g

Reprinied o
s Meaning and Method;

Eﬂayshﬂonorofﬂilarym

11 Edited by Goorge Boolos

© Cambridge University Press 1990

Ontological commitment
Thick and thin

HAROLD HODES

Mathematical discourse is filled with existential assertions, assertions of
the form “There is a number (or function, or set, or space or structure
or whatever) such that... .” Some philosophers find such statements
puzzling, or even unbelievable. This response is both healthy and
misguided: misguided because some such statements are true, and not
merely in some non-literal way; healthy because it indicates sensitivity
to differences between the basis of the truth or falsity of such state-
ments and that of existential statements living in other corners of our
languages. The answers to questions like “Are there numbers?” and
“Do sets exist?” are, trivially, “Yes.” To not see these answers as
trivialities bespeaks a misunderstanding of mathematical discourse. But
to go on and say that there is a realm of mathematical objects is to
engage in.obscurantist hyperbole. Mathematical objects are second-rate;
they are not among “the furniture of the universe.” For a philosophi-
cally adequate understanding of mathematics, we must distinguish
between what Pl call thick and thin ontological commitment.! And if
ontological commitment is our subject, where should we begin but with
Quine?

1

Quine’s doctrine on this matter is, as he himself insists, a truism:
ontological commitment is expressed by existential quantification, A
chunk of discourse is ontologically committed to whatever it (or rather
the assertive statements it contains or implies) says that there is.

When I inquire into the ontological commitments of a given doctrine or body of
theory, I am merely asking what, according to that theory, there is, [15, p. 203)

What is being said in a chunk of discourse might not be evident at a
glance. Regimentation into formal- languages can make this more evi-
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dent. Regimentation clarifies logical aspects of syntactic, including
quantificational, structure. Thus it can help us assess what Tl call the
thin commitments of the chunk of discourse, a matter of what is said
fo be.

In his own characterizations of ontological commitment, Quine sty-
diously avoids use of expressions like ‘says that’, or even ‘implies that’,
For example:

A theory is committed to those and only those entities to which the bound
variables of the theory must be capable of referring in order that the affirma-
tions made in the theory be true. [14, Pp. 13-14]

The entities to which a discourse commits us are the entities over which our
variables of quantification have to range in order that the statements affirmed
in that theory be true. [15, p. 205]

The question of what there would have to be in order Jor certain
Stafements to be true is a question of what PII call thick ontological
commitment. To answer it we must assess the alethic underpinnings for
the statements in question: the semantic properties of their basic
constituents and the recursive “process” that determines thejr truth-
conditions. These underpinnings are a matter of semantic? form,

Two tangential points deserve mention. To specify what is said is, at
best, to give the sentences used (assuming that the Ianguage in which
they were used is understood and known to be the language in which
they were used). At Worst, it’s to give a paraphrase or translation of the
sentences used. Thus such a specification can be tainted with intension-
ality. Perhaps this is why Quine has tended to avoid the “what is said to

sional idioms. As Quine himself teaches, ‘must’ and ‘have to’ are also
intensional, as is the subjunctive “in order to” formulation of thick
commitment given above.? Suffice it to say that thin commitments are
tied to logical syntax; so when we assess thin commitments, tightness of
paraphrase is an important virtue,

Second, the sort of regimentation that Quine would have us use when
assessing ontological commitments is regimentation into a first-order
language. But this is unnecessarily restrictive. Some discourse is most
naturally construed as involving higher-order quantification, though its
order need not be Syntactically explicit. Of course the syntax of mathe-
matical discourse is virtually always first-order, Numbers, sets, and the
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like are values of first-order variables, that is, are objects (in Frege's
sense of ‘object’). So our initial focus will be on the commitments
carried by first-order quantification, commitments to objects.’

In the cases most central to our languages, there is no difference
between what is said to be and what there would have to be for what is
said to be true. Semantic and Jogical form, and with them thick and thin
ontological commitments, come apart only in peripheral sorts of dis-
course.

Consider singular terms. Singular termhood is a logico-syntactic mat-
ter. To classify an expression as a singular term is to assign it a certain
role within a recursive description of the totality of sentences and valid
inferences in a language. Although the second sort of description
concerns what Quine called “the interanimation of sentences,” it is as
syntactic a project as that of characterizing sentencehood. In the cases
most central to learning and mature use of language, all closed singular
terms do the same sort of semantic work: designating objects.’

This fact greases the slide from logico-syntactic role to semantic role
for all closed singular terms. Crispin Wright, for example, takes it as
self-evident that

what we say metalinguistically by “a’ has a reference’ is just the object-
language, ‘(Ax)x = a’... [16, p. 83]

To make this slide when discussing a species of mathematical discourse
is to adopt what I call “the Mathematical-Object theory” of that
discourse. Frege’s famous slogan “Numbers are objects” expressed his
adherence to the Mathematical-Object theory of finite arithmetic. Frege
took the semantic job of numerals and closed singular terms of the form
‘the number of Fs’ to be designation. Correspondingly, he tock the
semantic job of arithmetic predicates to be applying or failing to apply
to (tuples of) objects; and he took phrases like “for all natural numbers”
to express quantification over objects of a special sort. He also accepted
the analogous theory about set-theoretic discourse.

In this essay I’ll present an alternative to the Mathematical-Object
theory, to be called the Alternative theory.” I contend that some closed
singular terms, including those that are properly mathematical, do a
sort of semantic work that is not designation. Nor are mathematical
predicates built for applying or failing to apply to (tuples of) objects.
Rather the linguistic apparatus of a branch of mathematics is a package
built to allow certain higher-order statements to be encoded “down”
into a-more familiar and tractable first-order form. When a singular
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term, represent it by ‘a’, is part of such a package, ‘a exists’ is still
correctly parsed as ‘(3x)x = a’; but it will not entail, let alone be or
express, the metalinguistic statement “a’ designates something’ or “a’
has a reference’. When a predicate, say a one-place predicate repre-
sented by ‘P’, is part of such a package, “There is a P’ is still to be
parsed as “(3x)Px’; but it will not entail that ‘P’ applies to something.
I'll introduce the Alternative theory obliquely, mixing some model-
theory with philosophical claims about what this model-theory models.

2

Models, in the logician’s sense, are sets.® Let § be a set of “uninterpre-
ted” non-logical expressions; for our purposes each member is a predi-
cate- or individual-constant (or, if you wish, a function-constant). A
model & for § may then be taken to be an ordered pair, construed
set-theoretically, whose lefi-component is a non-empty set |27 (the
model’s universe) and whose right-component is a function on § assign-
ing each predicate-constant to a subset of an appropriate cartesian
power of %7}, and each individual-constant to a member of |.&7|. (If §
contains function-constants, it assigns to each function-constant a func-
tion from an appropriate cartesian power of |27 into |27].) All func-
tions may be taken to be sets of ordered pairs. In keeping with usual
notation, ¢ is the value the model assigns to any { € §.

Tarski first introduced models, in “On the Concept of Logical Conse-
quence” (1935), to give a set-theoretic definition of logical consequence.
They are appropriate for that project because they model in the
engineering sense (that is, they mirror, reflect, represent) the relation-
ship between possible sense-bearing languages and reality that would
underlie the distribution of truth-values among the statements in such
languages.” A model itself does not assign senses to the vocabulary
items, or even grant them references. Genuine reference arises only
with sense; it is a facet of the life words take on within a sense-bearing
language.!® Models are interesting sets because they model, in a set-
theoretic way, the basic alethic underpinnings of possible sense-bearing
languages (or fragments thereof), their basic semantic facts (whose
specification would serve as base-clauses in a definition of truth). The
elements of a model’s universe represent objects (perhaps all objects,
perhaps only special ones); its assignment of individual-constants to
elements of its universe represents designation, each individual-con-
stant and its value playing the parts of designator and designatum
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respectively; its assignment of sets to predicate-constants represents the
“falling under” relation between (tuples of) objects and predicates of
level-one.

