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 HAROLD HODES

 ON MODAL LOGICS WHICH ENRICH FIRST-ORDER S5

 A logic is determined by:

 (a) a set of logical constants and a set of "types" of variables, which

 determine a class of associated languages sharing this "logical" lexicon;

 (b) an assignment to each associated language of a class of models, each

 model "interpreting" (in the weak, extensional "model-theoretic" sense) the

 non-logical lexical items;

 (c) an assignment to each model for each language and to each "type"
 of variable of a variable-assignment in that model;

 (d) a relation of satisfaction, between formulae in each language, models

 for that language, and variable assignments in that model for each type of
 variable.

 These items provide the raw material for the definition of implication in

 the sense of the given logic: P implies i iff for any model for the relevant
 language and any choice of variable assignments for the relevant types of

 variables: if these satisfy all members of 1 then they satisfy i; 1 is valid iff

 the empty set implies i. One logic is an enrichment of another if it is
 obtained by expanding the latter's set of logical constants or of "types" of

 variables, and extending the satisfaction relation to apply to the new

 formulae. This paper presents several enrichments of the first-order modal

 logic S5.

 1. SYNTAX AND SEMANTICS

 Fix an infinite set Var of individual variables, and the logical constants 'I'

 (the absurd), ' ' (identity), '3', 'V' and 'o'. Let Pred be a set of predicate
 constants, each associated with an n < w (its number of places); let C be a
 set of individual constants. Of course Var, Pred, C and the set of logical

 constants are mutually disjoint. A term of L = L(Pred, C) is a member of

 Var or of C. The set Fml(L) of formulae of L is defined by the usual induc-

 tion. Let 'I' be an atomic formula and -' abbreviate (4 D I1). (I'll ignore the

 Journal of Philosophical Logic 13 (1984) 423-454. 0022-3611/84/0134-0423$03.20.
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 424 HAROLD HODES

 distinction between use and mention where confusion seems unlikely.)

 Other abbreviations are as usual; where 7 is a term of L, Er abbreviates

 (3v) (v 7), where v is any variable distinct from 7. Hereafter, I'll use v,
 v', Vo, etc., as meta-variables ranging over Var, 7, a, etc., as meta-variables

 ranging over the set of terms of L, and 4, 4', 0, etc., as meta-variables
 ranging over the formulae of L and of the enrichments of L to be intro-
 duced.

 Since our underlying modal logic is S5, we may let a structure for L be

 an ordered triple 9 = (W, A, V), where Wand A = U {A(w): w E W} are
 non-empty sets, A is a function from W into power(A), and V is a function
 on Pred UC so that:

 V(7) E A for rE C;
 V(P) c W x A" for P E Pred, P n-place,

 where W x Ao = W. An individual-assignment in 9i is a function a from Var

 into A. Where wE W, (9I, w) is a model for L. We define (9I, w) k /[a]

 ("a satisfies k in (9I, w)") as usual:

 den (9, a, 7) = {(7V) if E C;
 a(r) if "E Var;

 (9,w) Vd[a];

 (9, w) = (~ 7r)[a] iff den(9, a, o) = den(9, a, 7);

 (9I, w) P 1 Pl ... in[(Y ] iff (w, den(W, a,7 ), ...,
 den(91, a, rn)) E V(P);

 (9, w) = (4 D 4)[aO] iff either (9, w) j 4[a] or
 (9,w) 1 ()[a];

 (9I, w) 1= (Vv)4[a] iff for every a E A(w), (9I, w) 1 /4[ai];

 (notice that "V" is an actualistic quantifier; as usual, oa(v') = a(v') if v' is

 not v, and oa(v) = a);

 (9, w) 1= 04[a] iff for every v E W, (9, v) = p[a].

 As usual, (9I, w) = P iff for all a, (9, w) = '[a]; for Ta set of formulae,

 (9I, w) = T iff for all ' E T, (9, w) = '.
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 MODAL LOGICS WHICH ENRICH FIRST-ORDER SS 425

 We now present several enrichments of L. In all cases, a structure for one

 of these enrichments of L is a structure for L; similarly for models. Let L'

 be the result of adding "'V' (the possibilist universal quantifier) to the
 logical vocabulary of L, with the obvious formation rule:

 if 4 is a formula of L then so is (Vv)k.

 Since (9, w) b Ev[a] if a(v) E A(w), we could regard Ev as atomic and

 regard (Vv) ... as abbreviating (Vv)(Ev D. .. ); we'll call this "regarding
 'V' as defined". To define satisfaction for 4 E Fml(L ), add the clause:

 (9, w) = (Vv)p[a] iff for every a E,, (W, w) = 1[afj].
 Let L@ and L be the result of adding the operators '@' and '4' respec-

 tively to the logical vocabulary of L, with the rules:

 if 4 is a formula of L@ then so is @k;

 if 4 is a formula of L then so is Pp.

 For 4 E Fml(L@), satisfaction is defined relative to the sequence

 (9, w, v), for w, v E W, and to an individual-assignment a in [. Think of
 w as the actual world and of v as the world under scrutiny; for the most

 part, v here plays the role that w played in the definition for L. Here are

 several key clauses:

 (9., w, v) =Pr-- ..., ,[a] iff (v, den(2,a, 7),...,
 den( W, a, 7,n)) E V(P);

 (9, w,v) = (V )4[a] iff for every aEA(v),

 (9k, w, v) = i[o~[]i;

 (9W, w, v) M oi[a] iff for every u E W, (9, w, u) b 0[a];

 (9, w, v) @ [a ] iff (I, w, w) > ].

 As we unpack the satisfaction conditions of p E Fml(L@), hitting '@'
 "resets" the world under scrutiny to be the actual world of the model

 (9, w). Satisfaction in a model is now defined as:

 (, w) = q[a] iff (, w, w) k [a].
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 426 HAROLD HODES

 L@ is more expressive than L: "there could be something non-actual",

 expressible as 'O(3x)@ Ex', is not expressible in L; see [4] for a proof of
 this. However even in L@ the necessity of that condition cannot be

 expressed: there is no set T of sentences of L@ so that for any structure

 W for L@:
 (fr, w) = T if for every u E W there is av E W so that

 A(v) _ A(u).
 Notice that 'o(3x)@-Ex' misses the mark: in assessing whether (9, w) =
 "O(3x)@-Ex', after 'o' "moves us" from w to an arbitrary world u, 'O'
 "moves us" to an arbitrary world v, and then '@' "moves us" back to w, not
 to u as would be desired.

 L is designed to allow more delicate world traveling than does L@: 'V' is

 to '@' as on a typewriter "back-space" is to "carriage-return"

 Define a function on Fml(L ) as follows:

 d( ) = 0 if ~ is atomic;

 d(4 D ) = max {d(), d(0)};

 d((Vv)4)= d(=);

 d(Pk) = 1 + d(4);

 d(oa) = d(4)-- 1.

 (Ifn > 0,n '- 1 = n - 1 ;0-- 1 = 0.)Where w = (Wo,. .., Wn_1) for

 wo,... ,w,,-1 E W, and d(q) <n, we define (9, w) = q[a]. Here are the
 non-obvious clauses.

 (W, w) = Pr. .. rn [o] iff (wn-l, den(W, o, 71), ...,
 den (91, a, 7,))E V(P);

 (9, w) 1 (Vv)[4a] iff for every aEA(wn-1),
 (91,w) k [~]

 (9, w) = o4[a] iff for every w E W, (91, w^(w)) = [a[o],
 where w^(w) = (Wo, . . . , wn-1, w);

 (9, w) k 144[a] iff (9, (wo,..., wn_2)) 4[a];

 notice that in the last case we have 1 < d(10) < n, so n - 2 > 0. Thus

 'oo(ix)S- Ex' expresses the condition discussed in the previous paragraph.
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 MODAL LOGICS WHICH ENRICH FIRST-ORDER S5 427

 We now introduce a family of logics with a common class of languages,

 but different notions of a variable-assignment for type 1 variables (or,

 alternatively, different notions of satisfaction). For expository convenience,

 we'll blur the distinction between a logic and its associated class of

 languages. To form L' we introduce an infinite set Var1 of type 1 variables,

 disjoint from all other lexical categories: 'T', 'T', 'To', etc., shall be meta-
 variables varying over Var'; we add the formation rules:

 if 7 is a term of L then Tr is a formula of L'; if 4 is a

 formula of L' then so is (V T)4.

