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Abstract

Bell inequalities, understood as constraints between classical conditional probabilities, can
be derived from a set of assumptions representing a common causal explanation of classical
correlations. A similar derivation, however, is not known for Bell inequalities in algebraic quan-
tum field theories establishing constraints for the expectation of specific linear combinations of
projections in a quantum state. In the paper we address the question as to whether a ‘com-
mon causal justification’ of these non-classical Bell inequalities is possible. We will show that
although the classical notion of common causal explanation can readily be generalized for the
non-classical case, the Bell inequalities used in quantum theories cannot be derived from these
non-classical common causes. Just the opposite is true: for a set of correlations there can be
given a non-classical common causal explanation even if they violate the Bell inequalities. This
shows that the range of common causal explanations in the non-classical case is wider than that
restricted by the Bell inequalities.
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1 Introduction

The original context which led to the formulation of the Bell inequalities was the intention to acco-
modate quantum correlations in a locally causal theory. The clearest formulation of such a theory is
due to Bell himself (Bell, 1987, p. 54). In a number of seminal papers Bell carefully analyzed the in-
tuitions lying behind our notion of locality and causality. His major contribution, however, consisted
in translating these intricate notions into a simple probabilistic language which made these notions
tractable both for mathematical treatment and later for experimental testability. This probabilistic
framework made it possible to exactly identify the probabilistic requirements responsible for the vio-
lation of the Bell inequalities in the EPR scenario. A decade later authors like Van Fraassen (1982),
Jarrett (1984) and Shimony (1986) spent much time to analyze the philosophical consequences of
giving up either the one or the other of these probabilistic assumptions. It also turned out soon
that the conceptual framework in which the Bell inequalities can be treated most naturally is the
common causal explanation of correlations, originally stemming from Reichenbach (1956) and later
adopted to the EPR case by Van Fraassen (1982).

Since the aim of these considerations was to accomodate the EPR scenario in a classical world
picture, both Bell and the subsequent writers used a classical probabilistic framework in their anal-
ysis. All the assumptions representing locality and causality and also the resulting Bell inequalities
were formulated in the language of the classical probability theory. Now, if the Bell inequalities were
classical, how could they be violated in the EPR scenario which is well known to be described by
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quantum theory? Well, the answer is that quantum theory with its mathematical structure and onto-
logical commitments played no role at all in the Bell scenario. Quantum mechanics was only used to
generate classical probabilities, more specifically, classical conditional probabilities by the Born rule.
These classical conditional probabilities, however, could also have been gained directly from the ex-
periments, and indeed later they have been gained so. In other words, the original context of the Bell
inequalities has no intimate link to quantum theory even if quantum theory produces probabilities
which, reinterpreted as classical conditional probabilities, violate those inequalities. This classical
view on the Bell inequalities manifests itself in various authors. Nicolas Gisin for example writes:
“Bell inequalities are relations between conditional probabilities valid under the locality assumption.”
(Gisin 2009, p. 126)

In the face of all these, the Bell inequality has made its way into quantum theory. It has been soon
formulated as a general mark of entanglement of the given quantum state on a C*-algebra (Summers
and Werner 1987a, b). A quote from Bengtson and Zyczkowski (2006, p. 362) might illustrate this
change of focus in the role of Bell inequalities: “The Bell inequalities may be viewed as a kind of
separability criterion, related to a particular entanglement witness, so evidence of their violation for
certain states might be regarded as an experimental detection of quantum entanglement.” How could
the Bell inequality make its way to this non-classical formalism so alien from its original context?
Does there exist a justification for this ‘trespass’?

In this paper we would like to investigate a possible justification for this transition. In this justifi-
cation we intend to follow the route pioneered by Bell, Van Fraassen, Jarrett, Shimony and others in
that we stick to the conviction that the Bell inequalities follow from the requirement of implement-
ing correlations into a locally causal theory. We transcend, however, this view in not assuming that
this theory has to be classical. Or in other words, we pose the question whether the probabilistic
requirements representing local causality and constituting the core of the Bell inequalities can be
reasonable formulated also in a non-classical theory.