Tarski showed how to set-theoretically define a binary relation,
usually expressed by ‘i=’, between models and sentences in their
languages. Why is this relation of any interest? Taking a model & to
represent the basic alethic underpinnings for a sense-bearing language,
bearing the converse of this relation to & then represents being true
for statements in that language. Truth-in-a-model is a model of truth.!!

Although it’s not essential to the project at hand, let’s slightly modify
the usual notion of modelhood. Sense-bearing languages can contain
empty designators, a phenomenon that was idealized away by the
notion of modelhood just introduced. To remedy this we broaden our
notation of modelhood by weakening the requirements on naming-func-
tions for models; we now say merely that a model 2/ may assign an
individual-constant in S to any element of |&7[; we’ll allow that it also
may fail to assign such a constant to anything. (Similarly function-con-
stants may be assigned to partial functions defined on subsets of
appropriate cartesian powers of |27]) In the special case in which o
assigns something to each individual-constant in S, call & total.!

Once we have non-total as well as total models, there are several
relations that might reasonably be called “truth-in-a-model.” Since our
final model-theoretic semantics will be three-valued, we will adopt a
three-valued approach from the start. This is not essential at this stage;
but it has the advantage of making truth and falsity symmetric truth-val-
ues. There are several kinds of three-valued semantics. I prefer the
so-called strong Kleene semantics with the “strong” semantics for ‘= ’

Fix an infinite set of variables. Let L = L(S) be the uninterpreted
language based on S, determined as follows. The terms of L are the
variables and individual-constants from S, and whatever is generated
from these using function-constants in §. The formulae of L are
constructed as usual using the logical lexicon ‘>’ ‘L ’, ‘3 and *=".
Let &7 be a model for the vocabulary set S.

To handle quantifiers with minimal clutter, expand L to L, by
introducing for each a € |&/| an individual-constant a and letting
a® = g. We then define 7% for all closed terms 7 in the usual way.
Since .7 may be non-total, the assignment of 7 to ¥ in |o7| may be
non-total; “r*|” means that 7% is defined; i.e., for some a, =g
«“r1 7 means that 7 is undefined. We define the relations |= (“makes
true”) and = (“makes false”), between & and sentences of L, by a
simultaneous recursion. Suppose 7y is an n-place predicate-constant
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and the 7’s are closed terms; let:
o= y(7gy.nsTy) iff 7] foralli<n and
(Tﬂw" sy Tn—ld> S ‘y‘n{’
A y(1gs.e.rT,y_y) iff 7¥] foralli<n and
<TOJI! R ,1_"_1”) e ‘yx;
Aery=1, iff 1%, and 7,7=71"
of <ty =, iff either 7%}, TIJ"J, and 'ro‘“’#: -rl‘“’,
or ¥} and 7,7,0r7;®1 and
o),
T 1
&= 1.

For any sentences ¢, ¥, and (3v)8 of L, let:

&= (@ o) iff either &/=p or o= ¢;
o< (po ) iff # ¢ and o= ¢
of = (Iv)e iff for some a € ¥ = Sub(a,»,08);
o< (3v)6 iff for each a € % o= Sub(a,r,0)."

For a sentence ¢ based on § we adopt these definitions:

¢ is valid iff for all models & for S, &/ ¢;
¢ is bivalent iff for all models & for § either

e or o= M

Let o7 |p iff o7k ¢ and &#H ¢; ie., iff ¢ is neither true nor false in
&f. Our definition allows for this, e.g., if ¢ is y(r) or 7 = ¢ and ¥
and 1.5 Introduce ‘—’, ‘&, ‘v’ ‘=", and ‘Y’ by the familiar
abbreviations. Let E(r) for a term r abbreviate (3»)v = 7, where v
may be any variable distinct from 7; read it as “r exists.” We then have:

o= E(r) iff r¥); &< E(7) iff 7¥1.

Imagine a sense-bearing language {or fragment thereof} - contain-
ing no vocabulary enabling the speakers to speak about mathematical
objects (or any other potentially problematic abstract objects like possi-
bilities or the like). Suppose its alethic underpinnings can be adequately
represented by models of the sort introduced above: its closed singular
terms are all built for designation, its predicates for applying and not
applying to (tuples of) objects, and its only resources for the construc-
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tion of sentences are truth-functional connectives and first-crder uni-
versal and existential quantification. We now consider three ways in
which _# could be enriched with mathematical vocabulary, and two
ways of modeling such enrichments: one in keeping with the Mathemat-
ical-Object theoty, the other in keeping with the Alternative theory.

3

Case 1: _# is enriched to #7 to allow talk “about” ordered pairs.
We’ll model this enrichment with the uninterpreted language L7 formed
from L by adding the expressions ‘p’ and ‘OP’, governed by the
following new clauses into the definitions of termhood and formula-
hood, respectively:

for any terms r and o, p(7, ¢) is a term;
for any term 7, OP(7) is a formula.

Given a model & for S, let » be a pairer for &7 iff 4 is a function
from |.2/)* one-one into |.9/| Assuming the Axiom of Choice, .27 has a
pairer iff card(|.o7]) is either one or infinite. For any term r we define
7%+ by relativizing the corresponding definition in §2 to » and adding:

p(r,0)% "‘/—(‘r"/‘ T A);
(7, 0‘) A1 iff either 741 or o**%.

For sentences ¢ of L, we define Mﬁl’érp and o, 29 ¢ by
relativizing the correspondmg definition in §2 to s and adding the
clause:
o, |g OP(7) iff r*#, and %+ € mg( £ );
.Qf/@=|0P(T) iff 74} and 74 & mg( 4).

Case 2: .# is enriched to -#* to allow talk “about” the natural
numbers, with number-terms, and predicates for numberhood and
order on the numbers. We'll model this enrichment with the uninter-
preted language L*, formed from L by adding ‘#’ (a variable-binding
term-forming operator on formulae), ‘N’ and ‘<’ (syntactically like
one- and two-place predicates, respectively). A representor ~ for a
model & is a one-one function from the finite cardinality quantifiers
on & into |7, & and 2 relate pairs (&, =) to sentences of L%,.
Details are glven in [11], so are omitted here.

Case 3: . is enriched to .~ with talk “about” sets Let’s suppose
that .#’s speakers adopt the “limitation of size” conception, first
articulated by Cantor and implicit in standard ZF-like set-theories:
there are absolutely infinitely many objects, indeed, absolutely infinitely
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many sets; no sets are absolutely infinite; that is, no set has as many
members as there are objects, though of course there are infinite (ie.,
relatively infinite) sets. .

We enrich L with the new symbols ‘Set’, ‘€ ’, and "’ to form L".
Termhood and formulahood are now defined by a simuitaneous induc-
tion, with these new clauses;

For any formula ¢ and variable v, #¢ is a term;
For any term =, Set(7) is a formula;
For any terms 7 and o, 7 € o is a formula.

