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THE MODAL LOGIC OF AFFINE PLANES IS NOT FINITELY

AXIOMATISABLE

IAN HODKINSON AND ALTAF HUSSAIN

Abstract. We consider a modal language for affine planes, with two sorts of formulas (for points and

lines) and three modal boxes. To evaluate formulas, we regard an affine plane as a Kripke frame with

two sorts (points and lines) and three modal accessibility relations, namely the point-line and line-point

incidence relations and the parallelism relation between lines. We show that the modal logic of affine planes

in this language is not finitely axiomatisable.

§1. Introduction. Recently the modal logics of space have began to draw con-
siderable interest from logicians and computer scientists. See, e.g., [1]. Much of
the interest seems to stem from the perceived use of modal logics for qualitative
reasoning about spatial relations between objects, and the potential applications in
computer science and knowledge representation.
In this paper, we are concerned with the modal logics of projective and affine
planes. In [2], geometries of points and lines were viewed as Kripke frames, the
domain of each frame being the point-line incidence relation itself (i.e., the set of
pairs (s, l) where s is a point on a line l). A completeness theorem for ‘incidence
geometries’ was proved, using a non-orthodox ‘irreflexivity’ inference rule, and
extensions to projective and affine geometries were considered.
In [13], Venema viewed projective planes in a somewhat more straightforward
way, as Kripke frames with two sorts (points and lines), and twomodal accessibility
relations (incidence between points and lines and between lines and points). He
formulated a corresponding modal language with two sorts of formulas — point
formulas (evaluated at points) and line formulas (at lines). He then presented
a finite set of axioms, essentially expressing that the two accessibility relations are
the converses of each other; every point lies on at least one line; any two points
lie on at least one common line; and the duals of these two properties obtained by
exchanging points and lines. The inference rules were orthodox: modus ponens,
(well-sorted) substitution, and universal generalisation for each of the two sorts.
Venema proved that the system is (strongly) sound and complete for projective
planes. He also proved that the problem of determining whether a given formula is
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satisfiable in some projective plane is decidable and complete for non-deterministic
exponential time.
In [3], among many other things, Balbiani and Goranko regarded affine planes
as two-sorted Kripke frames in a similar way, but with an additional accessibility
relation relating parallel lines. They introduced a corresponding two-sorted modal
language similar to Venema’s, and proposed a finite set of axioms for affine planes
in this language. Completeness of the axioms with respect to affine planes was
left open (although it was proved for a wider class of structures called ‘weak affine
models’).
In this paper, we will prove that in contrast to the case of projective planes, the
modal logic of affine planes in this language is not finitely axiomatisable. This
result first appeared in [9]. We should mention that in [10], Monk used affine
planes in a rather similar way to prove that the variety of representable relation
algebras is not finitely axiomatisable. We have borrowed some ideas (such as the
use of the Bruck–Ryser theorem and compactness/ultraproducts) from Monk’s
proof. However, while the outline of our proof is similar to Monk’s, the details are
different. For example, propositions 3.7 and 3.8 below differ from their analogues
in Monk’s proof, and definition 3.1 and proposition 3.6 seem to have no analogue
at all. Possibly a proof closer to Monk’s can be found, or even a derivation of our
result as a corollary of Monk’s, or vice versa, but we have been unable to do this.

§2. Definitions. In this section, we recall the syntax and semantics of the two-
sorted modal language of [3] for affine planes, along with some other standard
definitions and facts. We will prove the non-finite axiomatisability in section 3.

2.1. Syntax and semantics.

Definition 2.1. We fix two disjoint, countably infinite sets VARp of point vari-
ables and VARl of line variables. The sets Π and Λ of point formulas and line
formulas (respectively) of the modal language for affine planes are defined to be the
smallest sets satisfying the following:

1. VARp ⊆ Π and VARl ⊆ Λ.
2. If ð, ð′ ∈ Π then ¬ð ∈ Π and ð ∧ ð′ ∈ Π.
3. If ë, ë′ ∈ Λ then ¬ë ∈ Λ and ë ∧ ë′ ∈ Λ.
4. If ë ∈ Λ then [01]ë ∈ Π.
5. If ð ∈ Π then [10]ð ∈ Λ.
6. If ë ∈ Λ then [11]ë ∈ Λ.

The numbers 0, 1 are intended to suggest the relevant dimension (0 for points,
1 for lines). We adopt the usual abbreviations: if ð, ð′ are point formulas, ð ∨ ð′

abbreviates ¬(¬ð ∧ ¬ð′), ð → ð′ abbreviates ¬(ð ∧ ¬ð′), and 〈10〉ð abbreviates
¬[10]¬ð. Abbreviations for line formulas, and the diamonds 〈01〉 and 〈11〉, are
defined similarly. The language is given semantics as follows.

