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Abstract
This paper and its sequel “look under the hood” of the usual sorts of proof-theoretic
systems for certain well-known intuitionistic and classical propositional modal log-
ics. Section 1 is preliminary. Of most importance: a marked formula will be the result
of prefixing a formula in a propositional modal language with a step-marker, for this
paper either 0 or 1. Think of 1 as indicating the taking of “one step away from 0.”
Deductions will be constructed using marked formulas. Section 2 presents the model-
theoretic concepts, based on those in [7], that guide the rest of this paper. Section 3
presents Natural Deduction systems IK and CK, formalizations of intuitionistic and
classical one-step versions of K. In these systems, occurrences of step-markers allow
deductions to display deductive structure that is covered over in familiar “no step”
proof-theoretic systems for such logics. and are governed by Introduction and
Elimination rules; the familiar K rule and Necessitation are derived (i.e. admissible)
rules. CK will be the result of adding the 0-version of the Rule of Excluded Mid-
dle to the rules which generate IK. Note: IK is the result of merely dropping that
rule from those generating CK, without addition of further rules or axioms (as was
needed in [7]). These proof-theoretic systems yield intuitionistic and classical con-
sequence relations by the obvious definition. Section 4 provides some examples of
what can be deduced in IK. Section 5 defines some proof-theoretic concepts that are
used in Section 6 to prove the soundness of the consequence relation for IK (relative
to the class of models defined in Section 2.) Section 7 proves its completeness (rela-
tive to that class). Section 8 extends these results to the consequence relation for CK.
(Looking ahead: Part 2 will investigate one-step proof-theoretic systems formalizing
intuitionistic and classical one-step versions of some familiar logics stronger than K.)
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Familiar proof-theoretic systems formalizing normal modal logics take as primitive
the rule Necessitation, and either the K-axioms (if the systems are Frege-systems) or
a K-rule (if they are natural deduction or sequent systems); for the modal logic K,
these are the only modal proof-theoretic primitives. This paper will attend to natural
deduction systems. The just-mentioned rules may be pictured as follows.

D D1 D0

HereD0 andD1 are any deductions in the relevant ND system with the indicated con-
clusions. But D must be a deduction with no assumptions; this makes Necessitation
a rule of proof rather than a rule of inference.

When contrasted with the primitive rules governing the familiar logical constants,
these rules are anomalous in two respects.

(A) A good formalization of a classical logic should transform into a formalization
of its natural intuitionistic counterpart merely by removal of a “classicalizing”
rule or axiom. But doing this to the usual formalizations of classical K yield
proof-theoretic systems that are too weak; to obtain the natural intuitionistic
version of K we need to follow Plotkin and Sterling’s lead in [7] by adding
either axioms (as in the Frege-system that Plotkin and Sterling actually offered)
or rules (if the system is a natural deduction or sequent system) that go beyond
Necessitation and the K-rule, and that make use of and in addition to

and .
(B) Necessitation differs from familiar introduction rules by virtue of not being a

rule of inference. The K-rule doesn’t look anything like an elimination rule for
at least if our paradigm elimination rules are those for & and .

These two anomalies might make one suspect that the familiar proof-theoretic
systems for K (and for other normal modal logics) hide some important machinery
“under the hood”. I endorse this suspicion. These anomalies result from formal-
izing K (and the other normal modal logics) in a “no step” format1, which cuts
down on notational clutter at the expense of explicit articulation of deductive
structure.

This project is motivated by the thought that the senses of logical constants are
constituted by at least some of the deductive rules that govern them. I propose those
rules are exactly the introduction and elimination rules (or, in terms of sequent

1That is, without the step-markers to be introduced below.
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calculi of the usual sort, right-entry and left-entry rules).2 This is not the place for an
extended discussion of these matters.3

The status and as logical constants is obscured by proof-theoretic sys-
tems in which one cannot “see” their underlying introduction and elimination rules.
“One step” proof-theoretic systems, of the sort to be introduced below, give deeper
proof-theoretic insight into normal modal logics than is provided by “no step” sys-
tems: the primitive rules governing and for both intuitionistic and classical K
will be proper introduction and elimination rules of inference; and classicalization
will not render any intuitionistic rules redundant. Similarly for the most popular
strengthenings of K.

1 Preliminaries

Most mathematical notation and terminology used below will be familar. Natural
numbers are finite von-Neumann ordinals. For let 1 ... .

1.1 Notation

Let our logical lexicon & . For what follows we will con-
sider a countable set of formula (i.e. propositional, sentential) constants. From
generate the set of formulas based on in the usual way.

and are defined in the usual way. Note: we could have taken to be defined,
e.g. as . But will do work in the primitive rules of the proof-theoretic sys-
tems to be discussed below, and this work will not make use of the internal structure

2For more on this idea, see [3]. This and related ideas have been developed in many places. Regarding
and see Andrew Parisi’s dissertation [5], which takes a proof-theoretic approach using hypersequents –
quite different from the approach I take in this paper.
The motivating idea raises the question of what counts as an introduction or an elimination rule. This

is not the place for an extended discussion, but let me say this. Determining the canonical “sense-fixing”
rules for first-order and is a delicate matter. I think that they should be “free logic” rules, but there
are still several ways to go with that. All ways put them in a “local holism” (in the sense of Christopher
Peacocke, see [6]) with a primitive logical 1-place predicate for existence. (The more traditional existence-
presupposing first-order logics are convenient but philosophically misleading simplifications of their free
counterparts.)
In [8] (p. 15), Jason Turner gives an argument that one might think shows that “the” (better: any reason-

able choice of) introduction and elimination rules for do not determine its sense. Suffice to say: I think
that that impression turns on a misunderstanding of what is required for introduction and elimination rules
to be sense-determining.
3But I want to digress on one issue. In addition to the introduction and elimination rules governing and
their amenability to domain restrictions determined by contexts-of-use may be thought to be built into their
senses. One could take this to be a friendly weakening of my motivating thought. And there are various
“species” of necessity and possibility which can be expressed by and according to contexts-of-use;
and this too may be thought to be built into the senses of and . On the other hand, I think it better
to construe the domain-restrictablity of and as a matter of logical syntax: the determiners of natural
languages that express universal and existential quantification are two-place, of type rather than
type (with the first place for a restrictor, which can in principle be null). Is a similar approach to the
species of necessity and possibility optimal? This is an interesting question, not to be pursued here; but
see [1].
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that would have under any such definition; taking to be defined would make
the rules in which plays a role more complex than they need to be. Furthermore
there are infinitely many ways in which could be defined. Making a choice would
make our choice of certain primitive rules arbitrary.4 This point does not cut against
defining and since these will play no role our primitive rules.

1.2 Definitions

0 and 1 are our step-markers. A marked formula (hereafter an m-formula) is a symbol
of the form 0 or 1 for .

For and m 0 or 1 let m m . Let the set of
m-formulas.

1.3 Heuristic Remark

In m the marker m indicates a “mode of acceptance” of one whose “cash value”
lies in certain roles that can play in deductions. 0marks acceptance as actually true.
It is the only step in play in almost all work in logic and mathematics with which I
am acquainted; because of this, that literature takes the “no step” approach; it ignores
stepping. 1 indicates acceptance as true at a (modally) accessible possible world (or,
if you prefer, state);5 one can think of 1 as indicating one step taken from the “world
of evaluation” along an accessibility relation.6

When I started work on this paper, I thought of step-markers as indicating mood
for deductions: the 0-step as indicative mood, the 1-step as subjunctive mood. I no
longer think that this analogy is helpful; for more on this, see 3.10 below.

2 Model-Theoretic Semantics

Although the main point of this paper is proof-theoretic, the deductive system will be
easier to understand if one has seen how the corresponding model-theory works.

2.1 Definitions

Following [7], let be an IK-frame iff: 2 2 is transitive
and reflexive on and the following conditions are satisfied: (“right complete-
ness”) for any and if and then there is a so that
and (“left completeness”) for any and if then there is a

4If for a given logic there is a unique set of natural-deduction rules governing its logical constants that
captures the senses of these constants, and thus that carves logical reality at its joints, then the choice of
primitive rules should not involve arbitrary choices.
5For a different use of markers for formulas, see [2] (p. 172).
6A caveat: under a reflexive accessibility relation, one can take one step from the actual world and remain
where one started.
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so that . corresponds to modal accessibility as in familiar frame-
models for “no step” modal languages; corresponds to cognitive accessibility as
in familiar frame-models for intuitionistic and intermediate logics. In the following
diagram-completion pictures, writing above indicates that horizontal
arrows represent and underlining indicates the existentially bound variable.

——— ———
right completeness left completeness

Consider a IK-frame as above. Let .
Let be a dead-end under iff there is no so that . Let iff for some

and .
Let V be a valuation on iff V 2 and V is persistent with respect

to (i.e. for any and if then V V .
M V is a model with signature iff is a frame and V is a valuation on

. Set M .
M is an IK-model iff it is a model and is an IK-frame.

