to https://about.jstor.org/terms

 UNIFORM UPPER BOUNDS ON IDEALS OF TURING DEGREES 445

 appropriate a', z' and YGk* Letting oi = o^<n>, Zk = z?^<m>, let or = (o)'-<n>,
 = (r0)'-<m>. <1, a, r> is easily seen to be a j-witness for <P, Q>. Notice that

 lh(a) = lh(r), since in defining 13(x) and Q(x) we required that lh((or0)') = lh((-r)').
 We have just described a procedure recursive in (P G3 Q)(1) which halts iff
 force(j, <P, Q>) is partial, and, if it halts, delivers a j-witness for <P, Q>. Call
 this procedure Wit(j,<P, Q>).

 The construction of force(j, <P, Q>)(O), and then of force(j, <P, Q>)(l + 1)
 given force(j, <P, Q>)(l), proceeds by working down P and Q, thinking of trees as
 growing downwards. Thus we may extend our definition of force(j, <P, Q>)
 to apply to the case in which <P, Q> is a precondition. In this case,
 dom(force(j,<P, Q>)) is finite, and in fact, < ht(<P, Q>).

 Fix ft a, parametrizing UL We wish to construct B, C e w2, <deg(B), deg(C)>
 I-exact, (B G C) (2) < T f (1) and B G C ? T f

 A natural strategy suggests that we try to construct a sequence of conditions

 {<Pj, Qj>lj<,, and an auxiliary sequence {<x;, op, rj>}j<,, such that:
 (1) PO = QO = Full;
 (2) for all j:
 (2a) if xj ? 0 then

 <Xi, Orj, rj> = Wit(j, <P2i, Q2j>)

 and

 <P2j+l, Q2i+l> = <Full(P2j, Ori), Full(Q2i, ,.)>;

 (2b) if xj = -1, aj = = < > and force(j, <P2i, Q2,>) is total and

 <P2j+l, Q2j+l> = lim force(j, <P2i, Q2j>)(1);

 (3) for all j,

 <P2j+2, Q2j+2> = Code(<P2j+1, Q2j+l>, (f),)-

 Then we shall let {B} = fljP], {C} = fl[Q,]. Choice of <P2j+2, Q2j+2> insures
 that (f)j < T B and (f)j < T C. The genericity of the sequence of conditions insures
 thatifg <TBandg <TC,gre UIL

 We also want our construction to be recursive in f But choice of <P2j+1, Q2j+1>
 or, equivalently, of <Xj, 07, rj>, depends on facts about (P21 G Q2J) (2) which can-
 not be decided uniformly in j and recursively in f A further difficulty appears when
 we specify the sense in which we would like {<Pj, Qj>}j<, to be recursive in f.
 We want an f-recursive function j + <n,, mj> such that Pj = (f)n,; Q, = (fm;
 and such a function may not exist. Instead we proceed by gue-sing, recursively in
 f, at the previously described construction.

 For x > 1, let d(x) = y iff x = 2y + 1 or x = 2y + 2. At stage i of our con-

 struction we will have a number zi > 1 and, for each j < zi, a guess <Pi, Qj>
 at <Pj, Qj>, and, for each j < d(z), guesses xi, ai and ri at xj, aj and rj. P5
 and Qi are functions, dom(PI) = dom(Q,) < w such that, letting <Pi, Qi>(l) =
 <Pj(l), Qi(l)>, <Pi, Qi> (1) is, if defined, a precondition of hight 1 such that:

 (1') <P61, QO> (1) = <Full r Str(l), Full r Str(l)>;
 (2') for all j < d(z), if xi > 0,

This content downloaded from
������������132.174.252.179 on Wed, 16 Feb 2022 02:29:07 UTC������������

All use subject to https://about.jstor.org/terms

 446 HAROLD T. HODES

 KP2j+1, Q2i+?> (1) - <Full (Pi (k + 1), oa), Full (Qii(k + 1), ,n)>,

 where lh(ai) = lh(r,) = k;
 if xi 1, A = ri = < > and

 <Pi +1, Q i +1> (l) forced, <P~i, Qij>(1'))(1)

 for an 1' e dom(<PIj, Qij>), but large enough for the right-hand side to be defined,
 if such there be;

 (3') for all 2j + 2 < zi,

 <P~'j+2, Q2ij+2> (l) - Code(<P2ij+,, Qij+,> (21), (f)j).

 For reasons to appear shortly, we need to modify this outline in one respect.

 In the sequence described by (1)-(3) we shall add, between consecutive conditions
 <Pj, Qj> and <Pj+,1, Qj+i>, an intermediate condition <P7*, Qt>, determined by
 strings 3j and ej of equal length, so that:

 (4*) for all j,

 <P7*, Q*> = <Full(Pj, 5j), Full(Qj, &,)>,

 with (2) and (3) revised to (2*) and (3*), (2*) saying that <P2j+l, Q2j+1> is formed
 from <Pt*, Q * > in the way in which (2) says it is formed from <P2i, Q2j>, and
 (3*) saying that <P2j+2, Q2j+2> is formed from <P*+1, Q*+1> in the way in which
 (3) says it is formed from <P2i, Q2j>. In our guessing construction, at stage i for
 all j < zi we shall have guesses 6j and ai at 3j and ej and guesses <Pi*, Q;*> at
 <P*, Qt> given by:

 (4 *) for j < zi,

 <Pi* Qi*> (1) - <Full(Pi(k + 1), Full(Qi, (k + 1), ai)>,

 for k = lh(W) =lh(&).

 (2') and (3') are now revised to (2'*) and (3'*), following the obvious analogy with

 (2*) and (3*).
 If our guess converges appropriately, we shall have (B G C) (2) < T(l). To insure

 that B (C < Tf we must supplement the guessing procedure just described with
 a nonguessing process such that for each n we can f-recursively find a stage i which

 definitely settles the questions "n e B?" and "n E C?".