Definition 2.2. A two-sorted affine frame (or simply a frame) is a two-sorted
structure F = (P,L, å, ‖) such that P ∩ L = ∅, å ⊆ P × L, and ‖ ⊆ L × L.
Elements of P andL are called points and lines, respectively; å is called the incidence
relation; and ‖ is called the parallel relation.
A valuation on F is a map V : VARp ∪ VARl → ℘(P ∪ L).
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A model is a pair M = (F , V ), where F is a frame and V a valuation on F .
We sometimes write models in the form (P,L, å, ‖, V ), where F = (P,L, å, ‖). We
define truth of formulas in such a model as follows. Let s ∈ P and l ∈ L.

1. M , s |= v if s ∈ V (v), for each v ∈ VARp.
2. M , l |= v if l ∈ V (v), for each v ∈ VARl .
3. The boolean connectives are handled in the usual way.
4. M , s |= [01]ë ifM , m |= ë for every m ∈ L with s å m.
5. M , l |= [10]ð ifM , t |= ð for every t ∈ P with t å l .
6. M , l |= [11]ë ifM , m |= ë for every m ∈ L with l ‖ m.

Definition 2.3. A point formula ð is said to be valid in a frame F if we have
(F , V ), s |= ð for every valuation V on F and every point s of F . ð is said to
be satisfiable in F if ¬ð is not valid in F . Similar definitions are made for line
formulas.

2.2. Bounded morphisms. We will need the notion of bounded morphism (cf. [4,
definition 3.13]).

Definition 2.4. LetF = (P,L, å, ‖) andF ′ = (P′, L′, å′, ‖′) be two-sorted affine
frames. We say that f : F → F ′ is a (surjective) homomorphism if f : P ∪ L →
P′ ∪ L′ is a (surjective) map with f(s) ∈ P′ and f(l) ∈ L′ for each s ∈ P and
l ∈ L, and the following Forth properties hold:

F1 If s å l then f(s) å′ f(l).
F2 If l ‖ m then f(l) ‖′ f(m).

A homomorphism f is said to be a bounded morphism if it additionally satisfies the
following Back properties:

B1 If s ∈ P, l ′ ∈ L′, and f(s) å′ l ′, then there is l ∈ L with s å l and f(l) = l ′.
B2 If l ∈ L, s ′ ∈ P′, and s ′ å′ f(l), then there is s ∈ P with s å l and f(s) = s ′.
B3 If l ∈ L, m′ ∈ L′, and f(l) ‖′ m′, then there is m ∈ L with l ‖ m and
f(m) = m′.

We say that F ′ is a homomorphic image (respectively, a bounded morphic image)
of F if there exists a surjective homomorphism (respectively, a surjective bounded
morphism) f : F → F ′.

Remark 2.5. Anymodal formula valid in a frameF is also valid in any bounded
morphic image ofF . This is a standard fact for ordinary single-sorted modal logic,
and the proofs in [4, theorem 3.14] and [6, corollary 2.16] easily generalise to our
two-sorted frames.

2.3. Affine planes. Anaffineplane is a systemof points and lineswith an incidence
relation between them, satisfying certain properties. For information, see, e.g., [8].
For convenience, we will state the classical definition in terms of our two-sorted
affine frames.

Definition 2.6. A two-sorted affine frame A = (P,L, å, ‖) is said to be an affine
plane if:

A1 For any two distinct points s, t ∈ P, there is exactly one line l ∈ L such that
s å l and t å l .
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A2 For all l, m ∈ L, we have l ‖ m iff l = m or there is no s ∈ P with s å l and
s å m.

A3 For any l ∈ L and s ∈ P, there is exactly one line m ∈ L such that s å m and
m ‖ l .

A4 There are distinct s, t, u ∈ P such that for no l ∈ L do we have s å l , t å l , and
u å l .

The logic of affine planes is the set of all (point and line) formulas that are valid in
every affine plane.

We will often use geometrical and set-theoretic language as shorthand to talk
about frames. E.g., we will say that s å l ∩m if s å l and s å m. In this language,
the axioms for affine planes state that any two distinct points lie on a unique line,
two lines are parallel iff they are equal or disjoint, there is a unique line through
any given point parallel to any given line, and there exist three non-collinear points.
Usually in this paper, two lines in a frame that contain the same points will be equal,
so viewing a line as a set of points is not misleading. We will see in lemmas 3.2
and 3.5 below that this is true of affine planes.