2.2 Definitions

Consider any model M as above.
For M M is a pointed model. (I will omit brackets where confusion

is unlikely.)
We define the relation between pointed models and formulas by clauses most

of which are familiar, but these deserve to be stated:
M iff: for any if andM then M
M iff: for any and if then M
M iff: for some and M .
As usual, for let M iff for every M .

2.3 Persistence Lemma

Consider an IK-model M. (1) For every if M and then
M .

Proof: induction on the stages of the inductive definition of . In the induction
step, if is use the transitivity of . If is use the “right completeness”
condition.

2.4 Definitions

Consider a model M V and and .
M m iff m 0 and M .
M m iff and either m 0 and M or m 1 and

M .
M iff for every M .
M iff and for every M .
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2.5 Heuristic Remark

Think of 1 as carrying a free variable that relative to ranges over . Since
that set can be empty, our proof-theoretic systems will bear a structural similarity to
systems tailored to free-logic semantics.

2.6 Definitions

Let be an inference iff and .
Consider an inference . Given a model M and M is M-

valid at iff: (V1) if is a dead-end and M (in which case 0
then M (in which case 0 (V2) for every if M then
M . is M-valid iff it is is M-valid at every M.

A weaker property deserves some attention: let isM-valid at iff: (V1 )
if M then M (V2) is true. is M-valid iff it is is M-valid
at every M.

is IK-valid [IK-valid alternatively is an IK-consequence [IK-
consequence of iff for every IK-model M is M-valid [M-valid .

For is M-valid [M-valid iff is M-valid [M-valid .
is IK-valid [IK-valid ] iff for every IK-model M is M-valid [M-valid ].

2.7 Consider anyModelM

2.7.1 Observations

Consider any M and . (1) 0 is M-valid at iff it is M-valid
at . (2) If 1 is M-valid at then it is M-valid at . (3) 0 1 is M-
valid at iff is a dead-end in M. These observations show that for inferences
IK-validity is slightly stronger than IK-validity .

Proofs. For (1), left-to-right is straightforward. Assume the right-side. Assume
that M . If is a dead-end in M M 0 . If is not a
dead-end, fix a so that so M so M 0 so
M 0 . The left-side follows. (2) is straightforward. For (3), assume the
right-side. So M 0 the left-side vacuously follows. Assume the left-
side. Assume that is not a dead-end. So M so M 0 .
By the left-side, M 1 so 1 0 a contradiction. The right-side
follows.

2.7.2 Observations

(1) If 1 is M-valid and every member of M is a dead-end, then 1 is
M-valid . (2) 0 1 is M-valid, and so is IK-valid. (3) If some member of

M is not a dead-end then 0 1 is not M-valid . (4) For any
and if 0 1 isM-valid then so is 0 0 .
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Proofs. For (1), assume the if-clause. Consider any M. Assume that
M so M 1 a contradiction; so 1 vacuously satisfies (V1). For
any M because not so 1 vacuously satisfies (V2), yield-
ing the then-clause. For (2): if is a dead-end in M then M 0 showing
(V1) to be vacuously true of 0 1 . If is not a dead-end, (V2) is true of
0 1 . Universally quantifying-out and then M (2) follows. (3) follows

from 2.7.1.(3). Assume that 0 1 is M-valid . For any if M 0
then M 0 so by (V1 M 1 so 1 0 a contradiction. So
M 0 and M 0 . So 0 0 is vacuouslyM-valid proving (4).

2.7.3 Observations

(1) If isM-valid then 0 . (2) If is M-valid and M contains a dead-
end then 0 . (3) 1 is M-valid iff M contains no dead-end. (4) is
IK-valid iff is IK-valid.

Proofs. (1) is straightforward. Assume (2)’s if-clause; fix to be a dead-end in
M. Since M 0 yielding (2). Assume that 1 is M-valid. If
M contains a dead-end, (2) yields a contradiction. Assume (3)’s right-side. For

any M fix a so that so M 1 . So 1 is M-valid. (3)
follows. Assume that is IK-valid . By (1) 0 so by 2.7.1.(1) is IK-valid.
Assume that is IK-valid. Since there are models whose frames contain dead-ends,
by 2.7.3.(2) 0 so by 2.7.1.(1) is IK-valid . (4) follows.

2.8 Observation

0 and 1 are IK-equivalent in this sense: 0 1 and 1 0 are IK-valid.
So in a sense 0 and 1 are degenerate marked-formulas, since the markers “don’t
matter”.7

3 The Proof-Theoretic System IK

3.1 Definitions

A string is a function with domain in . Let ˆ be concatenation for strings. For any
string 1 0 1 iff for some string 1 0ˆ . Read as “is an initial segment of”.

is a naked (aka bare) tree iff is a non-empty set of strings of natural numbers
closed under taking initial segments (i.e. for any if then and
satisfies the “no left gaps” condition (i.e. for any and if ˆ and
then ˆ . is a leaf of a naked tree iff and for every if and

then . For such a and let ˆ .

7Had we allowed for “exploding” IK-models instead of our “non-exploding” ones in 2.6, we would have
a narrower IK-consequence relation; e.g. 1 0 would not be IK-valid. This is not the place for a full
treatment of exploding models.
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3.2 Remarks

[ ] is a member, the “root”, of every naked tree. So is the smallest naked tree.
The “no left gaps” condition insures that any two naked trees are identical if they are
isomorphic with respect to .8

3.3 Definition

A labeled tree is a function whose domain is a naked tree. For a labeled tree T let
T be the labeled tree with domain T and such that T T ˆ for each

T

3.4 Notation

For the rest of this paper, we will make use of a countably infinite set of variables
(disjoint from the other sets just introduced, and neither step-markers is a variable).

. A tagged m-formula (i.e. a primitive type-assignment) is a symbol
of the form : for is its tag. We will sometimes treat : as if it were
an ordered pair.

3.5 Definitions

is a context iff is a single-valued set of tagged m-formulas (i.e. for any and
if : : then is . So the set of variables occurring on

the left-side of members of and the set of m-formulas occurring on the
right-side of members of . A set of contexts is coherent iff its union is a context.

3.6 Preparatory Remarks

In 3.8 below we will inductively define a type-assignment system . Informally,
“ D: ” means: relative to context D is an IK-deduction with conclusion
. Through Section 7, ‘ ’ and ‘deduction’ abbreviate ‘ ’ and ‘IK-deduction’.
As is usual, in “ D: ” the mention of is redundant, since D will uniquely

determine . Our definition will be slightly unusual because it will require that if
D: and D: then the idea is to keep contexts relative to which

labeled trees are deductions as small as possible.
A deduction will be a labeled tree. Leaves of D will be labeled by tagged m-

formulas; non-leaves in D will be labeled by either an m-formula or an ordered
pair of an m-formula followed by a tagged m-formula or an ordered triple of an m-
formula followed by two tagged m-formulas. In the latter two cases, the left-most

8The following multi-place operation on naked trees will briefly be convenient.
. For 0 and naked trees let

# 1 ... ˆ .
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component is the m-formula label, and the other components indicate discharging of
those tagged m-formulas at that string.

In what follows, distinct metavariables (e.g. ‘ 0’ and ‘ 1’) represent distinct vari-
ables. Let “ : D: ” abbreviate this: and either :
D: or D: . So that notation DOES NOT indicate that : belongs to the con-
text relative to which D is a deduction! Extend this notation in the obvious way to
allow for 1: 1 ... : D: .

The induction clauses will be presented pictorially. Discharging of an occurrence
of a tagged formula (or equivalently of the leaf it labels) will be indicated by putting
that label within square-brackets. The discharge at a given string in D of
some tagged m-formula(s) will be indicated by superscripting the relevant tagged m-
formula(s) being discharged, though to minimize clutter in practice, if the discharging
is non-vacuous it is convenient to write only the tagging variable(s).

We will define the “dependency-set” D for D informally the set of leaves
of D on which D “depends”, simultaneously with .

3.7 Definitions

For D let be open in D iff for every D ˆ D .9

Consider a context . A barrier in D with with exception for will be an anti-
chain 1 ... D such that (i) for each is open in D the
formula-label of in D is in 0 there is no D with and D

but (the non-vacuity condition) for some D with there is a and
such that D :1 and (ii) for every D with D of the form :1

for there is an with .10 If :1 let 1 ... be
a barrier with exception for :1 iff it is a barrier with exception for .

3.8 Definition

Now, our much awaited definition of . It has two base-clauses.

Assumption For and : D: for D : i.e.
D is labelled by : . Also D D .

0 Introduction D:0 for D 0 D may be pictured thus.

0
0

Also D .The over-bar indicates that 0 is not an assumption in D
one might think of it as being inferred from the empty set of assumptions.

Next, the induction clauses, starting with 0-versions of all but one of the standard
rules for the Boolean constants.

