## NL

More About Uniform Upper Bounds on Ideals of Turing Degrees
Author(s): Harold T. Hodes
Source: The Tournal of Symbolic Logic, Jun., 1983, Vol. 48, No. 2 (Jun., 1983), pp. 441457

Published by: Association for Symbolic Logic
Stable URL: https://www.jstor.org/stable/2273561

REFERENCES

Linked references are available on JSTOR for this article: https://www.jstor.org/stable/2273561?seq=1\&cid=pdf-<br>ref'erence\#references_tab_contents<br>You may need to $\log$ in to JSTOR to access the linked references.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms \& Conditions of Use, available at https://about.jstor.org/terms

# MORE ABOUT UNIFORM UPPER BOUNDS ON IDEALS OF TURING DEGREES ${ }^{1}$ 

HAROLD T. HODES


#### Abstract

Let $I$ be a countable jump ideal in $\mathscr{D}=\langle$ The Turing degrees, $\leq\rangle$. The central theorem of this paper is: $\boldsymbol{a}$ is a uniform upper bolind on I iff a computes the join of an I-exact pair whose double jump $\boldsymbol{a}^{(1)}$ computes.

We may replace "the join of an $I$-exact pair" in the above theorem by "a weak uniform upper bound on $I$ ". We also answer two minimality questions: the class of uniform upper bounds on $I$ never has a minimal member; if $U I=L_{\alpha}[A] \cap^{\omega} \omega$ for $\alpha$ admissible or a limit of admissibles, the same holds for nice uniform upper bounds. The central technique used in proving these theorems consists in this: by trial and error construct a generic sequence approximating the desired object; simultaneously settle definitely on finite pieces of that object; make sure that the guessing settles down to the object determined by the limit of these finite pieces.


Fix recursive pairing and unpairing functions on $\omega$, such that $x=\left\langle(x)_{0},(x)_{1}\right\rangle$. For $f: \omega \rightarrow \omega$, let $(f)_{x}(y)=f(\langle x, y\rangle)$. If $\mathscr{F} \subseteq{ }^{\omega} \omega$, $f$ parametrizes $\mathscr{F}$ iff $\mathscr{F}=$ $\left\{(f)_{x} \mid x \in \omega\right\}$. We depart from standard practice and view Turing degrees as equivalence classes on ${ }^{\omega} \omega$, not $\mathscr{P}(\omega)$, under $\equiv_{T}$. This has no importance; the following definitions could be rephrased to apply to Turing degrees as usually defined. All degrees in this paper are Turing degrees.

A degree $\boldsymbol{a}$ is a uniform upper bound (u.u.b.) on a class $I$ of degrees iff some $f \in \boldsymbol{a}$ parametrizes $\bigcup I ; \boldsymbol{a}$ is a weak u.u.b. iff some $f \in \boldsymbol{a}$ parametrizes $\bigcup I \cap^{\omega} 2 . I$ is an ideal iff $I$ is downward closed under $\leq$ and closed under join. $I$ is a jump ideal iff $I$ is an ideal closed under jump. Where $I$ is an ideal, the pair $(\boldsymbol{b}, \boldsymbol{c})$ is $I$-exact iff $I=\{\boldsymbol{d} \mid \boldsymbol{d} \leq \boldsymbol{b} \& \boldsymbol{d} \leq \boldsymbol{c}\}$. Recent results of Shore imply that there is a degree-theoretic definition of the relation: $a$ is a u.u.b. on $I$, where $I$ is a countable jump ideal; it is obtained by encoding the analytic definition of a u.u.b. into degree-theoretic terms. The central result of this paper provides a more natural degree-theoretic definition of this relation.

Theorem 1. Where I is a countable jump ideal: a is a u.u.b. on I iff there is an Iexact pair $(\boldsymbol{b}, \boldsymbol{c}), \boldsymbol{b} \vee \boldsymbol{c} \leq \boldsymbol{a}$ and $(\boldsymbol{b} \vee \boldsymbol{c})^{(2)} \leq \boldsymbol{a}^{(1)}$.

The technique used in proving the hard direction $(\Rightarrow)$ is then extended to answer further questions about u.u.b.s, some of which were raised in [2].

For $\mathscr{F} \subseteq\left\{(f)_{x} \mid x \in \omega\right\}, f$ is a subparametrization of $\mathscr{F}$. Let $f=f_{0} \oplus \cdots \oplus f_{n-1}$ iff for all $x, f(x)=f_{i}\left((x)_{1}\right)$ if $(x)_{0}=i<n, f(x)=0$ otherwise.

Received May 10, 1981.
${ }^{1}$ I wish to thank David Posner for an illuminating discussion which led to all these theorems.

Guessing lemma. Let I be an ideal of degrees, $f$ subparametrizes $\bigcup$ I. There are two and three-place partial f-recursive functions $G$ and $H$ such that:
(1) if $(f)_{x_{0}} \oplus \cdots \oplus(f)_{x_{m-1}} \in \bigcup I$ then $\lim _{n} H\left(m,\left\langle x_{0}, \ldots, x_{m-1}\right\rangle, n\right)$ exists and if it is $z,(f)_{z}=(f)_{x_{0}} \oplus \cdots \oplus(f)_{x_{m}-1}$;
(2) if $(f)_{x}^{(1)} \in \bigcup I$, then $\lim _{n} G(x, n)$ exists and if it is $z,(f)_{z}=(f)_{x}^{(1)}$.
(Here $\left\langle x_{0}, \ldots, x_{m-1}\right\rangle$ is a recursive coding of finite sequences from $\omega$ into $\omega$.)
Proof. We construct $G$.
Let

$$
g(x, u)= \begin{cases}\text { the least } t \text { such that }\{u\}^{(f)_{x}}(u) \text { converges in } t \text { steps } \\ \text { if there is such a } t \\ 0 \text { otherwise }\end{cases}
$$

$\lambda u . g(x, u) \equiv{ }_{T}(f)_{x}^{(1)}$. Thus if $(f)_{x}^{(1)} \in \bigcup I, \lambda u . g(x, u) \in \bigcup I$. Let $h$ be a nondecreasing function which eventually dominates each member of $\bigcup I, h \leq_{T} f$ : for example, $h(z)=\max _{u \leq z}(f)_{u}(u)$. We shall say that $z$ is a candidate for $x$ at step $n$ iff for every $u<n$ :

$$
(f)_{z}(u)= \begin{cases}1 & \text { if }\{u\}^{(f)_{x}}(u) \text { converges in } h(u)+n \text { steps }, \\ 0 & \text { if not. }\end{cases}
$$

Given $x$, select $u_{0}$ such that for all $u \geq u_{0}, h(u) \geq g(x, u)$. Let $n_{0}=\max \{g(x, u) \mid$ $\left.u<u_{0}\right\}$. For $n \geq n_{0}$, if $z$ is a candidate for $x$ at step $n,(f)_{z} \upharpoonright n=(f)_{x}^{(1)} \upharpoonright n$, since for all $u, g(x, u) \leq h(u)+n$. Let $G(x, n)=$ the least $z$ which is a candidate for $x$ at step $n$. Suppose that $(f)_{x}^{(1)} \in \bigcup I, z_{0}$ is the least $z$ such that $(f)_{z}=(f)_{x}^{(1)}$, and $n_{1}$ is the least $n$ such that for each $z<z_{0},(f)_{z}(n) \neq(f)_{z_{0}}(n)$ for some $n<n_{1}$. Then for $n \geq \max \left(n_{0}, n_{1}\right)$ and any $z<z_{0}, z$ is not a candidate for $x$ at step $n$. But $z_{0}$ is one as of step $n$. So $G(x, n)=z_{0}$ for such $n$. The construction of $H$ is easier and we omit it. Q.E.D.

We note the following. Suppose $f$ parametrizes $\bigcup I \cap{ }^{\omega} 2$ and $\mathbf{0} \in I . \operatorname{deg}(f)$ is a u.u.b. on $I$ iff there is a $G \leq_{T} f$ as above which guesses at the location of jumps. This is easy to prove.

Let $g={ }^{*} h$ iff for all but finitely many $x, g(x)=h(x)$.
Lemma 1. If $I$ is a set of degrees and $f$ is a function such that for every $g \in \bigcup I$ there is an e such that $g=^{*}(f)_{e}$, and for every $e,(f)_{e} \in \bigcup I$, then $\operatorname{deg}(f)$ is a u.u.b. on I.

Proof. Let Seq be the set of sequence numbers, letting $s=\left\langle(s)_{0}, \ldots,(s)_{\mathrm{lh}(s)-1}\right\rangle$. Let

$$
(\hat{f})_{\langle e, s\rangle}(x)= \begin{cases}(f)_{0}(x) & \text { if } s \notin \text { Seq } \\ (s)_{x} & \text { if } s \notin \text { Seq \& } x<\operatorname{lh}(s) \\ (f)_{e}(x) & \text { if otherwise }\end{cases}
$$

$\hat{f} \leq_{T} f$ and $\hat{f}$ parametrizes $\bigcup I$. Since the class of u.u.b's on $I$ is closed upwards, $\operatorname{deg}(f)$ is a u.u.b. on I. Q.E.D.

Proof of Theorem $1(\leftarrow)$. Suppose $(\boldsymbol{b}, \boldsymbol{c})$ is $I$-exact, $\boldsymbol{b} \vee \boldsymbol{c} \leq \boldsymbol{a}$ and $(\boldsymbol{b} \vee \boldsymbol{c})^{(2)} \leq$ $\boldsymbol{a}^{(1)}, A \in \boldsymbol{a}, B \in \boldsymbol{b}, C \in \boldsymbol{c}$. Since $(B \oplus C)^{(2)} \leq_{T} A^{(1)}$, recursively in $A$ we may guess
at the truth of $\Pi_{2}^{0}$ sentences about $B$ and $C$ so that in the limit these guesses are correct. Let $f$ be such that

$$
(f)_{\left.\left\langle e_{1}, e_{2}\right\rangle, n\right\rangle}(x)=\left\{\begin{array}{l}
0 \quad \begin{array}{l}
\text { if for some } t \geq \max (x, n), \text { the } t \text { th guess is } \\
\text { that for some } y, \text { either }\left\{e_{1}\right\}^{B}(y) \text { is undefined } \\
\text { or }\left\{e_{1}\right\}^{B}(y) \neq\left\{e_{2}\right\}^{B}(y), \text { and either } t= \\
\max (x, n) \text { or }\left\{e_{1}\right\}_{t}^{B}(x) \text { is undefined; } \\
\left\{e_{1}\right\}^{B}(x) \text { otherwise. }
\end{array} .
\end{array}\right.
$$

$f \leq_{T} A$. In the otherwise case, $\left\{e_{1}\right\}^{B}(x)$ is defined, since in the limit our guesses at whether $\neg(\forall y)\left(\left\{e_{1}\right\}^{B}(y)\right.$ is defined $\left.\&\left\{e_{1}\right\}^{B}(y)=\left\{e_{2}\right\}^{C}(y)\right)$ are right. If $\left\{e_{1}\right\}^{B}$ is total and $\left\{e_{1}\right\}^{B}=\left\{e_{2}\right\}^{C}$, then $(f)_{\left\langle\left\langle e_{1}, e_{2}\right\rangle, n\right\rangle}=*\left\{e_{1}\right\}^{B}$; otherwise $(f)_{\left.\left\langle e_{1}, e_{2}\right\rangle, n\right\rangle}=* \lambda x .0$. By Lemma 1, $a$ is a u.u.b. on $I$.
$(\Rightarrow)$. Let Str be the set of finite strings of 0's and 1's, coded into $\omega$. For $\sigma, \tau \in$ Str, $\sigma^{\wedge} \tau$ is the concatenation of $\sigma$ and $\tau ; \sigma \preccurlyeq \tau$ iff $\sigma$ extends $\tau ; \sigma \prec \tau$ iff $\sigma \preccurlyeq \tau$ and $\sigma \neq \tau . P$ is a tree iff $P: \operatorname{Str} \rightarrow \operatorname{Str}$ and for all $\sigma, \tau \in \operatorname{Str}$, if $\tau \preccurlyeq \sigma$ then $P(\tau) \preccurlyeq P(\sigma)$. A tree $P$ is perfect iff for all $\sigma \in \operatorname{Str}, P\left(\sigma^{\wedge}\langle 0\rangle\right)$ is strictly left of $P\left(\sigma^{\wedge}\langle 1\rangle\right)$ in the lexicographic ordering of Str. For $C \in \omega 2, C \preccurlyeq \sigma$ if $\sigma$ codes an initial segment of $C$. Let $B \in[P]$ iff $B$ is a branch of $P$ iff for some $C \in{ }^{\omega} 2, B=\lim \{P(\sigma) \mid C \preccurlyeq \sigma\} . P$ is uniformly recursively pointed iff for some $e$ : for all $B \in[P], P=\{e\}^{B}$. We code $B \in \omega^{\omega}$ into a tree $P$, yielding a tree $\operatorname{Code}(P, B)$, as follows:
$\operatorname{Code}(P, B)(\rangle)=P(\langle \rangle)$,
$\operatorname{Code}(P, B)(\sigma)=P\left(\left\langle B(0),(\sigma)_{0}, \ldots, B(\operatorname{lh}(\sigma)-1),(\sigma)_{\operatorname{lh}(\sigma)-1}\right\rangle\right)$ for $\operatorname{lh}(\sigma) \geq 1$.
Abusing notation, we write $\operatorname{Code}(P, f)$ for $\operatorname{Code}(P, \operatorname{graph}(f))$.
A condition is a pair $\langle P, Q\rangle$ of uniformly recursively pointed perfect trees belonging to $\bigcup I$ such that $P \equiv{ }_{T} Q . P$ is a subtree of $Q$ iff for all $\sigma \in \operatorname{Str}, P(\sigma) \preccurlyeq Q(\sigma)$. Where $\langle P, Q\rangle$ and $\langle R, S\rangle$ are conditions, $\langle P, Q\rangle$ extends $\langle R, S\rangle$ iff $P$ and $Q$ are subtrees of $R$ and $S$, respectively. $\operatorname{Code}(\langle P, Q\rangle, f)=\langle\operatorname{Code}(P, f), \operatorname{Code}(Q, f)\rangle$. For $f \in \bigcup I$, this is a condition.