§3. Non-finite axiomatisability. The rest of the paper is devoted to showing that
the modal logic of affine planes is not finitely axiomatisable. We accomplish this
in the following way. We build special quasi-affine structures which we call κ-
configurations, where κ is a cardinal. We will show, first, that for every finite κ, there
is a finite κ-configuration that is not the bounded morphic image of an affine plane.
Here, we make use of the Bruck–Ryser theorem in projective geometry. Second,
we will show that any countable ù-configuration is the bounded morphic image of
an affine plane. With these results in hand, we then use first-order compactness to
establish the non-finite axiomatisability result.

Definition 3.1. Let κ be a cardinal. A frame C = (P,L, å, ‖) is said to be
a κ-configuration if the following hold.

K1 For every s, t ∈ P, there are at least κ lines l ∈ L with s, t å l .
K2 A2 of definition 2.6 (‘two lines are parallel iff they are equal or disjoint’).
K3 A3 of definition 2.6 (‘there is a unique line through any given point parallel to
any given line’).

K4 L 6= ∅, and for any l ∈ L, there is s ∈ P such that ¬(s å l).

A configuration is a κ-configuration for some κ (i.e., a 0-configuration).

Obviously, if κ < ë then any ë-configuration is a κ-configuration. We list some
other simple facts about configurations.

Lemma 3.2. Any affine plane is a 1-configuration.

Proof. By A1, K1 clearly holds when s 6= t. A4 ensures that there are at least
two points, and K1 for the case s = t follows from this and A1. We check K4.
L 6= ∅ by A4 and A1. For any line l , at least one of the non-collinear points given
by A4 cannot be on l . ⊣

In fact, K4 is equivalent to A4 in the presence of A1–A3. With only K1–K3, it is
weaker.
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Lemma 3.3. ‖ is an equivalence relation on the set of lines in any configuration.

Proof. Reflexivity and symmetry are clear. For transitivity, suppose that l, m, n
are lines with l ‖ m ‖ n. If l, n are disjoint, then l ‖ n by K2. If they have a common
point, say s , then by K3 they are equal, since they are parallel to m and contain s .
By K2 we again obtain l ‖ n. ⊣

The equivalence classes of ‖ will be called parallel classes.

Lemma 3.4. Any line in a 1-configuration contains a point.

Proof. Using K4, take a line l and a point s not on l . By K3, there is a linem ‖ l
with s å m. By K4, there is a point t not onm. We are working in a 1-configuration,
so by K1 there is a line n with s, t å n. So n 6= m. If some line had no points,
then by K2, n,m would both be parallel to it, which violates K3 since they both
contain s . ⊣

Lemma 3.5. Any two lines in a 1-configuration that contain the same points are
equal.

Proof. We actually show that in any configuration, any two ‘non-empty’ lines
containing the same points are equal. The result then follows from lemma 3.4. So
let l , m be lines containing the same points, and suppose that there is a point s
on l , and hence on m. By K4, there is a point t not on l . By K3, there is a line n
containing t and parallel to l . Since n 6= l , K2 implies that n and l are disjoint. So
n, m are also disjoint, and hence (by K2) parallel. We conclude that l ,m contain s
and are parallel to n. By K3, l = m. ⊣

Proposition 3.6. For every k < ù, there is a finite k-configurationCk with exactly
c parallel classes, where c = 2 · 32e+1 + 1 for some integer e.

Proof. Pick integers c, d , ewithk ≤ 2d−2, 4kd 2 ≤ 2·32e+1+1 = c, and c ≤ 2d−1.
Then c, d > 0. Take any set P with |P| = 2d , and put [P]d = {l ⊆ P : |l | = d}.
Choose L ⊆ [P]d satisfying the following:

1. l ∈ L⇒ P \ l ∈ L. (Note that P \ l ∈ [P]d .)
2. For each s, t ∈ P, there are at least k sets l ∈ L with s, t ∈ l . This is possible
since |{l ∈ [P]d : s, t ∈ l}| ≥

(
2d−2
d−2

)
≥ 2d−2 ≥ k, so we may simply choose k

sets in [P]d containing s, t to add to L, for each s, t ∈ P. There is no problem
if the same set is chosen for several pairs s, t. We need to pick a total of at
most (2d )2k sets, plus their complements (because of clause 1).

3. |L| = 2c. So far, |L| ≤ 8kd 2 ≤ 2c. Simply add more l ∈ [P]d (and their

complements) to L until |L| = 2c. This is possible since |[P]d | =
(
2d
d

)
≥ 2d ≥

2c.