9Informally: for every leaf of D identical to or above if it was not discharged by the time we reach
(reading down from the leaves), then it is not discharged in D.
10Informally; members of a barrier “isolate” leaves whose m-formula labels are marked by 1, other than
labels in the exception set. Nothing precludes a barrier from being empty.
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0 Elimination For if D0:0 then D: for D as
pictured.11

D0
0 0

Also, D 0 ˆ D0 .
0 Introduction If :0 D0:0 then D:0 for D as pictured.

:0
D0
0

0
0

Let D 0 ˆ D0 and D0 :0 .
0 Introduction For 2 if D0:0 then D:0 0 1 for D as

pictured.
D0
0

0
0 0 1

Let D 0 ˆ D0 .
0 Elimination If 2 D2:0 0 1 for both 2 :0 D : 0 1

are distinct, and 0 1 2 is coherent, then 3 D: for D as
pictured.

0:0 0 1:0 1
D2 D0 D1

0 0 1 χ χ
0

χ 0 1

Let D 2 1 ˆ D D :0 0 ˆ
D2 .12

0& Introduction If for 2 D :0 and 0 1 is coherent, then 0

1 D:0 0& 1 for D as pictured.13

D0 D1
0 0 0 10&
0 0& 1

Let D 2 ˆ D .
0& Elimination For 2 if D0:0 0& 1 then D:0 for D as

pictured.
D0

0 0& 1 0&
0

Let D 0 ˆ D0 .

11An interpretive aid: D # D0 .
12Another interpretive aid: D # D2 D0 D1 .
13Another interpretive aid: D # D1 D0 . Hopefully from now on the reader will not need these
aids.
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The next rule is really two rules, one for each choice of marker m.

m Elimination If 1 D1:m 0 D0:m and 0 1 is
coherent, then 0 1 D:m for D as pictured.

D1 D0
m m

m

m

Let D 2 1 ˆ D .

The next two rules have principal formulas marked by 1.14

1 Elimination0 For if D0:1 then D:0 for D as pictured.

D0
1 1 0
0

Also, D 0 ˆ D .15

1 Elimination0 If 2 D2:1 0 1 for both 2 :1 D :0
0 1 are distinct, and 0 1 2 is coherent, then 3 D:0 for
D as pictured.

0:1 0 1:1 1
D2 D0 D1

1 0 1 0 0
1 0

0 0 1

Let D 2 1 ˆ D D :1 0 ˆ
D2 . Note that this rule, unlike 0 requires that its conclusion be marked

by 0. But see 1 1 in the next section.

The next rule differs from its 0-cousin by requiring a minor premise.

1 Introduction If 0 :1 D0:1 1 D1:1 and 0 1 is
coherent, then 0 1 D:1 for D as pictured.

:1
D0 D1
1 1

1
1

Let D 0 ˆ D0 D0 :1 1 ˆ D1 .

The next rule is the only pure step-rule of IK.

14The reader may wonder why the conclusions for 1-versions of and are marked only by 0. The
point is to minimize the class of instances of primitive rules; we lose nothing by restricting these rules to
conclusions in 0 .
15Along with 0 this rule makes 0 and 1 interdeducible. Were we to work with exploding IK-
models, we would drop this rule.
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Transfer0 If D0:0 and D1:1 then D:1 for D as pictured.

D0 D1
0 1

0

1

Let D 2 ˆ D .

The introduction rules for and will “freeze” a formula marked by 1 into a
modal formula marked by 0 the elimination rules reverse this freezing.

Introduction If D0 :1 then D:0 for this D.

D0
1
0

Let D 0 ˆ D0 .
Elimination If 0 :1 D0:0 D0 has a barrier with exception for :1

1 D1:0 and 0 1 is coherent, then 0 1 D:0 for this D.

:1
D1 D0
0 0

0

Let D 0 ˆ D1 1 ˆ D0 D0 :1 .
Introduction If :1 D0:1 and D0 has a barrier with exception for
:1 then D:0 for this D.

:1
D0
1
0

Let D 0 ˆ D0 D0 :1 .
Elimination If 0 D0:0 1 D1:1 and 0 1 is coherent, then

D:1 for this D.
D0 D1
0 1

1

Let D 2 ˆ D .

Let be the type-assignment system obtained by stopping here. To finish
defining we add one more rule.

Elimination If D0:0 then D:1 for this D.

D0
0
1
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3.9 Remarks

A well-known point, but perhaps worth repeating: discharging is, in effect, variable-
binding: the discharging superscripts bind all the occurrences of the associated
variables at the leaves labeled by the discharged tagged formulas.

The barrier-conditions for and correspond to the conditions on the eigen-
variable for and in natural-deduction systems for first-order logic. The
motivation for these conditions will be clarified by the soundness lemmas for these
rules.

The minor premises for 1 and play a role that resembles the role of the
singular-existence premises for in free first-order natural-deduction systems. This
will be made clearer by the soundness lemmas for these rules.

differs from the other rules governing and by virtue of having only one
instance: from 0 to 1 . I see no non-ad-hoc way to strengthen so as to make

admissible.16

3.10 Remarks

When writing an earlier version of this paper, I viewed the occurrence of the marker
in the conclusion of a deduction as a “moodal” operator on that deduction: we could
rewrite D:m as m D : indicating that relative to m D is a
deduction of its mood is indicative if m 0 and subjunctive if m 1. I was
led in this direction by thinking of mood in natural languages (and formal languages
intended to reflect features of natural languages) as a matter of embeddable operators
on formulas, along the lines formulated by Lloyd Humberstone in [4].17 (As a marker
on formulas, m cannot be embedded; but as an operator on deductions, it can – if

D D contains step-markers above its root.) Work by Kai Wehmeier
and Helge Rückert [9, 10] persuaded me that mood, as a feature of natural-languages,
is best captured in a formal language by markers attaching to predicate-expressions,
quantifier-expressions, and modal operators, rather than by operators on formulas.
Thus the analogy between mood, properly understood, and step-markers as used in
this paper is more misleading than helpful.18

16The following revision of 0 would render admissible.

D0 D1
0 0

0

1

But it is preferable that 0 be a pure one-step rule, and the special accommodation of the inference from
0 to 1 be undisguised.
17Although at that point I had not yet read [4].
18Although English speakers frequently use ‘suppose’ and ‘assume’ as synonyms, my own ideolect (per-
haps corrupted by thinking about modal logic) prefers the indicative mood with ‘assume that’ and the
subjunctive mood with ‘suppose that’. Perhaps I am not unique in this regard. If so, one might refer to
assumption under the marker 1 as supposition, since model-theoretically it bears on an accessible world,
and reserve ‘assume’ for assumption under the marker 0.
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3.11 Definitions

Let [ iff for some and D D: [ D: and
.

If is finite, I will follow the standard convention of listing the members of to
the left of without the curly brackets when writing ditto for .

If D: or D: let D . D is the set of m-formulas
assumed in D.

3.12 Remarks

&, and are what I call “level 0” logical constants, since their introduction
and elimination rules involve no uses of any other logical constants.19 Were we to
take as a primitive logical constant, it would be of “level 1”, since its canonical
elimination rule uses .20 Our introduction and elimination rules for and show
them to also be of level 1, since they use .

Our elimination rules for and invert (in the sense of Prawitz) the corre-
sponding introduction rules – i.e. they are “harmonious” (in Michael Dummett’s
sense).

And they are sense-determining, in the following sense. Introduce a fresh monadic
operator and add introduction and elimination rules and by replacing
by in the formulations of and . In the resulting proof-theoretic system,
and are interchangeable, preserving deductions. Similarly for .

Our Natural Deduction system(s) can easily be transformed into Sequent Cal-
culi, in which the right and left entry rules that correspond to our introduction and
elimination rules for and are symmetric in the sense of Parisi.21

4 Some Deductions and Remarks

I will omit the subscript in until further notice.

4.1 Lemmas

The following rules are admissible for = or .

Transfer If for 0 :0 D0:0 for each
D :1 and is coherent, then there is a D so that

19They are separated, in the sense of [11], p. 183.
20It has this form.

D1 D0
0 0

21See [5], p. 44.
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D:1 . Here is the picture for 1.

:0 1
D0
0 0 D1

0 1 1 1
0

D1

1 1 1 11
1

For 1 iterate 0 -times, and then 1 -times. Let Transfer be this
derived rule.

Transfer1 lets us “complete” 1 0 thus.

1 Elimination1 For if D0:1 then D:1 for D as pictured.

:0 0 D0

0 1
1

1

Transfer1 also gives us derived rules 1 and 1& that, in an obvious sense, are
1-versions of 0 and 0& . Here is one example; the remaining one is an execise
for the reader.

1 Introduction for 2 if D0:1 then D:1 for this D.

D0 :0
0

1 0 0 1
1

1 0 1

Transfer2 gives us a 1-version of 0& as a derived rule, as follows.
If for 2 D :1 and 0 1 is coherent then D:1 0& 1 for

this D.
D0 D1 0:0 0 1:0 1 0&
1 0 1 1 0 0& 1

2
1 0& 1 0 1

Remark We could have taken Transfer2 as primitive, and then obtained 1 as a
derived rule. But our approach is more economical.

