NL

Upper Bounds on Locally Countable Admissible Initial Segments of a Turing Degree Hierarchy

Author(s): Harold T. Hodes

Source: The Journal of Symbolic Logic, Dec., 1981, Vol. 46, No. 4 (Dec., 1981), pp. 753760

Published by: Association for Symbolic Logic
Stable URL: https://www.jstor.org/stable/2273224

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms \& Conditions of Use, available at https://about.jstor.org/terms

UPPER BOUNDS ON LOCALLY COUNTABLE ADMISSIBLE INITIAL SEGMENTS OF A TURING DEGREE HIERARCHY¹

HAROLD T. HODES

Abstract

Where AR is the set of arithmetic Turing degrees, $\boldsymbol{0}^{(\omega)}$ is the least member of $\left\{\boldsymbol{a}^{(2)} \mid \boldsymbol{a}\right.$ is an upper bound on AR\}. This situation is quite different if we examine HYP, the set of hyperarithmetic degrees. We shall prove (Corollary 1) that there is an a, an upper bound on HYP, whose hyperjump is the degree of Kleene's \mathcal{O}. This paper generalizes this example, using an iteration of the jump operation into the transfinite which is based on results of Jensen and is detailed in [3] and [4]. In § 1 we review the basic definitions from [3] which are needed to state the general results.

§1. Introduction. Where $A \subseteq \omega, \boldsymbol{a}$ is a Turing degree, and $A \in \boldsymbol{a}$, we may define a hierarchy of Turing degrees $\lambda \xi \cdot \boldsymbol{a}^{(\xi)}$ on $\aleph_{1}^{L[A]}$. This hierarchy is studied in [2]. We shall review the basic definitions. Where X is any set, let
$L_{0}[X]=M_{0}[X]=\langle H F ; \varepsilon \upharpoonright H F, X \cap H F ; H F\rangle$;
$L_{\xi+1}[X]=\langle Y ; \varepsilon \upharpoonright Y, X \cap Y ; Y\rangle$ where Y is the collection of all sets first-order definable over $L_{\xi}[X]$;
$L_{\lambda}[X]=\bigcup_{\xi<\lambda} L_{\xi}[X]$, where λ is a limit ordinal;
$M_{\omega \xi}[X]=L_{\xi}[X]$;
$M_{\omega \cdot \xi+n}[X]=\langle Y ; \varepsilon \upharpoonright Y ; X \cap Y ; Y\rangle$ where $Y=\Delta_{n}\left(L_{\xi}[X]\right)$ and $1 \leq n<\omega$.
Both $L_{\xi}[X]$ and $M_{\xi}[X]$ are, by definition, structures; we shall abuse notation by letting ' $L_{\xi}[X]$ ' and ' $M_{\xi}[X]$ ' also stand for the universes of these structures. Note that if $A \equiv{ }_{T} B$ then $M_{\xi}[A]=M_{\xi}[B]$ for any ordinal ξ. For $B \subseteq \omega, B$ is a master code for ξ relative to $A \subseteq \omega$ iff:

$$
\left\{\boldsymbol{F} \in \omega^{\omega} \mid F \leq_{T} \boldsymbol{B}\right\}=M_{\xi}[A] \cap \omega^{\omega} .
$$

Master codes for ξ relative to A are unique up to Turing degree. $\lambda \xi \cdot \boldsymbol{a}^{(\boldsymbol{\xi})}$ is the sequence of the Turing degrees of the master codes relative to A, taken in increasing order, where $\boldsymbol{a}=\operatorname{deg}(A)$. More explicitly, let ξ be an $M[A]$-index iff $M_{\xi+1}[A]-$ $M_{\xi}[A]$ contains a real. The fundamental theorem on master codes, due to Jensen, tells us:
ξ is an $M[A]$-index iff there is a master code for ξ relative to A.
The proof of this theorem provides a "normal form" for master codes. A structure $\langle X ; E, F ; X\rangle$, where $E \subseteq \omega \times \omega, F \subseteq \omega$ and $X=\operatorname{Field}(E)$, is an $E_{\alpha}[Z]$ iff

$$
\langle X ; E, F ; X\rangle \simeq\left\langle L_{\alpha}[Z] ; \varepsilon \mid L_{\alpha}[Z], Z ; L_{\alpha}[Z]\right\rangle
$$

[^0]$\mathrm{Th}_{n}\left(E_{\alpha}[Z]\right)$ is the $\left(\Sigma_{n} \cup \Pi_{n}\right)$ theory of $E_{\alpha}[Z]$. Then the master code for ξ relative to A is the least degree of the form $\operatorname{deg}\left(\operatorname{Th}_{n}\left(E_{\alpha}[A]\right)\right)$, where $\xi=\omega \cdot \alpha+n, n<\omega$.

Let Ind ${ }^{a}$ enumerate the $M[A]$-index ordinals in increasing order. $\boldsymbol{a}^{(\xi)}$ is the Turing degree of master codes for $\operatorname{Ind}^{a}(\xi)$ relative to A. By the normal form theorem, $\boldsymbol{a}^{(\xi)}=\operatorname{deg}\left(\operatorname{Th}_{n}\left(E_{\alpha}[A]\right)\right)$ for some $E_{\alpha}[A]$, where $\omega \cdot \alpha+n=\operatorname{Ind}^{a}(\xi)$.

What is the relation between $\boldsymbol{a}^{(\lambda)}$ and $\left\{\boldsymbol{a}^{(\xi)} \mid \xi<\lambda\right\}$? We shall only consider this question for $\boldsymbol{a}=\mathbf{0}$; by standard relativization arguments, results for $\mathbf{0}$ extend easily to arbitrary \boldsymbol{a}. Let I_{λ} be the ideal of Turing degrees generated by $\left\{0 \boldsymbol{0}^{(\xi)} \mid \xi<\right.$ $\lambda\}$. In [3] and [4], the above question was answered in terms of exact pairs for I_{λ}; in this paper we approach the question in terms of upper bounds on I_{λ}. To make clear the differences, we restate the central results of [3].