A natural candidate for such a non-classical theory with clear conceptions of locality and causal-
ity is algebraic quantum field theory (AQFT) (Haag, 1992). In AQFT events are represented by
projections with well defined spacetime support and local causality is ensured by a set of axioms.
Hence we can pose the question as to whether the Bell inequalities featuring in AQFT follow from a
locally causal explanation of correlations in a similar manner to the classical case. Since we intend
to give a causal explanation for correlations between events, therefore causal explanation is meant
to be a common causal explanation. We will see that the connection between a common causal
explanation and the Bell inequalities in AQFT is not so tight as in the classical case. In the classical
case common causes necessarly commute (in the set theoretical ‘meet’ operation) with their effects.
Since the quantum events of AQFT form a noncommutative structure, one can decide whether to
require that common causes commute with their effects or not. If commutativity is required, the
Bell inequalities will follow from the common cause just like in the classical case. But, as we will
argue, requiring commutativity is only a remininscence of the classical treatment of correlations and
is completely unjustified in the quantum case (see e.g. (Clifton, Ruetsche 1999)). For noncommut-
ing common causes the Bell inequalities will turn out not to be derivable from the presence of the
common cause—at least not in the similar way to the the classical derivation. This raises the ques-
tion whether correlations violating the Bell inequalities can have a noncommuting common causal
explanation. We will answer this question in the affirmative showing up a situation when a set of
correlations maximally violating a specific type Bell inequality has a common causal explanation,
which is local in the sense that it can be accomodated in the intersection of the causal pasts of the
correlating events. The model we use for this example is the local quantum Ising model, the simplest
AQFT with locally finite degrees of freedom.

The paper is structured as follows. In Section 2 we briefly collect the most important concepts and
some of the representative propositions concerning the Bell inequality in AQFT. In Section 3 and 4
we give the definition of the classical and the non-classical common causal explanations, respectively,



and show how these explanations relate to the Bell inequalities. Since the correct ‘translation’ of
the so-called locality and no-conspiracy conditions of the classical common causal explanation into
the non-classical setting is a subtle point not needed for our main purpose, we transfer it into the
Appendix. Now, the common causal explanations in the EPR-Bell scenario is always meant as
providing a joint common cause for a set of correlations. Providing a joint common cause for a
set of correlations is much more demanding than simply providing a common cause for a single
correlation. Therefore in Section 5, preparing for the more complicated case, we investigate the
possibility of a common causal explanation of a single correlation, or in the philosophers’ jargon, the
status of the Common Causal Principle in AQFT. In Section 6 we return to our original question and
present a noncommutative common causal explanation for a set of correlations maximally violating
some Bell inequalities. In Section 7 we briefly analyze the philosophical consequences of applying
noncommauting common causes in our causal explanation. We conclude the paper in Section 8.

2 The Bell inequality in algebraic quantum field theory

In this Section we collect the most important concepts and some of the representative propositions
concerning the Bell inequality in AQFT (see (Summers 1990) and (Halvorson 2007)). We start with
the general C*-algebraic setting and then go over to the special algebraic quantum field theoretical
formulation.

In the general C*-algebraic setting Bell inequality is treated in the following way. Let A and B
be two mutually commuting C*-subalgebras of some C*-algebra C. A Bell operator R for the pair
(A, B) is an element of the following set:

1
B(A,B) = {§(X1(Y1+Y2)+X2(Y1Y2))|XiXi*GA;YiYi*GB;léXi,Yiél}

where 1 is the unit element of C. For any Bell operator R the following can be proven:
Theorem 1. For any state ¢: C — C, one has |¢p(R)| < v/2.

Theorem 2. For separable states (i.e. for convex combinations of product states) |¢(R)| < 1.

The Bell correlation coefficient of a state ¢ is defined as

B(#,A.B) = sup{|¢(R)||ReB(AB)}

and the Bell inequality is said to be violated if 5(¢, A, B) > 1, and mazimally violated if 5(¢, A, B) =
v/2. An important result of Bacciagaluppi (1994) is the following:

Theorem 3. If A and B are C*-algebras, then there are some states violating the Bell inequality
for A ® B iff both A and B are non-abelian.

Going over to von Neumann algebras Landau (1987) has shown that the maximal violation of the
Bell inequality is generic in the following sense:

Theorem 4. Let A7 and A3 be von Neumann algebras, and suppose that A7 is abelian and A7 C N
(N’ being the commutant of N'). Then for any state 3(¢,.A,B) < 1. On the other hand, if
both N; and A5 are non-abelian von Neumann algebras such that Ay C N3, and if (N1, N3)
satisfies the Schlieder-property,’ then there is a state ¢ for which (¢, A, B) = /2.

IThe commuting pair (A, B) of C*-subalgebras in C obeys the Schlieder-property, if for 0 # A € A and 0 # B € B,
AB # 0. Since in case of von Neumann algebras A and B can be required to be projections, Schlieder-property is the
analogue of logical independence in classical logic.



Adding further constraints on the von Neumann algebras one obtains other important results such
as the following two:

Theorem 5. If N7 and N, are properly infinite> von Neumann algebras on the Hilbert space H
such that A7 C NVJ, and (N7, N2) satisfies the Schlieder-property, then there is a dense set of
vectors in H inducing states which violate the Bell inequality across (N7, N3) (Halvorson and
Clifton, 2000).