1 Elimination1 If 2 D2:1 0 1 for both 2 :1 D :1
0 1 are distinct, and 0 1 2 is coherent, there is a deduction D so
that 3 D:1 .

We will construct such a D as follows. Let 0 be 0 1
and 1 be 0 1 0 . 1 is an intuitionistic validity; so we may fix D to be
the obvious deduction, constructed using 0 and 0 such that D :0 1.
Let D be the following.

D D2
0 1 1 0 1

0

1 1
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For both 2 let D be the following.

:1
D D2
1 1 0 1 1
1

Let D be the following.

D D2
1 1 1 0 1 1

D0
1 0 1 0 1

D1
1 1 1 1 1

1

We may abbreviate D thus.

0:1 0 1:1 1
D2 D0 D1

1 0 1 1 1
1 1

1 0 1

The reader might amuse him/herself by computing D .

Necessitation If D0:0 then D:0 for the following D.

D0
:1 0

0

1
0

The barrier for the indicated use of is .

4.2 Lemmas

We will now consider some schematic deductions that, in effect, recover the axioms
presented in [7].

(1) 0 0 witnessed by the following.

:1 1 0
0 0

0

The barrier for the indicated use of is .
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(2) 0 0 0 witnessed by the following.22

0:0 :1 1:0 :1
1 1

1
1

0
The barrier for the indicated use of is .

(3) 0 0 0 witnessed by the following.

0:0 :1
1 :1

1
1

1:0 0
0

The barrier for the indicated use of is .
(4) 0 0 witnessed by the following

0:1
:0 0

0
0 0:1

1 1:1 1
1 0

0 1

The discharging of :1 at 0 0 is vacuous. The barrier for the indicated use
of is .

(5) 0 0 witnessed by the following.

0:1 1:1
0

0
0

0
2:1 0 0

1 0
:0 0 0 1

0 2

The barrier for the indicated use of is .

4.3 Observation

For each axiom of Plotkin and Sterling, 0 . Proof: apply 0 as needed to
(1)-(5) above.

4.4 Observations

A few other examples may be helpful.

22This is, of course, the 0-version of the K-rule.
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(1) 1 1 witnessed by the following.

:1 0
0

1

(2) 0 0 0 & witnessed by the following.

0:0 :1
1 :1

1&
1 &

1:0 0 &

0 &

The barrier for the indicated use of is .

4.5 Exercises

The reader might like to construct deductions in IK to witness the following:
0 0 0 0 0 0 .

4.6 Observation

Consider a set of formulas and a formula containing no occurrences of or
and an intuitionistic ND deduction D of from using the familiar “no step” rules.
Form andD from andD respectively by uniformly substituting formulas
(which may contain occurrences of or for members of S. Form D from D by
prefixing the formula-label for each string in D by 0. Then D witnesses that
0 0 .

5 Substitution and Amputation in Deductions

5.1 Definitions

Consider D D and so that : D: D : and
is coherent.

5.2 Definitions

Informally, D D is the labeled tree formed by splicing a copy of D into D
at every leaf in D with label : . As the notation indicates, D is a
substitution function. Formally, we define D by induction on the stages of
the inductive definition of .

Base clause: if D : then

D D D if : :
D otherwise.
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For the induction step, the definition is straightforward. (Reminder: discharging, as
indicated by variable-superscripts at root, in effect binds occurrences of the vari-
able(s) at leaves in D with label(s) tagged by that variable, and this blocks
substitution.)

5.3 Remarks

In some cases, D D will be “bad” (i.e. not what we want), by virtue of failure
of substitutability: a tag in a label of some undischarged leaf of D may get bound
after substitution by some discharging step within D.23 But “bound” (i.e. discharg-
ing) tags in D can be “relettered”, i.e. replaced by distinct “fresh” tags (variables not
occurring in D to form a new but slightly different deduction. So we can define a
revised substitution function D as follows.

5.4 Definition

Fix an -ordering of . Given a deductionD let 1 ... be the variables (listed
without repetitions) that tag the labels of members of D and also that occur
discharged (i.e. bound) in D. Fix 1 ... that don’t occur in D and are not
in do this in some unique way, e.g. 1 is the first such variable in the order-
ing of , then 2 is the next, etc. FormD fromD by replacing occurrences of
by for say from left to right and high to low (this to make D unique).
Note: D : . We have made sure that applying D to D involves no
failure of substitutibility. Let D D D D .

5.5 Observation

In the above situation, D D: . Proof is by induction on the height of
D.

5.6 Definitions

Let be a consequence relation (on iff and
satisfies these conditions: (i) (reiteration) for any (ii) (cut) for
any 0 1 and if 0 for every 1 and 0 1
then 0 .

Consider a consequence relation . is monotonic iff for any 0 1
and if 0 and 0 1 then 1 . is finitary iff for any

and if then for some finite 1 0 1 .

For distinct 1 ... and 1 ... let

be the result of simultaneously substituting for all occurrences of in for

23This is analogous to failure of substitutibility in a first-order language when a variable occurring in a
term that is substituted into a formula gets bound by a quantifier-prefix occurring in that formula. One
difference: D D could even fail to be a deduction relative to 0 1 (because of a mismatch of
types, i.e. of formulas paired with bound variables).
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. Similarly for and . For

. is structural iff for any and

and as above, if then . 24

5.7 Corollary

is a finitary, monotonic structural consequence relation on . Proof: the
previous observation insures satisfaction of the cut condition.

5.8 Remark

The following questions might have occurred to an attentive reader. In presenting
why not require that D0 :1 0 ? And in presenting why not

require that 0 :1 0 ? Both of these changes would have made our
formulation of these rules simpler than imposing the barrier conditions. The answer:
these changes would block 5.5, and thus block 5.7.

5.9 Definitions

Assume that 1: 1 ... : D: for each D : and
is coherent. In this case, we define 1 ... D1 ... D D the result

of simultaneously substituting each D for into D by generalizing in the
obvious way the case for 1. We define D1 ... D 1 ... D similarly.

5.10 Definitions

Consider D and so that D: and 1 ... D listed without
repetitions. Assume that for each is open inD and is an anti-chain
in D . For let be the m-formula label of in D. Consider distinct
1 ... none occurring inD. LetD$ the result of surgery onD at 1 ...
using 1 ... be as follows: D$ D for some
D$ D for each D$ such that for each let
D$ : .

For let D be the subdeduction of D with root at i.e. D D . In the
above surgery on D each D has been amputated at with as a bandage on .

5.11 Observation

For some D : . Note: this required that be open in D (i.e. no leaf
of D above was discharged in D .

24See [11]
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5.12 Observation

Let $ : for some D no has and D : .
Then $ : D$: .

5.13 Observation

This surgery can be reversed:

D D$ D D$ D.

5.14 Theorem

For 0 0 iff 0 0 .
Proof. Right to left is trivial. Assume the left-side. Fix and D so that

0 and D:0 . If there are no uses of in D we have the right-side
for free. Assume that 0 D was entered using so D 0 1 and
D 0 ˆ 0 0 . Fix not occurring in D. Let D$ be the result of surgery
on D at using as the bandage. Let D 0 be the sub-deduction so amputated, and let
D 0 ˆ 0 be its immediate proper subdeduction. So D 0 iff ˆ 0 D
and D 0 ˆ 0 iff ˆ 0 ˆ 0 D . Also, D 0 ˆ D ˆ 0 ˆ 0 . So
for some 0 and $

0
$

0 D 0 ˆ 0 :0
$ :1 D$:0 and

$ 0 . Construct D1 using 0 as pictured.

:1
D 0 ˆ 0 D$

0 0
0

0

So D :0 and D contains one fewer use of than did D. Iterate this
procedure until all uses of have been eliminated.

6 Soundness of IK

For let m 1 m .

6.1 Soundness

IK. If then is IK-valid.
Consider any IK-model M with M . It suffices to prove the

following: for any D and if D: then D is M-valid.
We do this by induction on the stages of the inductive definition of equivalently

on the height of D call it D . Restate our goal thus: for every every D
and if D: and D then for every M (!) D is
M-valid at .
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The base step is trivial. Given assume the obvious Induction Hypothesis
regarding the th stage the inductive definition of . Consider D, and
so that D: and D 1. We need a soundness lemma for each rule by
which [ ] might have been entered into D.

In what follows, let (A) be this: is a dead-end andM D . And let (B) be
this: given M D .

Except for 0 the soundness lemmas for the introduction and elimination rules
for the Boolean constants governed by 0 are relatively straightforward; so I will skip
them.