For any set x, let card(x) be the cardinality of x. Given a model &
for 8, let x = card(|o7[). Let @n extensor for &/ be a one-one function
from Power*(Jlo7]) = {4 c |o|: card(¢) < «} into | o], Assuming the
Axiom of Choice, & has an extensor iff |.o7| is infinite.

Given an extensor ¢ for &7, we simultaneously define a partial
function from closed terms into |%/| and two relations = and &
writing +%°*, o, c}> @ and &7, e 2| ¢ where 7 is a term and o is a
sentence of L, by relativizing to & the clauses used in the previous
section, and adding these clauses:

Dot =e(A) if A={(a:9, L Sub(a,v,0)} € dom(e);
D"t if there is no such A;
o, e Set(r) i+l and 7% e mg(s);
M,e.EISet(r) iff 7¢, and %" ¢ mg(e);
L, elre€n ifff“",l,,'a'“'"l,‘ and for some A

e(A) =0 and 7%°ecAd;
A edrea iff %}, 0**|, and thereis no 4

with e(A) =" and %< A.

From now on we restrict our attention to infinite models.

4

According to the Mathematical-Object theory, in each of these three
cases, the speakers of .#” have acquired access to objects of 2 peculiarly
mathematical kind. They have acquired a term-forming operator to
construct singular terms designating such objects, and a one-place
predicate to apply to all and only such objects. In the second and third
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cases they have also acquired a two-place predicate that stands for an
important relation involving such objects.

To understand the importance of these relations, we must recognize
the connection between certain higher-order entities and certain ob-
jects. Bach natural number n corresponds to a cardinality-quantifier,
represented by expressions of the form ‘there are exactly n many xs’;
each set s corresponds to the level-one Fregean concept represented by
predicates of the form ‘belongs to 5°. Furthermore these correspon-
dences are, in some mysterious way, intrinsic to the numbers and sets.
In other words, the Mathematical-Object theory claims that there is a
“standard representor” assigning each cardinality-quantifier to its cor-
responding number, and a “standard extensor” assigning to each level-
one Fregean concept fortunate enough to have an extension that
extension.’® The first case almost fits this mold: the Mathematical-
Obiject theory holds that any two objects given in a definite order
correspond intrinsically to an ordered pair, as determined by the
“standard pairer.”

Thus, according to the Mathematical-Object theory, models for § are
no longer adequate to represent the alethic underpinnings for 7,
Z* or .# . Consider .# . By itself a model for § doesn’t represent
anything about the work done by locutions for set-abstraction, sethood,
and membership. These additions require a new notion of modelhood;
For example, in case 3 we need pairs of the form (&7, ) where o7 is a
model of the old sort appropriate to L, and e is an extensor for &7; ¢
is needed to represent the standard extensor. Relative to a choice of &
and e, the assignment of a term 7 to 7%+ represents designation; the
truth of an interpreted sentence parsed by ¢ is represented by &7, «[= ¢,
and its falsehood by &7, ¢ 4 ¢. Since the models of the new sort, pairs
(L, &), tell us what to do with ¢, ‘Set’, and ‘ €, these expressions
should be classified as non-logical vocabulary.

Because this theory takes terms like ‘the empty set’ to be genuine
and successful designators, it suggests that sentences like “The empty
set is blue’ or “The empty set = Julius Ceasar’ have definite truth-val-
ues.!” This is mirrored by the modeling under case 3: if ¢ is ‘B(£(x #
x)) or ‘#(x # x) = 7', where ‘B’ € § is a one-place predicate-constant
and 1"“‘.],, cither o, eF @ or &7, e S o

According to the Alternative theory in none of these cases have the
speakers stumbled across peculiarly mathematical objects. Nor have
they constructed or otherwise manufactured objects that somechow
hadn’t existed before. Instead they have developed ways of extending
(or in case 1, of simplifying) the expressive resources of .. So in all
cases a model for § by itself, without supplementation by a pairer,
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representor, or extensor, can still model the alethic underpinnings of
L7 LF and . .

Here is how that modeling works for .# . For any infinite model &,
any sentence ¢ and term 7 of L, let:

k= ¢ iff for every extensor e for &, A, el p;
&= ¢ iff for every extensor ¢ for oA, A, o= p;
7%= a iff for every extensor ¢ for o, 7% = a;
71 iff there is no such a.

As just defined, = and = extend the correspending relations de-
fined in §2: if ¢ is a sentence of L, then o = ¢ holds in the sense of
§2 iff &/} ¢ holds as defined above; similarly for =, and for the
assignment of 7 to 7. Definitions of validity and bivalance carry over
from §2, with one significant change: the quantifier over models is
restricted to infinite models. Let Biv(L") be the set of bivalent sen-
tences of L . An the following logical notion now merits attention:

@ is logically truth-valueless iff
for all infinite models & for §, o le.

Analogous definitions apply to ¢ and 7 in L%, and L¥,.

According to the Alternative theory, relative to a choice of a model
&, = and o model being true and being false in Z , and the
assignment of terms 7 to 7% models designation in .# . There is no
“standard” extensor that needs to be represented in a model-theoretic
semantics adequate to model the underpinnings of set-theoretic dis-
course.

Thus ‘The empty set’, for example, is not a designator, and ‘The
empty set = Julius Ceasar’ has no truth-value., Correspondingly, ‘£(x #
xY* is undefined for every model &, and “#(x +x) = a’ is logically
truth-valueless. And a sentence like “The emptly set is blue’ need not
have a truth-value; ‘B(£(x # x)) is not bivalent; indeed it will be true
iff (Vx)B(x)" is true, and it will be false iff (3x)B(x) is false. Further-
more the semantic job of words expressing sethood and membership is
not to apply or fail to apply to (tuples of) objects: so a sentence like
‘Julius Ceasar is a set’ has no truth-value; correspondingly, ‘Set(a)’ is
logically truth-valueless.

Such sentences are peculiar in that they employ mathematical vocab-
ulary, but clearly lack mathematical content. The Alternative theory
characterizes the semantic basis of their peculiarity. Nonetheless “The
empty set exists’ and ‘There are sets” are true, even logically true;
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correspondingly, ‘E(£(x + x)) and ‘(Qx)Set(x)’ are valid. It should be
emphasized that these sentences do not rely on any peculiarly mathe-
matical construal of ‘exists’ or its synonyms; our semantics handles
occurrences of ‘3 uniformly through L.

Thus .~ carries commitment to the existence of sets. But it is a thin
commitment, for the truth of ‘There are sets’ is not based on the
applicability of “is a set’ to some objects. Similarly for .#? and ordered
pairs, and ## and natural numbers.

On this view, the assignment of term 7 to 7%+, and the relations [&
and & relative to a pair (&7, &) are superva.luatlons, doing no repre-
sentational work; there are no facts about .#  for them to model. They
are, in Kaplan’s phrase,'® artifacts of the model-theory, mere stepping-
stones to the definition of =, <, and +<. The semantic roles of
abstraction terms, and of expressions for sethood and membership, are
modeled by the role of “-terms, ‘Set’, and ° € ’ in the latter definitions.
A model & itself tells us nothmg about that role. Thus for the
Alternative theory ‘’, “Set’, and ‘€’ are logical constants. Similar
remarks apply to L? and I*.