Let $J^{a}(\xi)$ be the least strict upper bound on $\left\{\operatorname{Ind}^{a}(\eta) \mid \eta<\xi\right\}$, and $F^{a}(\alpha)$ be the length of the $M[A]$-gap started at α; in other words, where $\boldsymbol{a}=\operatorname{deg}(A)$:

$$
F^{a}(\alpha)=\text { the maximum } \beta \text { such that }\left(M_{\alpha+\beta}[A]-M_{\alpha}[A]\right) \cap \omega^{\omega}=\varnothing
$$

Thus $\operatorname{Ind}^{a}(\alpha)=J^{a}(\alpha)+F^{a}\left(J^{a}(\alpha)\right)$.
If $\boldsymbol{a}=\mathbf{0}$, we may take $A=\varnothing$ and omit explicit relativization. A degree \boldsymbol{a} is I-exact, where I is an ideal of Turing degrees, iff $\boldsymbol{a}=\boldsymbol{b} \vee \boldsymbol{c}$ and $I=\{\boldsymbol{d} \mid \boldsymbol{d} \leq \boldsymbol{b}$ and $\boldsymbol{d} \leq \boldsymbol{c}\}$. In [3] it is proved that $\mathbf{0}^{(\lambda)}$ is the least member of $\left\{\boldsymbol{a}^{\left(\mu_{\lambda}\right)} \mid \boldsymbol{a}\right.$ is I_{λ}-exact $\}$, where

$$
\mu_{\lambda}= \begin{cases}2+F(J(\lambda)) & \text { if } J(\lambda) \text { is not a limit of } M \text {-gaps; } \\ 3+F(J(\lambda)) & \text { otherwise }\end{cases}
$$

(α is an M-gap iff $F(\alpha)>0$.)
Furthermore, for $\xi<\mu_{\lambda},\left\{\boldsymbol{a}^{(\xi)} \mid \boldsymbol{a}\right.$ is I_{λ}-exact $\}$ has no least member. Thus the "distance" between I_{λ} and $\mathbf{0}^{(\lambda)}$, measured in terms of I_{λ}-exact degrees, is determined by the "distance' between' $J(\lambda)$ and the next index ordinal.

In this paper we prove that if $J(\lambda)$ is admissible, then the "distance" between I_{λ} and $\mathbf{0}^{(\lambda)}$, measured in terms of upper bounds on I_{λ}, is as great as possible, namely $\operatorname{Ind}(\lambda)$! Notice that $J(\lambda)$ is admissible iff λ is admissible and locally countable. Furthermore, if $J(\lambda)$ is admissible, $\lambda=J(\lambda)$ and $\operatorname{Ind}(\lambda)=\lambda+F(\lambda)$. Hereafter assume that $\lambda<\left(\aleph_{1}\right)^{L}$ is admissible and locally countable.

Theorem 1. $\mathbf{0}^{(\lambda)}$ is the least member of $\left\{\boldsymbol{a}^{(\mathrm{Ind}(\lambda))} \mid \boldsymbol{a}\right.$ is an upper bound on $\left.I_{\lambda}\right\}$.
If we require the upper bounds in question to have low hyper-degree, and if $F(\lambda)<\omega$, then the situation is slightly less pathological.

Theorem 2. If $F(\lambda)<\omega$ then $\mathbf{0}^{(\lambda)}$ is the least member of

$$
\left\{\boldsymbol{a}^{(\mathrm{Ind}(\lambda)-1)} \mid \boldsymbol{a} \text { is an upper bound on } I_{\lambda} \text { and } \omega_{1}^{\boldsymbol{a}}=\lambda\right\} .
$$

However, if $F(\lambda) \geq \omega$, even this small comfort must be abandoned.
Theorem 3. If $F(\lambda) \geq \omega$, then $\mathbf{0}^{(\lambda)}$ is the least member of

$$
\left\{\boldsymbol{a}^{(\operatorname{Ind}(\lambda))} \mid \boldsymbol{a} \text { is an upper bound on } I_{\lambda} \text { and } \omega_{1}^{\boldsymbol{a}}=\lambda\right\}
$$

Theorem 1 is a generalization of the main negative result of [5].
§2. The basic construction. One direction of Theorems 1,2 and 3 is trivial. For any $\boldsymbol{a}, \boldsymbol{0}^{(\lambda)} \leq \boldsymbol{a}^{(\operatorname{Ind}(\lambda))}$. Suppose λ is admissible, $F(\lambda)<\omega$, and $\omega_{1}^{\boldsymbol{a}}=\lambda$. Then
$\boldsymbol{a}^{(\lambda)}=\operatorname{deg}\left(\operatorname{Th}_{1}\left(E_{\lambda}[A]\right)\right)$ for some $E_{\lambda}[A]$, since $F^{a}(\lambda)=1$. There is an E_{λ} such that $\mathrm{Th}_{1}\left(E_{\lambda}\right) \leq_{T} \mathrm{Th}_{1}\left(E_{\lambda}[A]\right)$, implying that $\mathrm{Th}_{F(\lambda)}\left(E_{\lambda}\right) \leq_{T} \mathrm{Th}_{F(\lambda)}\left(E_{\lambda}[A]\right)$. So $\boldsymbol{a}^{(\lambda+F(\lambda)-1)}$
$=\operatorname{deg}\left(\mathrm{Th}_{F(\lambda)}\left(E_{\lambda}[A]\right)\right)$ and $\mathbf{0}^{(\lambda)} \leq \operatorname{deg}\left(\mathrm{Th}_{F(\lambda)}\left(E_{\lambda}\right)\right)$, implying that $\mathbf{0}^{(\lambda)} \leq \boldsymbol{a}^{(\operatorname{Ind}(\lambda)-1)}$.
The nontrivial content of Theorem 1 is built into this lemma.
Lemma. Suppose $F(\lambda)=\omega \cdot \beta+n$. There is an $A \subseteq \omega$ such that
(i) $\omega_{1}^{A}=\lambda$;
(ii) A is a Turing upper bound on $L_{\lambda} \cap \omega^{\omega}$;
(iii) for some $E_{\lambda+\beta}[A], \mathrm{Th}_{n}\left(E_{\lambda+\beta}[A]\right) \in \Delta_{n+1}\left(L_{\lambda+\beta}\right)$.

Note that $\bigcup I_{\lambda}=L_{\lambda} \cap \omega^{\omega}$ and that for any real $f, \operatorname{deg}(f) \leq \mathbf{0}^{(\lambda)}$ iff $f \in \Delta_{n+1}\left(L_{\lambda+\beta}\right)$.
Proof of Lemma. Our strategy is to combine a Henkin construction in an infinitary language with a forcing argument in a ramified finitary language. The Henkin construction will "produce" $\mathrm{Th}_{0}\left(E_{\lambda}[A]\right)$ and the forcing construction will produce the rest of $\mathrm{Th}_{n}\left(E_{\lambda+\beta}[A]\right)$. Let \mathscr{L} be the L_{λ}-fragment of $\mathscr{L}_{\mathbb{N}_{1}, \mathrm{~N}_{0}}$ with a binary predicate letter ' ε ', a constant ' \boldsymbol{t} ' for each $t \in L_{\lambda}$, and a new constant ' \boldsymbol{A} '. (As usual, a formula has only finitely many variables.) Let $\boldsymbol{L}_{\lambda}[\boldsymbol{A}]$ and $\boldsymbol{L}_{\lambda+\beta}[\boldsymbol{A}]$ be the ramified languages for set-theory with the one-place predicate ' \boldsymbol{A} ' of heights λ and $\lambda+\beta$ respectively, containing ranked abstraction terms as usual. (See for example [3].) If $\beta>0$, an unranked formulae of $\boldsymbol{L}_{\lambda}[\boldsymbol{A}]$ shall be identified with a formula in $\boldsymbol{L}_{\lambda+\beta}[\boldsymbol{A}]$ of rank λ by replacing unranked variables by suitable new variables of $\operatorname{rank} \lambda$. If φ is a formula of $\boldsymbol{L}_{\lambda}[\boldsymbol{A}]$, it may be translated to a finite formulae φ^{*} of \mathscr{L} as follows: replace variables of rank ξ by ordinary variables restricted to $L_{\xi}[A]$, where ' $x \in L_{\xi}[A]$ ' is the obvious Σ_{1} formula with only x free and constants $\boldsymbol{\xi}$ and \boldsymbol{A} of \mathscr{L}; eliminate abstraction terms; replace any new ranked variables as before; eliminate abstraction terms, etc.