Assume that [ ] was entered into D by 0 as pictured in 3.8. By the IH,
(*) D0 0 is M-valid at . Assume (A). So D 0 and M
0 1 D . Consider a such that M . By the Persistence Lemma,
M 0 1 D so M 0 1 D0 . So M D0 . By (*) M
0 so M . So M . Assume (B). Consider a such
that M . Again, by the Persistence Lemma, M 0 1 D . But what
about 1 1 D ? By the right-completeness of M we can fix a so that

. Since M 1 1 D by the Persistence Lemma M 1 1 D so
M D . Since M 0 M D0 . By (*) M
0 so M . So M . (!) follows.

Assume that [ ] was entered into D by 1 0 as pictured in 3.8. By the IH, (*)
D0 1 is M-valid at . Assume (A). By (*) M 1 so 1 0

a contradiction; so M D . (V1) follows vacuously. Assume (B). By (*)
M 1 soM a contradiction; (V2) vacuously follows, yielding (!).

Assume that [ ] was entered into D by 1 0 as pictured in 3.8. By the IH, (*)
D2 1 0 1 and (**) for both 2 D 0 are M-valid at . Assume

(A). Since M D2 by (*) M 1 0 1 so 1 0 1 0
a contradiction; so M D . (V1) follows vacuously. Assume (B). By (*),
M 1 0 1 so M 0 1 . Fix 2 so that M . So
M 1 so M D . By (**), M 0 yielding (V2), and
thus (!).

Assume that [ ] was entered into D by 1 as pictured in 3.8. By the IH (*)
D0 1 and (**) D1 1 are M-valid at . Assume (A). By (*)

M 1 a contradiction. (V1) follows vacuously. Assume (B). By (*),M
1 by (ii) M 1 so M so M so
M 1 . (V2) follows, yielding (!).

Assume that [ ] was entered into D by 1 as pictured in 3.8. By the IH (*)
D0 1 and (**) D1 1 are M-valid at . Assume (A). By (**), M

1 a contradiction. (V1) follows vacuously.25 Assume (B). Consider a so that
assume that M . Since is left-complete, we may fix a

so that . Since M 0 1 D0 and M 1 1 D0 by
the Persistence Lemma M 0 1 D0 and M 1 1 D0 . Thus
M D0 . By (*) M 1 so M so M .
So M 1 . (V2) follows, yielding (!).

25In effect, the minor premise 1 says “No dead-end!”.
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Assume that [ ] was entered into D by 0 as pictured in 3.8. Recall:
D0:0 . By the IH (*) D1 1 isM-valid at . Assume (A). By (*)M 1 a
contradiction. (V1) vacuously follows. Assume (B). By the IH, (**) 0 M-valid
at . (Notice the switch from to . If is a dead-end, by (V1) for (**)M 0
so M . Assume that is not a dead-end; fix so that . By (V2) for (**)
M 0 so M . So M 1 . (V2) follows, yielding (!).

Assume that [ ] was entered into D by as pictured in 3.8. So D D0 .
By the IH (*) D0 1 isM-valid at . Assume (A). By (*)M 1 so 1
0 for a contradiction. (V1) follows vacuously. Assume (B). By (*) M
1 so M since M so M 0 proving (V2). (!)
follows.

Assume that [ ] was entered into D by as pictured in 3.8; recall: D0 has
a barrier with exception for :1 . By the IH, (*) D1 0 is M-valid at .
Assume (A). By (*) M 0 so M a contradiction. (V1) vacuously
follows. Assume (B). By (*) M 0 so M . Fix so that
and M . So M 1 . Fix to be a barrier in D0 with exception
for :1 . Fix distinct 1 ... none occurring in D. Let D$

0 the result of
surgery on D0 at 1 ... using 1 ... . For each fix so that 0 is the
m-formula label of in D0 and let D be the subdeduction of D0 with root at .
Consider any . Since is open inD0 D D0 soM D .
Since D D0 by the IH, D 0 is M-valid at . So M 0 .

By choice of and D$
0

D$
0 D0 0 0 1 .

So M 0 1 D$
0 . So M D$

0 . Since D$
0 D0

the IH insures that D$
0 0 isM-valid at . SoM 0 soM

so M 0 . (V2) follows, yielding (!).
Assume that [ ] was entered into D by as pictured in 3.8; recall: D0 has a bar-

rier with exception for :1 . By the IH (*) D0 1 isM-valid at . Assume (A).
Given assume that 26 fix a so that . Since M 0 1 D
by the Persistence LemmaM 0 1 D . SoM D . SinceM
M 1 so M D0 . By the IH, D0 1 is M-valid at . So
M 1 so M . Thus M . (V1) follows. Assume (B). So
M D0 . Fix to be a barrier in D0 with exception for :1 . Fix
distinct 1 ... none occurring in D. Let D$

0 the result of surgery on D0
at 1 ... using 1 ... . For each fix such that 0 is the m-formula
label of in D0 and let D be the subdeduction of D0 with root at . Consider
any . Since is open in D0 D D0 so M D . Since

D D0 by the IH D 0 is M-valid at . So M 0 . So

26If there is no such vacuously M .
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M 0 1 D$
0 . Consider any so that 27 fix a so that . As

in the previous case,

D$
0 D0 0 0 1 .

By the Persistence LemmaM 0 1 D$
0 . SinceM M 1 .

So M D$
0 . Since D$

0 D0 by the IH D$
0 1 is M-

valid at . So M 1 so M . Thus M so M
0 . (V2) follows, yielding (!).

Assume that [ ] was entered into D by as pictured in 3.8; recall: 0
D0:0 1 D1:1 . By the IH, (*) D0 0 and (**) D1 1 are M-
valid at . Assume (A). Since D1 D by (**) M 1 a contradiction
that vacuously yields (V1). Assume (B). Since D0 D by (*) M
0 so M . Since and so M . So M 1 .
(V2) follows, yielding (!).

Assume that [ ] was entered into D by as pictured in 3.8. By the IH, (*)
D0 0 is M-valid at . Assume (A). By (*) M 0 for a contradic-

tion; (V1) follows. Assume (B). Since M M 1 . (V2) follows,
yielding (!). Note: this is the only place in this proof in which the difference between
M-validity at and M-validity at matters.28

By induction, for any deduction D with conclusion D isM-valid at .
Thus for any deduction D with conclusion D is M-valid. Thus for any
deduction D with conclusion D is IK-valid.

6.2 Observation

is sound with respect to IK-validity . Proof is a slight variation of that for 6.1.
(In verifying (V1 don’t assume that is a dead-end. Of course we omit the last
induction case, for .

6.3 Observation

. Proof. The inclusion is trivial. Trivially 0 1 . Let 1 =
0 0 and 0 0 is an IK-frame. For any valuation function V on

0 1 is not V -valid at 0, this because V 0 0 but
V 0 1 violating (V1 . By 6.2, 0 1 .

6.4 Remark

One might think that by restricting our attention to -free formulas, we could dis-
pense with right-completeness in our definition of being an IK-frame; after all,

27If there is no such vacuously M .
28We needed “ is a dead-end” in (A) to make use of the IH.
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the proof of the Persistence Lemma would then not need that IK-frames are right-
complete. But that is not the case: we needed the right-completeness of IK-frames to
handle 0 .

Example. Let be reflexive on 3, 0 2 0 1 and let 3 for
let V 0 for all 3 and let M V . is not an IK-frame, since it is
not right-complete. Suppose that we were to consider it one, and so consider M an
IK-model. Check that 1 0 . But 1 0 would not beM-valid
at 0, since M 1 butM 2 .

7 Canonical Models and the Completeness of IK

7.1 Definitions

Until further notice, let be any monotonic finitary consequence relation29 on
such that .

Definitions For is -complete iff for any 0 1 if 0

1 then for some 2 .
Consider a . is -complete iff for both markersm ifm 0 1

then for some 2 m .
For a marker m let be m-closed under iff for every if m then

m . is closed under iff is m-closed under for both markers m. is -
complete iff for both markers m if m 0 1 then for some 2 m .
Hereafter let ‘closed ’ abbreviate ‘closed under ’.

7.2 Definitions

Let is -complete, 0 is 0-closed under , and .
Consider 0 1 . Let 0 1 iff 0 1

1
0 1 and

1 0.
and are the canonical world-domain and accessibility relation under . For

the rest of this section I will mostly omit the subscript for .

7.3 Observation

If then and so . Proof. Assume that . Since 0
0 0 since 0 is 0IK-closed, 0 0 . So .

7.4 Definition

For avoids under iff: is closed under and -complete, and
.