The virtues of the Alternative theory are particularly clear when we
consider ontological reduction. Suppose that the enriched language
from case 1 is now further enriched by set-theoretic talk. (The discus-
sion to follow easily carries over to case 2.) As is well known, the
mathematical work done by ordered pairs can be done as well by
certain sets, e.g., by Wiener-Kuratowski pairs. For the Mathematical-
Object theorist, either (1) some such “reduction” of ordered pairs to
sets is right, or (2} none are right: ordered pairs are sui generis, and in
particular, are not sets. -

Option (1) is indefensible.'® According to option (2), in replacing the
sui generis notion of ordered-pairhood by a set-theoretic one, we choose
to ignore a portion of mathematical reality. It’s universally agreed that
this loss is of no mathematical interest. If the point of mathematics is to
describe mathematical reality, why should mathematicians glibly ignore
a part of this reality? For the Mathematical-Object theorist, this aspect
of mathematical practice should seem unreasonable.

The Alternative theory avoids this uncomfortable dilemma: It sees
“no fact of the matter” to ontological reduction.?? Enrich L? to L”"in
the obvious way. Given a model &, a pairer 4, and an extensor e for

&, define 7~ ’l,= and # in the obv10us way. To model truth,
fals1ty, and deaugnatlon in L%, define T, ok ¢, and &7 ¢ accord-
ing to the pattcrn set for L? and L”, but now universally quantifying
over both pairers and extensors. Equatlons of the form ‘p(r,a) =
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{{7},{r, ¢}’ (in primitive notation the right-hand side would be written
out using <"’} are logically truth-valueless, as is ‘(3xXSet(x) & OP(x)).
Indeed, it is precisely the sentences that intuitively do have mathemati-
cal content that come out bivalent. Unlike its rival, the Alternative
theory offers a semantic basis for the obvious lack of mathematical
content to the choice between different set-theoretic definitions of

ordered pairs.
5

According to the Mathematical-Object theory, the point of enriching _#
in cases 2 and 3 is straightforward: to allow the speakers of £ to talk
about mathematical objects, real things that, for one reason or another,
might merit talking about. The Alternative theory sees a different point:
a way of encoding statements in higher-order languages into a first-order
syntax, making them both notationally and conceptually more tractable.

We’ll now lock at such a language, a dyadic second-order language
that corresponds exactly to Biv(L ).*! Form L’ from L by introducing a
single variable ‘X" of type (0,0), letting X(7, #) be a formula for any
terms 7 and o, and letting ‘3* bind ‘X’ as usual. Relative to a model
&, define = and <= by letting ‘X" range over Power(l.o7| X |.&Z]). If «
is an extensor for &, let

e’ ={(a,b):for some A € dom(e),a €A and «(A) = b).

It's casy to write down a formula Ext(X) in which ‘X’ is the only free
variable such that for any model & and E ¢ |o/| X |&7),

&= Ext(E) iff E = ¢’ for some extensor « for <.

We may then syntactically specify a translation s from sentences of L~
to formulae of L' in which ‘X’ is the only free variabie so that for any
infinite model .o

forg € Sent (L") oo iff &k (VX)(Ext(X) 55(g)).

So for ¢ € BivV(L"), o/ ¢ iff &< (VXXExt(X) > s(p)).2 The logic
of L is a fragment of second-order logic.

For ¢ € Biv(L ), (VX XExt(X) D s{g)) represents ¢’s semantic form,
since its syntax makes plain, more perspicuously than does ¢ itself, the
role of basic semantic facts in fixing ¢’s truth-value, Why this asymme-
try between ¢ and this sentence?

Let a language (sense-bearing or model-theoretic) be semantically.
uniform iff for each of its logico-syntactic lexical categories all items of
that category have semantic jobs of the same sort. L’ is semantically
uniform. L is not. Some singular terms are in L~ to designate; but
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-terms are built to encode Fregean concepts. Some predicates are in
L” to apply, or fail to apply, to (tuples of) (objects; but ‘Set’ and ‘ €’ do
quite different work. Correspondingly, .# is not semantically uniform;
it runs more risk of philosophic misconstrual than would an enrichment
of -# whose logical-syntax were modeled by L'. This danger is the price
of £ practical advantages. Thick ontological commitment is deter-
mined by semantic form. When limning the ultimate furniture of reality,
we do best to speak, or at least think, in terms of a semantically uniform
language. L' is better than L”; and in L' there is no talk of sets.

On the other hand, ¢ wears its logical form on its surface:
(VX XExt(X) > s(p)) does not represent ¢'s logical form. A sentence’s
logical form is a matter of its potential roles in inferences. Some of the
structure of (VXXExt(X) D s(p)), e.g. the initial universal quantifica-
tions and the conditional structure of what fogows it, is irrelevant to the
inferential practice of the speakers of # . The practice does not
involve speakers making reference to particular extensors, and so doesn’t
involve their instancing such an initial quantification, or applying modus
ponens to statements of the form Ext(E) > Sub(E, X, s(¢)). (For state-
ments parsed as (VxXSet(x) D ), inferential practice would include
instancing of the initial quantifier and applying modus ponens to the
result.) Parsing is a matter of making logico-syntactic (i.e., logical) form
perspicuous. Thin ontological commitments are to be determined merely
from logico-syntactic form, which need not coincide with semantic form.

Points analogous to these apply to L*. Unlike L” and L*, the
bivalent fragment of L? does not extend the expressive power of L
(though it might yield greater expressive convenience).? But if L is first
enriched to a monadic second-order language L! by introducing in-
finitely many type-1 variables, and then L! is enriched by L'?, the
latter is in effect a dyadic (and thus a full) second-order language; so
L? does extend the expressive power of L.

6

Let a sentence of L?, L*, or L be pure if § is empty. By a symmetry
argument, all pure sentences are bivalent. Many familiar mathematical
principles may be expressed as pure validities in these languages.

For example, consider the Basic Fact about ordered pairs:

(Vx)(Vy)(Vu)(Yo)(p(x,¥y) = p(u,v) D (x =u &y =v)).

This Basic Fact seems to express “all there is to ordered pairing.” The
Mathematical-Object theorist can’t agree: for example, ‘(France, En-
gland) = Julius Ceasar’ is not decided by the Basic Fact. But the
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Alternative theory offers a precise statement of this thesis, one that is a
theorem.? A

No principles expressible in L* or L~ are complete for the natural
numbers or for sets as the Basic Fact is for ordered pairs. This is
because the expressive powers of these languages are greater than that
of any first-order language. As the other side of this coin, some of their
pure bivalent sentences are neither valid nor have valid negations: the
cardinality of 2 model can determine truth-value. Note that the axioms
of extensionality, of pairs, the axioms of separation, and the existence of
the null-set are all expressible by valid sentences in L2

Does the Alternative theory deserve the label ‘Logicism’? This issue
is made delicate by our need to restrict attention to infinite models.
Although “logical’ is a vague label, few are willing to regard “There are
infinitely many objects’ as a logical truth. And unless we do so, the
Alternative theory is only logicist “modulo actual infinity.”

An initially promising way to avoid assuming that there are infinitely
many objects is to go modal, assuming only a “possible infinity.”?
Unfortunately, if we allow quantification over mathematical objects
within the scope of the modal operator, it will have to be a special sort
of quantifier. For more detail, see [11], This rather weakens the appeal
of going modal.

7

Confusion of the semantic notion of real truth with the set-theoretic
notion of truth-in-a-model has contributed to some confusion about the
role of set-theory in a definition or theory of real truth. Although this
matter is tangential to this essay, the apparatus introduced here will, in
§8, reconnect with our main thread. Impatient readers may skip both
sections.

Sets do play a small but essential role in a definition of truth for a
quantificational language: such a definition will use the notion of
satisfaction, and so presuppose the existence of variable-assignments,
which are functions, which (for our purposes) are sets.