We introduce two sequences of new constants to $\mathscr{L}:\left\langle\boldsymbol{k}_{n}\right\rangle_{n \in \omega}$, designed to denote nonstandard ordinals, and $\left\langle\boldsymbol{h}_{n}\right\rangle_{n \in \omega}$, the Henkin constants. Let \mathscr{L}^{+}be the resulting extension of \mathscr{L}, where any formula contains only finitely many \boldsymbol{k}_{n} 's and \boldsymbol{h}_{n} 's. As usual, $\mathscr{L}, \mathscr{L}^{+}$and $\boldsymbol{L}_{\lambda}[\boldsymbol{A}]$ are identified with subsets of $L_{\lambda}, \boldsymbol{L}_{\lambda+\beta}[\boldsymbol{A}]$ with a subset of $L_{\lambda+\beta}$.

Let T be the following $\Delta_{1}\left(L_{\lambda}\right)$ theory in \mathscr{L} :

$$
\begin{gathered}
\left\{\text { Extensionality, } \boldsymbol{A} \subseteq \omega,(\forall \xi)(\exists x)\left(x=L_{\xi}[\boldsymbol{A}]\right)\right\} \\
\cup\left\{\boldsymbol{t} \leq_{T} \boldsymbol{A} \mid t \in L_{\lambda} \cap \omega^{\omega}\right\} \cup \operatorname{Diagram}\left(L_{\lambda}\right) \\
\cup\left\{(\forall x)\left(x \in \boldsymbol{t} \equiv \bigvee_{s \in t} x=\boldsymbol{s}\right) \mid t \in L_{\lambda}\right\} .
\end{gathered}
$$

Let T^{\prime} be the following $\Delta_{1}\left(L_{\lambda}\right)$ theory in \mathscr{L}^{+}:

$$
T^{\prime}=T \cup\left\{\boldsymbol{k}_{n} \text { is an ordinal } \mid n \in \omega\right\} \cup\left\{\boldsymbol{k}_{n+1}<\boldsymbol{k}_{n} \mid n \in \omega\right\} .
$$

T^{\prime} is consistent by an easy Henkin argument. Call a set p of sentences of $\boldsymbol{L}_{\lambda}[\boldsymbol{A}]$ essentially Π_{1} iff each member of p is ranked or Π_{1}. For such p, let p^{*} be the set of sentences φ^{*} where either φ is ranked and $\varphi \in p$ or for some ranked $\psi,(\forall x) \psi \in p$ and φ is $\psi(x / \boldsymbol{c})$, where \boldsymbol{c} is an abstraction term of $\boldsymbol{L}_{\lambda}[\boldsymbol{A}]$. A condition is a pair $\langle p, s\rangle$ where p is finite and essentially I_{1}, s is a finite set of sentences in \mathscr{L}^{+}and
(i) $T^{\prime} \cup p^{*} \cup s$ is consistent.
(ii) If $T^{\prime} \cup p^{*} \cup s \vdash$ ' \boldsymbol{h}_{n} is an ordinal' then either for some $\xi<\lambda$ ' $\boldsymbol{h}_{n}=\xi^{\prime} \in s$ or for some $m,{ }^{\prime} \boldsymbol{k}_{m} \leq \boldsymbol{h}_{n}$ ' $\in s$.

Notice that if $T^{\prime} \cup p^{*} \cup s$ is consistent and $T^{\prime} \cup p^{*} \cup s \vdash$ ' \boldsymbol{h}_{n} is an ordinal' then \boldsymbol{h}_{n} occurs in s; otherwise $T^{\prime} \cup p^{*} \cup s \vdash(\forall x)(x$ is an ordinal), contradicting Dia$\operatorname{gram}\left(L_{\lambda}\right) .\langle p, s\rangle$ extends $\left\langle p^{\prime}, s^{\prime}\right\rangle$ iff $p^{\prime} \subseteq p$ and $s^{\prime} \subseteq s$. Let P be the set of conditions.

Let $S=\left\{p^{*} \cup s \mid\langle p, s\rangle \in P\right\}$. Although not quite a consistency property, since (c0) of [1, p. 85] fails, S is almost one:

Sublemma. S satisfies (c1)-(c7) of [1, p. 85].
As usual, the only nontrivial clauses concern ' \exists ' and ' V '. We prove that (c 6) is satisfied: if ' $(\exists x) \theta^{\prime} \in p^{*} \cup s \in S$ then for some \boldsymbol{h}_{n} and $s^{\prime},\left\langle p, s^{\prime}\right\rangle \in P, s \subseteq s^{\prime}$ and ' $\theta\left(x / \boldsymbol{h}_{n}\right)$ ' $\in s^{\prime}$.