 To this end we construct sequences {Pi}i<(, and {rj}j< of strings Pi+1
 ?j+1 - ri, and we make sure that B = limipi, C = limtj. P3i and ri will be fixed
 at stage i on the basis of our guesses as of stage i. But thereafter any further guesses,

 including revisions of guesses on the basis of which pi and ri were fixed, must honor
 the commitments that B < j3i and C < ri* This is where ,i and ei come in; when

 we make a decision at stage i about what <Pj+,, Qj+,> looks like, we shall choose
 r Ci to "protect" pi and ri; that is, we shall try to make sure that Pj+,(< >) S

 Pt(< >) -S Pi and Qj+,(< >) S Q*?1(< >) ? ri. To carry all this out, at stage i
 we shall actually have to compute, for each j = zi, <Pi, Qi>(kl) for a certain ki.
 To this end, we introduce functions 1;, i < zi, and lj*, j < zi. Intuitively, lj(q) is
 the largest 1 such that we can compute <KPji, Q,> (1) in < q steps; 1j*(q) is the largest

 1 such that we can compute <Pi*, Qua > (1) in < q steps. 11 or lji* may be undefined on

This content downloaded from
������������132.174.252.179 on Wed, 16 Feb 2022 02:29:07 UTC������������

All use subject to https://about.jstor.org/terms

 UNIFORM UPPER BOUNDS ON IDEALS OF TURING DEGREES 447

 an initial segment of co, since it can take a while even to compute (Pi, Qi> (0) or
 <Pi*, Qi*>(0). But if defined, Il(q) E dom(<Pji, Q.>), and for q < q', li(q') is
 defined and > lI(q); similarly for I/t* If li+1(q) is defined, <Pi 1, Qi 1>(lf+1(q)) is
 a subprecondition of <P,*, QI*> (Ij*(q)) with l,*(q) defined; if li*(q) is defined,
 <Pi*, Qi*> (Ii*(q)) is a subprecondition of <Pi, Qi> (li(q)), with l(q) defined.
 Furthermore, for] < zi, if limql/(q) = co then limqli*(q) = co; for 2j + 1 < zi, if
 limql/* 1(q) = co then limql j+2(q) = Cv; for 2j < zi, if limqli,(q) = co then: if
 x, >? 0, limqlj+?(q) = e); ifxz = -1, lim lij+,(q) ==c)iff force(j, <P, Q>) is total,
 for <P. Q> = lim,<P~'j*, Qi*> (1).

 Our informal description of If and lf* could serve as a definition of these func-
 tions, but we offer definitions anyway:

 lo(q) q= ;
 li*(q) Ii(q) - lh(c5j), if li(q) is defined and > lh(51);
 if xi -1, 2i+l(q) - the maximum I such that

 force(j, <Pij*, Qij*>(lIi*(q)))(1)

 is defined in < q steps;

 12ij+2(q) - I if l12j+(q) = 21 or = 21 + 1.
 We shall have anf-recursive increasing function g which serves as a clock, telling

 us when to stop computing preconditions and move on the stage i + 1. The rel-
 evant ki will be ki = li(g(i)).

 We shall arrange our construction so that at each stage i:

 (1.i) lI(g(i)) is defined, with pi on Pi (li (g(i))) and ri on Qi, (li (g(i))).
 In addition to the sequences so far described, we also need a sequence

 {<nj, mj>}lj< such that:

 (5) for all j, <Pj, Qj> = <(f)nj1 (f)mj>.
 We shall also need guess <ni, mi> at <nj, mi> for j < z. Let [in, m/3, a] abbreviate
 <Full((f)l, t), Full((f)m, c)>. For 2j + I ? zi, let 2j + 1 have property 1 at stage
 i iff [nij, mij/31j, esj] is a condition, and: if xi > 0,

 <xi, 3., zj> = Wit(j, [nij, Min/e3j, e2j]);

 if xi- -1, Wit(j, [nij, m1/54j, eai]) is undefined. Note that "2j + 1 has property
 1 at stage i" is 20 in ((ff),ij a) (f) 2i). It would be nice at stage i to have all 2j + 1 <
 z, with property 1. But to keep the construction recursive in f we can only guess
 at whether a given 2j + 1 has property 1. We do this by asking the question of our
 g(i)th guess at ((f)nij G (f)m i)(3), namely

 (f)G(G(G(Hf(n' , m' j g(i)),g(i)),g(i)),g(i))-

 We content ourselves with insuring that at each stage i:

 (2.1) for each 2j + 1 < zi our g(i)th guess at ((f)7,i A) (f)mij)(3) says that 2j + 1
 has property 1 at stage i.

 This can be checked recursively inf

 For ? zi, let] have property 2 at stage i iff limK<Pl, Qi>(l) = ((f)", (fim2;>,
 which is a condition. Again, "j has property 2 at stage i" is 10 in ((f)n, a (fi)m{,)

This content downloaded from
������������132.174.252.179 on Wed, 16 Feb 2022 02:29:07 UTC������������

All use subject to https://about.jstor.org/terms

 448 HAROLD T. HODES

 It would be nice to have all j < zi with property 2 at stage i, so that our guesses at
 <nj, mj> accurately reflect our guesses at <Pj, Qj>. But, to keep the construction
 recursive in f, the best we can do is to insure that at each stage i:
 (3.i) for each j ? zi,

 <P1, Qi> (l1(g(i))) = <(f)ni r Str(li(g(i))), (f)m; r Str(lj(g(i)))>.

 Checking this will be recursive inf.

 After such extensive previewing, the presentation of the construction may, at
 least, be brief.

 Stage 0. zo = 0, g(O) = 0, /o = ro = < >; for all 1, P8(l) = Q8(l) = Full r Str(l);
 select <n8, m8> so that (f).8 = (f)m8 = Full.

 Stage i + 1. Suppose we already have zj, g(i), {<P1, Qj>}j?zz, {Mji' 6P}j<d(zi)
 {<X, Ori, Zj>},<d(zi)' /3 and ri, with (1i)-(3.i) all true. For 2j + 1 < zi, let 2j + 1
 be 1-bad at (i, q) iff our (g(i) + q + 1)st guess at ((f)",j) (f)mQj)(3) says that
 2j + 1 lacks property 1 at stage i. For j < zi, j is 2-bad at <i, q> iff

 <Pi, Qi> (li(g(i) + q + 1))

 # <(f)ni r Str(lP(g(i) + q + 1)), (f)m;i r Str(li(g(i) + q + 1))>.

 Let (6, a) be a q-combination foi 2j < zi ifflh(eb) = lh(&) < 14ij (g(i) + q + 1) =
 1 and

 (6) either:

 (a) our (g(i) + q + 1)st guess at ((f)n,,) (f)m) (3) says that

 Wit(j, [nhi, mj/A, &]) = <x, a, >

 in < g(i) + q + 1 steps for some <x, a, r> with lh(6) + lh(a) < 1; or
 (b) our (g(i) + q + 1)st guess at ((f)7,i) (f)mi.)(3) says that Wit(j, [nij, mi /a, &])

 is undefined, and force (j, <P, Q>)(O) is defined in < g(i) + q + 1 steps for

 <P, Q> = <Full(P~i(1), 6), Full(Qij(l), c)>.