In this section we’ll model the relation between a sense-bearing

first-order language and a metalanguage for it by the relation between

uninterpreted languages L and M*. Working in appropriate models for
M*, we’ll consider a definition of truth for sentences of I. that models a
definition of real truth for statements of a first-order object-language.
Suppose that 1P and 2P are sets of one- and two-place predicate-
constants, respectively, and JC is a finite set of individual-constants; let
§=1P U 2P U IC, L = L(S). Let S, be the set of quote-names for all
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elements of S, for the logical constants ‘1 %, >, ‘3", =", for ‘C and
‘Y, and for all variables. These quote-names are individual-constants;
let &’ be &’s quote-name for § € S. Let §, be:

S U {"*’, ‘1P, 2P, ‘IC’, “Var’, ‘Fm1’, ‘FV’, Sent’},

where “#’ is a two-place function-constant introduced to represent
concatenation, ‘FV’ is a two-place predicate-constant, and the rest are
one-place predicate-constants, Suppose & is a model for §' with
§; € §'; under the foliowing conditions we may think of % as contain-
ing L: all »#values of members of S, are distinct; ‘IP*¥ = {y"*:y
1P}; analogously for ‘2P*¥ and ‘IC*; ‘Var® =“»"%:p is a variable};
‘Fm1’¥ is the set of “formulae” generated appropriately from S, using
‘7% ‘Sent’™ is the corresponding set of “sentences”;  +* is cycle-free
on the closure of S, under it; ‘FV'* = ((a,b);a €‘Var~, b €‘Fml’¥,
and “a occurs free in b”}. Under these conditions we’ll say that o is
syntactically adequate for L.

Let §, =8, U {'Unv’, ‘1Ap’, 2Ap’, ‘Des’}, where ‘1Ap’ and ‘Des’ are
two-place predicate-constants and ‘2Ap’ is a three-place predicate-
constant. First, let’s confine our attention to total models. Let a model
&/ for §, be adequate iff: it is syntactically adequate, and the following
“basic semantic axioms” are true in .&7"

(3x)Unv(x);

(Vx)(Yy)(1Ap(x, y) o [1P(x) & Unv(y)]);
(Vx)(Yy)(¥z)(2Ap(x, y, z) O [2P(x) & Unv(y) & Unv(z)]);
(Vx)(Vy)(Des(x, y) > [IC(x) & Unv(y)]);
(VxX(Vy)(Vy')([Des(x, y) &Des(x,y)] Dy =y');
“Totality”: (Vx)(EC(x) 2 (Iy)Des(x, y)).

Such a model determines a total model & for L with |#| = “Unv’* and
such that for any y € §:

if y€ 1P then y? = (a: (¥, a) €‘1Ap’¥};
if yE 2P then v = {(a,b):{y',a,b) €2Ap’¥};
if y€ IC then y# is the unique @ such that

{y',a) €‘Des’™.

Letting M = I(S,), M expresses (relative to &) the basic semantic
facts about L (relative to &#).2 Relative to o/ we want to define truth
for sentences of L (relative to &#). The inductive definition of satisfac-
tion will have to be represented by axioms involving the new expression
‘Sat’; but some set-theoretic machinery is aiso needed.
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Form M* by adding ‘Sat’ to the logical lexicon of M , with ‘Sat’
behaving syntactically as a two-place predicate-constant. Since we want
our theory to apply in any adequate model, even a countable one,
and since our sets will conform to the limitation-of-size conception, we
must permit all sets to be finite; in particular we must allow variable-
assignments that are finite. Relative to 27, let a variable-assignment be
simply a function into ‘Unv’® such that all members of its domain are
variables. Thus the empty set is a variable-assignment. Let Asgmt(x) be
the formula of M* saying “x is a variable-assignment.” Let
Vmnt(x, z, w, x") be the formula saying “x’ is the variant of x assigning z
to w.”

Given an infinite model &, let « be an extensor for .7 and
s C|&f| X |7 |. We now define 7%+ for terms 7 of M*, and &7, ¢, &
P ¢ and &7, ¢, + 4 o as usual, taking. 4 as the extension of ‘Sat’. Let
4 = Sat®>* iff the appropriate axioms governing ‘Sat’ come out true in
the sense of |© relative to (&, ). First we'll need a bookkeeping
axiom:

(Vx)(Vy)(Sat(x,y) >
[Asgmt(x) & Fm1(y) & (Yu)(FV(u,y) > u € dom(x))]).

Then we need formulations of the familiar clauses from the recursive
definition of satisfaction, e.g.:

(Vx)(¥p) (Yy)([Asgmt(x) & IP( p) & Var(y) &y € dom(x)]
> [Sat(x, p* y) = 1Ap( p, x(¥))]);
(Vx)(Vp)(Vi)(Vz)([Asgmt(x) & 1P( p) & IC(i) & Des(i, z)]
> [Sat(x, pxi} = 1A(p, 2)]);
(Vx) (V) (Vz)([Asgmt(x) & Var(y) & Fmi(z)] >
[Sat(x, ("= T =xy=)*z) =
(3v)(3x")(Unv(v) & Vmt(x', x, y,v) & Sat(x', 2))]).
From these sampleé, the reader should be able to figure out what the
remaining axioms should be. Relative to 27,  these axioms implicitly

define Sat®>*.
As usual, we let:

& |= o iff for every extensor e for & o, e, Sat™ |2 @;
&7 @ iff for every extensor e for &: &, e, Sat™* & .

]
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We may now define truth for sentences of L. For any adequate .27, fix
& as above; for any ¢ € Sent(L), let a €‘Sent™™ “be” ¢; then:

FE= o iff of = Sat(£(x #x),a).

We abbreviate ‘Sat(£(x # x),2) as ‘True(z)Y. (By our bookkeeping
axiom, ‘True(z) entails ‘Sent(z).)

To accommodate non-total models and represent a three-valued
semantics, we must drop the “totality” axiom used in the definition of
adequacy. We also change M¥, supplementing ‘Sat’ with ‘Frus’ to
represent frustration (= anti-satisfaction), and introducing appropriate
axioms to implicitly define Frus®*. We may then define ‘False(z) in
terms of ‘Frus’. Details are left to the reader.

Notice that o/ only represents basic semantic facts of designation
and application. ‘Sat’ and ‘Frus’, like ‘Set’ and ‘ € °, are used “superval-
uationally”; their semantic roles are not that of an ordinary two-place
predicate constant. But since their semantic roles are tied to those of
the members of §,, which are not logical constants, we can’t consider
them fuil-blooded logical constants; at best they are hybrids of the
logical and the non-logical. On the other hand, ‘1Ap’, ‘2Ap’, and ‘Des’
are ordinary predicate-constants. If we wanted to make heavier use of
mathematical machinery, we could avoid using distinct predicate-con-
stants to handle application for predicate-constants in S of different
“adicity”: we could use a single two-place predicate-constant ‘Ap’ to
handle all predicate-constants in §, taking a two-place predicate-con-
stant as applying to ordered pairs, etc. ‘Ap’ would be a logical expres-
sion. Building in ordered pairs “at the ground floor” encourages the
illusion that basic semantic facts involve mathematical objects, and that
basic semantic relations have the logical status of mathematical rela-
tions; thus it is best avoided. Of course we could also have built in
mathematical objects “at the basement,” construed syntactic objects
(e.g., formulae), as tuples or as sets.