Let \boldsymbol{h}_{n} be the least Henkin constant not occurring in s. Then $U=T^{\prime} \cup p^{*} \cup s \cup$ $\left\{\theta\left(x / \boldsymbol{h}_{n}\right)\right\}$ is consistent. If $U \nvdash{ }^{\prime} \boldsymbol{h}_{n}$ is an ordinal', let $s^{\prime}=s \cup\left\{\theta\left(x / \boldsymbol{h}_{n}\right)\right\}$ and we are done. Suppose that $U \vdash$ ' \boldsymbol{h}_{n} is an ordinal'. Let \boldsymbol{k}_{m} be the least such constant such that no \boldsymbol{k}_{q}, for $q \geq m$, occurs in $s \cup\left\{\theta\left(x / \boldsymbol{h}_{n}\right)\right\}$. If $U \bigcup\left\{\boldsymbol{k}_{m} \leq \boldsymbol{h}_{n}\right\}$ is consistent, let $s^{\prime}=s \cup\left\{\theta\left(x / \boldsymbol{h}_{n}\right), \boldsymbol{k}_{m} \leq \boldsymbol{h}_{n}\right\}$, and we are done. Suppose that $U \cup\left\{\boldsymbol{k}_{m} \leq \boldsymbol{h}_{n}\right\}$ is inconsistent. In any model \mathfrak{M} of $U, h=\boldsymbol{h}_{n}^{\mathfrak{M}}$ is a standard ordinal. If h were nonstandard, we could select a descending sequence $\left\langle d_{i}\right\rangle_{i \in \omega}$ of ordinals in \mathfrak{M} such that $d_{0}=h$ and reinterpret ' \boldsymbol{k}_{m+i} ' to denote d_{i}; where \mathfrak{M}^{\prime} is the model produced by this revision, $\mathfrak{M}^{\prime} \vDash U$, since the only occurrences of ' \boldsymbol{k}_{m+i} ' in U are in $T^{\prime}-T$, and these sentences remain true in \mathfrak{M}^{\prime}. But $\mathfrak{M}^{\prime} \vDash \boldsymbol{k}_{m} \leq \boldsymbol{h}_{n}$. Suppose that for every \mathfrak{M}, if $\mathfrak{M} \vDash U$ then $\left\{\langle x, y\rangle \mid \mathfrak{M} \vDash x<y \leq \boldsymbol{h}_{m}\right\}$ has order type $\geq \lambda$. Then using the formula ' $x<\boldsymbol{h}_{m}$ ', U pins down all ordinals below λ. By Theorem 7.4 of [1, p. 107] this is impossible. So for some $\mathfrak{M} \vDash U \bigcup\left\{\boldsymbol{h}_{n}=\boldsymbol{\xi}\right\}$, for some $\xi<\lambda$. Thus $U \cup$ $\left\{\boldsymbol{h}_{n}=\boldsymbol{\xi}\right\}$ is consistent. Let $s^{\prime}=s \cup\left\{\theta\left(x / \boldsymbol{h}_{n}\right), \boldsymbol{h}_{n}=\boldsymbol{\xi}\right\}$. We have ensured that $\left\langle p, s^{\prime}\right\rangle$ is a condition; so $p^{*} \cup s^{\prime} \in S$, as claimed.

The proof that if ' $V \Phi$ ' $\in p^{*} \cup s \in S$ then for some $\theta \in \Phi$, and some $s^{\prime},\left\langle p, s^{\prime}\right\rangle \in P$, $s \subseteq s^{\prime}$ and ' θ ' $\in s^{\prime}$ is similar. We omit details.

Suppose that $G=\left\langle\left\langle p_{i}, s_{i}\right\rangle\right\rangle_{i \in \omega}$ is a sequence of conditions such that for every $i \in \omega,\left\langle p_{i+1}, s_{i+1}\right\rangle$ extends $\left\langle p_{i}, s_{i}\right\rangle$. We say that G has the Henkin property iff:
(1) For any $i \in \omega$, if ' $(\exists x) \theta^{\prime} \in p_{i}^{*} \cup s_{i}$ then for some Henkin constant \boldsymbol{h}_{n} and some $j \in \omega,{ }^{\prime} \theta\left(x / \boldsymbol{h}_{n}\right)$ ' $\in s_{j}$.
(2) For any $i \in \omega$, if ' $\bigvee \Phi^{\prime} \in p_{i}^{*} \cup s_{i}$ then for some $\theta \in \Phi$, and some $j \in \omega$, ' θ ' $\in s_{j}$.
(3) For any θ in \mathscr{L}^{+}there is a j such that either ' θ ' $\in s_{j}$ or ' $\neg \theta^{\prime} \in s_{j}$.

A sequence G with the Henkin property determines a path through S, which in turn determines a canonical term model $\mathfrak{M}=\mathfrak{M}(G)$ of $\bigcup_{i \in \omega}\left(p_{i}^{*} \cup s_{i}\right)$. Let $A=$ $A(G)=\{n \mid \mathfrak{M} \vDash \boldsymbol{n} \in \boldsymbol{A}\}$. A is a Turing upper bound on $L_{\lambda} \cap \omega^{\omega}$, since for any real $t \in L_{\lambda}, \mathfrak{M} \vDash \boldsymbol{t} \leq_{T} \boldsymbol{A}$ and $t(n)=m$ iff $\boldsymbol{t}^{\mathfrak{M}}\left(\boldsymbol{n}^{\mathfrak{M}}\right)=m^{\mathfrak{M}}$. Furthermore λ is the supremum of the order-types of the standard ordinals of \mathfrak{M}. This is because P was defined to ensure that the type of λ was omitted. Thus $\omega_{1}^{A}=\lambda$. Letting $\widetilde{\mathfrak{M}}=$ $\bigcup_{\xi<\lambda}\left(L_{\xi}[A]\right)^{\mathfrak{M}}$, we have $\widetilde{\mathfrak{M}} \simeq L_{\lambda}[A]$. This is obvious, since $\mathfrak{M} \vDash(\forall \xi)(\exists x)(x=$ $\left.L_{\xi}[A]\right)$ and $\xi^{\mathbb{M}}$ is standard. Finally, $\widetilde{\mathfrak{M}} \vDash \bigcup_{i \in \omega} p_{i}$. Suppose $\varphi \in p_{i}$. If φ is ranked in $\boldsymbol{L}_{\lambda}[\boldsymbol{A}], \mathfrak{M} \vDash \varphi^{*}$; so $\widetilde{\mathfrak{M}} \vDash \varphi^{*}$; so $\widetilde{\mathfrak{M}} \vDash \varphi$. If φ is $(\forall x) \psi$ where ψ is ranked in $\boldsymbol{L}_{\lambda}[\boldsymbol{A}]$, then for any abstraction term \boldsymbol{c} of $\boldsymbol{L}_{\lambda}[\boldsymbol{A}], \mathfrak{M} \vDash \psi(x / \boldsymbol{c})^{*}$; so $\widetilde{\mathfrak{M}} \vDash \psi(x / \boldsymbol{c})^{*}$; so $\widetilde{\mathfrak{M}} \vDash \psi(x / c)$. Since every element of $\widetilde{\mathfrak{M}}$ is denoted by some such abstraction term, $\widetilde{\mathfrak{M}} \vDash \varphi$.