 The languages Lmax'e, Lmin'e, Li'max'e and Li'min'e shall be syntactically
 identical to L', though they'll have different semantics.

 B is a monadic attribute in 9 iff B c_ W x A. B is a maximal essence in

 9 if B is a monadic attribute and for all w, w' E W and a E A: if (w, a) E B

 then (w', a) E B. B is a minimal essence in 9 iff B is a monadic attribute
 and for all w, w' E Wand a EA:

 if (w, a)E B and a E A (w') then (w', a)E B;
 if (w,a) E B thena A(w).

 B is an individual maximal essence in 9I iff B is a non-empty maximal

 essence in 91 and for any w E W there is at most one a EA such that
 (w, a) E B; B is an individual minimal essence in 91 iffB is a non-empty

 minimal essence in 9 and satisfies the previous second conjunct. Satis-

 faction in (9, w) for formulae of L1, Lmax -e, Lmin e, Li'max -e and
 Li'min'e is defined by letting type 1 variables range over monadic attri-
 butes, maximal essences, minimal essences, individual maximal essences and

 individual minimal essences in 91 respectively. Let P3 be a monadic attribute

 assignment in 9 if 3 maps VarI into the set of monadic attributes in 9;
 satisfaction for 4 e Fml(L'1) is relative both to an individual assignment a

 and such a p3; similarly for maximal essence, minimal essence, individual
 maximal essence, and individual minimal essence assignments in 9, and the

 languages Lmax'e, Lmin'e, Li'max'e and Li'min'e. In all cases we add these
 clauses to the definition of satisfaction.

 (9, w) h Tr[a, 3] iff (w, den(9, a, 7))E G 3(T);

 (91, w) 1 (VT)4[a, 3] iff for all monadic attributes B in91

 (maximal essences B in 91, etc.), (1I, w) k [4a, (3 ].

This content downloaded from 
������������132.174.252.179 on Sat, 12 Feb 2022 01:46:22 UTC������������ 

All use subject to https://about.jstor.org/terms



 428 HAROLD HODES

 The semantics of Lmax'e, Lmin'e, Li'max'e and Li'min'e may be pre-
 sented somewhat differently. Let an essence in 9I be a subset of A; then

 where 3 maps Var' into the set of essences in 1, we could let:

 (9C, w) W Tr [o, P] iff den(W, a, 7) E P (T);
 min

 (9, w) r-= Tr)[a, iff den(f, r, 7)E P(T) nA(w);

 (W, w) (V T)4[ac, 8] iff for every essence B in 91, ~,w) ~~OB
 similarly for (9I, w) )a (V T)[a, (3].

 Where B' = W x B and 1'(T) = 3(T)', for 9 a formula of Lmax'e we have:

 (, w) i 9[ci,j3] iff (aI, w) I= OEot,/'].

 Where B* = {(w, a) I a E B n A(w)} and 1*(T) = 1(T)*, for 4 a formula of

 Lmin'e we have:

 (ru, w) R 4[CP,] iff (9, w) )= 4[a, P*].

 Similar definitions and remarks apply to Li'max'e and Li'min'e where B is
 an individual essence in 9I iff B = {a} for a EA. For Section 3 (3), our first
 definitions of satisfaction are preferable; for other purposes, the second

 definitions are simpler and preferable.

 Note: in all these languages, ' ' is definable: (7 xa) may abbreviate

 (VoT)n(Tr Ta).
 Finally, the devices introduced in this section may be combined in

 various ways to produce languages Li'max'e , L' ,m Lmax"e. LI'', L1 ,
 etc. The appropriate definitions of satisfaction for formulae of these

 languages are the obvious results of combining the semantics for the

 languages introduced above.

 2. AXIOMATICS

 Complete axiomatizations of the valid formulae of L, Lv, L@ and L are

 provided in [l ], ], 8, [5] and [6] respectively. We'll present axiomatizations
 of the valid formulae of Li'max'e and Li'min'e. As our axioms for the logic
 of individual maximal essences, we take all formulae of the forms (1)-(1 1)

 listed in [1 ] on p. 3, as well as all those of the following forms:
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 MODAL LOGICS WHICH ENRICH FIRST-ORDER SS 429

 <>(a v)'rv;

 o(Vv)(Tv D o(Vv')(rv' D v w y'));

 o(Vv)(Tv D oTv);

 (vJr)(3 T)Tv;

 i D (V T) where T is not free in 4;

 (VT)p (T/T') where T' is substitutable for T in 4.

 Then theoremhood is defined by the familar induction:

 if ' is an axiom then F P;

 if 4 3 and F - then V i;

 if F 4 then F (Vv)4;

 if V k then F (V T)k;

 if q then oV.

 Clearly this axiomatization is sound: if - p then 4 is valid in Li-max'e'.

 Using the method of diagrams (with the notion of 3-completeness extended

 to handle type 1 variables, and with a set Pred* of Henkin one-place

 predicate-constants in addition to the set C* of Henkin individual constants)

 we may prove completeness via Henkin's lemma: if a set F of formulae of

 L-'ma'-e. is consistent (i.e., F Y I) then there is a structure 91, a world w,

 an individual assignment ca and an individual maximal-essence assignment j

 so that (9, w) = F[a, 3]. It should suffice to note: the first four schemata
 ensure that, in the Henkin structure 9 associated with a complete con-

 sistent diagram A _ (A a diagram in L (Pred U Pred*, C U C*)), the members of Pred* are assigned to all and only the individual maximal

 essences of 9.
 To axiomatize the validities of Li''min-e, replace the third new schema

 listed above by

 C(Vv)(Tv I D L(Tv rE

 Then in the Henkin model 91, members of Pred* are assigned to all and only

 the individual minimal essences of 9I.
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 430 HAROLD HODES

 Even with Pred empty, the validities of Lm'e and Lmirne are very non-
 axiomatizable, in fact, these sets encode full second-order validity for a

 language K(R) with a single 2-place predicate constant 'R', and quantifiers

 of the type 1 interpreted as ranging over all subsets of the universe of a

 model. This result for Lma'e is a straightforward extension of Theorem 1
 of [7] to a second-order language; by (5) of Section 3, this extends to

 Lmin'e. Here is a capsule of the argument. Satisfiability of a formulae of
 K(R) is many-one reducible to satisfiability by a symmetric irreflexive

 binary (s.i.b.) relation of formula of K(S). Let a binary structure (B, S)

 match a structure 91 = (W,A) iffA = B and for alla, b EA, (a, b)ES iff

 a 4 b and for some w E W, a, b A(w); if (B, S) matches 91 then (B, S) is
 an s.i.b.; if (B, S) is an s.i.b. then some 9I matches (B, S); we transform

 SE Fml(K(S)) to t' E Fml(Lmax'e) by replacing each occurrence of Sw'
 by 0(( Ev) & ('Ev')). 4 is satisfiable by an s.i.b. iff ~' is satisfiable in the
 sense of Lmax-e

 3. INCLUSIONS

 One language includes another iff each sentence of the latter translates into

 a sentence of the former, the two sentences having exactly the same models.

 Here are a number of such inclusions which hold for any choice of Pred and
 C.

 (1) L includes L ;view (Vi)# as abbreviating o(Vv)44.

 (2) L includes L@. Suppose # E Fml(L@) contains no nested occurrences

 of '@'; form (' from q by replacing each occurrence of '@' by ',k' where
 that occurrence is in the scope of exactly k occurrences of ''; it's easy to

 see that (91, w) = p[a] iff (9, w) 1 O'[a]. If p contains nested occurrences
 of '@', eliminate outermost occurrences as above; for any occurrence of

 @4 as a proper subformula of @0, which is in turn a subformula of 4, if
 within 0. that occurrence of @4 is not in the scope of any occurrence of @

 and is in the scope of exactly k occurrences of '0', replace that occurrence

 of @4 by 4k 4'. It's easy to see that, where k' is the result of eliminating all

 occurrences of'@' from / in this manner, (9, w) = 4[a] iff (9, w) = P'[a].
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 MODAL LOGICS WHICH ENRICH FIRST-ORDER S5 431

 (3) L' includes both Lmax'e and Lmin'e. Let MaxE(T) and MinE(T)
 abbreviate o(Vv)(Tv D fTv) and o(Vv)(Tvy O(Tv Ev)) respectively
 (for any choice of v). Where 3 is a monadic attribute assignment in 9:

 (91, w) = MaxE(T)[J3] iff 3(T) is a maximal essence in 91;

 (9, w) = MinE(T)[P3] iff 3(T) is a minimal essence in 1.