 Whether (3, &) is a q-combination, in fact whether there is a q-combination for a
 given 2j, is decidable recursively inf We shall say that q changes the primary guess
 at 2j + 1 < zi iff: for k < 2j + 1, k is neither 1-bad nor 2-bad at (i, q); 2j + 1 is
 1-bad at (i, q); and

 (7) there is a q-combination (6, a) such that

 P',,(12j(g(i) + q + 1))(3) ?

 and

 Qi (l1,j(g(i) + q + 1))(e) ?rz

 We shall say that q changes the secondary guess at j < zi iff: for all k < j, k is
 neither 1-bad nor 2-bad at (i, q); j is 2-bad but not 1-bad at (i, q); and

 (8) there are strings P and r on Pji(li(g(i) + q + 1)) and Qi(li(g(i) + q + 1))
 respectively, p 0 p3 and r < r*. We shall say that q creates a guess at zi + 1 = z
 iff for all j < zi, j is neither 1-bad nor 2-bad at (i, q), and

This content downloaded from
������������132.174.252.179 on Wed, 16 Feb 2022 02:29:07 UTC������������

All use subject to https://about.jstor.org/terms

 UNIFORM UPPER BOUNDS ON IDEALS OF TURING DEGREES 449

 (9) there are strings 3 and e such that

 (9.1) Pzi(lji(g(i) + q + 1))(a) p

 and

 Qti(lti(g(i) + q + 1))() i ;

 (9.2) if z = 2j + 1, (d, E) is a q-combination for 2j.
 LEMMA 2. There is a q which either changes or creates a guess.
 PROOF. Let j = the least i < zi which lacks either property 1 or 2, if there is

 one; j = zi + 1 otherwise. If j lacks property 1, we find a q changing the primary
 guess at j; ifj has property 1 but not property 2, we find a q changing the secondary
 guess at j; if j = zi + 1, we find a q creating a guess at j. Consider the first situa-
 tion. Suppose that for q ? q0, our (g(i) + q + 1)st guess at ((f, a) (f)m2;)(3) is
 correct for all 2j < j. So for q ? q0, all k < j are neither 1-bad nor 2-bad at (i, q),
 and j is I -bad at (i, q). For j < j, limll i(l) co. If not, let j be the least counterex-
 ample; by remarks preceding the definition of 1ji, j = 2j' + 1, x;, -1 and
 force(j', limr <Pi*, Qj>(l)) is partial; so Wit(j', [ni,,, mjt.Al, c]) is defined,
 and j lacks property 1; contradiction with j < j. Now let j = 2j + 1. For
 sufficiently large q we may increase / = I ,(g(i) + q + 1) large enough to find (3, s),
 P~j(l)(J) P ip and Qi (1)(c) ? ri, lh(J) = lh(e) = 1. Note that

 [ni , mi,/J, e] = lim<Full(Pi (1), 3), Full(Qi (1), e)>.

 If Wit(j, [ni , mi /J, e]) is defined, then for q ? q0 our (g(i) + q + 1)st guess at
 ((f))n7j a) (f)mi.)(3) says it is; so for sufficiently large q ? q0, it truthfully says that
 Wit(j, [ni4, mi /J, e]) = <x, a, za> in < g(i) + q + 1 steps, and lh(a) + lh(j) <
 l2,(g(i) + q + 1). On the other hand, if Wit(j, [ni , mii/J, e]) is undefined, our
 (g(i) +q + 1)st guess at ((f)n, a (f),,;)(3) says so. For sufficiently large q,
 force(j, <P, Q>) (0) is defined in < g(i) + q + 1 steps, for

 <P, Q> = <Full(P~,j(li(q(i) + q + 1)), 3), Full(Qi (1i (q(i) + q + 1)), E)>.
 So a sufficiently large q ? q0 is as desired. Similar arguments apply in the other
 two situations. Q.E.D.

 Notice that we canf-recursively decide whether q is as described in Lemma 2.
 We proceed as follows, recursively in f Search for the least q as described in Lemma
 2. Let g(i + 1) = g(i) + q + 1. If q changes the primary or secondary guess at j,

 let j = zj+1 = z. Otherwise let zj+1 = z = zi + 1. Now we preserve some earlier
 guesses: for I < z, let

 <Pi+l, Qt+' > = <Pji, Qi>, <ni, n,+1> = <ni, m5>;

 for2j + 1 <z,let

 X+il = Xji Uvi.+ ai '.+i = 'rj

 forj < z - 1, let

 h+e = s n c n seni y - eh

 The situation in which q changes the secondary guess at z is easiest to handle.

This content downloaded from
������������132.174.252.179 on Wed, 16 Feb 2022 02:29:07 UTC������������

All use subject to https://about.jstor.org/terms

 450 HAROLD T. HODES

 Here our guesses <ni, mi> have been found to be wrong relative for <Pi, Qi>. We
 let (i?1 = ziL, ci+1 = Ei J, <Pi+1, Qi+1> = <Pi, Qi> and, if z = 2j + 1, x1+=
 07 1 = =s., Z.+i = Zri. Select p and r as in (8) and let Pi+, = lo ri+i = r7 Note that
 1i = li. Now find the least <n, m> such that

 <Pi+l, Qi+l> (Yi+1~~)

 = <(f). rStr(li+1(g(i + 1))), (f)m rStr(li+1(g(i + 1)))>,

 and let <ni+1, mi+1> = that <n, m>.
 Next easiest is the case in which q creates a new guess at z = 2j + 2. Select

 strings a and e as described in (9.1) to be Jz3ii and ecih, respectively. Let P3i+, =
 PziZ_(41_j(g(i + 1)))(3) and ri+i = Qi 1(4i_1(g(i + 1)))(s). So <Pz1*, Qfi*> and
 <Pi, Qi> are defined as described before the construction began. Now select

 <ni+l, mi+1> as in the previous case.
 The cases in which q changes the primary guess at z and in which q creates a new

 condition at z = 2] + 1 are similar. Select a and e as described in (7) or in (9), and

 let (3ii = (3, iz1 = e, pi = Pizl(lz'-1(g(i + 1)))Ia), ri = Qz_1(lz_1(g(i + l)))(s).
 <Pi*, Q"1> is now determined. If (3, e) is a q-combination by virtue of (6)(a), let
 <xl+1, i+', z-y+1> = the <x, a, za> described in (6)(a). If (3, e) is a q-combination
 by (6)(b), let xi+1 =- +1, a + = Z +i = < >. Form <Pi, Qi> as indicated in the
 preparatory remarks. We now select <ni, ml> as in the previous two cases.