8

According to the Alternative theory, the semantics for mathematical
notions differs significantly from that for less arcane notions. Qur
model-theoretic semantics for LA, for example, is intended to model the
alethic underpinnings of talk “about” sets, to show how set-theoretic
statements get truth-values even though ‘set’ does not stand for a
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genuine kind, © € * doesn’t stand for a genuine relation, and set-terms
do not designate.

It is tempting to formulate this Alternative theory as the claim “Sets
are not objects.” The spirit may be right; but taken literally, this claim is
trivially false; ‘x is an object’ may be parsed as ‘x =x’ (or even as
‘51 ). Clearly ‘(VxXSet(x) Dx =x) is valid.

This is why the Alternative theory is a theory about the semantics of
mathematical discourse: it cannot be “pulled down,” using Carnap’s
phrases, from the formal to the material mode. But it may appear that
the Alternative theory is undercut by similar reasons: once it has been
conceded that, for example, the empty set is an object, why not say that
‘the empty set’ designates the empty set? Since it is set, why not say
that ‘set’ applies to it?

In fact, this can be said; but in so saying the notions of designation
and application are being stretched. ‘Julius Caesar’ robustly designates,
and ‘Roman’ robustly applies to, a famous general; but to say that “the
empty set’ designates and ‘set’ applies to a famous set is to use
‘designates’ and ‘applies to’ in a non-robust disquotational way.? To
clarify the difference, we consider how to define truth for sentences of
L.

First we expand S, and add to the notion of syntactic adequacy of a
model &7 to handle the syntax of L”. In particular, we’ll need a
one-place predicate-constant “Trm’ to apply to exactly the "_terms of
L, and the right-domain of ‘FV'* will include ~-terms. But we would
not have to expand the o#values of ‘1Ap’, “2Ap’, and ‘Des’ so as to
make & represent applicative facts about ‘Set’ and ‘ € ’, for there are
no such facts! Form M* from M* by adding the two-place predicate-
constant ‘1Ap*’ and the three-place predicate-constant ‘2Ap*’ and
‘Des™’. Given 27, e, let 1Ap*"* be implicitly defined by this axiom:

(Vx)(Vy)(1AP*(x,y) D [1P(x) V x = ‘Set’];
for each y € 1P: (Vy)(1Ap™ (7', ¥) = 1ap(7', ¥));
(Vy)(1Ap*(‘Set’, y) = Set(y))

Analogous axioms, using ‘€’ rather than ‘Set’, implicitly define
2Ap*-. ‘1Ap*’ and ‘2Ap*’ “stretch” ‘1AP° and ‘2Ap’. Unlike the
latter two, they do not play the semantic role of ordinary predicate-con-
stants; they are parﬂy non-logical like ‘1Ap’ and ‘2Ap’, and partly logical
like ‘Set’ and ‘€ ’. Notice that, for example, ‘(VyX1Ap*(‘Set’, y) =
Set(y)y comes out valid with respect to adequate models.

Let ¢ be a ‘Unv-extensor for &7 iff ¢ is an extensor for .7 and for
every A C'Unv'™, if A € dom(s) then +(4) € “Unv'®. For ¢ a ‘Unv’-
extensor for o, we implicitly define Sat***, Frus®*, and Des***
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with axioms, including these bookkeeping axioms:

(Vx)(¥y)(¥z)(Des*(x,y,2) O [Asgmt(x) & ("-Trm(y) v IC(y))
&(Yo)(FV(v, y) D v € dom(x))]);
(Vx)(Vy}(Vz)(Vz')([Des*(x,y, 2) &Des*(x,y,2")] Dz =2);
(Vx}(Vy)(Vz)([Asgmt(x) & IC(y)] o
[Des*(x,y, z) = Des(y,z)])

We'll also need the following axiom:

(Yx)(Vy)(Vz)(Vu)([Asgmt(x) & Fml(y) & Var(z)
A &(Vv)(FV(v, y) D v € dom(x))] >
[Des*(x, "%z xy,u) = (Ywl(w € u =[Unv(w)
&(3x')(Vmt(x', x, z,w) & Sat(x’, ¥))])])-

Otherwise the definition of truth for sentences of L~ within M* runs
as it did for L; details are left to the reader. Unlike ‘Des’, ‘Des™’ does
not play the semantic role of an ordinary three-place predicate; like
‘1Ap*’, “2Ap™’, ‘Sat’, and ‘Frus’, it is a hybrid of the logical and the
non-logical.

We define o/ ¢ and o/= ¢ for ¢ a sentence of M, as before.
There is a slight twist to the definition of truth for sentences of L". Let
‘True(z) abbreviate:

(Vy)((Yu)[u €y D Unv(u)] > Unv(y)) D Sat(i(x +x), z).

We define “False(z)’ analogously. The antecedent of these conditionals
has the effect of “restricting our attention” to ‘Unv’-extensors as we
unpack &= True(a) and ©7= False(a).

The moral: we can define truth in a set-theoretic language in terms of
partially non-robust notions of designation and application, without
compromising the Alternative theory. Of course, this definition uses the
meta-language’s set-theoretic apparatus more heavily than did the
definition of truth for sentences of a non-set-theoretic language: we
don’t only need vanable-asmgnments we also need to use ‘Set’ and ‘€ °
in the dlsquotatlonal semantic axioms governing ‘Set’, and ‘€ ’, and * ",

To think in terms of the disquotational semantics for mathematlcal
discourse is to adopt a certain picture of that discourse: the Mathemati-
cal-Object picture. We picture truth for such discourse as structurally
analogous to truth for robustly referential discourse. For mathematical
purposes, this picture is fine. Indeed, that picture is overwhelmingly
natural, given the logical syntax of our mathematical discourse. As the
applications of model-theory to algebra show, it has mathematical
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value; models can represent non-robust semantic “facts” as well as
robust ones. The Mathematical-Object theory transforms this picture
into a theory of the alethic underpinnings of mathematical discourse. A
natural error; but an error nonetheless.

9

According to our Alternative theory, mathematical theories are first-
order encoding of higher-order logics. The ontological commitments to
mathematical objects that the Mathematical-Object theory takes to be
thick, the Alternative theory takes to be merely thin. Unlike thin
commitments, thick commitments are preserved by encoding (indeed,
by any sort of paraphrase that preserves semantic form). So the alterna-
tive theory saddles mathematical discourse with whatever thick commit-
-ments are carried by the higher-order quantification in the encoded
logic. Why should we be more comfortable with, for example, second-
order quantification than with quantification that purports to be over
mathematical objects?

First of all, second-order quantification is found even in central areas
of linguistic practice. For example, Dummett offers “There is something
that Plato was and Socrates was not’. The second-order nature of its
initial quantifier-phrase is made especially clear by its instancings.
Suppose a speaker uses this sentence assertively, and then backs up her
assertion with ‘For example, a dramatist’, shorthand for ‘For example,
Plato was a dramatist and Socrates was not’; here the syntactic role of
‘a dramatist’ is certainly predicative. The first assertion carries at least a
thin commitment to the existence of something that Plato was and
Socrates wasn’t. I can see no reason to deny that this commitment is
also thick, that for this statement logical and semantic form coincide.
Of course, the syntax of natural languages forces us to complete the
phrase ‘is an example of the things to which that assertion is commit-
ted’ with a noun-phrase such as ‘being a dramatist’ or a variant of
Frege’s preferred form ‘the concept drematist’. But these are not
designators; indeed, they strike me as ersatz singular terms, as English
make-do for constructions whose logical form involves variable binding.*!