 Translate a formula ' of Lmae" or of Lmin'e into L1 by restricting all
 occurrences of '(VT)' by MaxE(T) or MinE(T), yielding 'o and '1 respec-

 tively. Where 3 is a maximal essence assignment in 91 and ' E Fml(LmaX'e),

 (Wi ,w) e a[s,sm] iff ( w) o[ r, Fl].

 Where is a minimal essence assignment in and 4 E Fml(Lmin'-'),

 (91,w) 1= 4[a,(3] iff (91,w) '[p1,(3].

 (4) Lmaxe includes Li'maxe ; Lmin"e includes Li'min'e. Let Ind(T)
 abbreviate

 0( v)Tv & o(Vv)(Tv o(Vv')(Tv' D v ')),
 where v and v' are distinct. To translate ' E Fml(Li'8xe) into Lmaxe
 simply restrict all occurrences of '(VT)' in ' by Ind(T); similarly for trans-

 lating ' E Fml(L' min'e) into Lmin'"'e

 (5) Lmaxe and Lmin'e are mutually inclusive; similarly for Li'ma'e and
 Li'min'e. We'll use the second definition of satisfaction for such formulae.
 For ' E Fml(LmaXn'e) form f(') E Fml(Lmin'e) by replacing each occur-
 rence of Tr in ' by OTr; clearly:

 (31, W) ~ r7[(YP1 iff (~Z, W) ~T~P OTT[OLPI;

 by induction on ', we have:

 (a, W) If~f. ~[(YPI iff (?I, W) ~f~9.

 For ' E Fml(Lmrin'e) formg(') E Fml(LmaX'e) by replacing each occur-
 rence of Tr in ' by (TT & Er); clearly:

 (9, w) iff ( w) x (Tr & Er)[a,O];
 by induction on ' we have:
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 432 HAROLD HODES

 (i, w) i 9[ar,P1 iff ('1, w) i~ g@)[cr,P].

 Similarlyf translates L'-max'e into Li''min'e and g translates Li'mi''e into
 Li' maxe. These results show that as far as considerations of expressibility

 go, the difference between maximal and minimal essences has no import-
 ance; for definiteness, I'll consider only maximal essences and refer to

 Lma'e and Li'ma'e as "Le' and "Li'e.

 (6) LY includes L' e. Associate with each type 1 variable Ti occurring in 4
 a distinct individual variable vi not occurring in 4; form 4' from 4 by

 replacing each occurrence of T ,7 in 4) by (vi 7) and each occurrence of

 (VTi) by (Vvi); where 3 is an individual essence assignment in 9i and
 & (Ti) = { (vig) } :

 (S[, w> ~ ri7[arp] iff (~Iw) ~ (yi~7)[a, P1.

 Thus if To, .. , Tn -1 are the free type 1 variables in 4, where 3(Ti) = {ai}
 for all i < n we have by induction on 4:

 (i, w) i = [a, 3] iff ([, w) = O' avo, ... , ao,. . .,an-1

 Languages associated with logics which combine the devices introduced

 in Section 1 provide some less obvious inclusions.

 (7) L", includes L' 'i, which are thus mutually inclusive. Regard 'V',

 '3j ', 'V', '3', '0' and 'E' as primitive. We'll consider two normal forms for
 formulae ofL1 @'V. For Z C_ Fml(LI, ,V), let:

 cZ = V A {~4 I either 4iu EZ or 4ii = for
 i<r j<q

 ii eZ z} ;
 Zo = {4, )4, @4, )@ I 4 is atomic};

 z, = {O I 4 eczo);

 ( Q n+ )( Z
 m>1 ;i
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 MODAL LOGICS WHICH ENRICH FIRST-ORDER S5 433

 p is pre-prenex iff 4 is of the form (Qofo) i i i ( -Qm-irm-1) for p E
 c(U, <w Zj) and m > 0. Claim: any formula of L 1' @v may be transformed

 into an equivalent pre-prenex formula. First, eliminate occurrences of '(Vv)'

 and '(nv)' using '(V v)', '(lv)' and 'E'; secondly, drive occurrences of'@'
 inward until all such occurrences govern atomic or negations of atomic

 formula, using the facts that '@o' reduces to 'o', and '@' commutes with

 truth-functions, '(Vv)', '(V T)', etc. Thirdly, drive negations inward so that
 '1' only governs atomic subformulae or those of the form oa. Fourthly,

 using the technique which convert any quantities-free formula of L into one

 containing no nested occurrences of 'o', make sure that any nested occur-

 rences of '0' are separated by some quantifiers; simultaneously pull quan-

 tifiers outward, using familiar prenexing equivalences. It is not hard to see

 that eventually the given formula is transformed into a pre-prenex formula.

 A formula of L1, @, v is clean iff no occurrence of 'o' in it governs an
 occurrence of 'V' or '3'.

 LEMMA. Any formula ofL1, @,v may be transformed into an equivalent
 clean formula.

 Proof. Let 4' be a pre-prenex formula. We'll transform 4 into a clean
 formula by working from the inside outward on the subformulae of the

 form o(Q~oo) ... (m-~ m,,-1)0 for 0 E c(U~ < , Z,). By induction hypoth-
 esis, suppose 0 has been replaced by a clean formula 4 E c(U < , Z,).

 (These assumptions imply that 4 contains no occurrences of 'V' or '3'.)
 We may also assume that if i is an individual variable then Q- is 'V' or '3'.
 By inserting double negations and pulling negations inward through quan-
 tifiers it will suffice to transform

 (*) o(Qo/o)... (Qm-,im-i)4

 into

 (**) (iT)(cBv')(oTv' & (Qofo) ... (m-i~m-)O (TV'D 4')),

 where v' and T do not occur free in 4 and where:

 (Q( i i) if 5i is of type 1;

 (i) if i(i) if Qi is '3'.
 /0, ( ::lt ) i f Q i i s ' i l' .
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 434 HAROLD HODES

 Suppose that in (91, w, v), at, 3 satisfy (,). Then for some u E W:

 (W, w, u) b (Qofo) i i i (Qm-,im-,)#[i, 01.

 Pick a EA; let B = {(u,a)}, a'= a, '= 3;so for any w E W, (91, w, w') =
 Tv' [Oa', 3'] iff w' = u. Therefore:

 (91, w, w') fr (Qo~o) ... (am-li-,i)O(TV' D 't)[a', 13].

 Thus in (9, w, v), (*s) is satisfied by a, P3.
 Conversely, suppose that in (9, w, v), (**) is satisfied by a, 3. Select a

 B, w' and a 8A' so that for a'= oa~, 3'= 313:.

 (91, w, w') = (Tv'&(', (foo)... (Q,_,i,_,)
 o(rv' k)[(a', ('];

 fix a u so that (u, a)E B. It's not hard to see that:

 (91, w, u) = (Qoo)... (Qm-~im-,~)[C', 3'].

 Since v' and T are not free in 4, in (9I, w, v), a, 3 satisfies (*). Note that
 (**) is clean.

 In a clean formula, all occurrences of '(Vv)' or '(lv')' are not in the
 scope of '0', and so may be replaced by 't(Vv)@' and 'O(3v)@'. Thus we
 may eliminate all occurrences of 'V' or '3' from a clean formula, proving

 (7).

 (8) L',9 includes L@, . Let 4 E Fml(L1, @,v ) be interesting iff it has the
 form

 foro(Qi)'o.. .(Qn-n-i) [V (@@i 4&Osi),
 i<k

 where Qo is '3' and Q, is '3' or 'V' for 1 < i< n, n > O, 4i and 0i contain-
 ing no occurrences of '@' and no type 1 variables. Our goal is to eliminate

 '@' from interesting formulae.