For s ∈ P and l ∈ L, define s å l iff s ∈ l . For l, m ∈ L, define l ‖ m iff l = m
or l ∩ m = ∅. We check that Ck = (P,L, å, ‖) is as required. K1 of definition 3.1
holds by clause 2. K2 holds by definition of ‖. L 6= ∅ by clause 3, and P \ l 6= ∅ for
all l ∈ L, so K4 holds.
K3 and the final statement of the proposition will follow immediately if we show
that the parallel class of an arbitrary line l ∈ L is {l, l ′}, where l ′ = P \ l . We have
l ′ ∈ L by clause 1. By definition of ‖, we have l ‖ l and l ′ ‖ l . Now if m ∈ L and
m ‖ l , then either m = l or m ∩ l = ∅. In the latter case, m ⊆ l ′, and because
|m| = |l ′| = d , we havem = l ′ as required. ⊣
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From now on, fix k-configurationsCk (k < ù) as in the proposition. By replacing
C0 by C1 if necessary, we may assume that each Ck is a 1-configuration.

Proposition 3.7. For each k,Ck is not a homomorphic image (and so not a bounded
morphic image) of an affine plane.

Proof. Suppose for contradiction that A is an affine plane and f : A → Ck is
a surjective homomorphism. We write the relations of both A ,Ck as å, ‖.

Claim. For any lines l, m of A , we have l ‖ m ⇐⇒ f(l) ‖ f(m).

Proof of claim. The left to right direction (⇒) is clear asf is a homomorphism.
For the opposite direction (⇐), suppose for contradiction that l, m are not parallel
and yet f(l) ‖ f(m). Since A is an affine plane, it has a point s with s å l ,
s å m. As f is a homomorphism, f(s) å f(l) and f(s) å f(m), so we have
f(l) = f(m) by K2 of definition 3.1. By K4 and K3, the parallel class of f(l)
contains a line other than f(l), and by surjectivity, such a line is of the form f(n)
for some line n of A . Since ‖ is an equivalence relation on the lines of A , n cannot
be parallel to both of l, m, so it has a point, say t, in common with one of them.
But then, f being a homomorphism implies f(t) å f(n) and f(t) å f(l) = f(m).
Since by K2 these two lines are disjoint, this is a contradiction, and proves the
claim.

It follows from the claim that Ck andA have the same number of parallel classes,
namely, 2 · 32e+1 + 1 for some integer e. SoA has order 2 · 32e+1. As is well known
(see, e.g., [8, theorem 3.10]), any affine plane can be ‘completed’ to form a projective
plane of the same order. Now the Bruck–Ryser theorem [5] implies that if n ≡ 1 or 2
(mod 4) and there is a projective plane of order n, then n is the sum of the squares of
two integers. It is obvious that 2 · 32e+1 ≡ 2 (mod 4). Since the prime factorisation
of 2 · 32e+1 involves a prime p ≡ 3 (mod 4) with odd exponent, it follows from well
known results of Fermat (see, e.g., [11, chapter XI] or [7, theorem 366]) that 2 ·32e+1

is not the sum of two squares. From this contradiction we conclude that Ck is not
a homomorphic image of an affine plane. ⊣

Proposition 3.8. Any countable ù-configuration is a bounded morphic image of
an affine plane.

Proof. Let C = (P,L, å, ‖) be a countable ù-configuration. We will show that
it is a bounded morphic image of an affine plane via a step by step construction
similar to the one presented in [13] for projective planes. A network is a quintuple
N = (P′, L′, å′, ‖′, f), where (P′, L′, å′, ‖′) is a frame and f is a function mapping
P′ to P and L′ to L. We will build a chain of finite networksN0 ⊆ N1 ⊆ · · · , where
Ni = (Pi , Li , åi , ‖i , fi) for each i < ù, andNi ⊆ Nj denotes thatNj is an extension
of Ni , i.e., that Pi and Li are subsets of Pj and Lj , respectively; åi is the restriction
of åj to Pi ×Li ; ‖i is the restriction of ‖j to Li ×Li ; and fi is the restriction of fj
to Pi ∪ Li .
A triangle is a frame with exactly three lines, each line being parallel only to itself,
and exactly three points, each pair of which are joined by exactly one line. We define
N0 to consist of a triangle with points s0, s1, s2, say, and a map f0 that maps its
points to an arbitrary single point s in C , and its lines to three pairwise non-parallel
lines through s (existence is assured because C is an ù-configuration).
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Each Nk (k < ù) will satisfy the following coherence conditions:

C1 For all points s and lines l of Nk , if s åk l then fk(s) å fk(l).
C2 l ‖k m ⇐⇒ fk(l) ‖ fk(m), for all lines l , m of Nk .
C3 Distinct lines of Nk have at most one common point.
C4 Distinct parallel lines of Nk are disjoint.
C5 s0, s1, s2 are non-collinear points of Nk .