Second-order quantification can be rather subtie. Some plural noun-
phrase constructions involve second-order quantification, e.g. the
Geach-Kaplan example ‘Some critics admire only one another. But
even for these statements, logical and semantic form appear to coin-
cide. Suffice then to say: since central parts of our linguistic practice
already saddle us with whatever thick commitments second-order quan-
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tification carries, exchanging an additional thick commitment to prob-
lematic mathematical objects for those of second-order quantification is
a good deal.

George Boolos has argued that second-order quantification need
carry no ontological commitments, I take it not even thin commitments,
beyond those carried by first-order quantification.®? If this is right, the
advantage in exchanging thick commitment to mathematical objects for
second-order quantification is clear. But suppose we accept Frege's
doctrine that second-order quantification carried commitment to unsat-
urated entities, Fregean concepts and relations. Is thick commitment to
such entities better than thick commitment to mathematical objects?

I think so. There are psychological and sociological facts about our
linguistic practice, some historical in form, some structural in form, that
constitute a supervenience base for facts about the application and non-
application of predicates to objects. There seems to be no such base for
purported facts about designation of mathematical objects.®® Further-
more, as Furth claims, facts about the application and non-application
of predicates are really all there is to facts about reference for predi-
cates.** Even when thick, commitments to Fregean concepts and rela-
tions are light. But commitments to mathematical objects are heavy, too
heavy, I contend, to be borne by a reasonable theory of reference.”

Are mathematical objects fictions? At least in part the answer de-
pends on the extent of analogy between mathematical and meta-
fictional statements. Quite unlike mathematical discourse, the telling of
tales, performance of plays, and so forth largely consist of pretended
assertion, whereas mathematical discourse involves genuine assertion.
But meta-fictional discourse is different: attributions of fictional content
(e.g., ‘Hamlet was Danish’, or even ‘Hamlet existed’), construed as if
prefixed with ‘According to Shakespeare’s Hamlet’, can have truth-
values; some singular terms in them (e.g., ‘Hamlet’ in the above
example) contribute to determining that truth-value, but do so without
designating anything.

The semantic form of such attributions of fictional content starts off
with the “According to...’ prefix, though in actual speech it’s usually
omitted. One might press on with the analogy as follows: the semantic
form of statements that appear to be about mathematical objects should
also start off with a prefix whose force is “Construe the following within
the mathematical-object picture,” and whose semantic role is simply to
indicate that what follows is to be evaluated in the supervaluational way
modeled in §4. But this would be both unnecessary and misieading.

The distinctively fictional vocabulary of fiction has an atteruated life
in our assertive practices outside of attributions of fictional content;
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‘Hamlet existed’ can be asserted under a construal that lacks an
operator like ‘According to Hamlet’; and there would be a point to
such assertions, for example, to make the (false) claim that Hamlet was
based on Danish history. But our actual mathematical vocabulary has
absolutely no life outside of the mathematical-object picture; so occur-
rence of such vocabulary in a statement is a sufficient cue that it is to be
construed within that picture, that is, as the Alternative theory wouid
have it. An operator explicitly indicating this is unnecessary.

But more importantly: ‘According to Hamlet’ shows that the state-
ment with which it starts is about Hamlet. What could be to mathemati-
cal statements as Shakespeare’s play is to statements construed as
starting with ‘According to Hamler’? As far as I can see, nothing.
Mathematical discourse itself may be the only remotely plausible an-
swer, and such reflexivity strikes me as still quite implausible. In short,
the analogy between mathematical statements and attributions of fic-
tional content remains rather limited.

I can imagine that some philosophers will react to the Alternative
theory by impatiently asking for the bottom line: “Are there really
numbers, sets, and so forth?” In his testimony before the McCarthy
committee, Dalton Trumbo responded to a well-known question by
saying, “Many questions can be answered ‘yes’ or ‘no’ only by a moron
or a slave.” Presumably he thought that the question he had been
asked, whether he was or had ever been a member of the Communist
Party, was such a question, I doubt that he took membership in such a
party to involve borderline cases. More likely, his point was this: even
though there is a correct “Yes or No” answer, such an answer can
easily give a wrong impression and by itself is unilluminating,

Perhaps Trumbo was wrong on this matter. But if the question had
been “Are there really sets?” or “Does the number 3 really exist?” his
response would have been right on target.

These questions are formulated within a language representable by
L and L¥, Understood straightforwardly, their answers are straightfor-
wardly, indeed trivially, “Yes.” But these commitments are thin. Math-
ematics does not require the Mathematical-Objective picture. In a
semantically uniform language for mathematics, of a sort representable
by, for example, L', there would be no talk of mathematical objects.
One might clumsily express this by saying that sets and numbers are
unreal, not part of the furniture of the universe, Perhaps the point of
the ‘really’ in these questions is to try to bend them into addressing this
issue. But this strains our language; use of the words ‘set’ or ‘“number’
pushes us into the Mathematical-Object picture. Once this picture is
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seen right, even the ontologically scrupulous philosopher should be
comfortable with it.%

Notes

| Chihara's distinction between ontological and mythological platonism from [4] may be
a gesture toward this distinction. _

2 T am excluding from the scope of semantics matters not relevant to truth-conditions of
statements, even matters that are relevant to understanding. .

3 In the original version of “On What There Is,” Quine uses ‘ontological presupposi-
tion’; later, e.g., in Word and Object, he prefers ‘ontic commitment’.

4 This point in made in [5} and [3].

5 One further point. In general we state commitments by specifying kinds, e.g., num-
bers, electrons, cabbages, kings. But if there is only one thing of that kind, we may say
that the commitment is to that thing. (A looser use of ‘ontological commitment’ has
some currency, according to which a piece of discourse is committed to each thing in
the range of its variables.)

6 Of course for some singular terms designating is their scmantic job, though they fail to
do their job: They are empty. And a singular term containing free variables, e.g., ‘the
capital of x’, is not a designator at ail (though its semantic role is parasitic on the roles
of its instances). Frege would say that it stands for a function; but such standing-for is
not what P'm calling designation, because functions of this sort are not objects. I use
‘designates’ to mean reference at level-zero, the sort that only holds between closed
singular terms and objects. '

7 In [9] I called the Alternative theory ‘Coding-Fictionalism’. The root “fiction’ scemed
to encourage misunderstanding; hence the change.

8 I ignore the more general topos-theoretic notion of modelhood.

9 To bear sense is (schematically summing Wittgenstein and Putnam) to have a use in a
niche. Natural languages are sense-bearing; sometimes formal languages bear sense,
especially among contemporary mathematicians. Sense-bearing languages are often
called ‘interpreted’. This usage encourages conflation of understanding and interpret-
ing; to interpret is to try to re-express in more understandable words.

10 Of course @ specification of a model could give sense to a previously non-sense-bearing
language. Also, given any model ¢ there could be a population such that, for
example, & was the designatum in their language of a for every individual-constant
« in the vocabulary of 2s a model, and so forth. Then the language of that model
would be used, and so sense-bearing; the model itself would be an especially “lifelike”
representation of its alethic underpinnings.

11 A statement is true or false only as a statement in a sense-bearing language. Truth is a
genuine semantic property; truth-in-a-model is a sct-theoretic ersatz-semantic rela-
tion. A definition of truth-in-a-model models a definition of truth, though this
modeling can be confusing. Here’s why. For a sense-bearing quantificational language,
truth must be defined in terms of satisfaction (or the like). Truth-in-a-model can be
defined in terms of satisfaction in a model, making the. relation between these
definitions clear. But other definitions are notationally simpler, and so are often
preferred {e.g., in this essay); philosophically, they are best conceived as shorthand for
a definition in terms of satisfaction in a model.