29See section 5.6
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7.5 0 -Avoidance Lemma for

For any 0 1 0 0 1 1 avoids 0 iff 0 and either 1 or
0 1.
Proof. Let 0 0 1 1. Assume the left-side. Since is -complete, 0 is
-complete. Since is 0-closed 0 0 is. If 0 then 0 contrary to the

left-side. Thus 0 . Assume that 1 fix a 1. Since is -complete,
1 is. Assume that 0 1 0 . Fix 1 ... 1 so that 0 0 . Assume

that 0. Using Transfer0 1 1 since 1 1 . Assume that 0.
Using Transfer 1 1 . Since 1 and is 1-closed , 1 .
Either way, 1. Thus 0 1 is 0-closed . If 1 then 1 using 1 0

0 since is 0-closed , 0 a contradiction. Thus 1 . Assume that
1. So 1 since 1 0 and is 0-closed , 0 so 0. Thus

1 0. Assume that 1
0 so 0 1 . Since 0 1 1

and is 1-closed , 1 so 1. Thus 1
0 1. We have shown that

0 1.
Assume the right-side. If 1 0 0 so avoids 0 . Assume that
0 1. So 1 . Claim 1: is 0-closed . Assume that 0 . Since is

finitary we may fix 1 so that 0 0 1 0 . Since 1

1 is closed under conjunction. Let be . So 0 1 0 since 1
0 0 1 so 1. Since 0 1 0 so 0 0 0. Also, using
1& 0 0 1 0 witnessed by a deduction in which for some
is a barrier with exception for :1 . Using 0 0 0 0 so 0 0 0 .
Since 0 is 0-closed , 0 0 0. Claim 1 follows. Claim 2: is 1-closed . Assume
that 1 . Fix 1 so that 0 0 1 1 . So 0 0 1 1 using
1 0 0 1 1 witnessed by a deduction in which for some

is a barrier with exception for :1 . Using 0 0 0 .
Since 0 is 0-closed , 0 0 0 so 0. So 1
so 0 0 1. Note that 0 1 0 so 0 1 0 . Since 1 is 0-closed ,
0 0 1. So 1 so 1 . Claim 2 follows. Claim 3: is -complete.
Assume that 0 0 1 . So 0 1 0 fixing an 2 so that 0
0 . Similarly, assuming that 1 0 1 we may fix 2 so that 1
and so 1 . Claim 3 follows. If 0 0 for a contradiction; so 0 .
Thus avoids 0 .

7.6 Convention

For the rest of this section, let list the members of so that every member
occurs infinitely often on the list; call the latter condition “infinite visitation”.

7.7 The Avoidance Theorem for

Consider any and such that . There is a 0 and
a 1 such that 0 0 1 1 0 0 1 1 avoids and furthermore: (a)
if 1 then 1 (b) otherwise 0 1.
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Proof. Let
if 1

1 otherwise.

We will construct a 1 and a “double sequence” and prove
that . For each we will have .

Let 0 and 0 0 . Given assume that and for some
4 4 3 . Fix that so 4 . Let 4 1 and 4 1

4 . If 0 4 1 4 0 let 4 2 4 2 4 1 4 and
4 2 4 1. Assume that 0 4 1 4 0 . Let 4 1 4 .

If is not a disjunction let 4 2 4 2 4 1 and 4 2 4 1.
Assume that is 0 1 . If for some 2 0 4 1 1 4 1 0
fix such an and let 4 2 4 2 4 1 and 4 2 4 1.
Otherwise (the bad case for 4 2 let 4 2 and we are done. Now assume
that 4 2 (and so the bad case for 4 2 did not obtain). Let 4 3 and

4 3 4 2. If 0 4 2 1 4 2 1 let 4 3 4 4 4 2.
Assume that 0 4 2 1 4 2 1 . Let 4 3 4 2 . If is not
a disjunction let 4 4 4 4 4 3 and 4 4 4 3. Assume that
is 0 1 . If for some 2 0 4 2 1 4 2 1 fix such an let
4 4 4 4 4 1 and 4 4 4 3. Otherwise (the bad case
for 4 4) let 4 4 and we are done.

Claim 1: for every (i) (ii) 0 1 (iii) if 0 and
is even then the bad case for does not obtain. Proof by induction on .

The base-step. 0 satisfies (i) by stipulation, (ii) by assumption, and (iii) vacuously.
The induction step. Given assume the obvious IH. Fix so that 4

4 3. Case 1: 4 . So 4 1 and 1 satisfies (i). If 0 4
1 4 0 the IH implies that 1 satisifes (ii)-(iii), and so 2 satisfies (i)-
(iii). Assume that 0 4 1 4 0 . If 0 4 1 1 4 1 cutting
0 shows that 0 4 1 4 contrary to the IH. So 4 1 satisfies (ii),
and vacuously satisfies (iii). Case 2: 4 1. If is not a disjunction, clearly
4 2 satisfies (i)-(iii). Assume that is 0 1 . Assume that for both 2

0 4 1 1 4 1 0 . Since

0 4 1 1 4 1 0 0 1 0 4 1 4 0

using 0 gives a witness that 0 4 1 4 0 contrary to our IH.
So 4 2 satisfies (i)-(iii). Similar arguments for 4 3 and 4 4 show
that such 1 satisfy (i)-(iii). Claim 1 follows. Thus .

Let 0 and 1 . Let 0 0 1 1. Clearly .
Assume that . By the infinite visitation condition there is an so that either

is 0 1 and 0 4 1 violating Claim 1.(ii) for 4 1 or is 1 1 and
1 4 3 violating Claim 1.(ii) for 4 3. So .

Claim 2: is closed . Given assume that 0 . By the infinite
visitation condition we may fix an so that is and 0 4 1 4 0 .
So 4 1 so 0 so 0 . Thus 0 is 0-closed . A similar argument
shows that 1 is 1-closed . Claim 2 follows.

Claim 3: is -complete. Consider any 0 1 . Assume that 0 0 1
. By the infinte visitation condition we may fix an so that 0 1 is
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and 0 4 1 4 0 0 1 . So for some 2 4 2 so 0
so 0 . If 1 0 1 a similar argument shows that for some 2
1 . Claim 3 follows. So avoids .

Claim 4: avoids 0 . If 0 then using 0 and then
since is closed for a contradiction.

By the 0 -Avoidance Lemma, (*) either 1 or 0 1. Assume that
1 so 1 if 1 then 1 and so 1 a contradiction.
So 1 . Assume that 1 because we started with in the above
construction, 1 . So 1 so 1 so 0 1.

7.8 Lindenbaum s Lemma for

If and 0 0 then for some and .
Proof. Assume the if-clause. Applying the Avoidance Theorem, with 0 and

taking to be 0 we may fix 0 and 1 so that 0 0 0 1 1 0 and
0 0 0 which yields 0.

7.9 Definition

Let . Let is the canonical frame for . In this
section I will usually omit the subscript.

7.10 Remark

The proofs of the next two lemmas are “one-sided” cousins of the proof of the
Avoidance Theorem.

7.11 The Unbox Lemma for

If 0 is 0-closed , and 1 then for some
and .

Proof. Assume the if-clause. Let 0 1 . We will define a 1 and
a sequence as follows. Let 0 and 0 . Assume that 2 . Let
2 1 . If 0 2 0 let 2 2 2 1 2 . Assume that 0 2
0 . Let 2 1 2 and if is not a disjunction let 2 2 2 1.
Assume that is 0 1 . If for some 2

2 2 for every if 0 2 1 0 0 then

fix such an and let 2 2 2 1 . If neither 2 satisfies condition
(*2 2) (the bad case for 2n+2), let 2 2.

Claim 1: for every (i) (ii) 0 is 1-closed ; (iii) for every
if 0 0 then (iv) if 0 and is even, the bad case

for does not obtain. Proof is by induction.
Base step. 0 satisfies (i) by stipulation. Given assume that 1 .

Since is finitary and is closed under conjunction, we may fix so that
0 1 1 . So 0 1 1 . Using 1 0 1 1 witnessed
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by a deduction D in which for some is a barrier with exception for :1 .
Using 0 0 . So . Since 1

so 0 0 . Since is closed under conjunction; so so
0 0 . Since it is 0-closed ; so so 1 . So 0 satisfies (ii).
Given assume that 0 . Now fix so that 0 1 0 .
As above, 0 1 0 which is witnessed by a deduction in which for some

is a barrier with exception for :1 . Using 0 0 0 .
So 0 0 . By 4.2.(4), 0 0 . Since is 0-closed ,

so . Since , 0 0 so . So 0 satisfies
(iii). 0 vacuously satisifes (iv).

Induction step. Given assume the obvious IH. Fix so that 2 2 1.
Assume that 2 . So 2 1 . If 0 2 the IH insures that 2 1
satisfies (ii)-(iii), it vacuously satisifes (iv), and 2 2 trivially satisifes (i)-(iv).
Assume that 0 2 . Given assume that 0 2 1 1 .
Cutting 0 0 2 1 . By the IH 2 satisifes (ii); so so 2 1
satisfies (ii). Similarly, for a given if 0 2 1 0 cutting 0
yields 0 2 0 so by the IH . So 2 2 satisfies (iii). 2 1
vacuously satisfies (iv). If is not a disjunction, 2 2 trivially satisfies (i)-(iv).
Assume that is 0 1 . Subclaim: for some 2 satisfies (*2 2). Assume
not; for both 2 fix so that 0 2 1 0 0 but .
Let be 0 1 . Since 1 so for each 2 one use of gives
a witness that 0 2 1 0 1 using 1 0 2 1 0 1 .
Using 1 0 2 1 1 . Cutting 0 0 2 1 . By the IH, 2
satisifes (ii); so 1 0 2 so 0 1 . Since for some

2 a contradiction. The subclaim follows. So 2 2 and 2 2
satisfies (iv). Fix an 2 for which 2 2 2 1 . Given
assume that 0 2 2 1 . Fix so that 0 0 1 0 2 2 1 . So
0 1 0 2 2 1 . Using 1 0 0 0 2 2 1 1 and
for some this is witnessed by a deduction in which is a barrier with exception for
:1 . Using 0 0 2 2 0 . Since satisifies (*2 2 .