 Let i El I iff Qi is '3', I = {io <. . . < iq _, }; introducing distinct type 1

 variables To,... , Tq -, form the quantifier prefex Q from (Qovo). i
 (Qn-lvn-,l) by replacing each (Qiivii) by (3Ti)(Vvi,). Let go(4), gl(() and
 g2Q() be the following formulae (respectively):

 A o(3v)Tv;
 j<q
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 0 A i, Ok- V, s));

 r< i< k

 where:

 S = {sE k2 1 for some i<k,s(i)= 1},

 J(~o, .. , 'k-1,s) is A 11(i), i<k

 K(Oo,..., 6k-i,s) is V{Oils(i)= 1},

 and where io is 4, 4J' is -'4. Claim: 4 is equivalent to Q(go(4) &g1(().&
 g2(Q)). It should suffice to prove this equivalence for a particular quantifier

 prefex; suppose n = 4, Qo = Q2 = ' Q 3 = 'V'; so Q is (3To)(V o)
 (V )(3T1)( v2)(v3).

 First, suppose (9, wo) = P[a, p3]. (Where no type 1 variable is free in a

 formula, we'll omit mention off3 when we use '='.) For notation simplifi-

 cation, let a{co} be a , a{co, cl} be a{co} , etc. For each w E W select
 fo(w) E A so that

 (, Wo, W) (av)(V2)(v 3) V (@

 Given ao E A select fi(w, ao) E A so that

 (2k, Wo, w) >( (Vv) k(@ &Os)) [a{fo(w), ai, i(w, ao)}].i
 fi(w, ao)}].

 Thus given a1 EA,

 (W, wo, w) = ,V (@@i &Oi)[a {fo(w),ao,f (w, ao),al}]. i<k

 Let t = tbo,ao, b,,a, be defined by:

 t(= 1 if(9, wo) i[ [a{bo,ao, b1,a1}], t(i) =
 [0 otherwise.
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 For t = tfo(w),ao, fr(w, ao,a1 , tE S; since '@' doesn't occur in 0o, . , 0k-1~, we also have:

 (9, w) = K(Oo, . . , 8k - 1, t)[fo(w),ao,f (w a), ao),}].
 Let Bo = {(w,fo(w)) I w E W}; suppose we're given bo, ao E A; let B1 =

 {(w, fi(w,ao)) I wE W}; let ' = P1o , 0" = 1' ; so (9X, wo) = go(Q) [ "].
 Suppose we're given b1,l E A; for a' = a{bo,ao, b1, a) (', wo) =

 gl(j)[a']. Let t = tbo, ao,ba; for S E k2,S = t iff

 (1, Wo) J(4Jo, .., i , S)[a'.
 Most importantly,

 (9, Wo) = O((Tovo & Trv2) D K(00, . . . ,k- t))[a', 1"];

 For suppose (91, wo, w) k Tovo & Tv2 [a', 1"]; then bo = fo(w), bI =

 f1(w, ao), so a' = a{fo(w), ao,f (w, ao), al}, t = tfo(w),a, r,(w, ao), ,; so by previous remarks, (9I, wo, w) = K(Oo, .. ., Ok-l, )[a']. Since b1 and a1 were
 arbitrary,

 (9, wo) = (Vv2)(Vv3)(go() &gl(Q) &g2(4))[a({bo, b}, 1"]; thus:

 (9, wo) 1 (3T1)(Vv2)()(gV)(o(4) &g.(Q) &g2(4))
 [a{bo, b1), 1'];

 iterating this we get:

 (91, Wo) = Q(go0() &g1(P)g,(Q))[a, 13.

 Secondly, suppose that (91, wo) = Q(go(0) &g1() &g2(4))[a]. We're
 given w E W, and wish to show:

 (,,w0, w) R (Bo)(V, )(Bu2)(Vu) .V (@ i&0i)1 [].
 \i<k!

 Fix Bo so that for 1' = 13k,

 ( , Wo) = (Vo)1Vl)( T)(go(p)& (0)
 & gz(4)) [a, P'].

 Thus (9, wo) k o(lv)Tov[p']; we may pick bo so that (w, bo) E Bo; given

 ao ' (, Wo) = (3T1)(Vv2)(ViV3)(go(0) &g1(0) & g2(Q))
 [a{bo, ao}, 1'].
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 Now fix B1I so that for 3"= /=T,

 (9, wo) = (iV2)(Vv3)(go(4') &gl(4) &g2(4'))[a {bo, ao}, 3"],

 again (9, wo) k o(3v)Ti [P"]; so we may pick b1 with (w, b) E Bl; given
 a EAand a'= a{bo, ao, bl, al},'

 (5, Wo) b g(~() &g2(4)[a', l"].

 By choice of bo and bl, and using g,(4), there is a unique t E S so that

 (W, wo) H J(qo, i i i, i-k1, t)[a']; usingg2(),
 (9, wo) = O((Tovo & Tiv2) D K(O0, ... 0-, k ))[a'l, l-.

 So (9i, wo, w) K(0, . . , Ok-1, t)[a']. Thus:

 (9,,Wo,W) = V (@'i & Oi)[a'].
 i<k

 Since a1 was given after choice of bl,

 (9, Wo, w) 1= (3V2)(Vv3)(iV (@i & Oi)) [c{boao}].
 i< k

 Since ao was given after choice of bo,

 (W, wo, w) = (3o)(Vv)(3v2) 3)( V (@4 & ) [a]. i< k

 Thus (9I, wo) = 4[[a], proving the claim.

 Given 4' E Fml(L@' V), suppose 4' is in pre-prenex form;we wish to pull
 '@' outward; using the fact that 'o@' may be replaced by '@', we need only

 consider subformula of 4 in Zj for / > 2. Where 4 is an interesting sub-
 formula of 4, replace 4 by @Q(go(4) &gl(4) &g2( )) = 4; since
 (91, Wo, w) = (4- 4"')[a], and '@' doesn't occur in Q(go(4) &gl(4) &
 g2(4')), iterating this process yields a formula 4' equivalent to 4 with no
 occurrence of'@' in the scope of 'C'; then all occurrences of '@' may be

 deleted, yielding 4'* E Fml(Llv) so that (91, wo) = (4' 4'*)[a].
 Further inclusions require special constraints on Pred.

 (9) If all members of Pred are 0-place, then Li'e includes Lv, which are

 then mutually inclusive; similarly for Li'e., @ and L@'V ; similarly for Le and Le, V
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 Proof Given 4 E Fml(LV), regard 'V' as defined. For each individual
 variable v occurring bound in P, introduce a corresponding distinct type 1

 variable T,; replace all occurrences of '(Vv)', 'Ev', 'v v"' and 'v o' for

 o E C or o free in p by '(VT,)', '(3x)Trx', 'O(3x)(TLx & T,'x)', and

 'Teo' respectively. Given 9 and a, fix an individual essence assignment 3

 so that t(T,) = {a(V)}. Then (9, w) 9 [aq] iff (9,, w) W 1[a, 13]. For E Fml(Lev), make sure that T, doesn't occur in q, and revise the above

 translation by replacing '(Vv)' by '(VT,) Ind(T,)...)'.

 (10) If each member of Pred is 0-place or 1-place, then Lev includes Le, g

 in this sense: if 4 E Fml(Le' 1) and d(4) = 0 then & is expressible in Le' " thus in this case Le.v Le, @,v and Le, are mutually inclusive. This will be
 proved at the end of Section 4.

 The following picture shows inclusions (1)-(8) and some obvious con-

 sequences of (1)-(6), where '--<' represents 'is included in'.

 Li ---<L i' , L ' @'i? L '' @ - < L i'

 Le e L L L'i~ ------< <Li'- Ll

 L i.Li.e,@

 L <L

 4. WORLD TRAVELING AND EXTENSIONALIZATIONS

 We associate with L a two-sorted non-modal language Lext, the extensional-

 ization L, as follows. Let Var, be an infinite set of world variables disjoint
 from all other lexical categories, 'p', 'g", 'go', etc. shall be used as meta-

 variables ranging over Var,. The logical constants of Lext are 'I', '%', 'E',
 'D' and 'V'; to each P E Pred we associate pext; the formation rules are:

 if 71, i ... , rn are terms of L then PetTrl ... rn is a formula;
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 if 7 and o are terms of L, (o a 7) is a formula;

 I is a formula;

 if 7 is a term of L then Ejir is a formula.