We now define forcing and consider sequences of conditions which have the Henkin property and are generic. Where φ is a sentence of $\boldsymbol{L}_{\lambda+\beta}[\boldsymbol{A}]$, let:
$\langle p, s\rangle \Vdash \varphi$ iff $\varphi \in p$ where $\rho(\varphi)<\lambda$ or $\rho(\varphi)=\lambda$ and φ is a Π_{1} sentence of $\boldsymbol{L}_{\lambda}[\boldsymbol{A}] ;$
$\langle p, s\rangle \Vdash \neg \varphi$ iff for every condition $\left\langle p^{\prime}, s^{\prime}\right\rangle$ extending $\langle p, s\rangle,\left\langle p^{\prime}, s^{\prime}\right\rangle \Vdash \varphi$, where $\rho(\varphi) \geq \lambda$ and if $\rho(\varphi)=\lambda$ then φ is not a Σ_{1} sentence of $\boldsymbol{L}_{\lambda}[\boldsymbol{A}]$;
$\langle p, s\rangle \Vdash\left(\varphi_{1} \& \varphi_{2}\right)$ iff $\langle p, s\rangle \Vdash \varphi_{1}$ and $\langle p, s\rangle \Vdash \varphi_{2}$ where $\rho\left(\varphi_{1}\right), \rho\left(\varphi_{2}\right) \geq \lambda$;
$\langle p, s\rangle \Vdash(\exists x \tau) \psi$ iff for some \boldsymbol{c}, an abstraction term in $\boldsymbol{L}_{\lambda+\beta}[\boldsymbol{A}]$ of rank $\gamma,\langle p, s\rangle$ $\Vdash \psi\left(x^{\tau} / c\right)$, where $\rho\left(\left(\exists x^{r}\right) \psi\right) \geq \lambda$;
$\langle p, s\rangle \Vdash(\exists x) \psi$ iff for some abstraction term $\boldsymbol{c},\langle p, s\rangle \Vdash \psi(x / c)$.
(ρ is the rank function.)
Suppose $G=\left\langle\left\langle p_{i}, s_{i}\right\rangle\right\rangle_{i \in w}$ is a sequence of conditions which is generic with respect to the $\Sigma_{n} \cup \Pi_{n}$ sentences of $\boldsymbol{L}_{\lambda+\beta}[\boldsymbol{A}]$ and which has the Henkin property. Let $\mathfrak{M}=\mathfrak{M}(G)$. The set of sentences of $\boldsymbol{L}_{\lambda+\beta}[\boldsymbol{A}]$ forced by conditions in this sequence also determines a term model $\mathfrak{N}=\mathfrak{N}(G)$. Where \mathfrak{N}_{λ} is \mathfrak{N} restricted to denotations of terms of rank $<\lambda$, we clearly have $\widetilde{\mathfrak{M}} \simeq \mathfrak{R}_{\lambda}$. Thus $\{n \mid \mathfrak{R} \vDash \boldsymbol{A}(\boldsymbol{n})\}=$ $\{n \mid \mathfrak{M} \vDash \boldsymbol{n} \in \boldsymbol{A}\}=A(G)$. The Henkin component of the construction "built" $\widetilde{\mathfrak{M}}$; the forcing component was designed to ensure agreement with the Henkin component, so $\widetilde{\mathfrak{M}} \simeq \mathfrak{N}_{\lambda}$, and to control the construction of the rest of \mathfrak{N} in the usual way. This is why the definition of forcing required that the sentences φ such that $\rho(\varphi)<\lambda$, or $\rho(\varphi)=\lambda$ and φ is Π_{1} in $\boldsymbol{L}_{\lambda}[\boldsymbol{A}]$, be handled differently from other sentences.

We now examine the definitional complexity of forcing. $P \in \Pi_{1}\left(L_{\lambda}\right)$. Thus forcing restricted to the $\Sigma_{1} \cup \Pi_{1}$ sentences of $\boldsymbol{L}_{\lambda}[\boldsymbol{A}]$ is Δ_{2} over L_{λ}. Forcing restricted to $\Sigma_{n} \cup \Pi_{n}$ sentences of $\boldsymbol{L}_{\lambda+\beta}[\boldsymbol{A}]$ is Δ_{n+1} over $L_{\lambda+\beta}$.

Fix countings of the $\Sigma_{n} \cup \Pi_{n}$ sentences of $\boldsymbol{L}_{\lambda+\beta}[\boldsymbol{A}]$, the abstraction terms of $\boldsymbol{L}_{\lambda+\beta}[A]$, and all sentences of \mathscr{L}^{+}, which are Δ_{n+1} over $L_{\lambda+\beta}-$ say $\left\langle\varphi_{i}\right\rangle_{i \in \omega},\left\langle\boldsymbol{c}_{i}\right\rangle_{i \in \omega}$ and $\left\langle\theta_{i}\right\rangle_{i \in \omega}$ respectively. Define a sequence G as follows:
$\left\langle p_{0}, s_{0}\right\rangle=\langle\varnothing, \varnothing\rangle$;
$\left\langle p_{2 i+1}, s_{2 i+1}\right\rangle=$ the $\left\langle_{L}\right.$-least condition $\langle p, s\rangle$ extending $\left\langle p_{2 i}, s_{2 i}\right\rangle$ such that $\langle p, s\rangle$ decides φ_{i};
$\left\langle p_{2 i+2}, s_{2 i+2}\right\rangle=$ the $<_{L}$-least condition $\langle p, s\rangle$ extending $\left\langle p_{2 i+1}, s_{2 i+1}\right\rangle$ such that
(1) either θ_{i} or $\neg \theta_{i} \in s$;
(2) for any $\theta(x)$, if $(\exists x) \theta \in s_{2 i+1}$ then for some $\boldsymbol{h}_{n}, \theta\left(x / \boldsymbol{h}_{n}\right) \in s_{2 i+2}$;
(3) for any Φ, if $\bigvee \Phi \in s_{2 i+1}$ then for some $\theta \in \Phi, \theta \in s_{2 i+2}$.
G is Δ_{n+1} over $L_{\lambda+\beta}$, is generic, and has the Henkin property. Letting $A=A(G)$, $\mathfrak{N}=\mathfrak{N}(G) \simeq L_{\lambda+\beta}[A]$. By the usual forcing = truth lemma, $\mathfrak{N} \vDash \varphi_{i}$ iff $\left\langle p_{2 i+1}\right.$, $\left.s_{2 i+1}\right\rangle \Vdash \varphi_{i}$. Thus $\mathrm{Th}_{n}(\Re) \in \Delta_{n+1}\left(L_{\lambda+\beta}\right)$. "Pulling back to ω " by the counting $\left\langle c_{i}\right\rangle_{i \in_{\omega}}, \mathfrak{R}$ becomes an $E_{\lambda+\beta}[A]$ for which (iii) is satisfied. (i) and (ii) are true by remarks on the Henkin property. QED

Corollary. There is an $A \subseteq \omega$, a Turing upper bound on HYP, the set of hyperarithmetic reals, whose hyperjump has the Turing degree of Kleene's \mathcal{O}.