 Notice that <d'+i, ei+1> is changed from <(-1, e_-> only if we changed a primary
 guess; <ci+z, el+z> is defined while <(z-3, e,_1> was undefined iff we created a new
 guess at z. It is easy to verify that (L.i + 1), (2.i + 1) and (3.i + 1) are true. We
 now show that all our guesses settle down to sequences as described in (1), (2*),
 (3*), and (4*) and (5).

 LEMMA 3. There are sequences {<Pj, Qj>}j<0,J {<(j, ej>}1j<, {<xi, ail, rTj>}1<0,
 <<nj, mj>>j<.O making (1), (2*), (3*), (4*), and (5) true; and for any k there is an ik
 such thatfor alli ? ik:

 (1 O)forj < k, jhas properties 1 and 2 at i; k < zi;
 (11)for j < k, <ni, ml> = <nj, mj>;
 (12) forj < k, lim1<Pi, Qi> (1) = <Pj, Qj>;
 (13)forj < k, <a3i, ej> = <(j, ej>;
 (14) for 2j + 1 < k, <xi, o), a> = <x;, a,, r,>.
 PROOF. The crucial fact here is that g is increasing. For k = 0, i = 0. Assume

 for k. Select i > ik such that for all q 2 g(i) and all 2j < k, our qth guess at
 ((fX)n, G (f)m) "I is correct. For all i > i, if k is even, k + 1 has property 1 at i, is
 not 1-bad at any (i, q'), and so is not selected for a primary change. We may let

 <Pk+l, Qk+l> = lim<P4+1, Qi+1> (1), and let <nk+l, Mk+l> be least <n, m> such that
 <(f)nl (f)m> = <Pk+l, Qk+l>. For each <n', m'> < <nk+l, mk+l> there is an
 <n-,m1> = / such that

 V()nl r Str(l), (f)m, r Str(/)> =A <Pk+l r Str(l), Qk+1 r Str(l) >.

 Let ik+j be an i > i such that 4+1(g(i)) ? lnnm> for all such <n', m'>. For i >
 kl1 we have <nk+1, Ms. > = <nk+1, -l+>. k + 1 has property 2 at such a stage i,
 so is not 1-bad at any (i, q'), and so is not selected for a secondary change. So

This content downloaded from
������������132.174.252.179 on Wed, 16 Feb 2022 02:29:07 UTC������������

All use subject to https://about.jstor.org/terms

 UNIFORM UPPER BOUNDS ON IDEALS OF TURING DEGREES 451

 k + 1 < zi. (13) and (14) are obviously true, letting Jk = 3k+, Ek = E- Ik+1, and
 Xi = XJk+1, j, = (jk+1, Zj = rik+l if k + 1 = 2j + 1. Q.E.D.

 We finally must check that B = limitp, C = limjr5. For any j there is a least i
 at which either we create a new guess at j or make a primary change at j. For such

 an i, we have arranged that PfI(g(i))) ? pOi Q0(li(g(i))) ? r7. But for sufficiently
 large, these Pi(g(i))) and Qi(l(g(i))) may be made arbitrarily long. This insures the
 desired limits. Q.E.D.

 COROLLARY. Where I is a countable jump ideal and a is an u.u.b. on I then there is
 an I exact (h, c) with (b v c) < a.

 PROOF. With a, b, c as above, if b v c = a, (b V c)(2) < a(l) = (b V c)(1), a
 contradiction. Thus (b v c) < a.

 The construction of Theorem 1 may be altered, using Sacks' technique for con-

 structing minimal upper bounds, to insure that b and c are both minimal.
 Recall that a is high over b iff b < a < b(1) < b(2) < a (1). Can Theorem 1 be im-

 proved to: a is an u.u.b. on I iff a is high over the join of an I-exact pair? Perhaps.
 But we see no way to modify the previous construction to make f ? T(B ? C)(1).

 Furthermore, for all we know now Theorem I may be strengthened to: a is an
 u.u.b. on I iff for some I-exact {b, c}, (b V c)(1) = a; this is equivalent to: if ais

 an u.u.b. on I, for some I-exact {b, c}, (b V c) (1 ? a.

 We now characterize u.u.b.s in terms of weak u.u.b.s.

 THEOREM 2. For a countable jump ideal I, a is an u.u.b. on I ifffor some b < a, b
 isaweaku.u.b.onIandb(2) < a(.

 PROOF (a). Let B E b parametrize Ui n w2. Fix A E a. X c o is total iff for
 every x there is a y such that <x, y> E X. Since B (2) < T A (1), we may guess recursive-
 ly in A at whether (B)e is total and in the limit we are correct. Fix such a guessing

 procedure. Let h(x, e, n) = the least y such that either <x, y> E (B)e or the (n + y)th
 guess is that (B)e is not total. Defined by:

 J if the (n + h(x, e, n))th guess

 (f)<en>(X) = is that (B)e is not total;

 lh(x, e, n) otherwise.

 If (B)e is total, (B)e -* graph((f)<en>); if (B)e is not total, (f)<en> *)x.O. By
 Lemma 1, deg(f) is an u.u.b. on . Sincef < T A, so is a.

 (=) Let f E a parametrize U I. Let <Kbj>j<<, be a recursive enumeration of
 primitive recursive relations on w2 x co x w. Introducing "B" as an uninterpreted

 one place predicate constant, let (pi be "(3x)-'(3y)0j(P, x, y)." Let a condition
 be a finite sequence of members of Ui n w2. Where <Jo, . . ., = K is a condi-
 tion, let

 K IF B(m) iff (m)0 < k and f(m)o((m)l) = 1.