 Other formation rules are as usual.

 We transform a structure 9I for L into a two-sorted classical model

 91ext = (W,A, Vext) for Let, where Vext 2 V by Vext(E)= {(w,a) Ia E

 A(w)}. A world assignment in 9 is a function y from Var, into W. For 4 E

 Fml(Le), let 91 = q[a, 7] be defined in the obvious way. We expand
 Lext to Lxt by adding an infinite class of type 1 variables, the formation
 rule:

 if 7 is a term of L then Tr is a formula of Lext,

 and the satisfaction clause:

 9ext = Tr[a,3, 7] iff den(9, a, 7) E3(T),

 where ~ is an essence assignment in 9I. We expand Lext to Lxt by adding
 the formation rule:

 if 7 is a term of L then TrT is a formula of Lt,

 and the satisfaction clause:

 91ext Tr[a, 3, Y71 iff (7(/I), den (9, a, 7)) E P(T).

 (11) L and Lext are mutually inclusive; similarly for Le' " and Let, and for
 L , and Lext. In other words, we may associate with each sequence

 /o, .. , nl of world variables functions g =go .... ,
 h = h.o..... ,_, meeting these conditions. For 4 E Fml(L1) and d(q) < n,
 g() E Fml(Lext,) has free world variables among 0o, ... ,n-1, and for any
 9, a, and 7:

 (9, (7(9o),... , 7(l n-1))) k 4[4a] iff text = g(k)[a, 7].

 For &J E Fml(Lext) with free world variables among o, ... , -1, h(') E
 Fml(L ) and for any 91, a, and y:

 (9, (7(9o), , 7(n-1))) = h(4)[a] iff 9ext = [a, 7y].

 Furthermore, bothg and h extend appropriately to Le' and Lext-
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 Proof It will be convenient to regard 'V' as defined from 'V' and 'E'.
 Define g and h as follows:

 g(Pr1..* m) = pextn-lT ..*. 7m;

 g(Er) = E=-,_ ;

 g(o a T) = (o i T);
 g(l) = I;

 g(i > i') = (g(4) Dg(4'));

 g((Vv)q) = (Vv)g(b);

 g(op) = (V/)go..... n_,,M1(4) where a is distinct from
 -to, . . ,/an-l ;

 g(10) = gu .... ~,_2( ), which is well-defined, since
 1 < d(44) < n implies 2 < n.

 h(pexti ...Tm) = in-i-1PT1 ...Tm;

 h(Epi7) = in-i-Er;

 h(o 7) = ( - 7);
 h(I) = I;

 h(4 D 4') = (h(4,) D h(4i'));

 h((Vv)i) = (Viv)h(4)= )4h(#);

 h((Va)J) = oh~oh. , ,, ,.,n(4), which is well-defined since
 CI is not free in (Vg)4, and thus is distinct from

 ao, an-l-

 If we're concerned with Le,~ and Lext, let g(Tr) = TT, h(Tr) = Tr. If we're

 concerned with L'" and Lat, let g(TT) be g(T/tn-17), and h(Tpir)) be

 A straightforward induction on the construction of k E Fml(L ) shows

 that g(t) is as desired; similarly for 4J E Fml(Lxt) and h(4). Similarly when
 we consider quantification over essences and monadic attributes. Notice

 that gh(4') = 4., although hg(4) needn't be 4.
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 Where i E Fml(Lext), let 4 be proper iff for each subformula 4 of 4

 there is at most one world variable free in 4,. For 4 E Fml(L ), and any p, g,(4) is proper; in fact, the converse holds: if 4, is proper and contains at

 most / free, hy(4) E Fml(LV). This result extends to Lev and Lxt, and to
 L', and Lext; in an obvious way these facts express in terms of the syntax

 of Let the feature of L and Lv which L" partially and L totally over-
 come: their failure to permit "backwards world travelling".

 We'll use the extensionalization of Le~ to prove (10). Suppose Pred =

 (Po,... ,P-, Pk- , k.. i ,Pq-1}, where Pi is 0-place for i < k, 1-place for
 k i< i < q. Where s E k2, let P(s) = Ai< k I(), where 'PO' is 'P' and 'P"' is
 ''P'. Let 4 E Fml(Lex~,) have free world variables jo, . .. ,in_~ ; let
 so,...,sn-,_ be a sequence of members of k2. It suffices to define a func-

 tion f= fo. ..., s..... 8sn_ so that f(4) E Le',V and for any structure i and any a, (, y, individual, essence and world assignments in W, if for all
 i<n:

 'y(i) E V(P,) iff si(j) = 1 for < k,

 P(Tii) = {a I ( ~i), a) E V(Pi)} for k < j < q,
 i3(Tj,qi) = aii)

 where the Ti,i are distinct type 1 variables not occurring in 4, then: 9et =

 4[a, (, Y] iff (9X, w) ~ f(4)[a, j] for any wE W. Define fas follows:

 f(pext1i)= p;i ti) for / < k;

 f(P~xtpi.) = Ti,i" for k j<q;
 f(EPi7) = T i, q7;

 f(TT) = Tr;

 f(a i T) = (a M r);

 f(I) = I;

 f(4o , D,) = (f(4,o) Df(1))`;

 f(Vv),) = (tv~)f(4,);

 f((V T) ) = (V T) f();

 f((Vg)4) = O(3iT, * 3r -,) A (VxXTr,
 - Pjx) & (VxXTn,,x E Ex) & V S,
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 where f, = fr0 ...n-, , ,,..., s, ,and the Tn,, are distinct type 1
 variables different from the Ti,, for i < n and not occurring in 4; this is

 well-defined because g is not free in (Vp)4', and so is distinct from pi for
 i<n.

 An easy induction shows that f is as required. For example, consider the

 case of (Vip)'. Suppose so ... , s,-1, a, 3, and y meet the given conditions.

 Suppose that 9et = (Vp)4 [a, 3, 7]; given any u E W let 3'(Tn, ) =
 {a !(u, a) E V(P,)} for k <j < q, 3'(Tn, q) = A(u), and 3'(T) = 3(T) for all
 other T; since 91 b 4'[a, 1, 7y] and no Tn, occurs in 4, 9ex = 4c[a,

 1', 7']; fix s so that (9, u) k P(s); since now so, ... , sn-,, s, a, 3', and 7-
 meet the required conditions, we can apply the induction hypothesis to get

 (, u) 1 f,(4)[a, 1']; so lettingf(4) be oO, we have (9, u) = 0 [a, ]; so
 (91, w) I f(4')[a, 13]. Now suppose that (9, w) k f(4')[a, P13]; given any
 u E W, (9, u) = 0 [a, 1]; for 3' as above, (9, u) = (P(s) &f,(4'))[a, 1'] for
 some s E k2; then so, . . . , s-1, s, a, 1', and y0 meet the required conditions

 for applying the induction hypothesis to conclude that 91ext = 4 [a, 1', lt];

 since none of the Tn,, occur in 4, ext [a, 3, 7-y];so ext = (Vp) [a,

 If 4 E Fml(Le, 4) and d(t) = 0 then g(r) has no free world variables, and
 has the same free variables as #; but then f(g(k)) and g(4) have the same free

 variables; for any 9, w, a and 3:

 (~, (W)) ~ ~[CYPI iff (ql, W) ~ fCP(~))[CYP].

 5. FAILURES OF INCLUSION

 (12) As mentioned in Section 1, 'O(3x)@ Ex' is not expressible in L; since
 this sentence is expressed in Li'e. by '(3X) '(3x)Xx', L doesn't include L@
 or Li'e

 (13) Using the encoding of an arbitrary binary structure by an s.i.b., there

 is a sentence 0 of K(S) so that for all s.i.b.'s (B, S), if (B, S) = 0 then B is

 finite; but there are such s.i.b.'s (B, S) with card(B) arbitrarily large. Using

 our encoding of an s.i.b. into a structure for L, we find a sentence 0' of Le

 so that if (9, w) k 0' then A is finite, but there are such structures 91 with

 A arbitrarily large. Since the logic of Li'e. is axiomatizable, and thus (since
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 a derivation can use only finitely many premises) compact, 0' can't be

 translated into Li'e; similarly for Lv, L@, L@'V and L .