Clearly, N0 is a coherent network. However, it, and later networks Nk , may suffer
from a number of defects, which we will need to repair. The possible defects are:

D1 fk failing any of the ‘back’ conditions B1, B2, and B3 in definition 2.4
(bounded morphism) for 〈01〉, 〈10〉, 〈11〉,

D2 two points with no line joining them,
D3 the parallel axiom defect, namely, for a line l and point s not on l , there is no
line through s that is parallel to l ,

D4 non-parallel lines with no point in common.

The way we repair a defect is by extending a network into another. We will now
demonstrate how any defect of a coherent network Nk can be repaired. There are
a number of cases to consider depending on the type of the defect.

D1-defects. These come in three forms: B1, B2, and B3.

B1 a point s ∈ Pk and a line l
′ ∈ L such that fk(s) å l

′ while there is no l ∈ Lk
such that s åk l and fk(l) = l

′.

Take a new line l (l 6∈ Lk) and extend Nk to Nk+1 as follows:

1. Pk+1 = Pk ,
2. Lk+1 = Lk ∪ {l},
3. åk+1 = åk ∪ {(s, l)},
4. fk+1 = fk ∪ {(l, l ′)},
5. ‖k+1 = ‖k ∪ {(l, m), (m, l) : m ∈ Lk+1, l

′ ‖ fk+1(m)}.

Clearly, Nk+1 is an extension of Nk lacking the assumed defect. We check that
Nk+1 is coherent. For condition C1, since Nk is assumed coherent, we only have
to check whether fk+1(s) ∈ fk+1(l). This is true by construction. C2 holds
by the definition of ‖k+1 and the coherence of Nk . Suppose that C3 is violated.
By the definition of Nk+1 and the fact that Nk satisfies C3, this means that the
new line l must be one of the culprits. But l intersects only one point (s) and
is therefore absolved of any blame. We conclude that C3 holds as well. Sup-
pose C4 is violated. By the coherence of Nk , we must infer that l is involved,
and since l only goes through s , s also is indicted. So there is a line m of Nk
with s åk m and l ‖k+1 m. Therefore, fk(s) å l

′ ∩ fk+1(m) and l
′ ‖ fk+1(m).

Since C is a configuration, fk+1(m) = l
′, and so there is already a line in Nk ,

namely m, with s åk m and fk(m) = l
′. So there was no B1 defect in the first

place! Therefore, we conclude that C4 also holds. C5 is true because it holds for
Nk and there is only one point on the new line l , so not all of s0, s1, s2 can be
on it.

B2 a line l ∈ Lk and a point s
′ ∈ P such that s ′ å fk(l), while there is no s ∈ Pk

such that s åk l and fk(s) = s
′.
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Take a new point s (s 6∈ Pk) and extend Nk to Nk+1 as follows:

1. Pk+1 = Pk ∪ {s},
2. Lk+1 = Lk ,
3. åk+1 = åk ∪ {(s, l)},
4. ‖k+1 = ‖k ,
5. fk+1 = fk ∪ {(s, s ′)}.

Clearly, Nk+1 is an extension of Nk lacking the assumed defect. We check that the
coherence conditions remain intact. For C1, the only new case isfk+1(s) å fk+1(l);
but this is true by construction. C2 is immediate. Since s is only incident with one
line (l), C3 and C4 are preserved. C5 is true because it was true inNk and no points
of Nk have been added to lines.

B3 a line n ∈ Lk and a line l
′ ∈ L such that fk(n) ‖ l

′ while there is no line
l ∈ Lk with n ‖k l and fk(l) = l

′.

Take a new line l (l 6∈ Lk) and extend Nk to Nk+1 as follows:

1. Pk+1 = Pk ,
2. Lk+1 = Lk ∪ {l},
3. åk+1 = åk ,
4. ‖k+1 = ‖k ∪ {(m, l), (l, m) : m ∈ Lk+1, m = l or m ‖k n},
5. fk+1 = fk ∪ {(l, l ′)}.

Clearly,Nk+1 is an extension ofNk lacking the assumed defect. C1, C3, C4, and C5
are unaffected since åk+1 = åk , and C2 follows from the definition of ‖k+1 and the
coherence of Nk .