Proof. Consider the A constructed in this proof where $\lambda=\omega_{1}^{\mathrm{ck}}$. For any $E_{\lambda}[A]$, $\omega_{1}^{A}=\lambda$ implies that $\mathcal{O}^{A} \leq_{T} \mathrm{Th}_{1}\left(E_{\lambda}[A]\right)$. For the $E_{\lambda}[A]$ constructed in the lemma, $\operatorname{Th}_{1}\left(E_{\lambda}[A]\right) \in \Delta_{2}\left(L_{\lambda}\right)$, and so $\operatorname{Th}_{1}\left(E_{\lambda}[A]\right) \leq_{T} \mathcal{O} \leq_{T} \mathcal{O}^{A}$. Thus $\mathcal{O} \equiv{ }_{T} \mathcal{O}^{A}$.

Theorem 2 is also an immediate consequence of the lemma. Suppose $F(\lambda)<\omega$; so $\beta=0$ and $F(\lambda)=n$. Taking $a=\operatorname{deg}(A), A$ and $E_{\lambda}[A]$ as in the lemma, we have $\boldsymbol{a}^{(\lambda+n-1)} \leq \operatorname{deg}\left(\operatorname{Th}_{n}\left(E_{\lambda}[A]\right)\right) \leq \mathbf{0}^{(\lambda)}$.
§3. Theorems 1 and 3. Again, we assume that λ is admissible and locally countable. If $F(\lambda)<\omega$, to prove Theorem 1 we have to construct a $C \subseteq \omega$ so that C is a Turing upper bound on $L_{\lambda} \cap \omega^{\omega}$ and, for an appropriate $E_{\lambda}[C], \boldsymbol{c}^{(\lambda+F(\lambda))}=$ $\operatorname{deg}\left(\operatorname{Th}_{F(\lambda)}\left(E_{\lambda}[C]\right)\right)$, where $\boldsymbol{c}=\operatorname{deg}(C)$. For the latter condition it will suffice to ensure that $\omega_{1}^{C}>\lambda$. But if $F(\lambda)$ is big we face a further worry. Suppose we can construct a C as desired and so that $\mathrm{Th}_{n}\left(E_{\lambda+\beta}[C]\right) \in \Delta_{n+1}\left(L_{\lambda+\beta}\right)$ for some $E_{\lambda+\beta}[C]$, where $F(\lambda)=\omega \cdot \beta+n$. If $\operatorname{Ind}^{c}(\operatorname{Ind}(\lambda))>\operatorname{Ind}(\lambda)$ this will not ensure that $\boldsymbol{c}^{(\operatorname{Ind}(\lambda))}$ $\leq \mathbf{0}^{(\lambda)}$. To avoid this problem we will ensure that $\omega_{1}^{C}>\lambda+\beta$; then $\omega_{1}^{C}>\lambda+$ $\omega \cdot \beta+n=\operatorname{Ind}(\lambda)$, and so $\operatorname{Ind}^{c}(\operatorname{Ind}(\lambda))=\operatorname{Ind}(\lambda)$. We construct a $B \subseteq \omega$ suitably generic over $L_{\lambda+\beta}[A]$, where A is as in the lemma of $\S 2$, so that $\omega_{1}^{B}>\lambda+\beta$ and for an appropriate $E_{\lambda+\beta}[A \oplus B], \mathrm{Th}_{n}\left(E_{\lambda+\beta}[A \oplus B]\right) \in \Delta_{n+1}\left(L_{\lambda+\beta}[A]\right)$. Then $C=A \oplus B$ will be as desired. The trick is to take B generic in the sense of forcing with Steel's tagged trees of height $<\delta$, where δ is the maximum admissible or limit of admissibles $\leq \lambda+\beta$. The details are routine. Basic lemmas concerning Steel forcing are presented in [3].
Theorem 3 is immediate from the lemma of $\S 2$, if $\operatorname{Ind}^{a}(\operatorname{Ind}(\lambda))=\operatorname{Ind}(\lambda)$, where $\boldsymbol{a}=\operatorname{deg}(A), A$ as in the lemma. But in general this is not the case. Where $F(\lambda)=$ $\omega \cdot \beta+n$ and $\beta \geq 1$, our strategy is to produce a $B \subseteq \omega$, suitably generic over $L_{\lambda+\beta}[A]$, and an $E_{\lambda+\beta}[A \oplus B]$ so that if $A \oplus B=C$, then:
(1) $\omega_{1}^{C}=\lambda$;
(2) $\omega_{2}^{C}>\lambda+\beta$;
(3) $\mathrm{Th}_{n}\left(E_{\lambda+\beta}[C]\right) \in \Delta_{n+1}\left(L_{\lambda+\beta}[A]\right)$.

By (1), $\boldsymbol{c}^{(\lambda+\omega)} \leq \operatorname{deg}\left(\operatorname{Th}_{0}\left(E_{\lambda+1}[C]\right)\right.$), where $\boldsymbol{c}=\operatorname{deg}(C)$. (2) implies that $\omega_{2}^{C} \geq \lambda+\omega \cdot \beta+n=\operatorname{Ind}(\lambda)$, and so $\operatorname{Ind}^{c}(\operatorname{Ind}(\lambda))=\operatorname{Ind}(\lambda)$. Thus $\left.c^{(\operatorname{Ind}(\lambda)}\right) \leq$ $\operatorname{deg}\left(\operatorname{Th}_{n}\left(E_{\lambda+\beta}[C]\right)\right)$. Because there is an $E_{\lambda+\beta}[A]$ so that $\operatorname{Th}_{n}\left(E_{\lambda+\beta}[A]\right) \in \Delta_{n+1}\left(L_{\lambda}\right)$, we obtain an $E_{\lambda+\beta}[C]$ so that $\mathrm{Th}_{n}\left(E_{\lambda+\beta}[C]\right) \in \Delta_{n+1}\left(L_{\lambda}\right)$.

To construct B, we take several generic extensions of $L_{\lambda+\beta}[A]$. Let δ be the maximum admissible or limit of admissibles $\leq \lambda+\beta$. Take B_{1} to be a wellfounded tree of height δ which is generic in the sense of Steel forcing and such that $\mathrm{Th}_{n}\left(E_{\lambda+\beta}\left[A \oplus B_{1}\right]\right) \in \Delta_{n+1}\left(L_{\lambda+\beta}[A]\right)$ for some $E_{\lambda+\beta}\left[A \oplus B_{1}\right]$.