Let $\operatorname{Str}(l)=\{\sigma \mid \sigma \in \operatorname{Str} \& \operatorname{lh}(\sigma) \leq l\}$. A function $P: \operatorname{Str}(l) \rightarrow \operatorname{Str}$ is a pretree iff $P$ fulfills the definition of a perfect tree, except with domain restricted to $\operatorname{Str}(l) ; l$ is the height of $P=\operatorname{ht}(P)$. If $P$ is a perfect tree, $P \upharpoonright \operatorname{Str}(l)$ is a pretree of height $l$. If for each $l<\omega, P_{l}$ is a pretree of height $l$ and $P_{l} \subseteq P_{l+1}, \bigcup_{l}\left\langle P_{l}\right\rangle$ is a perfect tree. A precondition of height $l$ is a pair of pretrees of height $l$. Since pretrees and preconditions are finite objects, we code them into $\omega$. A pretree $P$ is a subpretree of a tree or pretree $R$ iff for each $\sigma \in \operatorname{dom}(P)$ there is a $\tau \in \operatorname{dom}(R), \tau \preccurlyeq \sigma$ and $P(\sigma)=$ $R(\tau)$. If $P$ is a subpretree of $R$ and $\sigma \in \operatorname{dom}(P), \sigma \in \operatorname{dom}(R)$ and $P(\sigma) \preccurlyeq R(\sigma)$; if, furthermore, $R$ is a pretree, $\operatorname{ht}(P) \leq \operatorname{ht}(R) .\langle P, Q\rangle$ is a subprecondition of a condition or precondition $\langle R, S\rangle$ iff $P$ and $Q$ are subpretrees of $R$ and $S$, respectively. Suppose that for each $l<\omega\left\langle P_{l}, Q_{l}\right\rangle$ is a subprecondition of a condition $\langle R, S\rangle$, $l=\operatorname{ht}\left(\left\langle P_{l}, Q_{l}\right\rangle\right),\left\langle P_{l+1}, Q_{l+1}\right\rangle$ is a subprecondition of $\left\langle P_{l}, Q_{l}\right\rangle$, and $\left\langle\left\langle P_{l}, Q_{l}\right\rangle\right\rangle_{l<\omega}$ is recursive in $R \oplus S$; then $\lim _{l}\left\langle P_{l}, Q_{l}\right\rangle=\left\langle\bigcup_{l} P_{l}, \bigcup_{l} Q_{l}\right\rangle$ is a condition extending $\langle R, S\rangle$.

For $P$ a pretree and $B \in{ }^{\omega} 2$, we may code as much of $B$ as possible into $P$, letting:
$\operatorname{Code}(P, B)(\rangle)=P(\langle \rangle)$,
$\operatorname{Code}(P, B)(\sigma) \simeq P\left(\left\langle B(0),(\sigma)_{0}, \ldots, B(\operatorname{lh}(\sigma)-1),(\sigma)_{\operatorname{lh}(\sigma)-1}\right\rangle\right)$, for $\operatorname{lh}(\sigma) \geq 1$. Note that if $\operatorname{ht}(P)=2 l$ or $=2 l+1$, Code $(P, B)$ has height $l$. We define
" $\operatorname{Code}(P, f)$ " and $\operatorname{Code}(\langle P, Q\rangle, f)$ where $\langle P, Q\rangle$ is a precondition, as one would expect.

For $P$ a tree or pretree and $\sigma \in \operatorname{Str}$, we shall say that $\sigma$ is on $P$ iff for some $\tau \in$ $\operatorname{dom}(P), P(\tau) \preccurlyeq \sigma$. Full is the tree id $\uparrow \operatorname{Str}$. Where $P$ is a tree or pretree, $\operatorname{Full}(P, \sigma)$ is the tree or pretree determined by $\operatorname{Full}(P, \sigma)(\tau)=P\left(\sigma^{\wedge} \tau\right)$. Note that if $P$ is a pretree of height $l$, $\operatorname{Full}(P, \sigma)$ is totally undefined, and so technically not a pretree, if $l<\operatorname{lh}(\sigma)$.

Fix a listing $\left\langle\psi_{j}\right\rangle_{j<\omega}$ of all primitive recursive relations on ${ }^{\omega} 2 \times \omega^{\omega} \times \omega \times \omega$. Introducing " $\underline{B}$ " and " $\underline{C}$ " as uninterpreted predicate constants, let $\varphi_{j}$ be " $(\exists x) \neg$ $(\exists y) \psi_{j}(\underline{B}, \underline{C}, x, y)$." We now define forcing, for $\langle P, Q\rangle$ a condition.
$\langle P, Q\rangle \Vdash \neg \varphi_{j}$ iff for all $\langle B, C\rangle \in[P] \times[Q],\langle B, C\rangle \vDash \neg \varphi_{j} ;$
$\langle P, Q\rangle \Vdash \varphi_{j}$ iff for some $n$ for all $\langle B, C\rangle \in[P] \times[Q]$,

$$
\langle B, C\rangle \vDash \neg(\exists y) \psi_{j}(\underline{B}, \underline{C}, \underline{n}, y) .
$$

[3] contains a proof of the crucial density theorem: any condition extends to a condition deciding $\varphi_{j}$. Implicit in that proof is the construction of a function force $(j,\langle P, Q\rangle)$ with domain $\leq \omega$ such that, letting force $(j,\langle P, Q\rangle)(l)=$ $\langle\hat{P}(l), \hat{Q}(l)\rangle$ :
(1) force $(j,\langle P, Q\rangle)(l)$ is, if defined, a subprecondition of $\langle P, Q\rangle$ of height $l$;
(2) if $l+1 \in \operatorname{dom}($ force $(j,\langle P, Q\rangle)$ ),

$$
\operatorname{force}(j,\langle P, Q\rangle)(l)=\langle\hat{P}(l+1) \upharpoonright \operatorname{Str}(l), \hat{Q}(l+1) \upharpoonright \operatorname{Str}(l)\rangle
$$

(3) for $l \in \operatorname{dom}($ force $(j,\langle P, Q\rangle)), \sigma, \tau$ strings of length $l$, there is a $y_{\sigma, \tau}$ such that $\psi\left(\hat{P}(l)(\sigma), \hat{Q}(l)(\tau), l, y_{\sigma, \tau}\right)$. (Following a standard convention, " $\psi_{j}(\sigma, \tau, x, y)$ " means "For all $B<\sigma, C \prec \tau, \psi_{j}(B, C, x, y)$ ". ) To compute force ( $\left.j,\langle P, Q\rangle\right)(0)$, we search for strings $\sigma$ and $\tau$ of the same length and for a $y_{( \rangle,<>}$so that $\psi_{j}(P(\sigma), Q(\tau), 0$, $\left.y_{\langle \rangle,\langle \rangle}\right)$, and let $\hat{P}(0)(\rangle)=P(\sigma), \hat{Q}(0)(\langle \rangle)=Q(\tau)$. Call these chosen $\sigma$ and $\tau$, if they exist, $\left\rangle^{\prime}\right.$ and $\left\rangle^{\prime \prime}\right.$, respectively. Now suppose that force $(j,\langle P, Q\rangle)(l)$ $=\langle\hat{P}(l), \hat{Q}(l)\rangle$ has been computed; for $\rho \in \operatorname{Str}(l)$, we suppose that $\rho^{\prime}$ and $\rho^{\prime \prime}$ have been defined, $\hat{P}(l)(\rho)=P\left(\rho^{\prime}\right), \hat{Q}(l)(\rho)=Q\left(\rho^{\prime \prime}\right)$. We now try to compute $\hat{P}(l+1)$ and $\hat{Q}(l+1)$ on all of $\operatorname{Str}(l+1)$. By our computation of $\hat{P}(l)$ and $\hat{Q}(l)$ and (2), it suffices to do this for strings of length $l+1$. Let $\sigma_{1}, \ldots, \sigma_{2^{l+1}}, \tau_{1}, \ldots, \tau_{2^{l+1}}$ be two lists of all strings of length $l+1$. We search for strings $\sigma_{1}^{\prime}, \ldots, \sigma_{2^{l+1}}^{\prime}, \ldots, \tau_{1}^{\prime \prime}, \ldots$, $\tau_{2^{l+1}}^{\prime \prime}$ all of the same length, and for witnesses $y_{\sigma_{i}, \tau_{k}}, i, k \in\left\{1, \ldots, 2^{l+1}\right\}$, such that for $\sigma_{i}=\sigma^{\wedge}\langle m\rangle$ and $\tau_{k}=\tau^{\wedge}\langle n\rangle, \sigma_{i}^{\prime} \preccurlyeq \sigma^{\prime \wedge}\langle m\rangle$ and $\tau_{k}^{\prime \prime} \preccurlyeq \tau^{\prime \prime \wedge}\langle n\rangle$, and $\psi_{j}\left(P\left(\sigma_{i}^{\prime}\right)\right.$, $\left.Q\left(\tau_{k}^{\prime \prime}\right), l+1, y_{\sigma_{i}, \tau_{k}}\right)$; we let $\hat{P}(l+1)\left(\sigma_{i}\right)=P\left(\sigma_{i}^{\prime}\right), \hat{Q}(l+1)\left(\tau_{k}\right)=Q\left(\tau_{k}^{\prime \prime}\right)$. For details on this search, see [3]. This search is recursive in $P \oplus Q$. So force ( $j,\langle P, Q\rangle$ ) is partial recursive in $P \oplus Q$, uniformly in $j$ and $\langle P, Q\rangle$, by the procedure outlined. "Force $(j,\langle P, Q\rangle)(l)$ is defined in $q$ steps" means that according to the procedure just outlined, that computation converges in $q$ steps. If force $(j,\langle P, Q\rangle)$ is total, $\lim _{l}$ force $(j,\langle P, Q\rangle)(l)=\left\langle\bigcup_{l} \hat{P}(l), \bigcup_{l} \hat{Q}(l)\right\rangle$ is a condition forcing $\neg \varphi_{j}$.

On the other hand, suppose force $(j,\langle P, Q\rangle)$ is not total. Call $\langle l, \sigma, \tau\rangle$ a $j$-witness for $\langle P, Q\rangle$ iff $\sigma, \tau \in \operatorname{Str}, \operatorname{lh}(\sigma)=\operatorname{lh}(\tau)$, and $\langle\operatorname{Full}(P, \sigma)$, $\operatorname{Full}(Q, \tau)\rangle \Vdash$ $\neg(\exists y) \psi_{j}(\underline{B}, \underline{C}, l, y)$. We now find a $j$-witness for $\langle P, Q\rangle$. Let $l$ be the least $l \notin$ $\operatorname{dom}\left(\right.$ force $(j,\langle P, Q\rangle)$ ). If $l=0$, let $\sigma=\tau=\langle \rangle$. If $l=x+1$, let $\left\langle\sigma_{i}, \tau_{k}\right\rangle$ be the least pair selected from the lists $\sigma_{i}, \ldots, \sigma_{2} ; \tau_{1}, \ldots, \tau_{2}$, for which we cannot find
appropriate $\sigma_{i}^{\prime}$, $\tau_{k}^{\prime \prime}$ and $y_{\sigma_{i}, \tau_{k}}$. Letting $\sigma_{i}=\sigma^{0 \wedge}\langle n\rangle, \tau_{k}=\tau^{0 \wedge}\langle m\rangle$, let $\sigma=\left(\sigma^{0}\right)^{\prime \wedge}\langle n\rangle$, $\tau=\left(\tau^{0}\right)^{\prime \wedge}\langle m\rangle$. $\langle l, \sigma, \tau\rangle$ is easily seen to be a $j$-witness for $\langle P, Q\rangle$. Notice that $\operatorname{lh}(\sigma)=\operatorname{lh}(\tau)$, since in defining $\widehat{P}(x)$ and $\hat{Q}(x)$ we required that $\operatorname{lh}\left(\left(\sigma^{0}\right)^{\prime}\right)=\operatorname{lh}\left(\left(\tau^{0}\right)^{\prime}\right)$. We have just described a procedure recursive in $(P \oplus Q)^{(1)}$ which halts iff force $(j,\langle P, Q\rangle)$ is partial, and, if it halts, delivers a $j$-witness for $\langle P, Q\rangle$. Call this procedure $\operatorname{Wit}(j,\langle P, Q\rangle)$.