12 Non-total models could be made more partial: we could have allowed them to assign
predicate-constants partial extensions, Our models are, in the terminology of [10],
extension-wise total.

13 Here Sub(a, , 8) is the result of substituting & for all occurrences of » free in 6.

14 For more on the logic determined by this model-theoretic semantics, see [10].
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15 ‘= ' is not handied as a two-place predicate-constant with extension {{a, 2) : a & |&/]}.
Motivation: given that “Venus’ designates something and ‘Vulcan’ doesn’t, an equa-
tion like “Vulcan = Veaus' seems false, not merely truth-valueless.

16 Russell’s paradox showed that mot every Fregean concept of level ome can be
fortunate enough to have an extension. When restricted to sets, it becomes Cantor’s
Theorem: in effect, that no & has an extensor with domain Power(|.o7 .

17 Proponents of the Mathematical-Object theory usually think that such sentences are
false. But on what basis? Do they describe brute facts, knowable only by pure
intuition? Their falsity is not required by mathematics. That alone should render
suspect any theory requiring them to have a truth-value. Of course some have claimed
that a predicate like ‘blue’ is partial, only applying, or genuinely failing to apply,
within the appropriate “category.” Are these categorial constraints brute facts? How
do we find out about them? Unlike the Mathematical-Object theory, the Alternative
theory gives some basis for so-called intuitions about category-errors.

18 See [13]. Kaplan’s actual phrase is ‘artifact of the model’; but a model-theoretic
semantics is itself a model, as explained in note 11.

19 See the discussion of sets and the natural numbers in [1].

20 Although plainly incompatible with the Mathematical-Object theory, this view has
found proponents.

21 [11] presents the fifth-order language L%*(exactly) and a translation ¢ from its
sentences into Biv(L*), such that for every ¢ € Sent(L%*(exacrly)) and any infinite
model &

K piff ok t(e); o @ iff o= t(p).

In [12] T introduce the w-order language L® under what I there called the weak
higher-order semantics, with a translation ¢ from its sentences into Biv(L ") that meets
an analog for Sent{L*} of the above condition. The sentences in the images of these
translations can be regarded as formulations of their inverse-values within a first-order
syntax, For each of these translations it is an open questlon whether they are onto
Biv(L*) and Biv(Z") up to equivalence; I conjecture that in both cases this is not the
case.

22 Form Li, from L, of [10] as above. With L;, in place of L', there is a translation ¢ for
which we could rep]ace Biv(L") by Sent(L" ) in this result.

23 Thas follows by a three-valued interpolation lemma.

24 Let a sentence ¢ of L7 be truth-valucless relative to a set of sentences A iff for any
infinite model o7, if &/F A then &|¢. This is the theorem: for any —-complete set A
of sentences of L and ¢ as above, either ¢ is truth-valueless relative to A or AU {the
basic fact} decides ¢ in first-order logic. In particular, if ¢ is pure then either ¢ is
logically truth-valueless or the basic fact decides ¢.

25 Where C is a class of models, let ¢ be valid with respect to C iff ¢ is true in all
members of C. The union axiom and the axioms of replacement are valid with respect
to models of regular cardinality; the axiom of infinity is valid with respect to models of
uncountable cardinality; the power-set axiom is valid with respect to models of
strong-limit cardinality. So, except for the axiom of regularity, all axioms of ZF are
valid with respect to models of inaccessible cardinality. This suggests that the status of
these axioms is not as straightforward as that of those axioms that are valid simpliciter.
Acceptance of these less self-evident axioms is, I suggest, an expression of a view
ahout the size of the universe. (The power-set, infinity, and replacement axioms were
never as self-evident as extensionality, pairs, and even separation.) The axiom of
Regularity (and perhaps even Union?) derives its appeal from the iterative conception
of sethood. From the Alternative view, that conception is unnecessarily restrictive.
Regularity is a restrictive axiom. In many contexts we could live without it, faking its
effect by restricting quantification over sets to well-founded sets. See [12] for more
discussion, ‘
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26 For each natural number n, let ¢, say “There are at least n objects.” To assume
actual infinity is to assume {®,, @3, ...} To assume potential infinity (against an §5
background) is to assume {Cy, Ops, ... )

27 If S is finite and we replace §; by SpUS, then ‘1Ap(x, y¥ could be replaced by a
conjunction:

(x="P&PY) Vv x="Q&QyD V...

and similarly for ‘2Ap(x, y, z)".

28 Objecthood is implicit in ‘x™s syntactic status as a type-0 variable. This is why in the
Tractatus Wittgenstein calls objecthood a formal property.

29 This distinction brings out what some might cafl the “transcendental realism” implicit
in the Alternative theory.

30 This example is from [6, p. 219). One might argue that this sentence is logically
equivalent to ‘Socrates # Plato’, and so its commitments are those of the latter as
well. This presupposes a fixed and broad range for the second-order quantifier
(including at least being Socrates or being Plato); but the contexts in which this
sentence would most comfortably be used severely restrict the range of that quantifier.
Indeed, the truth of a statement made with Dummett’s sentence would be sensitive to
that feature of context; ‘Socrates = Plato’ shows no such sensitivity. That difference
alone indicates enough non-equivalence to defeat this move,

31 Fregean reference for predicates is a relation of type (2,1); so in a perspicuous
notation we might express the referential work of the predicate ‘is a horse’ by:
{Stands-for x) (“is a horse’, x is a horse). (There is a question mark in the preceding
because the type of level-one predicates is a matter of controversy; in [8) Geach may
be read as arguing that they are not objects; in the Tractatus Witigenstein appears o
agree.) Similarly, we might say: (Witnesses x) (the Dummett sentence, x is a
dramatist). 1 agree with Frege’s assessment of the so-called paradox of the concept
horse: that it is not a serious problem for the Fregean doctrine of reference for
incomplete expressions.

32 See [2]. Boolos would take the Geach-Kaplan example to carry commitment only to
the existence of some critics. As an assessment of thin commitment, this requires that
thin commitments be preserved by only very tight paraphrase. “There is something
that some critics are, only critics are, and all who are admire only others who are’ is a
paraphrase of the Geach-Kaplan example; but I'd guess that Boolos wonld think that
it carried different thin commitments. Suppose that the Mutual Admiration Society
(MAS) is a club of critics who admire only one another. One might back up a
statement made with the last sentence by going on to say ‘For example, a member of
the MAS’. This suggests that being a member of the MAS is in the range of the initial
second-order quantifier. If the above paraphrase does preserve thin commitments,
then even the Geach-Kaplan sentence could carry commitment to being a member of
the MAS (and would if all critics who admire only one another are members of the
MA?, ]and the MAS has exactly two members, each admiring the other).

33 See [91

34 See [7], a remarkable paper that has been remarkably ignored.

35 Given the Furthean (Pickwickian?) view of what reference to Fregean concepts and
relations amounts to, the disagreement expressed in [2] between Boolos and myself
may be merely verbal.

36 The sort of approach here applied to mathematical discourse can, modulo vagueness
about identity conditions, also be applied to talk “about” fact-like entities (states-of-
affairs) including possible worlds, and “about” some meaning-like entities. A rather
different approach applies to talk “about” Peircean types. Althongh the view pre-
sented here is undoubtedly at odds with his own, Hilary Putnam, through his writing
and teaching, had an enormous influence on the thinking that led to this essay.
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