Working within $L_{\lambda}\left[A, B_{1}\right]$, we shall construct an appropriately generic extension $L_{\lambda}[A, X]$ of $L_{\lambda}[A]$, where $X \subseteq \lambda, L_{\lambda}[A, X]$ is admissible relative to A and X, and so that X encodes B_{1}. Let a condition r be a function from some $\gamma<\lambda$ into 2 so that $r \in L_{\lambda}[A]$. Let Q be the set of these conditions. Define forcing for sentences of $L_{\lambda}[\boldsymbol{A}, \boldsymbol{X}]$ by the following base clauses:

$$
\begin{array}{ll}
r \Vdash \boldsymbol{X}(\xi) & \text { iff } r(\xi)=1, \\
r \Vdash A(n) & \text { iff } n \in A .
\end{array}
$$

The other clauses are as usual. Forcing Σ_{1} sentences of $\boldsymbol{L}_{\lambda}[\boldsymbol{A}, \boldsymbol{X}]$ is Σ_{1} over $L_{\lambda}\left[A, B_{1}\right]$. A sentence of the form $\left(\forall x^{r}\right)(\exists y) \varphi\left(x^{\tau}, y\right)\left(\left(\exists x^{\tau}\right)(\forall y) \varphi\left(x^{\tau}, y\right)\right)$, where $\varphi\left(x^{\tau}, y\right)$ is ranked in $\boldsymbol{L}_{\lambda}[\boldsymbol{A}, \boldsymbol{X}]$ and $\gamma<\lambda$, shall be called extended Σ_{1} (extended Π_{1}). Suppose $r \Vdash\left(\forall x^{r}\right)(\exists y) \varphi\left(x^{r}, y\right)$, where φ is ranked. This is a I_{2} statement over L_{λ} :

$$
\begin{equation*}
\left(\forall r^{\prime} \supseteq r\right)(\forall c)\left(c \text { an abstraction term of rank } \leq r \supset\left(\exists r^{\prime \prime} \supseteq r^{\prime}\right)\left(\exists c^{\prime}\right)\right. \tag{*}
\end{equation*}
$$

$$
\left.\left(c^{\prime} \text { an abstraction term } \& r^{\prime \prime} \Vdash \varphi\left(c, c^{\prime}\right)\right)\right)
$$

L_{λ} is admissible, and so reflects Π_{2} statements, so (*) is true in L_{η} for some η such that $\gamma \leq \eta<\lambda$. Let $\left\langle c_{i}\right\rangle_{i \in \omega}$ be a counting in $L_{\eta}\left[A, B_{1}\right]$ of the abstraction terms of rank $\leq \gamma$. Let $r_{0}=r ; r_{i+1}$ extends r_{i} and for some c in $L_{\eta}, r_{i+1} \Vdash \varphi\left(c_{i}, c^{\prime}\right)$. Let $\hat{r}=\lim _{i<\omega} \boldsymbol{r}_{i}$. Because λ is admissible relative to $A, \hat{r} \in L_{\lambda}[A]$; clearly $\hat{r} \Vdash$ $\left(\forall x^{\tau}\right)\left(\exists y^{\eta}\right) \varphi\left(x^{\tau}, y\right)$.

Let $\left\langle\varphi_{i}\right\rangle_{i \in \omega}$ and $\left\langle c_{i}\right\rangle_{i \in \omega}$ be $\Delta_{2}\left(L_{\lambda}[A]\right)$ countings of the sentences of $\boldsymbol{L}_{\lambda}[\boldsymbol{A}, \boldsymbol{X}]$ which are extended $\Sigma_{1} \cup$ extended Π_{1} and the abstraction terms of $\boldsymbol{L}_{\lambda}[\boldsymbol{A}, \boldsymbol{X}]$. We construct a generic sequence as follows:

$$
\begin{aligned}
& r_{0}=\langle \rangle ; \\
& r_{3 i+1}=\text { the }<_{L[A]} \text {-least condition extending } r_{3 i} \text { and deciding } \varphi_{i} ; \\
& \qquad r_{3 i+2}=\left\{\begin{array}{c}
r_{3 i+1} \text { if } r_{3 i+1} \| \nmid \varphi_{i} \text { or } \varphi_{i} \text { is not extended } \Sigma_{1} ; \\
\text { that } r \text { such that }\langle r, \eta\rangle \text { is }<_{L[A]} \text { least such that } \\
r \text { extends } r_{3 i+1} \text { and } r \Vdash\left(\forall x^{\tau}\right)\left(\exists y^{\eta}\right) \varphi\left(x^{\tau}, y^{\eta}\right) \\
\text { if } r_{3 i+1} \Vdash \varphi_{i} \text { and } \varphi_{i} \text { is }\left(\forall x^{\tau}\right)(\exists y) \varphi\left(x^{r}, y\right) ; \\
\text { and } \varphi \text { is ranked. }
\end{array}\right.
\end{aligned}
$$

$$
r_{3 i+3}=r_{3 i+2} \cap\left\langle B_{1}(i)\right\rangle .
$$

(Here B_{1} is identified with its characteristic function.) Clearly $\left\langle r_{i}\right\rangle_{i \in \omega} \in$ $\Delta_{2}\left(L_{\lambda}\left[A, B_{1}\right]\right)$. Let $X=\left\{\xi \mid(\exists i) r_{i}(\xi)=1\right\}$. "Pulling back to ω " by the counting of the abstraction terms of $\boldsymbol{L}_{\lambda}[\boldsymbol{A}, \boldsymbol{X}]$, we obtain an $E_{\lambda}[A, X]$ so that $\mathrm{Th}_{1}\left(E_{\lambda}[A, X]\right) \in$ $\Delta_{2}\left(L_{\lambda}[A)\right]$. This easily extends to an $E_{\lambda+\beta}[A, X]$ so that $\operatorname{Th}_{n}\left(E_{\lambda+\beta}[A, X]\right) \in$ $\Delta_{n+1}\left(L_{\lambda+\beta}[A]\right)$. Stages of the form $3 i+2$ ensure that $L_{\lambda}[A, X]$ is admissible relative to A and X. Finally, $B_{1} \in \Delta_{2}\left(L_{\lambda}[A, X]\right)$. To see this, we construct $\left\langle r_{i}\right\rangle_{i \in \omega}$ in a Δ_{2} way over $L_{\lambda}[A, X]$. At each stage of the form $3 i+3$ we consult X and $r_{3 i+2}$ to determine $B_{1}(i)$ and $r_{3 i+3}$. Thus λ is the only ordinal below $\lambda+\beta$ admissible relative to A and X.