 (14) Let 0o be '(3xXPx & -Ex)'; 0o is not translatable into L'. Similarly

 for P n-place, n > 2 and (xl) ... (3xnXPx1,... x, & -Exl). Thus if Pred
 contains at least one n-place predicate for n > 1, neither Li'.e, Le, nor L

 includes L'; nor does Le or L' include Le, ; nor does L1 include L1,V

 Proof Let W= {0, 1,2},A(0)=A(1)= {a},A(2)= {a,b}, V(P)=
 {(0, b)}, V(P') is empty for all P' different from P; 9 = (W, A, V). Where
 B is a monadic attribute in 9 let B' be

 {(2, x) I (2, x)E B} U{(0, x) I (1, x)E B}
 U {(1,x) I (O,x)EB};

 where 3 is a monadic attribute assignment in 9 let O'(T) = 0(T)'.

 Claim: if a(u) = a for all V, then for all 4 E Fml(L 1):

 (~,O) C= ~[apJ iff (U, 1) ~ ~[arpl]i

 This holds for atomic 4; the induction on 4 is straightforward; notice that

 (9, 0) = (V)4[a, 13] iff (91, 0) = 4Ca, 1], and (9, 1) k (Vv)4[a, 1'] iff
 (9, 1) 1 p[a, 3']. Since (9, 0) = bo and (9, 1) V fo, Po is not equivalent
 to any formula of L.

 (15) Let 01 be 'o(3x)(Px & -Ex)';O1 is not expressible in Le,i @. Thus if

 Pred contains an n-place predicate for n > 1, Lv is not included in Li'e @, nor in Le, @.

 Proof Let W = {(N,P) IN and P are disjoint infinite subsets of w and

 co -(N UP) is infinite); let W1 = WU {0}, A((N,P)) = A'((N,P))= N;
 select w1 E Wand let A'(O)=A(w1); let V(P)= {((N,P),a)Ia EP}; let
 P((N, P)) = P, P(O) is empty;let 9 = (W, A, V), 3 = (W', A', V). Select

 wo E W; then (91, wo) = 01, but (S, wo) V01. Claim: (9I, wo) and (S3, wo)
 satisfy the same sentences of Le"

 Let b = (bo,..., b,-1), c = (co,..., c,,_)E c"; let b - ciff for all i, j<n:

 bi = b1 iff ci = ci;
 bi EA(wo) iff ci EA'(wo);

 bi EP(wo) iff ci EP(wo).
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 For w, u E W', let (w, b) (u, c) iff b ~ c and for all i < n:

 bi EA'(w) iff ci EA'(u);

 bi EP(w) iff ci E P(u).

 Let B= (Bo,..., Bm _,),Bi o for i < m,s E m+22; let:

 g(B, s) = fl B (i) nA(wo)(m) n P(wo)m +l), i<m

 where for X C o, Xo = X, X1 =o_ X. Clearly {g(B, s) I s E m+22} is a
 partition of w. Let (w, b, B) - (u, c, C) iff (w, b) ~ (u, c) and for all
 i<n, j<m:

 b, E B iff ci E Ci;

 for all s E m+22, card(A '(w) f g(B, s)) = card(A'(u)
 n g(C,s)).

 For 4 E Fml(Le @) with free variables among Vo,... , n-_, To,..., Ti-!,
 and w E W, let (9k, wo, w) F 4[b, B] iff (91, wo, w) = [ca, 1] for any a and

 1 with a(vi) = bi for i < n and 1(Ti) = Bi for i < m; similarly for 3 and
 wE I"W'.

 LEMMA 1. If(w, b, B) - (u, c, C) then:

 (9, wo, w) k 4[b, B] iff (3, wo,u) k [c,C].

 Where 4 is atomic, this is clear. The only non-trivial induction step is where

 4 is (V,)I or (VT)I,.

 Suppose 4 is (V,)iP. Then for any b EA'(w) there is a c E A'(u) (and for
 any cE A'(u) there is a bE A'(w)) so that (w, b^(b), B) - (u, c^(c), C).
 Given bE A'(w), if b = bi, let c = c,. If b / bi for all i < n, there is a unique

 s E m+22 so that bE g(B, s); any c E A'(u) f g(C, s), c : ci for all i < n, will
 be as desired; since card(A'(w) n g(B, s))= card(A'(u) f g(C, s)), such a c
 exists. A similar argument produces a b EA'(w) given c E A'(u).

 Suppose 4 is (VT)4. Then for any BE wo there is a C C Cw (and for any
 C C_ Co there is a B co), so that (w, b, B^(B))- (u, c, C^(C)). Given B and
 s E m+22, let B' = B f g(B, s). {BS Is E m+22} partitions B. For each s, select

 CS _ g(C, s) so that:
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 for all biE g(B, s), biE B8 iff ci E CS;

 card(A'(w) n BS) = card(A'(u) n C).

 Because bi E g(B, s) iff ci E g(C, s), we can satisfy the first condition;
 because card(A'(w) f g(B, s))= card(A'(u) f g(C, s)) we can satisfy the

 second conjunct. Let C= U {C' Is E m+22~; C is as desired. A similar con-
 struction produces B from a given C. Lemma 1 follows.

 Suppose w1 = (N1,P1),P c_ -N,, o - (N1 U P) is infinite, and for all
 i< n, bi P; then for w = (N1, P), (w, b, B) (0, b, B). Thus for any b and
 B there is a w E W so that for all 4 E Fml(Le' @):

 (~2~, wow) ~ ~[bB] iff (~,w,,O) ~ ~[bB].

 LEMMA 2. For any 4 E Fml(Le' @) and w E W:

 (~I, we, w) ~ ~[bB] iff (~3, wo, W) ~ ~[bB].

 Where 4 is atomic, this is clear; the only non-trivial induction step is where

 4 is oa; since W'= W U {0}, by the preceding remark, if (8, wo, W) j
 o4)[b, B]; then (91, wo, w) 4 ot[b, B]. This proves the lemma, letting
 w = wo, we get

 (9, Wo) 1 4[b,B] iff (0, wo) 1= 4[b, B].

 (16) Let (3>2p)4) abbreviate

 (3vXtv'Xv ~ v' & 4 & (V/V')),

 where v' is distinct from v and doesn't occur in 4; let 02 be

 o((3x)@-,Ex > (3 " 2x)@1Ex).

 Then 02 is not expressible in L'b. So even if Pred is empty, Lv does not
 include L@.

 Proof Regard 'V' as defined in Lv. Let W = {0} U {(n, m) In f m,

 n,m Ew }, W'= WU {1}. Let A(0) = B(0)= ', A((n,m))= B((n, m))=
 (c - {n, m }) U {- n In E }, let V(P) be empty for all PE Pred, 9 =
 (W, A,V), = (W', B, V). Clearly (9, 0) = 02 and (8, 0) 1 02. Claim:
 (91, 0) and (8, 0) satisfy the same sentences of L.
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 For a = (ao;... ,ak-l), b = (bo, .., bbk-l)E gk, and w, v E W', let
 (w, a) -~ (v, b) iff for all i, /< k:

 ai = ai iff bi = b ;

 ai E B(w) iff bi E B(v).

 Where (w, a) ~ (v, b), for every a E B there is a b E B (and for every b E B
 there is an a E B) so that (w, a^(a)) (v, b^(b)). As usual, for 4 E Fml(LV)

 with free variables among vo,..., Vk -1, let (9X, w) = 1[a] iff (91, w) u[cla]
 for a(vi) = ai for all i < k. Claim: if (w, a) ~ (v, b) then (8, w) I =[a] iff
 (B, v) k t[b]. This follows by an easy induction. For example, suppose

 p is (iv)4; if (i5, w) = s[a] and b E B, select a as above; since ($8, w)
 i [a, a], by induction hypothesis (5, v) k iP[b, b]; so (5, v) = 4[b];
 similarly in the other direction.

 LEMMA 3. For 9 E Fml(L) with free variables among Vo, ... , Vk-l, and
 wEW:

 (, w) 1 4[a] iff (8, w) = [a].

 The only non-trivial induction step is where 4 is 04,. It suffices to show that

 if (5, 1) i= i[a] then for some v E W, (9, v) b= i[a];but clearly there is a
 v E Wso that (1, a) (v, a); so the lemma follows.