 Other clauses in the definition of forcing run as usual. Note that

 K IF -- B(m) iff (m)0 < k and f(m)o((m)l) = 0.

 Conditions may be coded as sequence numbers:

 <no, . . ., nk-1> codes <sg((f),0), ,Sg((f)..,)>,

This content downloaded from
������������132.174.252.179 on Wed, 16 Feb 2022 02:29:07 UTC������������

All use subject to https://about.jstor.org/terms

 452 HAROLD T. HODES

 where for any x E wo and h E o)0,

 (0if h(x)=O0,
 sg(h)(x) jI otherwise.

 We abuse terminology and call sequence numbers conditions.

 For X c w0, X(<k) = {<x, y> e XIx < k}. For a condition K = <fo, ... X fk-1>,
 i = fo C) * *) fk-,. If B is generic and extends K, we shall have B(<k) = R. For
 a E Str, a is consistent with K if for all x < lh(a), if (x)O < k, (u)x = f(x)0 ((x)1); K
 includes a iff a is consistent with K and for all x < lh(a), (x)o < k. All these defini-
 tions carry over to where K is a sequence number via the encoding previously
 described. From now on, conditions are sequence numbers.

 The use of sg in this encoding leads to another abuse of terminology. For

 K = <no,. .., nlk-l>, our qth guess at X = ((f)n0 0 ... 0* (f)nk-l)(2) is Y =
 (f)G (G (H (k, K, q), q), q) . Since k(2) is clearly 1-reducible to X, we shall call Y our qth
 guess at (2).

 LEMMA 4. "K 1F- (j" and "K IF-V p" are 2? and IIo in k, respectively.
 PROOF. K 1H (Jy) bj(Ln, y) iff for any a E Str and any y, if a is consistent with

 K, "--i~j(o, g, y)" is true. Thus "K 1H (j" is 12 in k. For X c co and lh(K) = kg
 let O(K, X, m) = K U {<x + k, y> I <x, y> E X(<m)}. Notice that K' extends K
 iff for some Xc UI n 02 and some m, k' = O(K, X, m). Using this fact we can
 show that K H --ioj iff for every x, m c c and XE U'(i no2:

 (t) there are a c Str and y such that a is consistent with O(K, X, m) and bj(a, x, y).
 (t) has the form "(3a)(3y)P(k, X, m, a, x, y)", -with P recursive. So K IF- (qj

 iff for all x and m:

 (TT) for all Xe Ui n 0 2, (3a)(3y)P(k, X, m, a, x, y).
 (TT) is equivalent to a 2? in k formula by the Kreisel basis theorem and the

 fact that kf(1) E UL Notice that here is where the difference between UI and
 UI n 0v2 appears. We now have "K 1H -j" in a 1lO in form. Q.E.D.

 Our goal is to construct sequences {Kj}j<., {xj}j<. and {pi),<,,, such that:
 (1) for all], Kj is a condition and Kj+j extends Kj;
 (2) for all],

 if x ?0, K2j+l IF -i(3y)bj(xj, y);

 if x; = -1, K2j+1 H ---'(P;

 (3) for all j, K2i+2 = K2jifl n <j>;
 (4) for all i and j3 ej E Str, pj+j ?< pj and pj is consistent with Kj.
 Notice that (2) implies limjlh(Kj) = c), which with (4) implies that limipi =

 U4.
 Of course, such a construction cannot be carried out recursively inf. We resort

 to guessing at the sequences <Kj>j<<, and <xJ>j<,,,. At stage i we shall have zi, for
 j < 2zj guesses Kj at Kj, and for j < zi guesses x1 at xi. Revising previous ter-
 minology, let (K', x) be a j-witness for K iff K' extends K and forces "-I (3y)

 Ob,(B, x, y)". "(K', x) is a j-witness for K" and "K has a j-witness" are 1I7 and h0
 in k, respectively. Clearly if K" extends K' and (K', x) is aj-witness for K, (K", x)
 is also a j-witness for K. We shall say that (K, x) is consistent with a string j3 iff K is

This content downloaded from
������������132.174.252.179 on Wed, 16 Feb 2022 02:29:07 UTC������������

All use subject to https://about.jstor.org/terms

 UNIFORM UPPER BOUNDS ON IDEALS OF TURING DEGREES 453

 consistent with P. Notice that if K has no j-witness consistent with P3, any condi-
 tion extending K and including P forces (j. Fix an frecursive function Incl such
 that: for P consistent with K, Incl(K, P) extends K and includes P. For example,
 where lh(K) = k, and P3 is consistent with K, let

 Incl(K, K3 if K includes 3
 tK-nk, n) n1> otherwise,

 where for k < i < 1, ni is the least n such that for all x < lh(P) with (x)0 = i,
 (:)x = sg((f)"5)((x)0). For j < zi, we shall say that 2j + 1 has property 1 at stage
 i iff:

 if xi > 0 then (K+1j, xi) is a j-witness for K21;
 if xi 1, then there is no j-witness for Kij consistent with Pi.
 We would like to have all 2j + 1 with property 1 at stage i for j < zj. But to

 keep our construction recursive inf, we cannot be so straightforward. Instead we
 insure that for all stages i:

 (1.i) for all j <zi our g(i)th guess at (KIj)(2) says that 2j + 1 has property 1.
 Furthermore, we insure that for all stages i:

 (2.i) if zi > 0, pi is included in K~',,_,. (This permits us to have K~z. = K~1,,_j^<zj>
 without fear of destroying consistency with pi.)

 We now sketch the construction.

 Stage 0. zo = 0, Ko = < >; Po = < >, g(O) = 0. (1.0) and (2.0) are vacuously
 true.

 Stage i + 1. Assume that zi, g(i), P3i, <Ki>j<2Z. and <xji>j<, are defined with
 (11) and (2.i) true. Forj < zi, 2j + 1 is bad at (i, q) iff our (g(i) + q + 1)st guess at
 (K1)(2) says that 2j + 1 lacks property 1. Call P a q-combination for 2j at stage i,
 where j < zi, iff P pi, p < g(i) + q + 1, P is consistent with Ki , and: if our
 (g(i) + q + I)st guess at (K_,) (2) says that Klj has a j-witness consistent with A,
 it identifies one in ?g(i) + q + 1 steps. This property is decidable in f. We shall
 say that q changes the guess at 2j + 1, for j < zi, iff for all k < j, 2k + 1 is not
 bad at (i, q), 2j + 1 is bad at (i, q), and there is a q-combination for 2j. We shall
 say that q creates a guess at 2zj + 1 iff for all k < zi, 2k + 1 is not bad at (i, q)
 and there is a q-combination for 2zj.