D2-defects. This case is the crux of the proof. Assume there are two distinct
points s and t of Nk with no line joining them. Add a new line l (l 6∈ Lk) joining
s, t, and let fk+1 map l to a line l

′ of C containing fk(s), fk(t) and whose parallel
class has not been used so far: i.e., there is no line m in Nk with fk(m) ‖ l

′. This is
possible as Nk is finite, while because C is an ù-configuration there are ù pairwise
non-parallel l ′ ∈ L with fk(s), fk(t) å l

′ (see K1 and K2 of definition 3.1). It
avoids there already being a line through s but not t which maps by fk to l

′ and so
(by C2) has to be parallel to l .
More precisely, we extend Nk to Nk+1 as follows:

1. Pk+1 = Pk ,
2. Lk+1 = Lk ∪ {l},
3. åk+1 = åk ∪ {(s, l), (t, l)},
4. ‖k+1 = ‖k ∪ {(l, l)},
5. fk+1 = fk ∪ {(l, l ′)}.

Nk+1 is an extension of Nk lacking the assumed defect. We will now check that
none of the coherence conditions have been broken. For C1, we have to check that
fk+1(s) å fk+1(l) and fk+1(t) å fk+1(l); but this follows from our choice of l

′.
C2 also follows immediately from our choice of l ′. Now suppose C3 is violated; by
the coherence of Nk the new line l must be involved. As l is only incident with the
points s and t, there must be another line m that goes through these points — but
then s and t could not constitute a D2-defect! C4 holds becauseNk is coherent and
l is only parallel to itself. C5 is preserved because l contains only two points.
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D3-defects. Given a line n and a point s not incident with n, assume there is no
line through s which is parallel to n. By K3 of definition 3.1, we know that there is
a line l ′ of C that goes through fk(s) and is parallel to fk(n). So take a new line l
(l 6∈ Lk) and define the extension Nk+1 of Nk as follows:

1. Pk+1 = Pk ,
2. Lk+1 = Lk ∪ {l},
3. åk+1 = åk ∪ {(s, l)},
4. ‖k+1 = ‖k ∪ {(m, l), (l, m) : m ∈ Lk+1, m = l or m ‖k n},
5. fk+1 = fk ∪ {(l, l ′)}.

Nk+1 is an extension of Nk lacking the assumed defect. For C1 we have to check
that fk+1(s) ∈ fk+1(l), but this is so by our assumption on s and l

′. It is not
difficult to see that C2 also holds by our definition of ‖k+1 and the coherence ofNk .
So suppose C3 is violated. By the coherence ofNk , the new line l must be the cause;
but l is only incident with the point s , and therefore cannot cause any problems
with respect to C3. Suppose C4 is violated. Again, by the coherence ofNk , the new
line l must be involved. We must therefore conclude that there is a distinct line m
parallel to l that also intersects l . By definition of ‖k+1, this means that m ‖k n.
Since l is only incident with the point s ,m must also be incident with s . So n and s
did not constitute a D3-defect after all! This proves C4. C5 is clearly satisfied as l
contains only one point.

D4-defects. Assume n and l are two non-parallel lines inNk that do not intersect.
As Nk is coherent, C2 shows that fk(n) and fk(l) are not parallel in C . By K2
of definition 3.1, we know that there is a point s ′ å fk(n) ∩ fk(l). So take a new
point s (s 6∈ Pk), and define the extension Nk+1 of Nk as follows:

1. Pk+1 = Pk ∪ {s},
2. Lk+1 = Lk ,
3. åk+1 = åk ∪ {(s, n), (s, l)},
4. ‖k+1 = ‖k ,
5. fk+1 = fk ∪ {(s, s ′)}.

Nk+1 is an extension of Nk lacking the assumed defect. We check coherence.
For C1, we need to show that fk+1(s) å fk+1(n) and fk+1(s) å fk+1(l); but this
is obviously the case by construction. C2 is satisfied by the coherence of Nk since
‖k+1 = ‖k . Suppose C3 is violated. By the coherence of Nk the new point s must
be involved. But s lies only on the lines n and l ; if these two lines intersect at
a different point then they could not have constituted a D4-defect in the first place.
Finally, suppose C4 is violated. By the coherence of Nk , we know that s must
be involved. But s only intersects n and l , which are non-parallel, and therefore
cannot cause any violation of C4. C5 is satisfied as no points of Nk were added to
lines.