The construction of force $(j,\langle P, Q\rangle)(0)$, and then of force $(j,\langle P, Q\rangle)(l+1)$ given force $(j,\langle P, Q\rangle)(l)$, proceeds by working down $P$ and $Q$, thinking of trees as growing downwards. Thus we may extend our definition of force( $j,\langle P, Q\rangle$ ) to apply to the case in which $\langle P, Q\rangle$ is a precondition. In this case, $\operatorname{dom}($ force $(j,\langle P, Q\rangle))$ is finite, and in fact, $\leq \operatorname{ht}(\langle P, Q\rangle)$.

Fix $f \in a$, parametrizing $\bigcup I$. We wish to construct $B, C \in{ }^{\omega} 2,\langle\operatorname{deg}(B), \operatorname{deg}(C)\rangle$ $I$-exact, $(B \oplus C)^{(2)} \leq_{T} f^{(1)}$ and $B \oplus C \leq_{T} f$.

A natural strategy suggests that we try to construct a sequence of conditions $\left\{\left\langle P_{j}, Q_{j}\right\rangle\right\}_{j<\omega}$, and an auxiliary sequence $\left\{\left\langle x_{j}, \sigma_{j}, \tau_{j}\right\rangle\right\}_{j<\omega}$ such that:
(1) $P_{0}=Q_{0}=$ Full;
(2) for all $j$ :
(2a) if $x_{j} \geq 0$ then

$$
\left\langle x_{j}, \sigma_{j_{2}} \tau_{j}\right\rangle=\operatorname{Wit}\left(j,\left\langle P_{2 j}, Q_{2 j}\right\rangle\right)
$$

and

$$
\left\langle P_{2 j+1}, Q_{2 j+1}\right\rangle=\left\langle\operatorname{Full}\left(P_{2 j}, \sigma_{j}\right), \operatorname{Full}\left(Q_{2 j}, \tau_{j}\right)\right\rangle ;
$$

(2b) if $x_{j}=-1, \sigma_{j}=\tau_{j}=\langle \rangle$ and force $\left(j,\left\langle P_{2 j}, Q_{2 j}\right\rangle\right)$ is total and

$$
\left\langle P_{2 j+1}, Q_{2 j+1}\right\rangle=\lim \underset{l}{\operatorname{force}}\left(j,\left\langle P_{2 j}, Q_{2 j}\right\rangle\right)(l) ;
$$

(3) for all $j$,

$$
\left\langle P_{2 j+2}, Q_{2 j+2}\right\rangle=\operatorname{Code}\left(\left\langle P_{2 j+1}, Q_{2 j+1}\right\rangle,(f)_{j}\right)
$$

Then we shall let $\{B\}=\bigcap_{j}\left[P_{j}\right],\{C\}=\bigcap_{j}\left[Q_{j}\right]$. Choice of $\left\langle P_{2 j+2}, Q_{2 j+2}\right\rangle$ insures that $(f)_{j} \leq_{T} B$ and $(f)_{j} \leq_{T} C$. The genericity of the sequence of conditions insures that if $g \leq_{T} B$ and $g \leq_{T} C, g \in \bigcup I$.

We also want our construction to be recursive in $f$. But choice of $\left\langle P_{2 j+1}, Q_{2 j+1}\right\rangle$ or, equivalently, of $\left\langle x_{j}, \sigma_{j}, \tau_{j}\right\rangle$, depends on facts about $\left(P_{2 j} \oplus Q_{2 j}\right)^{(2)}$ which cannot be decided uniformly in $j$ and recursively in $f$. A further difficulty appears when we specify the sense in which we would like $\left\{\left\langle P_{j}, Q_{j}\right\rangle\right\}_{j<\omega}$ to be recursive in $f$. We want an $f$-recursive function $j \mapsto\left\langle n_{j}, m_{j}\right\rangle$ such that $P_{j}=(f)_{n}, Q_{j}=(f)_{m}$, and such a function may not exist. Instead we proceed by guersing, recursively in $f$, at the previously described construction.

For $x \geq 1$, let $d(x)=y$ iff $x=2 y+1$ or $x=2 y+2$. At stage $i$ of our construction we will have a number $z_{i} \geq 1$ and, for each $j \leq z_{i}$, a guess $\left\langle P_{j}^{i}, Q_{j}^{i}\right\rangle$ at $\left\langle P_{j}, Q_{j}\right\rangle$, and, for each $j \leq d\left(z_{i}\right)$, guesses $x_{j}^{i}, \sigma_{j}^{i}$ and $\tau_{j}^{i}$ at $x_{j}, \sigma_{j}$ and $\tau_{j}$. $P_{j}^{i}$ and $Q_{j}^{i}$ are functions, $\operatorname{dom}\left(P_{j}^{i}\right)=\operatorname{dom}\left(Q_{j}^{i}\right) \leq \omega$ such that, letting $\left\langle P_{j}^{i}, Q_{j}^{i}\right\rangle(l)=$ $\left\langle P_{j}^{i}(l), Q_{j}^{i}(l)\right\rangle,\left\langle P_{j}^{i}, Q_{j}^{i}\right\rangle(l)$ is, if defined, a precondition of E •ight $l$ such that:
$\left(1^{\prime}\right)\left\langle P_{0}^{i}, Q_{0}^{i}\right\rangle(l)=\langle$ Full $\uparrow \operatorname{Str}(l)$, Full $\uparrow \operatorname{Str}(l)\rangle$;
(2') for all $j \leq d\left(z_{i}\right)$, if $x_{j}^{i} \geq 0$,

$$
\left\langle P_{2 j+1}^{i}, Q_{2 j+1}^{i}\right\rangle(l) \simeq\left\langle\operatorname{Full}\left(P_{2 j}^{i}(k+l), \sigma_{j}^{i}\right), \text { Full }\left(Q_{2 j}^{i}(k+l), \tau_{j}^{i}\right)\right\rangle,
$$

where $\operatorname{lh}\left(\sigma_{j}^{i}\right)=\operatorname{lh}\left(\tau_{j}^{i}\right)=k$;
if $x_{j}^{i}=-1, \sigma_{j}^{i}=\tau_{j}^{i}=\langle \rangle$ and

$$
\left\langle P_{2 j+1}^{i}, Q_{2 j+1}^{i}\right\rangle(l) \simeq \operatorname{force}\left(j,\left\langle P_{2 j}^{i}, Q_{2 j}^{i}\right\rangle\left(l^{\prime}\right)\right)(l)
$$

for an $l^{\prime} \in \operatorname{dom}\left(\left\langle P_{2 j}^{i}, Q_{2 j}^{i}\right\rangle\right)$, but large enough for the right-hand side to be defined, if such there be;
( $3^{\prime}$ ) for all $2 j+2 \leq z_{i}$,

$$
\left\langle P_{2 j+2}^{i}, Q_{2 j+2}^{i}\right\rangle(l) \simeq \operatorname{Code}\left(\left\langle P_{2 j+1}^{i}, Q_{2 j+1}^{i}\right\rangle(2 l),(f)_{j}\right) .
$$

For reasons to appear shortly, we need to modify this outline in one respect. In the sequence described by (1)-(3) we shall add, between consecutive conditions $\left\langle P_{j}, Q_{j}\right\rangle$ and $\left\langle P_{j+1}, Q_{j+1}\right\rangle$, an intermediate condition $\left\langle P_{j}^{*}, Q_{j}^{*}\right\rangle$, determined by strings $\delta_{j}$ and $\varepsilon_{j}$ of equal length, so that:
(4*) for all $j$,

$$
\left\langle P_{j}^{*}, Q_{j}^{*}\right\rangle=\left\langle\operatorname{Full}\left(P_{j}, \delta_{j}\right), \operatorname{Full}\left(Q_{j}, \varepsilon_{j}\right)\right\rangle
$$

with (2) and (3) revised to (2*) and (3*), (2*) saying that $\left\langle P_{2 j+1}, Q_{2 j+1}\right\rangle$ is formed from $\left\langle P_{2 j}^{*}, Q_{2 j}^{*}\right\rangle$ in the way in which (2) says it is formed from $\left\langle P_{2 j}, Q_{2 j}\right\rangle$, and (3*) saying that $\left\langle P_{2 j+2}, Q_{2 j+2}\right\rangle$ is formed from $\left\langle P_{2 j+1}^{*}, Q_{2 j+1}^{*}\right\rangle$ in the way in which (3) says it is formed from $\left\langle P_{2 j}, Q_{2 j}\right\rangle$. In our guessing construction, at stage $i$ for all $j<z_{i}$ we shall have guesses $\delta_{j}^{i}$ and $\varepsilon_{j}^{i}$ at $\delta_{j}$ and $\varepsilon_{j}$ and guesses $\left\langle P_{j}^{i *}, Q_{j}^{i *}\right\rangle$ at $\left\langle P_{j}^{*}, Q_{j}^{*}\right\rangle$ given by:
(4*) for $j<z_{i}$,

$$
\begin{aligned}
& \left\langle P_{j}^{i *}, Q_{j}^{i *}\right\rangle(l) \simeq\left\langle\operatorname{Full}\left(P_{j}^{i}(k+l), \delta_{j}^{i}\right), \operatorname{Full}\left(Q_{j}^{i},(k+l), \varepsilon_{j}^{i}\right)\right\rangle \\
& \text { for } k=\operatorname{lh}\left(\delta_{j}^{i}\right)=\operatorname{lh}\left(\varepsilon_{j}^{i}\right) .
\end{aligned}
$$

$\left(2^{\prime}\right)$ and $\left(3^{\prime}\right)$ are now revised to $\left(2^{\prime *}\right)$ and $\left(3^{\prime \prime}\right)$, following the obvious analogy with (2*) and (3*).
If our guess converges appropriately, we shall have $(B \oplus C)^{(2)} \leq_{T} f^{(1)}$. To insure that $B \oplus C \leq{ }_{T} f$, we must supplement the guessing procedure just described with a nonguessing process such that for each $n$ we can $f$-recursively find a stage $i$ which definitely settles the questions " $n \in B$ ?" and " $n \in C$ ?".

To this end we construct sequences $\left\{\beta_{i}\right\}_{i<\omega}$ and $\left\{\gamma_{i}\right\}_{i<\omega}$ of strings $\beta_{i+1} \preceq \beta_{i}$, $\gamma_{i+1} \preceq \gamma_{i}$, and we make sure that $B=\lim _{i} \beta_{i}, C=\lim _{i} \gamma_{i} . \beta_{i}$ and $\gamma_{i}$ will be fixed at stage $i$ on the basis of our guesses as of stage $i$. But thereafter any further guesses, including revisions of guesses on the basis of which $\beta_{i}$ and $\gamma_{i}$ were fixed, must honor the commitments that $B \prec \beta_{i}$ and $C \prec \gamma_{i}$. This is where $\delta_{j}^{i}$ and $\varepsilon_{j}^{i}$ come in; when we make a decision at stage $i$ about what $\left\langle P_{j+1}, Q_{j+1}\right\rangle$ looks like, we shall choose $\delta_{j}^{i}, \varepsilon_{j}^{i}$ to "protect" $\beta_{i}$ and $\gamma_{i}$; that is, we shall try to make sure that $P_{j+1}(\langle \rangle) \preceq$ $P_{j}^{*}(\langle \rangle) \preceq \beta_{i}$ and $Q_{j+1}(\langle \rangle) \preceq Q_{j+1}^{*}(\langle \rangle) \preceq \gamma_{i}$. To carry all this out, at stage $i$ we shall actually have to compute, for each $j=z_{i},\left\langle P_{j}^{i}, Q_{j}^{i}\right\rangle\left(k_{j}^{i}\right)$ for a certain $k_{j}^{i}$. To this end, we introduce functions $l_{j}^{i}, j \leq z_{i}$, and $l_{j}^{i}, j<z_{i}$. Intuitively, $l_{j}^{i}(q)$ is the largest $l$ such that we can compute $\left\langle P_{j}^{i}, Q_{j}^{i}\right\rangle(l)$ in $\leq q$ steps; $l_{j}^{i *}(q)$ is the largest $l$ such that we can compute $\left\langle P_{j}^{i *}, Q_{j}^{i *}\right\rangle(l)$ in $\leq q$ steps. $l_{j}^{i}$ or $l_{j}^{i *}$ may be undefined on
an initial segment of $\omega$, since it can take a while even to compute $\left\langle P_{j}^{i}, Q_{j}^{i}\right\rangle(0)$ or $\left\langle P_{j}^{i *}, Q_{j}^{i *}\right\rangle(0)$. But if defined, $l_{j}^{i}(q) \in \operatorname{dom}\left(\left\langle P_{j}^{i}, Q_{j}^{i}\right\rangle\right)$, and for $q<q^{\prime}, l_{j}^{i}\left(q^{\prime}\right)$ is defined and $\geq l_{j}^{i}(q)$; similarly for $l_{i}^{i *}$. If $l_{j+1}^{i}(q)$ is defined, $\left\langle P_{j+1}^{i}, Q_{j+1}^{i}\right\rangle\left(l_{j+1}^{i}(q)\right)$ is a subprecondition of $\left\langle P_{j}^{i *}, Q_{j}^{i *}\right\rangle\left(l_{j}^{i *}(q)\right)$ with $l_{j}^{i *}(q)$ defined; if $l_{j}^{i *}(q)$ is defined, $\left\langle P_{j}^{i *}, Q_{j}^{i *}\right\rangle\left(l_{j}^{i *}(q)\right)$ is a subprecondition of $\left\langle P_{j}^{i}, Q_{j}^{i}\right\rangle\left(l_{j}^{i}(q)\right)$, with $l_{j}^{i}(q)$ defined. Furthermore, for $j<z_{i}$, if $\lim _{q} l_{j}^{i}(q)=\omega$ then $\lim _{q} l_{j}^{i *}(q)=\omega$; for $2 j+1<z_{i}$, if $\lim _{q} l_{2 j+1}^{*}(q)=\omega$ then $\lim _{q} l_{2 j+2}^{i}(q)=\omega$; for $2 j<z_{i}$, if $\lim _{q} l_{2 j}^{i *}(q)=\omega$ then: if $x_{j}^{i} \geq 0, \lim _{q} l_{2 j+1}^{i}(q)=\omega$; if $x_{j}^{i}=-1, \lim _{q} l_{2 j+1}^{i}(q)=\omega$ iff force $(j,\langle P, Q\rangle)$ is total, for $\langle P, Q\rangle=\lim _{l}\left\langle P_{2 j}^{i *}, Q_{2 j}^{i *}\right\rangle(l)$.