 (17) Let 03 be 'o((3x)--,Ex D (3" 2x)JEx)'. Tien 03 is not expressible
 in L@',. Where 9 and 5 are as in (14) and wo = , 3), clearly (9, wo) =
 03; however (9, wo) t 03. It suffices to show that (9I, wo) and (5, wo)

 satisfy the same formulae of L@,'. For a and b as before, and w, v E W', let
 (w, a) ~ (v, b) iff the conditions defining '~-' in (14) are satisfied, and for
 all i< k:

 ai E B(wo) iff bi E B(wo).

 If (w, a) ~ (v, b) then for any ~ EFml(L@' ) with free variables among Po, Vk-1"

 (~3,wow).~ ~[a] iff (~3,wo~v) ~ ~[b].

 The argument is analogous to that used in (14). For any a is a v E W with

 (1, a) (v, a). So as in (14) we can show that for any w E W and any E

 Fml(L@'V) with free variables from Vo, ... , Vk~ i
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 (1, wo, w) f q[a] iff (,WO, o, v) = 4[a].

 Letting w = wo, the claim follows.

 Let 9I = (W, A, V) and 3 = (W', A', V') be structures for L, wE W and

 w'E W'; w and w' are redundancy-matched for 9I and 3 iff A = A', A (w)=

 A'(w'), and for all n-placeP E Pred and a1, .., an E A: (w, a1, . . ., an) E

 V(P) iff (w', a1,..., a,) E V'(P). U E W is a redundancy set for 9 iff for all
 w, u E U, w and u are redundancy-matched for 9i and 91. 9 and 5 are
 redundancy-equivalent iff for each w E W there is a w' E W' (and for each

 w' E W' there is a w E W) so that w and w' are redundancy-matched for 91

 and 5; (9, w) and (5, w') are redundancy-equivalent iff 9 and 5 are
 redundancy equivalent and w and w' are redundancy-matched for 9 and 55.

 A formula 4 containing no free type 1 variables ranging over all monadic

 attributes is preserved under redundancy (hereafter r-preserved) iff for any

 (9, w) and (5, w') which are redundancy-equivalent, the same assignments

 satisfy 4) in (9I, w) and in (53, w'). (Since members of W are "built into"

 monadic attributes in 91, and similarly for W' and 5, this definition would
 make sense for a formula involving free variables for monadic attributes

 only if W = W'; thus such formula are excluded in the preceding definition.)

 Fact: all formula ofL, L@, L , Lv, L'e. and Le" are r-preserved.
 Let 9 be redundant iff at least one redundancy set for 9 has more than

 one member.

 THEOREM. If Pred is finite and all members of Pred are 0-place, then there

 is a sentence 0 of L' so that (91, w) = 0 iff 9I is redundant. Furthermore, if
 Pred is finite and all members of Pred are 0-place or 1-place, then there is

 such a sentence of L" ". Thus some formulae of L'i containing no free
 type 1 variables are not r-preserved.

 Proof Let World(T) abbreviate:

 MaxE(T) & (Vx)Tx & (VT')

 ((MaxE(T') & Ind(T') & 0(3x)(Tx & T'x)) D (3x)T'x),

 where T' is distinct from T. Then (9, w) [= World(T)[a, 3] iff for any
 v E W anda E A, (v, a) E 3(T) iffa E A(w). Suppose Pred = {Po,..., Pk-l,
 all Pi are 0-place. For s E k2, let P(s) be Ai< k pi8('), where PO is P, P' is 'P.
 Let 6(s, T, v) abbreviate:
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 448 HAROLD HODES

 (3T')(O(P(s) & World(T') & Tv) & O(P(s) & World(T')
 & -"'v)),

 where T' is distinct from T. Then (.I, w) = O(s, T, v)[a, 1] iff there are u
 and v E W so that {u, v} is a redundancy set in 9i and (u, a(v)) E 3(T)

 though (v, a(v)) 0 3(T); so u # v. Let 6 be V (3T)(3X v)0(s, T, v) I s E k2}.
 0 is as claimed.

 If Pred = {Po, .. ., P-l, Pk ... , Pq-1) for Pi 0-place where i < k and
 Pi 1-place where k i < q; for k < i < q let Ri(T) abbreviate (Vx)(Pix =
 Tx); now let 0(s, T, v) abbreviate

 (3T'X3Tk)... (3*Tq_)(O(P(S) & World(T') &Rk(Tk)
 &... & Rq_,(Tq,_) & Tv) & O(P(s) & World(T')
 & Rk(T k) & . . & Rq I(Tq -1) & "Tv)),

 and construct 0 as before.

 COROLLARY. For any choice of Pred: Le does not include L', Le' does
 not include L'*, and Le' @ does not include L" ''. Let 0 be as constructed

 above for the case in which Pred is empty. Even if Pred is non-empty, 0

 cannot be expressed in Le, Le'N or Le, e since 0 is not r-preserved.

 CONJECTURES

 (A) 'o(lx)(ly)(Rxy & @Rxy)' is not expressible in Le,'.

 (B) 'o'(lx)(3y)(Rxy & IRxy)' is not expressible in Le' @.V

 (C) Even if Pred is empty, L' @ is not included in LL,'v

 (D) Even if Pred is empty, L'i' is not included in L1,' .

 (E) If Pred contains an n-place for n > 2 then L is not included
 in L'.

 Finally, a question: Does every formula of L' which is without free

 type 1 variables and is r-preserved translate into Le? If not, does the set of

 such formulae have a nice syntactic characterization?
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 6. REMARKS ON THE ONTOLOGICAL COMMITMENTS
 OF MODAL LANGUAGES

 Consider a language _iwhich is interpreted (in the strong sense of having

 sense assigned to its well-formed formulae) and whose "semantic form" is

 modelled by one of the disinterpreted languages described in Section 1.

 Does such a language carry commitment to possible worlds? The semantics

 of our disinterpreted languages does not settle that of ?; truth in a model

 for a disinterpreted language must be distinguished from truth for an inter-

 preted language. The former relation models (in the ordinary "engineering"

 sense) the latter property; and as with models in physics or engineering, we

 must handle the relation between a model and what it models carefully.

 This relation may be straightforward in the case of extensional first-order

 languages (though even here it's not identity); for modal languages this

 relation may well be not so straightforward. Suppose L is the disinterpre-

 tation of ..? Our notion of truth (or satisfaction) in a model for L permits
 us to give a first-order set-theoretical definition of implication for L; when

 transferred to Y via the parsing relation, the result coincides with our pre-

 analytical notion of logical consequence. Thus the notion of truth in a
 model for L has heuristic value.

 At one extreme, it might be urged that this is the sole value of that

 notion, that the coincidence remarked above is mere coincidence. On this

 line, parsing statements of ..by formulae of L is "appropriate" only

 because the parsing carries implication on L into the right relation on..,
 rather than the latter being the case because the semantics of L models

 something fundamental about the semantic facts underlying &E'.

 At the other extreme, one might maintain that the relation between
 truth and truth in a model in the modal case is not different from that in

 the extensional case, that in ., whatever does the work of 'O' is a nota-
 tionally novel expression of existential quantification over possible worlds,

 and carries as much commitment as any other expression of existential

 quantification; modal discourse posits a domain of very peculiar objects.
 If we don't like the first "thin" view of the relation between truth in ..

 and truth in a model for L, how might we resist robust modal realism?

 Allan Hazen has suggested that the comparative expressive weakness of a

 language is relevant to the nature of its ontological commitments:

 In view of the comparative weakness of modal languages, compared to the explicitly
 quantificational ones Quine takes as canonical, there is surely a sense in which the
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 450 HAROLD HODES

 concept of existence embodied in that disguised existential quantifier, the possibility

 operator, is defective [3 ].