We have shown that any defect in any Nk can be repaired in an extension of Nk .
Now using standard combinatorics we construct a sequence (Nk)k<ù of coherent
networks such thatNj extendsNi whenever j > i , and every defect ofNi is repaired
in Nj for some j > i . The ‘standard combinatorics’ needed to make sure that
every defect of every network Ni will be repaired at some later stage is completely
analogous to a proof in [12, section 2] and makes use of the fact that C is countable.
Now put Pù =

⋃
k<ù Pk , Lù =

⋃
k<ù Lk , åù =

⋃
k<ù åk , and ‖ù =

⋃
k<ù ‖k . Let
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A = (Pù , Lù , åù , ‖ù). Also put f =
⋃
k<ù fk . As the coherence conditions are

clearly preserved under unions of chains, (A , f) is a coherent network with no
defects. In order to finish the proof of the proposition, we establish the following
claims.

Claim 1. The mapping f : A → C is a surjective bounded morphism.

Proof of claim 1. That f is a homomorphism follows from C1 and C2. The
back conditions hold because (A , f) has noD1-defects. It remains to show thatf is
surjective. Let l be any line inA . Then f(l) ∈ rng(f). By the ‘back’ condition B3,
any line l ′ of C with l ′ ‖ f(l) is in rng(f). By the ‘back’ condition B2 and
definition 3.1(K3), P ⊆ rng(f). Recalling from lemma 3.4 that any line in an
ù-configuration contains at least one point, by the ‘back’ condition B1 we also have
L ⊆ rng(f). This establishes the claim.

Claim 2. A is an affine plane.

Proof of claim 2. We check that A meets the conditions of definition 2.6. We
will need that ‖ù is an equivalence relation on Lù . This follows from C2, since
by lemma 3.3, ‖ is an equivalence relation on the lines of C . Now, A1 (‘any two
distinct points lie on a unique line’) holds by C3 and the lack of D2-defects. A2 (⇒
direction) is true by C4. For the⇐ direction, let l, m be lines of A . If l = m, then
l ‖ù m as ‖ù is reflexive. If l, m have no point in common, then l ‖ù m since A has
no D4 defects. So A satisfies A2. For A3, because A has no D3 defects, for any
line n and point s , there is a line through s parallel to n. Suppose for contradiction
that there are two distinct lines l and m passing through s and parallel to n. As
‖ù is an equivalence relation, l ‖ù m. But then we have two distinct parallel lines l
and m that intersect at a point, namely s , thus violating C4 and contradicting the
coherence of A . By C5, A has three non-collinear points, so A4 is satisfied. This
proves claim 2.

Thus we conclude that A is an affine plane and C is a bounded morphic image
of A , thereby establishing the truth of proposition 3.8. ⊣

We are nearly ready to establish our main result. We need three preliminary
remarks.

Remark 3.9. We recall the standard translation of modal formulas to first-order
ones. See, e.g., [4, definition 2.45], or [6, p.122]. We tailor it to our two-sorted
system. For each v ∈ VARp ∪VARl , introduce a unary relation symbol Qv . LetL
be the signature consisting of these symbols together with binary relation symbols
å and ‖. Then for each modal formula ϕ and each first-order variable x, we define
a first-order L -formula ϕx by induction on ϕ, as follows. vx = Qv(x); (¬ϕ)x =
¬ϕx ; (ϕ∧ø)x = ϕx ∧øx ; ([01]ë)x = ∀y(x å y → ëy); ([10]ð)x = ∀y(y å x → ðy);
and ([11]ë)x = ∀y(x ‖ y → ëy). Here, ð ∈ Π, ë ∈ Λ, and y is any variable other
than x. Any modal model M = (P,L, å, ‖, V ) can be viewed as a first-order L -
structure M with domain P ∪ L, with (Qv)M = V (v) for each v, and with å, ‖
interpreted as inM . If the frame ofM is a configuration, P and L are definable by
¬(x ‖ x) andx ‖ x, respectively. Then, for every point formulað, the statement that
M , s |= ð for some s ∈ P is equivalent toM |= ð̂, where ð̂ = ∃x(¬(x ‖ x) ∧ ðx),
and similarly for line formulas.
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Remark 3.10. We will be using Jankov–Fine formulas. See [6, chapter 9] or
[4, theorem 3.21] for information. First, define the following abbreviations:

[·]ð = [01][10]ð, for any point formula ð,
[−]ë = [01][11]ë, for any line formula ë.

These will serve as ‘universal modalities’: in any model whose frame is a
1-configuration, [·]ð is true at a point s iff ð is true at all points, and [−]ë is
true at s iff ë is true at all lines. Let 〈·〉 and 〈−〉 denote the corresponding diamonds:
i.e., 〈·〉ð = ¬[·]¬ð, etc.
Now let k < ù, and write the Ck that we obtained from proposition 3.6 as
(Pk , Lk , åk , ‖k). As Ck is finite and we have definable universal modalities for it,
we can write a ‘Jankov–Fine formula’ îk describing its entire structure. Enumerate
the points and lines of Ck as Pk = {s0, . . . , sm} and Lk = {l0, . . . , lw}. Associate
with each point si and line lj a distinct point propositional letter pi ∈ VARp and
a distinct line propositional letter aj ∈ VARl , respectively. Now define îk (a point
formula) to be the conjunction of the following formulas:

1. [·](p0 ∨ · · · ∨ pm) ∧
∧

i≤m

〈·〉pi .