Since 0 0 0 0 . Since is 0-closed, . So 1 0 2 2. Thus
2 2 satisfies (ii). Since satisifies (*2 2 2 2 satisfies (iii).

Claim 1 follows by induction. Thus . Let . Clearly .
Claim 2: 0 1 avoids 0 . Assume that 0 1 0 . By the infinite visitation

condition we may fix so that 0 2 0 and is so 2 1
so . So 0 1 is 0-closed . Assume that 0 1 1 . Since is
finitary we may fix and so that 0 1 0 1 . Using
1& 0 0 1 0 1 . So 0 0 1 0 1 witnessed
by a deduction in which, for some is a barrier except for :1 . Using

0 0 0 . By Claim 1(iii), . Since
and so . Thus 0 1 is 1-closed , and so is closed . Assume that

0 0 1 0 1 so 0 1 . Fix so that is 0 1 and
0 1 2 . So 0 2 for some 2 2 2 and so .

Assume that 1 0 1 0 1 so 0 1 . Since it is -complete;
fix 2 so that so 1 0 1 . Thus 0 1 is -complete. Assume
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that 0 0 1 . Using 0 0 1 1 since 0 1 is 1-closed ,
contrary to . So 0 0 1 . Claim 2 follows.

Since . So by the 0 -Avoidance Lemma, .

7.12 The Left Lemma for

If 0 1 1 then for some 0 0 0 1.
Proof. Assume the if-clause. So 1

0 1. Take 0 and 1 to be and in
the above formulation of the Unbox Lemma. So that lemma yields a 0 (called in
the formulation of the lemma) that is as desired.

7.13 The Diamond Lemma for

If is closed under conjunction, and then for some
and .

Proof. Assume the if-clause. Let 0 1 . We will define a 1 and
a sequence as follows. Let 0 and 0 . Assume that 2 . Let
2 1 . If 1 2 1 let 2 2 and 2 2 2 1 2 . Assume
that 1 2 1 . Let 2 1 2 and if is not a disjunction let
2 2 and 2 2 2 1. Assume that is 0 1 . If for some 2

2 2 for every & & 2 1

fix such an and let 2 2 2 1 . If neither 2 satisfies (*2 2 (the
bad case for 2 2 let 2 2.

Claim 1: for every (i) (ii) 1 is 0IK-closed, (iii) for every
& and (iv) if 0 and is even, the bad case for does

not obtain. Proof is by induction.
Base Step. 0 satisfies (i) by stipulation. Given assume that 0 .

Since is finitary and is closed under conjuction, we may fix so that
0 1 0 . (If 0 is which is . So 0 1 0 this is witnessed
by a deduction in which for some is a barrier with exception for :1 . By
one use of 0 0 0 . Since 0 0 . Since is 0IK-closed,
0 . So 0 satisfies (ii). Since 0 satisfies (iii). 0 vacuously satisfies (iv).

Induction step. Given assume the obvious IH. Fix so that 2 2 1.
Assume that 2 . So 2 1 . If 1 2 1 the IH insures that
2 1 satisfies (ii)-(iii), it vacuously satisifes (iv), and 2 2 trivially satisifes (i)-
(iv). Assume that 1 2 1 . Given assume that 1 2 1 0 .
Cutting 1 1 2 0 by the IH 2 satisifes (ii); so 0 1 2 so
0 1 2 1. So 2 1 satisfies (ii). Fix so that 0 1 1 2 1 .
Let be 2 . Using admissible rules,

0 1 1 & & & .

Using with empty barrier, 0 0 & & & . Using 4.2.(3),

0 0 & 0 & & .
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By the IH, 2 satisfies (iii); so & so 0 0 & & so
& & . Since 2 1 is & 2 1 satisfies (iii). If is not a

disjunction, 2 2 trivially satisfies (i)-(iv). Assume that is 0 1 . Subclaim:
for some 2 satisfies (*2 2). Assume otherwise. Let be & . For both

2 fix so that & & . Let be 0& 1 so . We have
shown that & . Using Necessitation and 4.2.(3),

0 & 0 0& & 1& & .

Using 4.2.(5),

0 0& & 1& & 0 0& & 1& & .

Since is 0-closed, 0& & 1& & since is -complete,
for some 2 & & . Fix such an . Check that 0 & &
0 & & . Since is 0-closed, & & a contradiction. The
subclaim follows. Fix the 2 for which 2 2 2 1 . Given
assume that 1 2 1 1 0 . So 1 & 0 . Fix 1 ...
so that

0 1 1 & 0 .

Let be . Using 1& and 0 1 & & 0 witnessed
by a deduction in which for some is a barrier with exception for
:1 & & . Using 0 & & 0 . Since satisfies (*2 2

& & so 0 since 0 satisfies (iii), 0 1 2 2. So 2 2
satisfies (ii). Since satisfies (*2 2 2 2 satisfies (iii) and (iv).

Claim 1 follows by induction. Thus . Let . Clearly
0 1 so .

Claim 2: 0 1 avoids 0 . Given assume that 0 1 0 . Since
is finitary, we may fix so that 1 0 . By Claim 1.(ii), 0 1 .

Thus 0 1 is 0-closed. Assume that 0 1 1 . By the infinite visitation
condition we may fix so that is and 1 2 1 . So 2 1 so
1 0 1 . So 0 1 is 1-closed. If 0 0 1 contrary to

. Claim 2 follows.
Since is and is closed under conjunction, so so

. By the 0 -Avoidance Lemma, .

7.14 The Right Lemma for

If 0 0 and 0 1 then for some 1 0 1 and 1 1.
Proof. Assume the if-clause. Since 1 0 1 is -0-closed , and so 1 is

closed under conjunction. Also 1 0. Take 0 and 1 to be and in the
statement of the Diamond Lemma. So the Diamond lemma yields a 1 (called in
the statement of that lemma) which is as required.

7.15 Corollary

is a IK-frame.
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Proof: the Left Lemma yields left completeness, and the Right Lemma yields right
completeness of .

7.16 Definitions

For and let

V 1 if
0 otherwise.

M V is the canonical model for . By 7.16, it is an IK-model. Where
confusion is unlikely, I will omit the subscript.

Let the canonical IK-model based on beM .

7.17 The Canonical Model Theorem for

For any formula based on for any (*)M iff .
Proof by induction on the construction of formulas. The base step is trivial. So are

some of the cases under the induction step. We’ll consider the less-trivial cases under
the induction step.

Assume that is 0 1 . Consider any . Assume that M . Let
0 . Claim: 0 0 1. Assume not. By Lindenbaum’s Lemma, we may

fix a so that and 1 . Since 0 by the IH M 0.
Since by the Persistence Lemma M 1. By the IH, 1 a
contradiction. The claim follows. Since 0 0 0 0 1 0 0 since is
0-closed, o 0 0 so . Now assume that . Consider any so
that . Clearly . Assume that M 0. By the IH, 0 .
Since 0 0 0 0 1 and 0 is 0-closed , 0 1 0 so 1 . By the IH,
M 1. Thus (*).

Assume that is 0. Consider any . Assume that M . Fix a
1 so that 1 andM 1 0. By the IH, 0 1. So 1 0 0 1 1.

Using 0 1 1 0 0. By the 0 -Avoidance Lemma, 0 1 1 is 0-closed ;
so 0 0 1 1 so . Now assume that . Let the closure of 0
under conjunction. For every let be the -fold conjunction of 0 check
that . By the Diamond Lemma we may fix a 1 such that 1 and

1. Since 0 1 by the IH, M 1 0. So M . Thus (*).
Assume that is 0. Consider any . Assume that M . Case 1:

0 1 1 0. Using with empty barrier, 0 0 0. So . Case
2: otherwise. Claim: 0 1 0. Assume not. By the Avoidance Theorem there is a

0 and a 1 so that 0 and 0 0 1 1 avoids 1 0 by case
assumption and the furthermore-clause of that theorem, 0 1. If 0 1 then
1 0 0 0 1 1 contrary to avoidance; so 0 1. By the IH,M 1 0. Since

1 this contradicts M . The claim follows. Using 0 0 0.
Since 0 is 0-closed ; so . Now assume that . Consider
any 0 and 1 so that 0 1. Using 0 1 1 0 Since 1
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0 0 1 1 1 0. By the 0 -Avoidance Lemma, 0 0 1 1 is 0-closed ; so 0

1. By the IH,M 1 0. ThusM . Thus (*).
The theorem follows by induction.

7.18 Completeness Theorem for IK (with respect to IK-models)30

For every and if is IK-valid then .
Proof. Let M the canonical IK-model. Given and assume the if-clause.