Working within $L_{\lambda+\beta}[A, X]$, we use almost disjoint coding to code X into a real B. Because λ must remain admissible relative to $A \oplus B$, we carry out the construction of B using the machinery from $\S 2$. Let $\left\langle f_{\xi}\right\rangle_{\xi<\lambda}$ be a listing of $L_{\lambda}[A] \cap \omega^{\omega}$ in the order imposed by $<_{L[A]}$. Let

$$
S\left(f_{\xi}\right)=\left\{\sigma \mid \sigma \text { is a sequence number } \& \sigma \text { represents an initial segment of } f_{\xi}\right\}
$$

Thus $S\left(f_{\xi}\right) \cap S\left(f_{\eta}\right)$ is infinite iff $\xi=\eta$. Let \mathscr{L} be the fragment of $\mathscr{L}_{\kappa_{1}, \kappa_{0}}$ with predicate ' ε ', for each member t of $L_{\lambda}[A]$ the constant ' \boldsymbol{t} ', (' \boldsymbol{A} ' for A), and a new constant ' \boldsymbol{B} '. Let T be the following theory in $\Delta_{1}\left(L_{\lambda}[A, X]\right)$:

$$
\begin{aligned}
& \left\{\text { Extensionality, }(\forall \xi)(\exists x)\left(x=L_{\xi}[\boldsymbol{A}, \boldsymbol{B}]\right), \boldsymbol{B} \subseteq \boldsymbol{\omega}\right\} \\
& \quad \cup\left\{\boldsymbol{B} \cap S\left(f_{\xi}\right) \text { is finite } \mid \xi \in X\right\} \\
& \quad \cup\left\{\boldsymbol{B} \cap S\left(f_{\xi}\right) \text { is infinite } \mid \xi \notin X\right\} \\
& \\
& \quad \cup \operatorname{Diag}\left(L_{\lambda}[A]\right) \cup\left\{(\forall x)\left(x \in \boldsymbol{t} \equiv \bigcup_{s \in t} x=\boldsymbol{s}\right) \mid t \in L_{\lambda}[A]\right\} .
\end{aligned}
$$

Form T^{\prime} from T as in $\S 2$. Define P, S and forcing as in $\S 2$, where the ramified language in question is $\boldsymbol{L}_{\lambda+\beta}[\boldsymbol{A}, \boldsymbol{B}]$. Fix $\left\langle\varphi_{i}\right\rangle_{i \in \omega}$, a $\Delta_{n+1}\left(L_{\lambda+\beta}[A, X]\right)$ counting of the $\Sigma_{n} \cup$ Π_{n} sentences of $\boldsymbol{L}_{\lambda+\beta}[\boldsymbol{A}, \boldsymbol{B}]$. As in $\S 2$, we construct a sequence of conditions in P,
$\left\langle\left\langle p_{i}, s_{i}\right\rangle\right\rangle_{i \in \omega}$, which is Δ_{n+1} over $L_{\lambda+\beta}[A, X]$, has the Henkin property, and is such that $\left\langle p_{2 i+1}, s_{2 i+1}\right\rangle$ decides φ_{i} for each $i \in \omega$. Once again, we obtain a real $B \subseteq \omega$ such that $\omega_{1}^{A \oplus B}=\lambda, L_{\lambda}[A, B] \simeq \widetilde{\mathfrak{M}}$, where $\mathfrak{M}=\mathfrak{M}\left(\left\langle\left\langle p_{i}, s_{i}\right\rangle\right\rangle_{i \in \omega}\right), \widetilde{\mathfrak{M}} \vDash T$ and $L_{\lambda+\beta}[A, B] \simeq \mathfrak{N}=\mathfrak{N}\left(\left\langle\left\langle p_{i}, s_{i}\right\rangle\right\rangle_{i \in \omega}\right)$. As usual, \mathfrak{N} may be turned into an $E_{\lambda+\beta}[A, B]$ $=E_{\lambda+\beta}[A \oplus B]$ so that $\operatorname{Th}_{n}\left(E_{\lambda+\beta}[A \oplus B]\right) \in \Delta_{n+1}\left(L_{\lambda+\beta}[A, X]\right)$. Recall that for appropriate $E_{\lambda+\beta}[A, X], E_{\lambda+\beta}\left[A, B_{1}\right]$ and $E_{\lambda+\beta}[A]$ we had:

$$
\begin{aligned}
& \operatorname{Th}_{n}\left(E_{\lambda+\beta}[A]\right) \in \Delta_{n+1}\left(L_{\lambda+\beta}\right) \\
& \operatorname{Th}_{n}\left(E_{\lambda+\beta}\left[A, B_{1}\right]\right) \in \Delta_{n+1}\left(L_{\lambda}[A]\right), \\
& \operatorname{Th}_{n}\left(E_{\lambda+\beta}[A, X]\right) \in \Delta_{n+1}\left(L_{\lambda+\beta}\left[A, B_{1}\right]\right)
\end{aligned}
$$

Putting this all together we obtain an $E_{\lambda+\beta}[A \oplus B]$ so that $\mathrm{Th}_{n}\left(E_{\lambda+\beta}[A \oplus B]\right)$ $\in \Delta_{n+1}\left(L_{\lambda+\beta}\right)$. Letting $C=A \oplus B, c=\operatorname{deg}(C)$, we have

$$
\boldsymbol{c}^{(\lambda+\omega \cdot \beta+n)}=\boldsymbol{c}^{(\operatorname{Ind}(\lambda))} \leq \operatorname{deg}\left(\operatorname{Th}_{n}\left(E_{\lambda+\beta}[C]\right)\right)
$$

using the fact that $\beta \geq 1$ and $\omega_{2}^{c} \geq \lambda+\omega \cdot \beta+n$, and so $\operatorname{Ind}^{c}(\operatorname{Ind}(\lambda))=\operatorname{Ind}(\lambda)$. Thus $\boldsymbol{c}^{(\operatorname{Ind}(\lambda))} \leq \boldsymbol{0}^{(\lambda)}$ as desired. QED

How "far" are $0^{(\lambda)}$ and I_{λ}, in terms of upper bounds, where λ is a locally countable nonadmissible limit of admissibles? In [2] the following is proved:

Theo rem. If $\left\{\alpha<\lambda \mid \alpha\right.$ is not Σ_{1} projectible to $\left.\omega\right\}$ is bounded in λ, and λ is a locally countable nonadmissible limit of admissibles, then $\mathbf{0}^{(\lambda)}$ is the least member of $\left\{\boldsymbol{a}^{(3)} \mid \boldsymbol{a}\right.$ is an upper bound on I_{λ} \}.

If, however, $L_{\lambda} \vDash\left(I_{3}^{0} \cup \Sigma_{3}^{0}\right)$ determinacy, there is an a, an upper bound on I_{λ}, such that $\boldsymbol{a}^{(4)} \leq \mathbf{0}^{(\lambda)}$.

REFERENCES

[1] J. Barwise; Admissible sets and structures, Springer-Verlag, Berlin and New York, 1975.
[2] H. Hodes, Jumping through the transfinite, Ph.D. thesis, Harvard University, 1976.
[3] ——, Jumping through the transfinite: The master code hierarchy of Turing degrees, this Journal, vol. 45 (1980), pp. 204-220.
[4] C. Jockusch and S. Simpson, A theoretic characterization of the ramified analytical hierarchy, Annals of Mathematical Logic, vol. 10 (1976).
[5] h.b. Enderton and H. Putnam, a note on the hyperarithmetical hierarchy, this Journal, vol. 35 (1970), pp. 429-430.

Cornell University

ITHACA, NEW YORK 14853

[^0]: Received August 30, 1979.
 ${ }^{1}$ While writing this paper, the author was supported by a fellowship from the Mellon Foundation.