Our informal description of $l_{j}^{i}$ and $l_{j}^{i *}$ could serve as a definition of these functions, but we offer definitions anyway:

$$
\begin{aligned}
& l_{0}^{i}(q)=q ; \\
& l_{j}^{i *}(q) \simeq l_{j}^{i}(q)-\operatorname{lh}\left(\delta_{j}^{i}\right) \text {, if } l_{j}^{i}(q) \text { is defined and } \geq \operatorname{lh}\left(\delta_{j}^{i}\right) \\
& \text { if } x_{j}^{i}=-1, l_{2 j+1}^{i}(q) \simeq \text { the maximum } l \text { such that }
\end{aligned}
$$

$$
\operatorname{force}\left(j,\left\langle P_{2 j}^{i *}, Q_{2 j}^{i *}\right\rangle\left(l_{2 j}^{i *}(q)\right)\right)(l)
$$

is defined in $\leq q$ steps;
$l_{2 j+2}^{i}(q) \simeq l$ if $l_{2 j+1}^{1}(q)=2 l$ or $=2 l+1$.
We shall have an $f$-recursive increasing function $g$ which serves as a clock, telling us when to stop computing preconditions and move on the stage $i+1$. The relevant $k_{j}^{i}$ will be $k_{j}^{i}=l_{j}^{i}(g(i))$.
We shall arrange our construction so that at each stage $i$ :
$(1 . i) l_{z_{i}}^{i}(g(i))$ is defined, with $\beta_{i}$ on $P_{z_{i}}^{i}\left(l_{z_{i}}^{i}(g(i))\right)$ and $\gamma_{i}$ on $Q_{z_{i}}^{i}\left(l_{z_{i}}^{i}(g(i))\right)$.
In addition to the sequences so far described, we also need a sequence $\left\{\left\langle n_{j}, m_{j}\right\rangle\right\}_{j<\omega}$ such that:

$$
\begin{equation*}
\text { for all } j,\left\langle P_{j}, Q_{j}\right\rangle=\left\langle(f)_{n_{j}},(f)_{m_{j}}\right\rangle . \tag{5}
\end{equation*}
$$

We shall also need guess $\left\langle n_{j}^{i}, m_{j}^{j}\right\rangle$ at $\left\langle n_{j}, m_{j}\right\rangle$ for $j \leq z$. Let $[n, m / \delta, \varepsilon]$ abbreviate $\left\langle\operatorname{Full}\left((f)_{n}, \delta\right)\right.$, $\left.\operatorname{Full}\left((f)_{m}, \varepsilon\right)\right\rangle$. For $2 j+1 \leq z_{i}$, let $2 j+1$ have property 1 at stage $i$ iff $\left[n_{2 j}^{i}, m_{2 j}^{i} / \delta_{2 j}^{i}, \varepsilon_{2 j}^{i}\right]$ is a condition, and: if $x_{j}^{i} \geq 0$,

$$
\left\langle x_{j}^{i}, \delta_{j}^{i}, \tau_{j}^{i}\right\rangle=\operatorname{Wit}\left(j,\left[n_{2 j}^{i}, m_{2 j}^{i} / \delta_{2 j}^{i}, \varepsilon_{2 j}^{i}\right]\right) ;
$$

if $x_{j}^{i}=-1, \operatorname{Wit}\left(j,\left[n_{2 j}^{i}, m_{2 j}^{i} / \delta_{2 j}^{i}, \varepsilon_{2 j}^{i}\right]\right)$ is undefined. Note that " $2 j+1$ has property 1 at stage $i$ " is $\Sigma_{3}^{0}$ in $\left((f)_{n_{2 j}^{i}} \oplus(f)_{m_{2 j}^{i}}^{i}\right)$. It would be nice at stage $i$ to have all $2 j+1 \leq$ $z_{i}$ with property 1 . But to keep the construction recursive in $f$ we can only guess at whether a given $2 j+1$ has property 1 . We do this by asking the question of our $g(i)$ th guess at $\left((f)_{n_{2 j}^{i}} \oplus(f)_{m_{2,}^{i}}\right)^{(3)}$, namely

$$
\left.\left.\left.\left.(f)_{G\left(G \left(G \left(H \left(n_{2 j}^{i}\right.\right.\right.\right.}, m_{2 j}^{i}, g(i)\right), g(i)\right), g(i)\right), g(i)\right) .
$$

We content ourselves with insuring that at each stage $i$ :
(2.1) for each $2 j+1 \leq z_{i}$ our $g(i)$ th guess at $\left((f)_{n_{2 j}^{i}} \oplus(f)_{m_{2 j}^{i}}\right)^{(3)}$ says that $2 j+1$ has property 1 at stage $i$.

This can be checked recursively in $f$.
For $j \leq z_{i}$, let $j$ have property 2 at stage $i$ iff $\lim _{l}\left\langle P_{j}^{i}, Q_{j}^{i}\right\rangle(l)=\left\langle(f)_{n_{2 j}^{i}},(f)_{m_{2 j}^{i}}\right\rangle$, which is a condition. Again, " $j$ has property 2 at stage $i$ " is $\Sigma_{3}^{0}$ in $\left((f)_{n_{2 j}^{i}} \oplus(f)_{m_{2 j}^{i}}^{i}\right)$.

It would be nice to have all $j \leq z_{i}$ with property 2 at stage $i$, so that our guesses at $\left\langle n_{j}, m_{j}\right\rangle$ accurately reflect our guesses at $\left\langle P_{j}, Q_{j}\right\rangle$. But, to keep the construction recursive in $f$, the best we can do is to insure that at each stage $i$ :
(3.i) for each $j \leq z_{i}$,

$$
\left\langle P_{j}^{i}, Q_{j}^{i}\right\rangle\left(l_{j}^{i}(g(i))\right)=\left\langle(f)_{n_{j}^{i}} \upharpoonright \operatorname{Str}\left(l_{j}^{i}(g(i))\right),(f)_{m_{j}^{i}} \upharpoonright \operatorname{Str}\left(l_{j}^{i}(g(i))\right)\right\rangle .
$$

Checking this will be recursive in $f$.
After such extensive previewing, the presentation of the construction may, at least, be brief.

Stage 0. $z_{0}=0, g(0)=0, \beta_{0}=\gamma_{0}=\langle \rangle$; for all $l, P_{0}^{0}(l)=Q_{0}^{0}(l)=$ Full $\uparrow \operatorname{Str}(l)$; select $\left\langle n_{0}^{0}, m_{0}^{0}\right\rangle$ so that $(f)_{n_{0}^{0}}=(f)_{m_{0}^{0}}=$ Full.

Stage $i+1$. Suppose we already have $z_{i}, g(i),\left\{\left\langle P_{j}^{i}, Q_{j}^{i}\right\rangle\right\}_{j \leq z_{i}},\left\{\left\langle\delta_{j}^{i}, \varepsilon_{j}^{i}\right\rangle\right\}_{j<d\left(z_{i}\right)}$, $\left\{\left\langle x_{j}^{i}, \sigma_{j}^{i}, \tau_{j}^{i}\right\rangle\right\}_{j \leq d\left(z_{i}\right)}, \beta_{i}$ and $\gamma_{i}$, with (1.i)-(3.i) all true. For $2 j+1 \leq z_{i}$, let $2 j+1$ be 1-bad at $(i, q)$ iff our $(g(i)+q+1)$ st guess at $\left((f)_{n 2 j}^{i} \oplus(f)_{m 2 j}^{i}\right)^{(3)}$ says that $2 j+1$ lacks property 1 at stage $i$. For $j \leq z_{i}, j$ is 2 -bad at $\langle i, q\rangle$ iff

$$
\begin{aligned}
& \left\langle P_{j}^{i}, Q_{j}^{i}\right\rangle\left(l_{j}^{i}(g(i)+q+1)\right) \\
& \quad \neq\left\langle(f)_{n_{j}^{i}} \upharpoonright \operatorname{Str}\left(l_{i}^{j}(g(i)+q+1)\right),(f)_{m_{j}^{i}} \upharpoonright \operatorname{Str}\left(l_{j}^{i}(g(i)+q+1)\right)\right\rangle .
\end{aligned}
$$

Let $(\delta, \varepsilon)$ be a $q$-combination for $2 j \leq z_{i}$ iff $\operatorname{lh}(\delta)=\operatorname{lh}(\varepsilon) \leq l_{2 j}^{i}(g(i)+q+1)=$ $l$ and
(6) either:
(a) our $(g(i)+q+1)$ st guess at $\left((f)_{n_{2 j}^{i}} \oplus(f)_{m_{2 j}^{i}}\right)^{(3)}$ says that

$$
\operatorname{Wit}\left(j,\left[\dot{n}_{2 j}^{i}, m_{2 j}^{i} / \delta, \varepsilon\right]\right)=\langle x, \sigma, \tau\rangle
$$

in $\leq g(i)+q+1$ steps for some $\langle x, \sigma, \tau\rangle$ with $\operatorname{lh}(\delta)+\operatorname{lh}(\sigma) \leq l$; or
(b) our $(g(i)+q+1)$ st guess at $\left((f)_{n_{2 j}^{i}} \oplus(f)_{m_{2 j}^{i}}\right)^{(3)}$ says that $\operatorname{Wit}\left(j,\left[n_{2 j}^{i}, m_{2 j}^{i} / \sigma, \varepsilon\right]\right)$ is undefined, and force $(j,\langle P, Q\rangle)(0)$ is defined in $\leq g(i)+q+1$ steps for

$$
\langle P, Q\rangle=\left\langle\operatorname{Full}\left(P_{2 j}^{i}(l), \delta\right), \operatorname{Full}\left(Q_{2 j}^{i}(l), \varepsilon\right)\right\rangle
$$

Whether ( $\delta, \varepsilon$ ) is a $q$-combination, in fact whether there is a $q$-combination for a given $2 j$, is decidable recursively in $f$. We shall say that $q$ changes the primary guess at $2 j+1 \leq z_{i}$ iff: for $k<2 j+1, k$ is neither 1 -bad nor 2 -bad at $(i, q) ; 2 j+1$ is 1 -bad at ( $i, q$ ); and
(7) there is a $q$-combination $(\delta, \varepsilon)$ such that

$$
P_{2 j}^{i}\left(l_{2 j}^{i}(g(i)+q+1)\right)(\delta) \preceq \beta_{i}
$$

and

$$
\left.Q_{2 j}^{i}\left(l_{2 j}^{i} j g(i)+q+1\right)\right)(\varepsilon) \preceq \gamma_{i} .
$$

We shall say that $q$ changes the secondary guess at $j \leq z_{i}$ iff: for all $k<j, k$ is neither 1-bad nor 2 -bad at $(i, q) ; j$ is 2 -bad but not 1 -bad at $(i, q)$; and
(8) there are strings $\beta$ and $\gamma$ on $P_{j}^{i}\left(l_{j}^{i}(g(i)+q+1)\right)$ and $Q_{j}^{i}\left(l_{j}^{i}(g(i)+q+1)\right)$, respectively, $\beta \preceq \beta_{i}$ and $\gamma \preceq \gamma_{i}$. We shall say that $q$ creates a guess at $z_{i}+1=z$ iff for all $j \leq z_{i}, j$ is neither 1-bad nor 2-bad at ( $i, q$ ), and
(9) there are strings $\delta$ and $\varepsilon$ such that

$$
\begin{equation*}
P_{z_{i} i}^{i}\left(l_{z_{i}}^{i}(g(i)+q+1)\right)(\delta) \preceq \beta_{i} \tag{9.1}
\end{equation*}
$$

and

$$
Q_{z_{i}}^{i}\left(l_{z_{i}}^{i}(g(i)+q+1)\right)(\varepsilon) \preceq \gamma_{i}
$$

(9.2) if $z=2 j+1,(\delta, \varepsilon)$ is a $q$-combination for $2 j$.