Assume that . Applying the Avoidance Theorem to fix 0 and
1 so that 0 0 1 1 avoids and 0 0 1 1. By the Canonical

Model Lemma M 0 0. Case 1: 1 . So 0 . If 0

1 (using for a contradiction; so 0 is a dead-end in the canonical frame
for . Thus M 0 0 0 so M 0 so 0 and M 0 . Let
be 0 . So M 0 . By the Canonical Model Lemma, 0 so 0 0

a contradiction. Case 2: otherwise. By the Avoidance Theorem (the furthermore-
clause), 0 1. Since 1 the Canonical Model Lemma entails thatM 1

1. Thus M 0 1 0 0 1 1 so M 0 1 so M 0 1 . Let
be m . Assume that m is 0. So M 0 by the Canonical Model Lemma

0 so 0 0 a contradiction. Assume that m is 1. So M 1 by the
Canonical Model Lemma 1 so 1 1 a contradiction. Since both cases
yield contradictions, .

7.19 Completeness Theorem for IK (with respect to IK-models)

For any and if is IK-valid then .
Proof. Given and as described, assume the if-clause. Case 1: 0 .

So is IK-valid. By 7.18 . By 5.14, . Case 2: 0
and 1 . By 2.7.2.(4) 0 is IK-valid and so is also IK-valid. By 7.18

0 by 5.14 0 . With one use of 0 we can witness .
Case 3: 0 . Assume that . Claim: . Assume that .
Replace any use of in a witnessing deduction by assumption of 1 to obtain a
witness that 1 . By the case assumption, 1 . So
a contradiction that yields the claim. By 7.18, is not IK-valid. By 2.7.1.(1,2),

is not IK-valid a contradiction. So .

8 Classical K

We can form a one-step version of Classical K by supplementing IK with any of the
usual classicalizing rules or axioms, for example, rule 0-Excluded Middle.

30This is inference- (sometimes called strong-) completeness, as opposed to formula- (sometimes called
weak) completeness.

869One-Step Modal Logics, Intuitionistic and Classical, Part 1



8.1 Definition

Define [ by adding the following rule to those defining [ .

0-Excluded Middle If 0 0:0 D0: 1 1 :0 D1: and
0 1 is coherent, then 0 1 D: for D as pictured.

0:0 1:0
D0 D1

0
0 1

Let D D0 D0 0:0 D1 D1

0:0 .

Define [ from [ in the obvious way.

8.2 Observation

Consider a set of formulas and a formula containing no occurrences of or
and an classical ND deduction D of from using the familiar “no step” introduc-
tion and elimination rules, and perhaps the rule of excluded middle. Form and
D from and D as in 4.6. Form D from D by prefixing the formula-label for
each string in D by 0. Then D witnesses that 0 0 .

Thus 0 0 = the result of prefixing ‘0’ to all formulas in
the familiar “no step” consequence relation .

8.3 Lemma

Next, a derived rule.

1-Excluded Middle If 0 0:1 D0:1 1 1:1 D1:1 0 1
is coherent and 0 1 then for some CK-deductionD and
0 1 :1 D:1 .

We construct such a D as follows. Let 0 be and let 1 be
0 . So 1 is a classical tautology. By 8.2 we may fix a CK-deductionD

such that D :0 1. Fix 0 1 . Let D be the following.

D
0 1 :1

0

1 1

Let D0 and D1 be as follows, respectively.

0:1 1:1
D0 D1
1 :1

1
1 :1

1
1 0 1 1
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Let D be the following.

:1
D D0
1 1 1

1
D1

1 0 1
1

1

8.4 Observations

Next, two important schematic deductions.
(1) 0 0 as witnessed by the following.

1:1

3:0 0
0

0 0
0:1 1 2:1

1
1 0 1

0 2

(2) 0 0 as witnessed by the following, taking D to witness the
previous observation.

3:0
D

:0 0
0

0 0
4:0 0

0
0

Since 0 0 and and are equivalent under .
Since we also have 0 0 and 0 0 we have the familiar
classical interdefinability of and .31

8.5 Definition

A CK-frame is an IK-frame such that = . A CK-model is an IK-
model with a CK-frame. An inference is CK-valid iff it is M-valid for every
CK-model M.

8.6 Observation

For any CK-model M M and 2 M 0 1 iff either
M 0 orM 1.

31So taking to be defined as we could drop and in the definition of without changing
and taking to be defined we could drop 0 and 1 with similar lack of effect.
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8.7 Theorem

is sound with respect toM-validity forM a CK-model, i.e. for any
and if then is CK-valid. Furthermore, is sound
with respect toM-validity .

Proof: a straightforward induction on the stages of the definition of (i.e. on
the height of classical deductions), using 8.6.

8.8 Observation

. The proof of 6.3 transfers.

8.9 Definitions

Consider a . is maximally CK-consistent iff 0 and for any
such that if 0 then .

8.10 Lemma

For every iff and is maximally CK-consistent.
Proof. Given this the key point: if is 0-closed then for any

and thus (since is -complete) either or .
With that, the lemma follows by well-known arguments.

8.11 Observation

is a CK-frame. Proof: use the previous lemma. So M is a CK-model; call
it the canonical CK-model based on vocabulary set .

The obvious Completeness Theorem for CK follow by slight variations of the
arguments used for 7.18.

References

1. Fine, K. (1995). The Logic of Essence. Journal of Philosophical Logic, 24(3), 241–273.
2. Girard, J.-Y. (1987). Proof theory and logical complexity. Napoli: Bibliopolis.
3. Hodes, H.T. (2004). On the Sense and Reference of a Logical Constant. The Philosophical Quarterly,

54(214), 134–165.
4. Humberstone, L. (1982). Scope and Subjunctivity. Philosophia, 12(1-2), 99–126.
5. Parisi, A. (2017). Second-Order Modal logic. University of Connectituct doctoral dissertationss, 1480.
6. Peacocke, C. (1992). A study of concepts. Cambridge: MIT Press.
7. Plotkin, G., & Stirling, C. (1986). A framework for intuitionistic modal logics. In Halpern, J.Y. (Ed.)

Theoretical aspects of reasoning about knowledge (pp. 399–406). Morgan Kaufmann Publishers.
8. Turner, J. (2010). Ontological Pluralism. Journal of Philosophy, 107(1), 5–34.
9. Wehmeier, K. (2004). In the Mood. Journal of Philosophical Logic, 33(6), 607–630.

10. Wehmeier, K., & Rückert, H. (2019). Still in the Mood. Topoi, 48(2), 361–377.
11. Wojcicki, R. (1988). Theory of logical calculi, Synthese Library. Berlin: Kluwer Academic Publishers.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

872 H.T. Hodes


	One-Step Modal Logics, Intuitionistic and Classical, Part 1
	Abstract
	Preliminaries
	Notation
	Definitions
	Heuristic Remark

	Model-Theoretic Semantics
	Definitions
	Definitions
	Persistence Lemma
	Definitions
	Heuristic Remark
	Definitions
	Consider any Model M
	Observations
	Observations
	Observations

	Observation

	The Proof-Theoretic System IK
	Definitions
	Remarks
	Definition
	Notation
	Definitions
	Preparatory Remarks
	Definitions
	Definition
	Remarks
	Remarks
	Definitions
	Remarks

	Some Deductions and Remarks
	Lemmas
	Lemmas
	Observation
	Observations
	Exercises
	Observation

	Substitution and Amputation in Deductions
	Definitions
	Definitions
	Remarks
	Definition
	Observation
	Definitions
	Corollary
	Remark
	Definitions
	Definitions
	Observation
	Observation
	Observation
	Theorem

	Soundness of IK
	Soundness
	Observation
	Observation
	Remark

	Canonical Models and the Completeness of IK
	Definitions
	Definitions
	Observation
	Definition
	bold0mu mumu 00dotted0000-Avoidance Lemma for 
	Convention
	The Avoidance Theorem for 
	Lindenbaum's Lemma for 
	Definition
	Remark
	The Unbox Lemma for 
	The Left Lemma for 
	The Diamond Lemma for 
	The Right Lemma for 
	Corollary
	Definitions
	The Canonical Model Theorem for 
	Completeness Theorem for IK (with respect to IK-models)This is inference- (sometimes called strong-) completeness, as opposed to formula- (sometimes called weak) completeness.
	Completeness Theorem for IK- (with respect to IK-models)

	Classical K
	Definition
	Observation
	Lemma
	Observations
	Definition
	Observation
	Theorem
	Observation
	Definitions
	Lemma
	Observation

	References