2. [−](a0 ∨ · · · ∨ aw) ∧
∧

j≤w

〈−〉aj .

3. [·](pi → ¬pj) for each i, j with i 6= j.
4. [−](ai → ¬aj) for each i, j with i 6= j.
5. [·](pi → 〈01〉aj) for each i, j such that si åk lj .
6. [·](pi → ¬〈01〉aj) for each i, j such that ¬(si åk lj).
7. [−](ai → 〈10〉pj) for each i, j such that sj åk li .
8. [−](ai → ¬〈10〉pj) for each i, j such that ¬(sj åk li).
9. [−](ai → 〈11〉aj) for each i, j such that li ‖k lj .
10. [−](ai → ¬〈11〉aj) for each i, j, such that ¬(li ‖k lj).

Let V be any valuation on Ck such that V (pi) = {si} (i ≤ m) and V (ai) = {li}
(i ≤ w). Plainly, (Ck , V ), s |= îk for any s ∈ Pk , so îk is satisfiable in Ck .
On the other hand, suppose that îk is satisfiable in an affine planeA . Let (A , V

′)
be a model in which îk is true at some point. Define a map f by stipulating that
for each point s ofA , f(s) is the unique si ∈ Pk with s ∈ V

′(pi), and similarly for
lines. Then a standard argument shows thatf : A → Ck is a well defined surjective
boundedmorphism. Since by proposition 3.7,Ck is not the boundedmorphic image
of any affine plane, we conclude that ¬îk is valid in every affine plane.

Remark 3.11. We will assume the following rules of inference: modus ponens
(from ϕ and ϕ → ø derive ø), generalisation (from ð ∈ Π derive [10]ð, and
from ë ∈ Λ derive [01]ë and [11]ë), and substitution (from ϕ, derive any formula
obtained by replacing any occurrence in ϕ of a variable in VARp by an arbitrary
point formula, and similarly for VARl ). A set Φ of modal formulas is said to
axiomatise the logic of affine planes if the set of formulas valid in all affine planes is
precisely the smallest set of formulas containing Φ and closed under these inference
rules (i.e., the set of formulas derivable from Φ).

We can now prove our main result. The proof follows a well-trodden path.
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Theorem 3.12. The modal logic of affine planes is not finitely axiomatisable.

Proof. Assume for contradiction that there is a finite set Φ of formulas that
axiomatises themodal logic of affine planes. Let k < ù. We know from remark 3.10
that ¬îk is valid in affine planes, so ¬îk is derivable from Φ. If every ϕ ∈ Φ were
valid in Ck , then since the inference rules clearly preserve frame validity, ¬îk would
also be valid in Ck . Since we know from remark 3.10 that it is not, we deduce that
there is a model Mk with frame Ck in which some ϕ ∈ Φ is false at some point
or line. Let L be the signature andMk the first-orderL -structure obtained from
Mk as in remark 3.9, and let è =

∨
ϕ∈Φ ¬̂ϕ. Then Mk |= è. This holds for all k.

Now for each k < ù, we can write a first-order L -sentence ÷k that is true in an
L -structure M iff M is the first-order counterpart of a model M whose frame is
a k-configuration. Thus, Mk |= ÷l for all l ≤ k. It follows by compactness that
theL -theory {è} ∪ {÷k : k < ù} is consistent. LetM be a countable model of it.
AsM |= ÷k for all finite k, there is a modal modelM = (F , V ) of whichM is the
first-order counterpart, and F is an ù-configuration. By proposition 3.8, F is the
bounded morphic image of some affine plane A . Now Φ axiomatises the logic of
affine planes, so all its formulas are valid inA . Since bounded morphisms preserve
validity (remark 2.5), they are also valid in F . ButM |= è, so at least one of them
is not valid inF . This is a contradiction, and we therefore conclude that the modal
logic of affine planes is not finitely axiomatisable. ⊣

The result holds for any inference rules that preserve validity in a configuration.
As far as we know, the fundamental problems of finding a transparent explicit
axiomatisation of affine planes, and determining the decidability and (if decidable)
the complexity of the logic of affine planes, remain open. Whether the logic of affine
planes has the finite model property is also not known to us.
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