Lemma 2. There is a $q$ which either changes or creates a guess.
Proof. Let $\hat{j}=$ the least $j \leq z_{i}$ which lacks either property 1 or 2 , if there is one; $\hat{\jmath}=z_{i}+1$ otherwise. If $\hat{\jmath}$ lacks property 1 , we find a $q$ changing the primary guess at $\hat{j}$; if $\hat{j}$ has property 1 but not property 2 , we find a $q$ changing the secondary guess at $\hat{j}$; if $\hat{\jmath}=z_{i}+1$, we find a $q$ creating a guess at $\hat{j}$. Consider the first situation. Suppose that for $q \geq q_{0}$, our $(g(i)+q+1)$ st guess at $\left(\left(f_{n_{2 j}} \oplus(f)_{m_{2 j}^{i} j}\right)^{(3)}\right.$ is correct for all $2 j \leq \hat{j}$. So for $q \geq q_{0}$, all $k<\hat{j}$ are neither 1-bad nor 2-bad at $(i, q)$, and $\hat{j}$ is $1-\operatorname{bad}$ at $(i, q)$. For $j<\hat{\jmath}, \lim _{l} l_{j}^{i}(l)=\omega$. If not, let $j$ be the least counterexample; by remarks preceding the definition of $l_{j}^{i}, j=2 j^{\prime}+1, x_{j^{\prime}}^{i}=-1$ and force $\left(j^{\prime}, \lim _{l}\left\langle P_{2 j}^{i *}, Q_{2 j}^{i *}\right\rangle(l)\right)$ is partial; so $\operatorname{Wit}\left(j^{\prime},\left[n_{2 j^{\prime}}^{i}, m_{2 j^{\prime}}^{i} / \delta_{2 j^{\prime}}^{i}, \varepsilon_{2 j^{\prime}}^{i}\right]\right)$ is defined, and $j$ lacks property 1 ; contradiction with $j<\hat{j}$. Now let $\hat{j}=2 j+1$. For sufficiently large $q$ we may increase $l=l_{2 j}^{i}(g(i)+q+1)$ large enough to find $(\delta, \varepsilon)$, $P_{2 j}^{i}(l)(\delta) \preceq \beta_{i}$ and $Q_{2 j}^{i}(l)(\varepsilon) \preceq \gamma_{i}, \operatorname{lh}(\delta)=\operatorname{lh}(\varepsilon)=l$. Note that

$$
\left[n_{2 j}^{i}, m_{2 \jmath}^{i} / \delta, \varepsilon\right]=\underset{l}{\lim \left\langle\operatorname{Full}\left(P_{2 j}^{i}(l), \delta\right), \operatorname{Full}\left(Q_{2 j}^{i}(l), \varepsilon\right)\right\rangle . . . . .}
$$

If $\operatorname{Wit}\left(j,\left[n_{2 j}^{i}, m_{2 j}^{i} / \delta, \varepsilon\right]\right)$ is defined, then for $q \geq q_{0}$ our $(g(i)+q+1)$ st guess at $\left((f)_{n_{2 j}^{i}} \oplus(f)_{m_{2 j}^{i}}{ }^{(3)}\right.$ says it is; so for sufficiently large $q \geq q_{0}$, it truthfully says that $\operatorname{Wit}\left(j,\left[n_{2 j}^{i}, m_{2 j}^{i} / \delta, \varepsilon\right]\right)=\langle x, \sigma, \tau\rangle$ in $\leq g(i)+q+1$ steps, and $\operatorname{lh}(\sigma)+\operatorname{lh}(\delta) \leq$ $l_{2 j}^{i}(g(i)+q+1)$. On the other hand, if $\operatorname{Wit}\left(j,\left[n_{2 j}^{i}, m_{2 j}^{i} / \delta, \varepsilon\right]\right)$ is undefined, our $(g(i)+q+1)$ st guess at $\left((f)_{n_{2 j}^{i}} \oplus(f)_{m_{2 j}^{i}}\right)^{(3)}$ says so. For sufficiently large $q$, force $(j,\langle P, Q\rangle)(0)$ is defined in $\leq g(i)+q+1$ steps, for

$$
\langle P, Q\rangle=\left\langle\operatorname{Full}\left(P_{2 j}^{i}\left(l_{2 j}^{i}(q(i)+q+1)\right), \delta\right), \operatorname{Full}\left(Q_{2 j}^{i}\left(l_{2 j}^{i}(q(i)+q+1)\right), \varepsilon\right)\right\rangle .
$$

So a sufficiently large $q \geq q_{0}$ is as desired. Similar arguments apply in the other two situations. Q.E.D.

Notice that we can $f$-recursively decide whether $q$ is as described in Lemma 2. We proceed as follows, recursively in $f$. Search for the least $q$ as described in Lemma 2. Let $g(i+1)=g(i)+q+1$. If $q$ changes the primary or secondary guess at $j$, let $j=z_{i+1}=z$. Otherwise let $z_{i+1}=z=z_{i}+1$. Now we preserve some earlier guesses: for $j<z$, let

$$
\left\langle P_{j}^{i+1}, Q_{j}^{i+1}\right\rangle=\left\langle P_{j}^{i}, Q_{j}^{i}\right\rangle,\left\langle n_{j}^{i+1}, n_{j}^{i+1}\right\rangle=\left\langle n_{j}^{i}, m_{j}^{i}\right\rangle ;
$$

for $2 j+1<z$, let

$$
x_{j د}^{i+1}=x_{j}^{i}, \quad \sigma_{j}^{i+1}=\sigma_{j}^{i}, \quad \tau_{j}^{i+1}=\tau_{j}^{i} ;
$$

for $j<z-1$, let

$$
\delta_{j}^{i+1}=\delta_{j}^{i}, \quad \varepsilon_{j}^{i+1}=\varepsilon_{j}^{i} .
$$

The situation in which $q$ changes the secondary guess at $z$ is easiest to handle.

Here our guesses $\left\langle n_{z}^{i}, m_{z}^{i}\right\rangle$ have been found to be wrong relative for $\left\langle P_{z}^{i}, Q_{z}^{i}\right\rangle$. We let $\delta_{z-1}^{i+1}=\delta_{z-1}^{i}, \varepsilon_{z-1}^{i+1}=\varepsilon_{z-1}^{i},\left\langle P_{z}^{i+1}, Q_{z}^{i+1}\right\rangle=\left\langle P_{z}^{i}, Q_{z}^{i}\right\rangle$ and, if $z=2 j+1, x_{j}^{i+1}=x_{j}^{i}$, $\sigma_{j}^{i+1}=\sigma_{j}^{i}, \tau_{j}^{i+1}=\tau_{j}^{i}$. Select $\beta$ and $\gamma$ as in (8) and let $\beta_{i+1}=\beta, \gamma_{i+1}=\gamma$. Note that $l_{z}^{i}=l_{z}^{i+1}$. Now find the least $\langle n, m\rangle$ such that

$$
\begin{aligned}
& \left\langle P_{z}^{i+1}, Q_{z}^{i+1}\right\rangle\left(l_{z}^{i+1}(g(i+1))\right) \\
& \quad=\left\langle(f)_{n} \upharpoonright \operatorname{Str}\left(l_{z}^{i+1}(g(i+1))\right),(f)_{m} \upharpoonright \operatorname{Str}\left(l_{z}^{i+1}(g(i+1))\right)\right\rangle
\end{aligned}
$$

and let $\left\langle n_{z}^{i+1}, m_{z}^{i+1}\right\rangle=$ that $\langle n, m\rangle$.
Next easiest is the case in which $q$ creates a new guess at $z=2 j+2$. Select strings $\delta$ and $\varepsilon$ as described in (9.1) to be $\delta_{z-1}^{i+1}$ and $\varepsilon_{z-1}^{i+1}$, respectively. Let $\beta_{i+1}=$ $P_{z-1}^{i}\left(l_{z-1}^{i}(g(i+1))\right)(\delta)$ and $\gamma_{i+1}=Q_{z-1}^{i}\left(l_{z-1}^{i}(g(i+1))\right)(\varepsilon)$. So $\left\langle P_{z-1}^{i *}, Q_{z-1}^{i *}\right\rangle$ and $\left\langle P_{z}^{i}, Q_{z}^{i}\right\rangle$ are defined as described before the construction began. Now select $\left\langle n_{z}^{i+1}, m_{z}^{i+1}\right\rangle$ as in the previous case.

The cases in which $q$ changes the primary guess at $z$ and in which $q$ creates a new condition at $z=2 j+1$ are similar. Select $\delta$ and $\varepsilon$ as described in (7) or in (9), and let $\delta_{z-1}^{i+1}=\delta, \quad \varepsilon_{z-1}^{i+1}=\varepsilon, \quad \beta_{i}=P_{z-1}^{i}\left(l_{z-1}^{i}(g(i+1))\right)(\delta), \gamma_{i}=Q_{z-1}^{i}\left(l_{z-1}^{i}(g(i+1))\right)(\varepsilon)$. $\left\langle P_{z-1}^{i *}, Q_{z-1}^{i *}\right\rangle$ is now determined. If $(\delta, \varepsilon)$ is a $q$-combination by virtue of (6)(a), let $\left\langle x_{j}^{i+1}, \sigma_{j}^{i+1}, \tau_{j}^{i+1}\right\rangle=$ the $\langle x, \sigma, \tau\rangle$ described in (6)(a). If $(\delta, \varepsilon)$ is a $q$-combination by (6)(b), let $x_{j}^{i+1}=-1, \sigma_{j}^{i+1}=\tau_{j}^{i+1}=\langle \rangle$. Form $\left\langle P_{z}^{i}, Q_{z}^{i}\right\rangle$ as indicated in the preparatory remarks. We now select $\left\langle n_{z}^{i}, m_{z}^{i}\right\rangle$ as in the previous two cases.

Notice that $\left\langle\delta_{z-1}^{i+1}, \varepsilon_{z-1}^{i+1}\right\rangle$ is changed from $\left\langle\delta_{z-1}^{i}, \varepsilon_{z-1}^{i}\right\rangle$ only if we changed a primary guess; $\left\langle\delta_{z-1}^{i+1}, \varepsilon_{z-1}^{i+1}\right\rangle$ is defined while $\left\langle\delta_{z-1}^{i}, \varepsilon_{z-1}^{i}\right\rangle$ was undefined iff we created a new guess at $z$. It is easy to verify that $(1 . i+1),(2 . i+1)$ and $(3 . i+1)$ are true. We now show that all our guesses settle down to sequences as described in (1), (2*), (3*), and (4*) and (5).

Lemma 3. There are sequences $\left\{\left\langle P_{j}, Q_{j}\right\rangle\right\}_{j<\omega},\left\{\left\langle\delta_{j}, \varepsilon_{j}\right\rangle\right\}_{j<\omega},\left\{\left\langle x_{j}, \sigma_{j}, \tau_{j}\right\rangle\right\}_{j<\omega}$, $\left\langle\left\langle n_{j}, m_{j}\right\rangle\right\rangle_{j<\omega}$ making (1), (2*), (3*), (4*), and (5) true; and for any $k$ there is an $i_{k}$ such that for all $i \geq i_{k}$ :
(10) for $j \leq k, j$ has properties 1 and 2 at $i ; k<z_{i}$;
(11) for $j \leq k,\left\langle n_{j}^{i}, m_{j}^{i}\right\rangle=\left\langle n_{j}, m_{j}\right\rangle$;
(12) for $j \leq k, \lim _{l}\left\langle P_{j}^{i}, Q_{j}^{i}\right\rangle(l)=\left\langle P_{j}, Q_{j}\right\rangle$;
(13) for $j\left\langle k,\left\langle\delta_{j}^{i}, \varepsilon_{j}^{i}\right\rangle=\left\langle\delta_{j}, \varepsilon_{j}\right\rangle\right.$;
(14) for $2 j+1 \leq k,\left\langle x_{j}^{i}, \sigma_{j}^{i}, \tau_{j}^{i}\right\rangle=\left\langle x_{j}, \sigma_{j}, \tau_{j}\right\rangle$.

Proof. The crucial fact here is that $g$ is increasing. For $k=0, i_{k}=0$. Assume for $k$. Select $\hat{i} \geq i_{k}$ such that for all $q \geq g(\hat{i})$ and all $2 j \leq k$, our $q$ th guess at $\left((f)_{n_{j}} \oplus(f)_{m_{j}}\right)^{(3)}$ is correct. For all $i \geq i$, if $k$ is even, $k+1$ has property 1 at $i$, is not 1-bad at any ( $i, q^{\prime}$ ), and so is not selected for a primary change. We may let $\left\langle P_{k+1}, Q_{k+1}\right\rangle=\lim _{l}\left\langle P_{k+1}^{i}, Q_{k+1}^{i}\right\rangle(l)$, and let $\left\langle n_{k+1}, m_{k+1}\right\rangle$ be least $\langle n, m\rangle$ such that $\left\langle(f)_{n},(f)_{m}\right\rangle=\left\langle P_{k+1}, Q_{k+1}\right\rangle$. For each $\left\langle n^{\prime}, m^{\prime}\right\rangle\left\langle\left\langle n_{k+1}, m_{k+1}\right\rangle\right.$ there is an $l_{\left\langle n^{\prime}, m^{\prime}\right\rangle}=l$ such that

$$
\left\langle(f)_{n^{\prime}} \upharpoonright \operatorname{Str}(l),(f)_{m^{\prime}} \upharpoonright \operatorname{Str}(l)\right\rangle \neq\left\langle P_{k+1} \upharpoonright \operatorname{Str}(l), Q_{k+1} \upharpoonright \operatorname{Str}(l)\right\rangle
$$

Let $i_{k+1}$ be an $i \geq i$ such that $l_{k+1}^{i}(g(i)) \geq l_{\left\langle n^{\prime}, m^{\prime}\right\rangle}$ for all such $\left\langle n^{\prime}, m^{\prime}\right\rangle$. For $i \geq$ $i_{k+1}$, we have $\left\langle n_{k+1}^{i}, m_{k+1}^{i}\right\rangle=\left\langle n_{k+1}, m_{k+1}\right\rangle . k+1$ has property 2 at such a stage $i$, so is not l-bad at any ( $i, q^{\prime}$ ), and so is not selected for a secondary change. So
$k+1<z_{i}$. (13) and (14) are obviously true, letting $\delta_{k}=\delta_{k}^{i_{k+1}}, \varepsilon_{k}=\varepsilon_{k}^{i_{k+1}}$, and $x_{j}=x_{j}^{i_{k+1}}, \delta_{j}=\delta_{j}^{i_{k+1}}, \tau_{j}=\tau_{j}^{i_{k+1}}$ if $k+1=2 j+1$. Q.E.D.