 LEMMA 5. There is a q such that for some]j ? zi, q either changes or creates a guess
 at 2j + 1.

 PROOF. Fix j* = the least j < zi for which 2j + 1 lacks property 1, if there is
 one; j* = zi otherwise. Suppose that for all q > q0, our (g(i) + q + I)st guess at
 (K';(2) for any k < j* is correct. Thus for q > q0 if k < j, 2k + 1 is not bad at
 (i, q); if j* < zi, 2j* + 1 is bad at (i, q). Select a / p which is consistent with
 Ki . Thus for k < 2j*, p is consistent with K*. If there is a]*-witness for Ksj.
 consistent with P3, let q ? q0 be large enough so that _(2) identifies one in <
 g(i) + q + 1 steps. P3 is a q-combination for 2j*. Ifj* < zi, q indicates a change at
 2j*+1; ifij*=zi,q creates a guess at 2j* + 1. Q.E.D.

 Notice that whether q is as described in Lemma 5 is decidable in f. So we may
 search, recursively in f, for the least such q. Let g(i + 1) = g(i) + q + 1; where
 j corresponds to q as required by Lemma 5, let z+1 =]j + 1. We abbreviate "zi+i"
 as "z". Select Pi+, to be a q-combination for 2z - 2. We preserve previous guesses

This content downloaded from
������������132.174.252.179 on Wed, 16 Feb 2022 02:29:07 UTC������������

All use subject to https://about.jstor.org/terms

 454 HAROLD T. HODES

 as follows: Ki+1 = Ki for k < 2z -2; x*+1 = xt for k < z- 1. We now define
 xi+1 and Ki+1.

 If our g(i + 1)st guess at (Ktz2) (2) says that K+12 has a (z - 1)-witness consistent
 with /3i+1, it actually identifies some (K, x) as such a witness in < g(i + 1) steps.
 Select the least such <K, x> and let xi+' = x, Ki+11 = Incl(Ki+12, j+1). Otherwise
 our guess says that Kiz-2 has no (z - 1)-witness consistent with p3i+,. Let xi+' =-1
 and Ki+1 = Incl(Ki+l2, Pi+1). Notice that (1.i + 1) and (2.i + 1) are true. Let
 Ki+1 = Ki+i-^<z>. Ihis construction settles down.

 LEMMA 6. There are sequences {Kj}j<. and {xj}j<,, with {j3}i<,,, as just con-
 structed, such that (1)-(4) are true; furthermore for any k there is an ik such that
 for alli > i_.

 (5) z, > k;
 (6) for allj < 2k, K, = Kj;
 (7) for all j < k, x,= xj.
 The proof is very much like that of Lemma 3, except easier, so we omit it.

 Letting B = Ujkj, B is a parametrization of in f2. Since B = lim3pi, B < T f
 Since f (1) can tell us when our guesses at (K Y(2) are correct, B(2) ?Tf-1>.
 Q.E.D.

 We do not know whether this theorem may be improved to: a is an u.u.b. on
 I iff for some weak u.u.b. b on I; a = b(1) .

 Combining this construction with the exact-pair construction we may obtain
 b and c in Theorem 1 which are both weak u.u.b.s on L

 Clearly the b constructed in Theorem 2 (=:) is strictly below a. This observation
 is strengthened by the following.

 THEOREM 3. For a countable jump ideal I, {a I a is an u.u.b. on I} has no minimal
 member.

 PROOF. Let fe a parametrize UI. We construct h <Tf, h parametrizing UL

 Let <Kbj>j<1, be as in the previous proof; we introduce an uninterpreted binary
 predicate letter "H" intended to denote the graph of a generic function. Let a
 condition be a sequence K = <fo, . . ., fk-1> of members of UL Let

 K 1U- H(n, mn) iff (n)0 < k and f(n),((n)1) = m.

 The other clauses in the definition of forcing are as usual. Again we note that

 K 1 -iH(zn, mn) iff (n)0 < k and f(n),((n)l) + m

 Let R be the partial function with domain wo(<k) such that f(<i(x>) = f(x).
 Since k is partial, k(1) is undefined; therefore we shall abuse notation and write

 "k(1)"' for "(fo @ ... * A-1)(1)''-
 Notice that Lemma 1 provides a fixed f-recursive way of guessing at an f-index

 for that set, uniformly in a code for K. A finite function shall be one from a member
 of co into co. A finite function h is consistent with K if for all x e dom(h) with
 (x)0 < k, k(x) = h(x); K includes h iff dom(h) c Ct(<k) and h is consistent with

 K. Rj is the requirement {j}H : f. K meets Rj with x in t steps if for some y,
 K C{ j } H(x) converges to y in t steps" andf(x) # y. Where h is a partial function,
 we understand a computation in graph(h) to halt as soon as the oracle for graph(h)
 is asked: "Is <x, y> e graph(h)?" for x 0 dom(h). With this understanding, observe

This content downloaded from
������������132.174.252.179 on Wed, 16 Feb 2022 02:29:07 UTC������������

All use subject to https://about.jstor.org/terms

 UNIFORM UPPER BOUNDS ON IDEALS OF TURING DEGREES 455

 that K has an extension meeting Rj with x in t steps iff there is a finite function
 consistent with K and a y # f(x) such that {j}graPh(h)(x) converges to y in t steps;
 we may search for such an h recursively in k, since finite functions code as sequence
 numbers.

 Let sequence numbers encode conditions by <no, ., nk--l> <(f)*,*
 (f)nkl>. So we freely abuse our terminology and treat sequence numbers as
 conditions.

 Fix an f-recursive function Incl such that for a finite h consistent with K,
 Incl(K, h) extends K and includes h. (For example, vary the corresponding

 definition in the previous proof.)