 This argument merits careful scrutiny. L is expressively weaker than Lext in
 two respects: its object-quantifier is actualistic, and it permits no "backward

 world travelling" (i.e., the image of Fml(L) under g from Section 4 is con-

 tained in the set of proper formulae of Lx). These respects are not totally
 independent: if we eliminate the first "weakness" by considering L , we

 don't thereby eliminate the second; but if we eliminate the second by con-

 sidering L , we also eliminate the first. (Of course we can partially eliminate

 the second weakness by considering L@ without eliminating the first.) The
 first weakness seems to bear on commitment to possible objects; Hazen
 seems to be concerned with the second weakness, which he takes to show

 that within ., what corresponds to 'O' embodies "a pre-individuative con-
 cept of existence".
 What does this mean? Presumably at least this: for entities to which a

 pre-individuative conception of existence is appropriate, the Quinean
 dictum "No entity without identity" does not apply; when quantifying over

 or referring to such entities, ' ' is out of place. This feature of quantifi-

 cation over possible worlds is reflected in the formation rules of Lext ''

 only occurs between terms of L. We could easily change this: let Lext be
 the result of adding the formation rule:

 (p i') is a formula of Lt,

 and the satisfied clause

 =(c/.t.ta , 3'] iff 3'y) =- ')
 Obviously there are sentences of Lt which are not expressible in Le. One
 construal of Hazen's conclusion is then this: within a language whose

 disinterpretation is L-, what corresponds to '(3n)' embodies a post- individuative conception of existence; within an interpreted version of Le,
 it embodies a pre-induative conception. It may seem ad-hoc to so glorify

 the difference between Le and Lxt. But if Pred is finite, this mere differ- ence in choice of formation-rules corresponds to a more interesting model-

 theoretic distinction. For e E Fml(LL), let P be r-preserved iff for any
 redundancy-equivalent structures i and S for L, any individual assignment

 a, and world assignrfients 3 and y' in I and 8 respectively, if for all i free
 in k ry(,) matches y'(p) in i and 5, then
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 iIx i i[a, i] iff i8it i d[l, i'].
 Thus if Pred is finite, p is r-preserved iff ( is equivalent to a formula of Let.
 This suggests the following construal of Hazen's conclusion: within a

 language whose disinterpretation is L , the quantifier expressions corre-

 sponding to '(3/j)' in a given sentence embody a pre-individuative concep-
 tion of existence iff its parsing in Lext is r-preserved. And if the only con-
 ception of existence appropriate to possible worlds is pre-individuative, then

 only such sentences are really significant.

 Unfortunately, this construal of Hazen's conclusion is not what is sup-

 ported by his argument: for there he is impressed by the difference between

 L and Lxt, by "the comparative weakness of modal languages, compared
 to the explicitly quantificational ones", and not by the difference between

 Lext and Lxt. The result of Section 4 shows that 'O' is as much an explicit

 quantifier in L as '(3i)' is in Lxt. Hazen thinks that there is a sense in
 which within L and L 'O' embodies different "concepts of existence".

 (If so, certainly the term 'pre-individuative' is a red-herring. For its steers

 us towards consideration of identity on possible worlds.) To make this

 claim respectable, it would suffice to find a model-theoretic property

 which isolates the class of equivalents of proper formulae of Lxt, just as

 being r-preserved isolates the class of equivalents of formula of Lext-
 Regardless of what Hazen had in mind, the thesis developed above is

 somewhat plausible. However, if our interpreted language involves quantifi-

 cation over monadic relations, then we must either abandon the thesis or

 rule out as non-significant those statements whose parsings in L' are not

 r-preserved. Is there a construal of Hazen's conclusion which does not have

 such consequences? I'll leave this question to those who better grasp a pre-

 individuative concept of existence.

 Plantinga has suggested that modal discourse, at least if it involves only

 actualistic object-quantification, carries commitment to individual essences

 rather than to non-actual possible objects. Is this plausible? And if so, are

 such commitments preferable? Here again, appeal to comparative expressive

 power may be relevant: the fact that Li'e is properly included in Lv suggests
 that commitment to individual essences is "lighter" than commitment to

 possible objects. On the other hand, one might object that our only grasp

 of the concept of an individual essence is: the property of being a given

 possible object; if so, commitment to individual essences seems to pre-

 suppose commitment to possible objects. Certainly this is suggested by our
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 model-theory: one can't have singletons without the objects of which they

 are singletons. Once again, this consideration is not decisive: the bearing of

 truth in a model for Li',e on truth for an interpreted language need not be
 straightforward.

 Suppose one refuses to posit possible objects on the grounds that the

 question "Where are they?" requires an answer, and the answer "In other

 possible worlds" is unsatisfactory. Plantinga's case relies on this fact: The

 analogous question and answer about individual essences are both inco-
 herent; individual essences do not exist in worlds, but are merely instanced

 in worlds; failure of Lt'.e to in general include Lv points to the reality of
 this distinction. The appropriate question about an individual essence is not

 "Where is it?" but "What has it?", and the answer may well be "Nothing".

 I'm not persuaded that this defense of Plantinga is completely adequate.

 It doesn't address the other question: do we lose anything by retreating

 from possible objects to individual essences? The fact that L'e is properly

 included in LV may cut both ways. However, if we accept the doctrine that

 Fine labels "predicate actualism", we may rest assured that nothing is lost.
 Predicate actualism is the doctrine:

 that in no possible world is there a genuine relation among the non-existents of that
 world or between the non-existents and the existents [2].

 The predicate actualist recognizes the apparent need to consider non-actual

 possible objects in determining the conditions for satisfaction of a formula

 in a model; but she regards the need to do this for atomic formulae as an

 "artifact" of the model theory. This doctrine can be formulated model-

 theoretically.

 Where 9 = (W, A, V) and 5 = (W, A, V') are structures for L, 9 and 5
 are internally indistinguishable iff for every n-place P E Pred and wE W:

 V(P) f ({w} x An)= V'(P) n ({w} x An).

 A formula 9 is preserved under internal indistinguishability iff for any intern-

 ally indistinguishable structures 9I and 5, any w E Wand any assignments

 (91, w) 1= q[ca,. ..] iff (53, w) 1= q[!a,...].

 For the predicate actualist, differences between internally indistinguishable
 structures are irrelevant to their task of modelling truth. Predicate actualism

 may then be viewed as the doctrine: an interpreted sentence is significant
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 only if it's parsed by a formula preserved under internal indistinguish-

 ability. A formula 4 is restricted iff for each n-place P E Pred, PT1 . .. 7rn

 occurs in 4 only in the context (Pri . - . Tn & ET1 ... rn). In [2] Fine
 shows that for 4) E Fml(L), 4 is preserved under internal indistinguishability

 iff it's equivalent to a restricted formula. This result easily extends to the

 enrichments of L described in Section 1. (Perhaps the predicate actualist

 would favor Lmin'e. and Li'min'e. over Le and Lie.)

 THEOREM. If 4) E Fml(LV) is restricted, then 4 translates into Li'e.
 Proof Regard 'V' as defined; associate with each variable v occurring in

 4 a distinct type 1 variable T,; form 4' from 4 by replacing subformula of

 the form (P.1 . . rn & ET1 & . . . & Ern,) by:

 (3vl) E . . &Ei . k , & r, &... & ,,, & Eal & ... & Eok),

 where {vl,..., vm}= Var {r ,...,rn} and {ol,..., ok}= C n
 {r1, . . , rn}. Then form 4* from 4' by replacing occurrences of 'v - v"',
 'V 7', '7 r v' for 7 E C, and all occurrences of 'Ev' not in contexts just

 considered,by 'O(3x)(T,,x & T,,'x)', by ',7r', 'T,7' and '(3x)T4c' respec-
 tively. Notice that:

 (&, w) E (Pr ... rn &... &Ern)[a] iff

 (&m, w) (3v&,)& . . . (&v,,) . r , & ...
 , %v,, & Eo, & ... & Eok)[P],

 where 3 is an individual essence assignment such that P3(T,) = {a(v)}. Since

 4 is restricted, by an easy induction, for such 3 we have

 (~,W, r= ~[CYI iff (~,W) ~ ~*[P1,

 proving the theorem. For the predicate actualist, the advantages of an

 ontology of non-actual possibles are available for the price of commitment

 to individual essences. But as usual, this bargain is double-edged: a skeptic

 about Plantinga's move could interpret the previous result as showing that

 the predicate actualist who claims to only posit individual essences, has

 really adopted an alternative notation, covering an underlying commitment

 to non-actual possibles with a haze of type 1 variables. Though model

 theory may help us formulate a good theory of reference, it is no substitute
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 454 HAROLD HODES

 for one;and only a theory of reference will really make clear the commit-
 ments involved in modal discourse.
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