We finally must check that $B=\lim _{i} \beta_{i}, C=\lim _{i} \gamma_{i}$. For any $j$ there is a least $i$ at which either we create a new guess at $j$ or make a primary change at $j$. For such an $i$, we have arranged that $P_{j}^{i}\left(l_{j}^{i}(g(i))\right)$ ) $\preceq \beta_{i}, Q_{j}^{i}\left(l_{j}^{i}(g(i))\right) \preceq \gamma_{i}$. But for sufficiently large $j$, these $\left.P_{j}^{i}(g(i))\right)$ and $Q_{j}^{i}\left(l_{j}^{i}(g(i))\right)$ may be made arbitrarily long. This insures the desired limits. Q.E.D.

Corollary. Where I is a countable jump ideal and a is an u.u.b. on I then there is an I exact $(\underline{b}, \underline{c})$ with $(\underline{b} \vee \underline{c})<\underline{a}$.

Proof. With $\underline{a}, \underline{b}, \underline{c}$ as above, if $\boldsymbol{b} \vee \boldsymbol{c}=\boldsymbol{a},(\boldsymbol{b} \vee \boldsymbol{c})^{(2)} \leq \boldsymbol{a}^{(1)}=(\boldsymbol{b} \vee \boldsymbol{c})^{(1)}$, a contradiction. Thus $(\boldsymbol{b} \vee \boldsymbol{c})<\boldsymbol{a}$.

The construction of Theorem 1 may be altered, using Sacks' technique for constructing minimal upper bounds, to insure that $\underline{b}$ and $\underline{c}$ are both minimal.

Recall that $\boldsymbol{a}$ is high over $\boldsymbol{b}$ iff $\boldsymbol{b} \leq \boldsymbol{a} \leq \boldsymbol{b}^{(1)}<\boldsymbol{b}^{(2)} \leq \boldsymbol{a}^{(1)}$. Can Theorem 1 be improved to: $\boldsymbol{a}$ is an u.u.b. on $I$ iff $\boldsymbol{a}$ is high over the join of an $I$-exact pair? Perhaps. But we see no way to modify the previous construction to make $f \leq_{T}(B \oplus C)^{(1)}$. Furthermore, for all we know now Theorem 1 may be strengthened to: $\boldsymbol{a}$ is an u.u.b. on $I$ iff for some $I$-exact $\{\boldsymbol{b}, \boldsymbol{c}\},(\boldsymbol{b} \vee \boldsymbol{c})^{(1)}=\boldsymbol{a}$; this is equivalent to: if $\boldsymbol{a}$ is an u.u.b. on $I$, for some $I$-exact $\{\boldsymbol{b}, \boldsymbol{c}\},(\boldsymbol{b} \vee \boldsymbol{c})^{(1)} \leq \boldsymbol{a}$.

We now characterize u.u.b.s in terms of weak u.u.b.s.
Theorem 2. For a countable jump ideal I, $\boldsymbol{a}$ is an u.u.b. on I iff for some $\boldsymbol{b} \leq \boldsymbol{a}, \boldsymbol{b}$ is a weak u.u.b. on I and $\boldsymbol{b}^{(2)} \leq \boldsymbol{a}^{(1)}$.

Proof $(\leftarrow)$. Let $B \in \boldsymbol{b}$ parametrize $\bigcup I \cap \omega 2$. Fix $A \in a$. $X \subseteq \omega$ is total iff for every $x$ there is a $y$ such that $\langle x, y\rangle \in X$. Since $B^{(2)} \leq_{T} A^{(1)}$, we may guess recursively in $A$ at whether $(B)_{e}$ is total and in the limit we are correct. Fix such a guessing procedure. Let $h(x, e, n)=$ the least $y$ such that either $\langle x, y\rangle \in(B)_{e}$ or the $(n+y)$ th guess is that $(B)_{e}$ is not total. Define $f$ by:

$$
(f)_{\langle e, n\rangle}(x)=\left\{\begin{array}{l}
0 \quad \begin{array}{l}
\text { if the }(n+h(x, e, n)) \text { th guess } \\
\text { is that }(B)_{e} \text { is not total; } \\
h(x, e, n) \text { otherwise }
\end{array}
\end{array}\right.
$$

If $(B)_{e}$ is total, $(B)_{e}=* \operatorname{graph}\left((f)_{\langle e, n\rangle}\right)$; if $(B)_{e}$ is not total, $(f)_{\langle e, n\rangle}=* \lambda x .0$. By Lemma $1, \operatorname{deg}(f)$ is an u.u.b. on $I$. Since $f \leq_{T} A$, so is $a$.
$(\Rightarrow)$ Let $f \in \boldsymbol{a}$ parametrize $\bigcup I$. Let $\left\langle\psi_{j}\right\rangle_{j<\omega}$ be a recursive enumeration of primitive recursive relations on ${ }^{\omega} 2 \times \omega \times \omega$. Introducing " $\underline{B}$ " as an uninterpreted one place predicate constant, let $\varphi_{j}$ be " $(\exists x) \neg(\exists y) \psi_{j}(\underline{B}, x, y)$." Let a condition be a finite sequence of members of $\bigcup I \cap{ }^{\omega} 2$. Where $\left\langle f_{0}, \ldots, f_{k-1}\right\rangle=K$ is a condition, let

$$
\left.K \Vdash \underline{B}(\underline{m}) \text { iff }(m)_{0}<k \text { and } f_{(m)_{0}}(m)_{1}\right)=1 .
$$

Other clauses in the definition of forcing run as usual. Note that

$$
\left.K \Vdash \neg \underline{B}(m) \text { iff }(m)_{0}<k \text { and } f_{(m)_{0}}(m)_{1}\right)=0 .
$$

Conditions may be coded as sequence numbers:

$$
\left\langle n_{0}, \ldots, n_{k-1}\right\rangle \operatorname{codes}\left\langle\operatorname{sg}\left((f)_{n_{0}}\right), \ldots, \operatorname{sg}\left((f)_{n_{k-1}}\right)\right\rangle
$$

where for any $x \in \omega$ and $h \in{ }^{\omega} \omega$,

$$
\operatorname{sg}(h)(x)= \begin{cases}0 & \text { if } h(x)=0 \\ 1 & \text { otherwise }\end{cases}
$$

We abuse terminology and call sequence numbers conditions.
For $X \subseteq \omega, X^{(<k)}=\{\langle x, y\rangle \in X \mid x<k\}$. For a condition $K=\left\langle f_{0}, \ldots, f_{k-1}\right\rangle$, $\widehat{K}=f_{0} \oplus \cdots \oplus f_{k-1}$. If $B$ is generic and extends $K$, we shall have $B^{(<k)}=\widehat{K}$. For $\sigma \in \operatorname{Str}, \sigma$ is consistent with $K$ iff for all $x<\operatorname{lh}(\sigma)$, if $(x)_{0}<k,(\sigma)_{x}=f_{(x)_{0}}\left((x)_{1}\right) ; K$ includes $\sigma$ iff $\sigma$ is consistent with $K$ and for all $x<\operatorname{lh}(\sigma),(x)_{0}<k$. All these definitions carry over to where $K$ is a sequence number via the encoding previously described. From now on, conditions are sequence numbers.

The use of sg in this encoding leads to another abuse of terminology. For $K=\left\langle n_{0}, \ldots, n_{k-1}\right\rangle$, our $q$ th guess at $X=\left((f)_{n_{0}} \oplus \cdots \oplus(f)_{n_{k-1}}\right)^{(2)}$ is $Y=$ $(f)_{G(G(H(k, K, q), q), q)}$. Since $\widehat{K}^{(2)}$ is clearly 1-reducible to $X$, we shall call $Y$ our $q$ th guess at $\hat{K}^{(2)}$.

Lemma 4. " $K \Vdash \varphi_{j}$ " and " $K \Vdash \neg \varphi_{j}$ " are $\Sigma_{2}^{0}$ and $\Pi_{2}^{0}$ in $\hat{K}$, respectively.
Proof. $K \Vdash \neg(\exists y) \psi_{j}(\underline{n}, y)$ iff for any $\sigma \in \operatorname{Str}$ and any $y$, if $\sigma$ is consistent with $K$, " $\neg \psi_{j}(\underline{\sigma}, \underline{n}, \underline{y})$ " is true. Thus " $K \Vdash \varphi_{j}$ " is $\Sigma_{2}^{0}$ in $\widehat{K}$. For $X \subseteq \omega$ and $\operatorname{lh}(K)=k$, let $\Phi(K, X, m)=\hat{K} \cup\left\{\langle x+k, y\rangle \mid\langle x, y\rangle \in X^{(<m)}\right\}$. Notice that $K^{\prime}$ extends $K$ iff for some $X \in \bigcup I \cap{ }^{\omega} 2$ and some $m, \widehat{K}^{\prime}=\Phi(K, X, m)$. Using this fact we can show that $K \Vdash \neg \varphi_{j}$ iff for every $x, m \in \omega$ and $X \in \bigcup I \cap^{\omega} 2$ :
( $\dagger$ ) there are $\sigma \in \operatorname{Str}$ and $y$ such that $\sigma$ is consistent with $\Phi(K, X, m)$ and $\psi_{j}(\sigma, x, y)$.
$(\dagger)$ has the form '" $\exists \sigma)(\exists y) P(\widehat{K}, X, m, \sigma, x, y)$ ", with $P$ recursive. So $K \Vdash \neg \varphi_{j}$ iff for all $x$ and $m$ :
( $\dagger \dagger$ ) for all $X \in \bigcup I \cap^{\omega} 2,(\exists \sigma)(\exists y) P(\hat{K}, X, m, \sigma, x, y)$.
$(\dagger \dagger)$ is equivalent to a $\Sigma_{1}^{0}$ in $\widehat{K}$ formula by the Kreisel basis theorem and the fact that $\widehat{K}^{(1)} \in \bigcup I$. Notice that here is where the difference between $\bigcup I$ and $\bigcup I \cap{ }^{\omega} 2$ appears. We now have " $K \Vdash \neg \varphi_{j}$ " in a $I_{2}^{0}$ in $\widehat{K}$ form. Q.E.D.

Our goal is to construct sequences $\left\{K_{j}\right\}_{j<\omega},\left\{x_{j}\right\}_{j<\omega}$ and $\left\{\beta_{i}\right\}_{i<\omega}$ such that:
(1) for all $j, K_{j}$ is a condition and $K_{j+1}$ extends $K_{j}$;
(2) for all $j$,

$$
\begin{aligned}
& \text { if } x_{j} \geq 0, K_{2 j+1} \Vdash \neg(\exists y) \psi_{j}\left(\underline{x}_{j}, y\right) \text {; } \\
& \text { if } x_{j}=-1, K_{2 j+1} \Vdash \neg \varphi_{j} ;
\end{aligned}
$$

(3) for all $j, K_{2 j+2}=K_{2 j+1} \cap\langle j\rangle$;
(4) for all $i$ and $j, \beta_{i} \in \operatorname{Str}, \beta_{i+1} \preccurlyeq \beta_{i}$ and $\beta_{i}$ is consistent with $K_{j}$.

Notice that (2) implies $\lim _{j} \operatorname{lh}\left(K_{j}\right)=\omega$, which with (4) implies that $\lim _{i} \beta_{i}=$ $\bigcup_{j} \hat{K}_{j}$.