 Let (K', x) be a j-witness for K iff K' extends K and meets Rj with (x)o in < (x)1,
 steps. Call h consistent with (K, x) iff consistent with K. Suppose K has no]-witness
 consistent with a finite function h, K' extends K and includes h. Then for some x,

 K' H- "{j}H(x) is undefined." Suppose not. We may definefbyf(x) = y if

 (*) some finite function h' is consistent with K' and {]}graPh(h')(x) = y.

 Here is why. By our assumption, for any x, K' has an extension K" forcing "{j]}H(x)
 is defined." Since K" includes h, (K", x) is not a j-witness for K. So if K" IF
 "{j _H(s) = y", y = f(x). The existence of such a K" is equivalent with (*). We
 would like to define sequences {Kx},<, {Xj},<,, and {hj}j<j,, such that:

 (1) for each, Kj is a condition;
 (2) for each j,

 if xi ? 0, (K2j+1, xi) is a j-witness for K2j; if x; =-1, K2j+l, IF- "{j}Hf(x)
 is undefined" for some x;

 (3) for each, K2j+2 = K2j+1 <j>;
 (4) for each i and j, h, is a finite function, hi+, properly extends hi, and hi is

 consistent with Kj.
 (3) implies that h = limjRj is total;
 (4) implies that h = limihi. By (3), h parametrizes UL By (2) f 4 T h.
 To make this construction recursive in f, we resort to guessing. At stage i, we

 shall have zj, hi, g(i), for j < 2z, a guess K} at Kj, and for j < zi a guess x, at xi.
 We make sure that at each stage i:

 (l.i) for j < zi, if xj 2 0, (Ki 11, x1) is a j-witness for Ki1;
 (2.i) for] < zi, if x1 =-1, our g(i)th guess at (Kt1)(1) says

 (*, i,j) for some x < g(i) for all finite h consistent with Klj and hi,
 {]}graPh(h)(x) is undefined.

 (3.i) K~zi.- includes hi.
 We now describe the construction.

 Stage 0. zo = 0, ho = the null function, KO - < >, g(O) = 0.
 Stage i + 1. Suppose we have ti, hi, g(i), <KK>j<20,z <xji>j<z,, with (1.i)-(3.i)

 true. For j < zi, 2j + 1 is bad at (i, q) iff x1 = I and our (g(i) + q + 1)st guess
 at Xk;j (1) says that (*, i, j) is false. For a finite function h, (h, x) is a q-combination
 for 2j at i iff h properly extends hi, <h, x> < g(i) + q + 1, and {j}graph(h) ((x)0) is
 defined in (x), steps and has value # f((x)o).

This content downloaded from
������������132.174.252.179 on Wed, 16 Feb 2022 02:29:07 UTC������������

All use subject to https://about.jstor.org/terms

 456 HAROLD T. HODES

 We shall say that q changes the guess for 2j + 1 at stage i iff: for all k < j,
 2k + 1 is not bad at (i, q), 2j + 1 is, and there is a q-combination for 2j. We shall
 say that q creates a guess for 2zi = 1 if: for all k < zi, 2k + 1 is not bad at (i, q),
 and either there is a q-combination for 2zi or else q = 0 and our (g(i) + 1)st guess

 at (K2 says that (*, i, zi) is true.
 LEMMA 7. Some q either changes or creates a guess.

 Proof is very much like that of Lemma 5.

 Whether q changes or creates a guess is decidable in f So recursively in f we
 search for the least such q. Let g(i + 1) = g(i) + q + 1. If q changes or creates a

 guess at 2j + 1, let j + 1 = zi+1. Letting z = zi+1, we preserve earlier guesses:

 for? < 2z-2, Ki,+1 = K,; for] < z- 1, x.c+ = xi

 If there is a q-combination for 2z - 2, let (hi+1, xt+') be the least such. Otherwise
 let xi+' -1 and hi+1 = hi U t<dom(hi), 0>}. Let K21?l = Incl(K2+12, hi+1).
 Notice that (1.i + 1)-(3.i + 1) are true. Now let K)+1 = Ki+',^<z>.

 LEMMA 8. With <hi>j<<o as just constructed, there are sequences <Kj>j<og and
 <xj>j<,, of which (1)-(4) are true; furthermore for each k there is an i; such that
 for all i ? i;:

 (5) for j < 2k, Kj = Ki;
 (6) for j<k, xj=x.
 The proof of this lemma should now be routine. Because this entire construction

 is recursive inf, and h = lim h., h < T So by preliminary remarks, we are done.
 Q.E.D.

 Where I is a countable jump ideal a is a nice u.u.b. on I iff a is the degree of a

 nice parametrization of UI; a parametrization f of UI is nice iff for some G < T f,

 H ?<TfV for all x and y: (f)G(x = (f)(1); ()H(x,y) = (f)X E (f),. This notion is
 introduced in [1]; in [2] it is shown that a is a nice u.u.b. on I if for some u.u.b.

 b on I, a = b(l). In [2] the following notions are defined. I is a hierarchy ideal iff

 for some A c to and some a, UI = La[A] n ofw. I is a case 1 hierarchy ideal iff
 for some B e La[A]g a < COB and UI = La[A] n wof; I is a case 2 hierarchy ideal
 iff for some Be L[A], a = COB and U' = LJ[A] U lo; I is a case 3 hierarchy
 ideal if it is a hierarchy ideal not falling under cases 1 or 2. Any case 1 hierarchy

 ideal has a least nice u.u.b.; for example, if UI = {f If is arithmetic}, that nice
 u.u.b. is 0(w). In [2] it is asked whether any case 2 or case 3 hierarchy ideals have

 a minimal nice u.u.b. The technique of Theorem 3 may be modified to provide a

 negative answer.
 THEOREM 4. For I a case 2 or case 3 hierarchy ideal, {a I a is a nice u.u.b. on I}

 has no minimal member.

 PROOF. Let f e a be a nice parametrization of UL It suffices to construct a
 parametrization h of U' with ha1) <Tf Let conditions and forcing be as in the
 previous proofs except that "H" is monadic, and:

 K IF H(x) iff for = <n, m>, (n)O < k and for K = <fo,.** fk-1>9 f(n)0((n)1) = m.