Of course, such a construction cannot be carried out recursively in $f$. We resort to guessing at the sequences $\left\langle K_{j}\right\rangle_{j<\omega}$ and $\left\langle x_{j}\right\rangle_{j<\omega}$. At stage $i$ we shall have $z_{i}$, for $j \leq 2 z_{i}$ guesses $K_{j}^{i}$ at $K_{j}$, and for $j<z_{i}$ guesses $x_{j}^{i}$ at $x_{j}$. Revising previous terminology, let $\left(K^{\prime}, x\right)$ be a $j$-witness for $K$ iff $K^{\prime}$ extends $K$ and forces " $\neg(\exists y)$ $\psi_{j}(\underline{B}, \underline{x}, y)$ ". " $\left(K^{\prime}, x\right)$ is a $j$-witness for $K$ " and " $K$ has a $j$-witness" are $I_{1}^{0}$ and $\Sigma_{2}^{0}$ in $\widehat{K}$, respectively. Clearly if $K^{\prime \prime}$ extends $K^{\prime}$ and $\left(K^{\prime}, x\right)$ is a $j$-witness for $K,\left(K^{\prime \prime}, x\right)$ is also a $j$-witness for $K$. We shall say that ( $K, x$ ) is consistent with a string $\beta$ iff $K$ is
consistent with $\beta$. Notice that if $K$ has no $j$-witness consistent with $\beta$, any condition extending $K$ and including $\beta$ forces $\varphi_{j}$. Fix an $f$-recursive function Incl such that: for $\beta$ consistent with $K, \operatorname{Incl}(K, \beta)$ extends $K$ and includes $\beta$. For example, where $\operatorname{lh}(K)=k$, and $\beta$ is consistent with $K$, let

$$
\operatorname{Incl}(K, \beta)= \begin{cases}K & \text { if } K \text { includes } \beta \\ K^{\wedge}\left\langle n_{k}, \ldots, n_{l}\right\rangle & \text { otherwise }\end{cases}
$$

where for $k \leq i \leq l, n_{i}$ is the least $n$ such that for all $x<\operatorname{lh}(\beta)$ with $(x)_{0}=i$, $(\beta)_{x}=\operatorname{sg}\left((f)_{n_{i}}\right)\left((x)_{0}\right)$. For $j<z_{i}$, we shall say that $2 j+1$ has property 1 at stage $i$ iff:
if $x_{j}^{i} \geq 0$ then $\left(K_{2 j+1}^{i}, x_{j}^{i}\right)$ is a $j$-witness for $K_{2 j}^{i}$;
if $x_{j}^{i}=-1$, then there is no $j$-witness for $K_{2 j}^{i}$ consistent with $\beta_{i}$.
We would like to have all $2 j+1$ with property 1 at stage $i$ for $j<z_{i}$. But to keep our construction recursive in $f$, we cannot be so straightforward. Instead we insure that for all stages $i$ :
(1.i) for all $j<z_{i}$ our $g(i)$ th guess at $\widehat{\left(K_{2 j}^{i}\right)^{(2)}}$ says that $2 j+1$ has property 1 . Furthermore, we insure that for all stages $i$ :
(2.i) if $z_{i}>0, \beta_{i}$ is included in $K_{2 z_{i}-1}^{i}$. (This permits us to have $K_{2 z_{i}}^{i}=K_{2 z_{i}-1}^{i}\left\langle z_{i}\right\rangle$ without fear of destroying consistency with $\beta_{i}$.)

We now sketch the construction.
Stage $0 . z_{0}=0, K_{0}^{0}=\langle \rangle ; \beta_{0}=\langle \rangle, g(0)=0$. (1.0) and (2.0) are vacuously true.

Stage $i+1$. Assume that $z_{i}, g(i), \beta_{i},\left\langle K_{j}^{i}\right\rangle_{j \leq 2 z_{i}}$ and $\left\langle x_{j}^{i}\right\rangle_{j<z_{i}}$ are defined with (1.i) and (2.i) true. For $j<z_{i}, 2 j+1$ is bad at $(i, q)$ iff our $(g(i)+q+1)$ st guess at ${\left(K_{i j}^{i}\right)^{(2)}}^{(1)}$ says that $2 j+1$ lacks property 1 . Call $\beta$ a $q$-combination for $2 j$ at stage $i$, where $j \leq z_{i}$, iff $\beta \preccurlyeq \beta_{i}, \beta \leq g(i)+q+1, \beta$ is consistent with $K_{2 j}^{i}$, and: if our $(g(i)+q+1)$ st guess at $\left(\widehat{K_{2 j}^{i}}\right)^{(2)}$ says that $K_{2 j}^{i}$ has a $j$-witness consistent with $\beta$, it identifies one in $\leq g(i)+q+1$ steps. This property is decidable in $f$. We shall say that $q$ changes the guess at $2 j+1$, for $j \leq z_{i}$, iff for all $k<j, 2 k+1$ is not bad at $(i, q), 2 j+1$ is bad at $(i, q)$, and there is a $q$-combination for $2 j$. We shall say that $q$ creates a guess at $2 z_{i}+1$ iff for all $k \leq z_{i}, 2 k+1$ is not bad at $(i, q)$ and there is a $q$-combination for $2 z_{i}$.

Lemma 5. There is a $q$ such that for some $j \leq z_{i}$, $q$ either changes or creates a guess at $2 j+1$.

Proof. Fix $j^{*}=$ the least $j<z_{i}$ for which $2 j+1$ lacks property 1 , if there is one; $j^{*}=z_{i}$ otherwise. Suppose that for all $q \geq q_{0}$, our $(g(i)+q+1)$ st guess at $\left(K_{2 k}^{i}\right)^{(2)}$ for any $k \leq j^{*}$ is correct. Thus for $q \geq q_{0}$ if $k<j, 2 k+1$ is not bad at $(i, q)$; if $j^{*}<z_{i}, 2 j^{*}+1$ is bad at $(i, q)$. Select a $\beta \preccurlyeq \beta_{i}$ which is consistent with $K_{2 j^{*}}^{i}$. Thus for $k \leq 2 j^{*}, \beta$ is consistent with $K_{k}^{i}$. If there is a $j^{*}$-witness for $K_{2 j^{*}}^{i}$ consistent with $\beta$, let $q \geq q_{0}$ be large enough so that $\left(K_{2 j}^{i}\right)^{(2)}$ identifies one in $\leq$ $g(i)+q+1$ steps. $\beta$ is a $q$-combination for $2 j^{*}$. If $j^{*}<z_{i}, q$ indicates a change at $2 j^{*}+1$; if $j^{*}=z_{i}, q$ creates a guess at $2 j^{*}+1$. Q.E.D.

Notice that whether $q$ is as described in Lemma 5 is decidable in $f$. So we may search, recursively in $f$, for the least such $q$. Let $g(i+1)=g(i)+q+1$; where $j$ corresponds to $q$ as required by Lemma 5 , let $z_{i+1}=j+1$. We abbreviate " $z_{i+1}$ " as " $z$ ". Select $\beta_{i+1}$ to be a $q$-combination for $2 z-2$. We preserve previous guesses
as follows: $K_{k}^{i+1}=K_{k}^{i}$ for $k \leq 2 z-2$; $x_{k}^{i+1}=x_{k}^{i}$ for $k<z-1$. We now define $x_{z-1}^{i+1}$ and $K_{2 z-1}^{i+1}$.
If our $g(i+1)$ st guess at $\widehat{\left(K_{2 z-2}^{i}\right)^{(2)}}$ says that $K_{2 z-2}^{i+1}$ has a $(z-1)$-witness consistent with $\beta_{i+1}$, it actually identifies some ( $K, x$ ) as such a witness in $\leq g(i+1)$ steps. Select the least such $\langle K, x\rangle$ and let $x_{z-1}^{i+1}=x, K_{2 z-1}^{i+1}=\operatorname{Incl}\left(K_{2 z}^{i+1}, \beta_{i+1}\right)$. Otherwise our guess says that $K_{2 z-2}^{i}$ has no $(z-1)$-witness consistent with $\beta_{i+1}$. Let $x_{z-1}^{i+1}=-1$ and $K_{2 z-1}^{i+1}=\operatorname{Incl}\left(K_{2 z-2}^{i+1}, \beta_{i+1}\right)$. Notice that $(1 . i+1)$ and $(2 . i+1)$ are true. Let $K_{2 z}^{i+1}=K_{2 z-1}^{i+1}{ }^{\wedge}\langle z\rangle$. This construction settles down.

Lemma 6. There are sequences $\left\{K_{j}\right\}_{j<\omega}$ and $\left\{x_{j}\right\}_{j<\omega}$, with $\left\{\beta_{i}\right\}_{i<\omega}$ as just constructed, such that (1)-(4) are true; furthermore for any $k$ there is an $i_{k}$ such that for all $i \geq i_{i}$ :
(5) $z_{i}>k$;
(6) for all $j \leq 2 k, K_{j}^{i}=K_{j}$;
(7) for all $j<k, x_{j}^{i}=x_{j}$.

The proof is very much like that of Lemma 3, except easier, so we omit it.
Letting $B=\bigcup_{j} \hat{K}_{j}, B$ is a parametrization of $\bigcup I \cap^{\omega}$. Since $B=\lim _{i} \beta_{i}, B \leq_{T} f$. Since $f^{(1)}$ can tell us when our guesses at $\left(K_{2 j}^{i}\right)^{(2)}$ are correct, $B^{(2)} \leq_{T} f^{(1)}$. Q.E.D.

We do not know whether this theorem may be improved to: $\boldsymbol{a}$ is an u.u.b. on $I$ iff for some weak u.u.b. $\boldsymbol{b}$ on $I ; \boldsymbol{a}=\boldsymbol{b}^{(1)}$.

Combining this construction with the exact-pair construction we may obtain $\underline{b}$ and $\underline{c}$ in Theorem 1 which are both weak u.u.b.s on $I$.
. Clearly the $\boldsymbol{b}$ constructed in Theorem $2(\Rightarrow)$ is strictly below $\boldsymbol{a}$. This observation is strengthened by the following.

Theorem 3. For a countable jump ideal $I$, $\{\boldsymbol{a} \mid \boldsymbol{a}$ is an u.u.b. on $I\}$ has no minimal member.

Proof. Let $f \in a$ parametrize $\bigcup I$. We construct $h<_{T} f, h$ parametrizing $\bigcup I$. Let $\left\langle\psi_{j}\right\rangle_{j<\omega}$ be as in the previous proof; we introduce an uninterpreted binary predicate letter " $\underline{H}$ " intended to denote the graph of a generic function. Let a condition be a sequence $K=\left\langle f_{0}, \ldots, f_{k-1}\right\rangle$ of members of $\cup I$. Let

$$
K \Vdash \underline{H}(\underline{n}, \underline{m}) \text { iff }(n)_{0}<k \text { and } f_{(n)_{0}}\left((n)_{1}\right)=m
$$

The other clauses in the definition of forcing are as usual. Again we note that

$$
K \Vdash \neg \underline{H}(\underline{n}, \underline{m}) \text { iff }(n)_{0}<k \text { and } f_{(n)_{0}}\left((n)_{1}\right) \neq m .
$$

Let $\hat{K}$ be the partial function with domain $\omega^{(<k)}$ such that $\hat{K}(\langle i, x\rangle)=f_{i}(x)$. Since $\widehat{K}$ is partial, $\widehat{K}^{(1)}$ is undefined; therefore we shall abuse notation and write " $\hat{K}^{(1)}$ " for " $\left(f_{0} \oplus \cdots \oplus f_{k-1}\right){ }^{(1)}$ ".

Notice that Lemma 1 provides a fixed $f$-recursive way of guessing at an $f$-index for that set, uniformly in a code for $K$. A finite function shall be one from a member of $\omega$ into $\omega$. A finite function $h$ is consistent with $K$ iff for all $x \in \operatorname{dom}(h)$ with $(x)_{0}<k, \widehat{K}(x)=h(x) ; K$ includes $h$ iff $\operatorname{dom}(h) \subseteq \omega^{(<k)}$ and $h$ is consistent with $K . R_{j}$ is the requirement $\{j\}^{H} \neq f . K$ meets $R_{j}$ with $x$ in $t$ steps iff for some $y$, $K \Vdash$ " $\{\underline{j}\}^{\underline{H}}(\underline{x})$ converges to $\underline{\underline{y}}$ in $\underline{t}$ steps" and $f(x) \neq y$. Where $h$ is a partial function, we understand a computation in $\operatorname{graph}(h)$ to halt as soon as the oracle for $\operatorname{graph}(h)$ is asked: "Is $\langle x, y\rangle \in \operatorname{graph}(h)$ ?'' for $x \notin \operatorname{dom}(h)$. With this understanding, observe
that $K$ has an extension meeting $R_{j}$ with $x$ in $t$ steps iff there is a finite function consistent with $K$ and a $y \neq f(x)$ such that $\{j\}^{\operatorname{graph}(h)}(x)$ converges to $y$ in $t$ steps; we may search for such an $h$ recursively in $\hat{K}$, since finite functions code as sequence numbers.

Let sequence numbers encode conditions by $\left\langle n_{0}, \ldots, n_{k-1}\right\rangle \mapsto\left\langle(f)_{n_{0}}, \ldots\right.$, $\left.(f)_{n_{k-1}}\right\rangle$. So we freely abuse our terminology and treat sequence numbers as conditions.

Fix an $f$-recursive function Incl such that for a finite $h$ consistent with $K$, $\operatorname{Incl}(K, h)$ extends $K$ and includes $h$. (For example, vary the corresponding definition in the previous proof.)

Let $\left(K^{\prime}, x\right)$ be a $j$-witness for $K$ iff $K^{\prime}$ extends $K$ and meets $R_{j}$ with $(x)_{0}$ in $\leq(x)_{1}$, steps. Call $h$ consistent with ( $K, x$ ) iff consistent with $K$. Suppose $K$ has no $j$-witness consistent with a finite function $h, K^{\prime}$ extends $K$ and includes $h$. Then for some $x$, $K^{\prime} \Vdash{ }^{"}\{\underline{j}\}{ }^{\underline{H}}(\underline{x})$ is undefined." Suppose not. We may define $f$ by $f(x)=y$ iff
(*) some finite function $h^{\prime}$ is consistent with $K^{\prime}$ and $\{j\}^{\operatorname{graph}\left(h^{\prime}\right)}(x)=y$.
Here is why. By our assumption, for any $x, K^{\prime}$ has an extension $K^{\prime \prime}$ forcing " $\{j\}^{H}(x)$ is defined." Since $K^{\prime \prime}$ includes $h,\left(K^{\prime \prime}, x\right)$ is not a $j$-witness for $K$. So if $K^{\prime \prime} \Vdash$ " $\{\underline{j}\}{ }^{H}(\underline{x})=\underline{y}$ ", $y=f(x)$. The existence of such a $K^{\prime \prime}$ is equivalent with (*). We would like to define sequences $\left\{K_{j}\right\}_{j<\omega},\left\{x_{j}\right\}_{j<\omega}$ and $\left\{h_{i}\right\}_{i<\omega}$ such that:
(1) for each $j, K_{j}$ is a condition;
(2) for each $j$,
if $x_{j} \geq 0,\left(K_{2 j+1}, x_{j}\right)$ is a $j$-witness for $K_{2 j}$; if $x_{j}=-1, K_{2 j+1}, \Vdash^{\text {" }}\{\underline{j}\}^{H}(x)$ is undefined' for some $x$;
(3) for each $j, K_{2 j+2}=K_{2 j+1}{ }^{\wedge}\langle j\rangle$;
(4) for each $i$ and $j, h_{i}$ is a finite function, $h_{i+1}$ properly extends $h_{i}$, and $h_{i}$ is consistent with $K_{j}$.
(3) implies that $h=\lim _{j} \hat{K}_{j}$ is total;
(4) implies that $h=\lim _{i} h_{i}$. By (3), $h$ parametrizes $\bigcup I$. By (2) $f \not \leq_{T} h$.

To make this construction recursive in $f$, we resort to guessing. At stage $i$, we shall have $z_{i}, h_{i}, g(i)$, for $j \leq 2 z_{i}$ a guess $K_{j}^{i}$ at $K_{j}$, and for $j \leq z_{i}$ a guess $x_{j}^{i}$ at $x_{j}$. We make sure that at each stage $i$ :
(1.i) for $j<z_{i}$, if $x_{j}^{i} \geq 0,\left(K_{2 j+1}^{i}, x_{j}^{i}\right)$ is a $j$-witness for $K_{2 j}^{i}$;

$(*, i, j)$ for some $x \leq g(i)$ for all finite $h$ consistent with $K_{2 j}^{i}$ and $h_{i}$, $\{j\}^{\operatorname{graph}(h)}(x)$ is undefined.
(3.i) $K_{2 z_{i}-1}^{i}$ includes $h_{i}$.

We now describe the construction.
Stage 0. $z_{0}=0, h_{0}=$ the null function, $K_{0}^{0}=\langle \rangle, g(0)=0$.
Stage $i+1$. Suppose we have $t_{i}, h_{i}, g(i),\left\langle K_{j}^{i}\right\rangle_{j \leq 2_{i}},\left\langle x_{j}^{i}\right\rangle_{j \leq z_{i}}$, with (1.i)-(3.i) true. For $j<z_{i}, 2 j+1$ is bad at $(i, q)$ iff $x_{j}^{i}=-1$ and our $(g(i)+q+1)$ st guess at ${\widehat{\left(K_{2 j}^{i}\right)^{(1)}}}^{(1)}$ says that $(*, i, j)$ is false. For a finite function $h,(h, x)$ is a $q$-combination for $2 j$ at $i$ iff $h$ properly extends $h_{i},\langle h, x\rangle \leq g(i)+q+1$, and $\{j\}^{\operatorname{graph}(h)}\left((x)_{0}\right)$ is defined in $(x)_{1}$ steps and has value $\neq f\left((x)_{0}\right)$.

We shall say that $q$ changes the guess for $2 j+1$ at stage $i$ iff: for all $k<j$, $2 k+1$ is not bad at $(i, q), 2 j+1$ is, and there is a $q$-combination for $2 j$. We shall say that $q$ creates a guess for $2 z_{i}=1$ iff: for all $k<z_{i}, 2 k+1$ is not bad at $(i, q)$, and either there is a $q$-combination for $2 z_{i}$ or else $q=0$ and our $(g(i)+1)$ st guess at $\widehat{\left(K_{2 j}^{i}\right)^{(1)}}$ says that $\left(*, i, z_{i}\right)$ is true.

Lemma 7. Some q either changes or creates a guess.
Proof is very much like that of Lemma 5.
Whether $q$ changes or creates a guess is decidable in $f$. So recursively in $f$ we search for the least such $q$. Let $g(i+1)=g(i)+q+1$. If $q$ changes or creates a guess at $2 j+1$, let $j+1=z_{i+1}$. Letting $z=z_{i+1}$, we preserve earlier guesses:

$$
\text { for } j \leq 2 z-2, K_{j}^{i+1}=K_{j} ; \quad \text { for } j<z-1, x_{j}^{i+1}=x_{j}^{i} .
$$

If there is a $q$-combination for $2 z-2$, let $\left(h_{i+1}, x_{z-1}^{i+1}\right)$ be the least such. Otherwise let $x_{z-1}^{i+1}=-1$ and $h_{i+1}=h_{i} \cup\left\{\left\langle\operatorname{dom}\left(h_{i}\right), 0\right\rangle\right\}$. Let $K_{2 z-1}^{i+1}=\operatorname{Incl}\left(K_{2 z-2}^{i+1}, h_{i+1}\right)$. Notice that $(1 . i+1)-(3 . i+1)$ are true. Now let $K_{2 z}^{i+1}=K_{2 z-1}^{i+1}\langle z\rangle$.

Lemma 8. With $\left\langle h_{i}\right\rangle_{i<\omega}$ as just constructed, there are sequences $\left\langle K_{j}\right\rangle_{j<\omega}$ and $\left\langle x_{j}\right\rangle_{j<\omega}$ of which (1)-(4) are true; furthermore for each $k$ there is an $i_{k}$ such that for all $i \geq i_{k}$ :
(5) for $j \leq 2 k, K_{j}=K_{j}^{i}$;
(6) for $j<k, x_{j}=x_{j}^{i}$.

The proof of this lemma should now be routine. Because this entire construction is recursive in $f$, and $h=\lim _{i} h_{i}, h \leq_{T} f$. So by preliminary remarks, we are done. Q.E.D.

Where $I$ is a countable jump ideal $\boldsymbol{a}$ is a nice u.u.b. on $I$ iff $\boldsymbol{a}$ is the degree of a nice parametrization of $\bigcup I$; a parametrization $f$ of $\bigcup I$ is nice iff for some $G \leq_{T} f$, $H \leq_{T} f$, for all $x$ and $y:(f)_{G(x)}=(f)_{x}^{(1)} ;(f)_{H(x, y)}=(f)_{x} \oplus(f)_{y}$. This notion is introduced in [1]; in [2] it is shown that $a$ is a nice u.u.b. on $I$ iff for some u.u.b. $\boldsymbol{b}$ on $I, \boldsymbol{a}=\boldsymbol{b}^{(1)}$. In [2] the following notions are defined. $I$ is a hierarchy ideal iff for some $A \subseteq \omega$ and some $\alpha, \bigcup I=L_{\alpha}[A] \cap{ }^{\omega} \omega . I$ is a case 1 hierarchy ideal iff for some $B \in L_{\alpha}[A], \alpha<\omega_{1}^{B}$ and $\bigcup I=L_{\alpha}[A] \cap{ }^{\omega} \omega ; I$ is a case 2 hierarchy ideal iff for some $B \in L_{\alpha}[A], \alpha=\omega_{1}^{B}$ and $\bigcup I=L_{\alpha}[A] \cup{ }^{\omega} \omega$; $I$ is a case 3 hierarchy ideal if it is a hierarchy ideal not falling under cases 1 or 2 . Any case 1 hierarchy ideal has a least nice u.u.b.; for example, if $\bigcup I=\{f \mid f$ is arithmetic $\}$, that nice u.u.b. is $0^{(\omega)}$. In [2] it is asked whether any case 2 or case 3 hierarchy ideals have a minimal nice u.u.b. The technique of Theorem 3 may be modified to provide a negative answer.

Theorem 4. For I a case 2 or case 3 hierarchy ideal, $\{\boldsymbol{a} \mid \boldsymbol{a}$ is a nice u.u.b. on I $\}$ has no minimal member.

Proof. Let $f \in a$ be a nice parametrization of $\bigcup I$. It suffices to construct a parametrization $h$ of $\bigcup I$ with $h^{(1)}<_{T} f$. Let conditions and forcing be as in the previous proofs except that " $\underline{\boldsymbol{H}}$ ' is monadic, and:

$$
K \Vdash \underline{H}(\underline{x}) \text { iff for }=\langle n, m\rangle,(n)_{0}<k \text { and for } K=\left\langle f_{0}, \ldots f_{k-1}\right\rangle, f_{(n)_{0}}\left((n)_{1}\right)=m .
$$

This way " $x \in \underline{\boldsymbol{H}^{(1)} \text { " }}$ makes sense. Let $R_{j}$ be the requirement $\left.\{j\}\right\}^{(1)} \neq f$. $K$ meets $R_{j}$ with $x$ iff for some $y \neq f(x), K \Vdash "\{\underline{j}\} \underline{E}^{(1)}(\underline{x})=\underline{y}$." Because $f$ is nice, whether
$K \Vdash$ " $\{\underline{j}\} \underline{H}^{(1)}(\underline{x})=\underline{y}$ " is decidable in $f$. Let $\left(K^{\prime}, x\right)$ be a $j$-witness for $K$ iff $K^{\prime}$ extends $K$ and meets $R_{j}$ with $x$.

Lemma 9. Suppose $K$ is consistent with a finite function h. If there is no $j$-witness for $K$ consistent with $h$, and $K^{\prime}$ extends $K$ and includes $h$, then for some $x, K^{\prime} \Vdash$ " $\{\underline{j}\}\}^{H^{(1)}}(x)$ is undefined."

Proof. If not, we may define $f$ by $f(x)=y$ iff some extension of $K^{\prime}$ forces $"\{\underline{j}\}\}^{H^{(1)}}(\underline{x})=\underline{y} "$ " " $\left\langle f_{0}, \ldots, f_{k-1}\right\rangle \Vdash$ " $\{\underline{j}\} \mathcal{H}^{H^{(1)}}(x)=y^{\prime \prime}$ is $\Sigma_{2}^{0}$ in $f_{0} \oplus \cdots \oplus f_{k-1}$. So $f$ is $\Sigma_{1}^{1}$ over $\bigcup I$ with graph $\left(K^{\prime}\right)$ as a parameter. Since $f$ is a function, $f$ is even $\Delta_{1}^{1}$ over $\bigcup I$ in that parameter.

By familiar facts about hyperarithmeticity, in case $2, f \leq_{\text {HYP }} \operatorname{graph} \widehat{\left(K^{\prime}\right)}$; in case $3, f$ is recursive in the hyperjump of graph $\widehat{\left(K^{\prime}\right)}$ which belongs to $\bigcup I$. Either way, $f \in \bigcup I$, contradiction. Q.E.D.

The construction of $h$ is much like that used for Theorem 3, with " $\{j\}\}^{H^{(1)}}$ ", replacing " $\{j\}\}^{H}$ ". But (2.i) must be changed to: if $j<z_{i}$, if $x_{j}^{i}=-1$ then there is no $j$-witness for $K_{2 j}^{i}$ which is consistent with $h_{i}$ and $\leq g(i)$.

The notion of being bad at $(i, q)$ is correspondingly changed. (We are forcing $\Sigma_{2}^{0}$ and $\Pi_{2}^{0}$ sentences; so $K_{2 j}^{i(1)}$ cannot tell us how to select $K_{2 j+1}^{i}$. Since $f$ is nice, " $K$ has a $j$-witness consistent with $h_{i}$ " is $\Sigma_{1}^{0}$ in $f$; thus guessing at $\widehat{K_{2 j}^{(i)}}$ is replaced by a search recursive in $f$.) The rest is routine. Q.E.D.

In conclusion, we note that weak u.u.b.s remain shrouded in mystery. For example: are any weak u.u.b.s also minimal u.b.s? The technique of Theorem 3 does not yield a negative answer, for it cannot construct objects recursive in weak u.u.b.s which are not also u.u.b.s. It essentially involves guessing at jumps as described in the guessing lemma; thus by the remark immediately following the proof of the guessing lemma, the previous claim follows. Hopefully the techniques involved in answering questions like the one just posed will suggest a degreetheoretic definition of a weak u.u.b. in some way analogous to that of Theorem 1.

## BIBLIOGRAPHY

[1] G. Hensel and H. Putnam, On the notational independence of various hierarchies of degrees of unsolvability, this Journal, vol. 30 (1965), pp. 64-86.
[2] H. Hodes, Uniform upper bounds on ideals of Turing degrees, this Journal, vol. 43 (1978), pp. 601-612.
[3] C. Jockusch and S. Simpson, A degree-theoretic characterization of the ramified analytical hierarchy, Annals of Mathematical Logic, vol. 10 (1976), pp. 1-32.

```
DEPARTMENT OF PHILOSOPHY
    CORNELL UNIVERSITY
        ITHACA, NEW YORK }1485
```