 This way "x e H(l)" makes sense. Let Rj be the requirement {j}H(l) o f K meets
 R, with x iff for some y o f(x), K IF "{]}H(i) (X) = y." Because f is nice, whether

This content downloaded from
������������132.174.252.179 on Wed, 16 Feb 2022 02:29:07 UTC������������

All use subject to https://about.jstor.org/terms

 UNIFORM UPPER BOUNDS ON IDEALS OF TURING DEGREES 457

 K HF "{j}H6U (X) = y99 is decidable inf. Let (K', x) be a j-witness for K iff K' extends
 K and meets Rj with x.

 LEMMA 9. Suppose K is consistent with a finite function h. If there is no j-witness
 for K consistent with h, and K' extends K and includes h, then for some x, K' HF

 "{]}H(')(x) is undefined."
 PROOF. If not, we may define f by f(x) = y iff some extension of K' forces

 "{]}H H'(x) =y". *Kf *. . * fk-1> F { }- H()(x) = y is 27 in fo G * fk-1. So
 f is 21 over UI with graph(-K) as a parameter. Since f is a function, f is even 1
 over U' in that parameter.

 By familiar facts about hyperarithmeticity, in case 2, f ? HYP graph(K'; in

 case 3, f is recursive in the hyperjump of graph(K-) which belongs to UL. Either
 way, f e UA, contradiction. Q.E.D.

 The construction of h is much like that used for Theorem 3, with "{]}H')"

 replacing "{i}H". But (2.i) must be changed to: if j < zi, if xi= -1 then there
 is no j-witness for Ki, which is consistent with hi and < g(i).

 The notion of being bad at (i, q) is correspondingly changed. (We are forcing

 O and MO2 sentences; so Ki(J1) cannot tell us how to select K?j+1. Since f is nice,
 "K has a j-witness consistent with hi" is 2? in f; thus guessing at K2$j) is replaced
 by a search recursive in f) The rest is routine. Q.E.D.

 In conclusion, we note that weak u.u.b.s remain shrouded in mystery. For

 example: are any weak u.u.b.s also minimal u.b.s? The technique of Theorem 3

 does not yield a negative answer, for it cannot construct objects recursive in weak
 u.u.b.s which are not also u.u.b.s. It essentially involves guessing at jumps as

 described in the guessing lemma; thus by the remark immediately following the

 proof of the guessing lemma, the previous claim follows. Hopefully the techniques
 involved in answering questions like the one just posed will suggest a degree-
 theoretic definition of a weak u.u.b. in some way analogous to that of Theorem 1.

 BIBLIOGRAPHY

 [1] G. HENSEL and H. PUTNAM, On the notational independence of various hierarchies of degrees
 of unsolvability, this JOURNAL, vol. 30 (1965), pp. 64-86.

 [2] H. HODES, Uniform upper bounds on ideals of Turing degrees, this JOURNAL, vol. 43 (1978),
 pp. 601-612.

 [3] C. JOCKUSCH and S. SIMPSON, A degree-theoretic characterization of the ramified analytical
 hierarchy, Annals of Mathematical Logic, vol. 10 (1976), pp. 1-32.

 DEPARTMENT OF PHILOSOPHY

 CORNELL UNIVERSITY

 ITHACA, NEW YORK 14853

This content downloaded from
������������132.174.252.179 on Wed, 16 Feb 2022 02:29:07 UTC������������

All use subject to https://about.jstor.org/terms

	Contents
	p. 441
	p. 442
	p. 443
	p. 444
	p. 445
	p. 446
	p. 447
	p. 448
	p. 449
	p. 450
	p. 451
	p. 452
	p. 453
	p. 454
	p. 455
	p. 456
	p. 457

	Issue Table of Contents
	Journal of Symbolic Logic, Vol. 48, No. 2 (Jun., 1983) pp. 225-528
	Front Matter
	An Application of Ultrapowers to Changing Cofinality [pp. 225-235]
	Further Consistency and Independence Results in NF Obtained by the Permutation Method [pp. 236-238]
	Paires de Structures Stables [pp. 239-249]
	Large Families of Incomparable A-Isols [pp. 250-252]
	On Cofinal Extensions of Models of Arithmetic [pp. 253-262]
	Set Theory With a Filter Quantifier [pp. 263-287]
	Forcing and Reducibilities [pp. 288-310]
	A Certain Class of Models of Peano Arithmetic [pp. 311-320]
	A Complete Theory with Arbitrarily Large Minimality Ranks [pp. 321-328]
	Boolean Sentence Algebras: Isomorphism Constructions [pp. 329-338]
	Groupes Stables, Avec Types Génériques Réguliers [pp. 339-355]
	High and Low Kleene Degrees of Coanalytic Sets [pp. 356-368]
	R.E. Presented Linear Orders [pp. 369-376]
	Countable Models of Multidimensional ℵ0-Stable Theories [pp. 377-383]
	Compactness of a Supervaluational Language [pp. 384-386]
	The Monadic Theory of ω12 [pp. 387-398]
	The Slow-Growing and the Grzegorczyk Hierarchies [pp. 399-408]
	A Characterization of 2-Square Ultrafilters [pp. 409-414]
	Completeness in the Theory of Properties, Relations, and Propositions [pp. 415-426]
	Some Useful Preservation Theorems [pp. 427-440]
	More About Uniform Upper Bounds on Ideals of Turing Degrees [pp. 441-457]
	The Countably Based Functionals [pp. 458-474]
	On a Combinatorial Property of Menas Related to the Partition Property for Measures on Supercompact Cardinals [pp. 475-481]
	Reviews
	Review: untitled [pp. 482-483]
	Review: untitled [pp. 483-484]
	Review: untitled [pp. 484-485]
	Review: untitled [pp. 486-488]
	Review: untitled [pp. 488-495]
	Review: untitled [pp. 495-496]
	Review: untitled [pp. 496]
	Review: untitled [pp. 496-497]
	Review: untitled [pp. 497]
	Review: untitled [pp. 497-498]
	Review: untitled [pp. 498-500]
	Review: untitled [pp. 500-501]
	Review: untitled [pp. 501-502]
	Review: untitled [pp. 502-503]
	Review: untitled [pp. 503-504]

	Meeting of the Association for Symbolic Logic: San Francisco, 1981 [pp. 505-513]
	Meeting of the Association for Symbolic Logic: Milwaukee, 1981 [pp. 514-518]
	Meeting of the Association for Symbolic Logic: Wellington, New Zealand, 1981 [pp. 519-526]
	Notices [pp. 527-528]
	Back Matter