Theorem 6. Let H be a separable Hilbert space and let R be a von Neumann factor of type 1113
acting on H. Then every normal state ¢ of B(H) maximally violates the Bell inequality across
(R,R’) (Summers and Werner, 1988).

Type I11 factors featuring in Theorems 5-6. are the typical local von Neumann algebras in AQFT
with locally infinite degrees of freedom. Here we briefly survey the basic notions of the theory.

In AQFT observables (including quantum events) are represented by unital C*-algebras associated
to bounded regions of a given spacetime. The association of algebras and spacetime regions is
established along the following lines.

(i) Isotony. Let S be a spacetime. A double cone in S is the intersection of the causal past of a
point x with the causal future of a point y timelike to z. Let X be a collection of double cones
of S such that (K, C) is a directed poset under inclusion C. The net of local observables is
given by the isotone map K 3 V +— A(V) to unital C*-algebras, that is V3 C V5 implies that
A(V1) is a unital C*-subalgebra of A(V2). The quasilocal observable algebra A is defined to be
the inductive limit C*-algebra of the net {A(V),V € K} of local C*-algebras.

(ii) Microcausality. The net {A(V),V € K} satisfies microcausality (aka Einstein causality):
AV'Y N A D A(V),V € K, where primes denote spacelike complement and algebra com-
mutant, respectively. A(V”’) is the smallest C*-algebra in A containing the local algebras
AV), K>V V.

(iii) Covariance. Let Px be the subgroup of the group P of geometric symmetries of S leaving
the collection K invariant. A group homomorphism a: Px — Aut A is given such that the
automorphisms ay,g € Px of A act covariantly on the observable net: a4(A(V)) = A(g -
V),V ek.

To the net {A(V),V € K} satisfying the above requirements we will refer to as a Pic-covariant
local quantum theory. If S = M is the Minkowski spacetime and K is the net of all double cones then
Px is the Poincaré group, and we obtain Poincaré covariant algebraic quantum field theories with
locally infinite degrees of freedom. Restricting the collection I one can obtain Py-covariant local
quantum theories with locally finite degrees of freedom, for instance our example, the local quantum
Ising model (see below).

A state ¢ in a local quantum theory is defined as a normalized positive linear functional on the
quasilocal observable algebra A. The corresponding GNS representation m,: A — B(Hy) converts
the net of C*-algebras into a net of C*-subalgebras of B(H,). Closing these subalgebras in the weak
topology one arrives at a net of local von Neumann observable algebras: (V) := 7, (A(V))",V € K.

Von Neumann algebras are generated by their projections, which are called quantum events since
they can be interpreted as 0-1-valued observables. The expectation value of a projection is the
probability of the event that the observable takes on the value 1 in the appropriate quantum state.
Two commuting quantum events A and B are said to be correlating in a state ¢ if

(AB) # ¢(A)o(B).

2The center contains no finite projections.




If the events are supported in spatially separated spacetime regions V4 and Vg, respectively, then the
correlation between them is said to be superluminal. To see that superluminal correlations violating
Bell inequalities abound in Poincaré covariant algebraic quantum field theories, one has to introduce
further requirements on the representations of A (see Haag 1992):

(iv) Unitary implementability. There is a strongly continuous unitary representation of the Poincaré
group, U: P — B(H,), such that

Ts(ag(A) =U(g)ms(A)U(g9)", A€ A geP.

(v) Vacuum condition. There is a (up to a scalar) unique vector  in the Hilbert space Hy
corresponding to the vacuum state ¢ such that U(g)Q = Q for all g € P.

(vi) Spectrum condition. The spectrum of the self-adjoint generators of the strongly continuous
unitary representation of the translation subgroup R* of P lies in the closed forward light
cone.

(vii) Weak additivity. For any nonempty open region V, the set of operators UgecraN(g- V) is dense
in B(Ho) (in the weak operator topology).

Now, under conditions (i)-(vii) the local von Neumann algebras supported in spacelike separated
double cones satisfy the Schlieder property (Schlieder, 1969). Therefore Theorem 4 applies to these
algebras stating that there is a state maximally violating the Bell inequality across these local
algebras. Moreover, if the net is non-trivial®, then the local von Neumann algebras are properly
infinite. This makes Theorem 5 applicable to local von Neumann algebras supported in spacelike
separated double cones stating that there is a dense set of vectors in H inducing states which violate
the Bell inequality.

Being properly infinite the von Neumann algebras cannot be of type I,, and I3 but they still can
be of type I or 11, . However, a set of independent results indicates that the local von Neumann
algebras are of type 111, more specifically hyperfinite* factors of type I11;. Buchholz et al. (1987)
proved that the local algebras for relativistic free fields are type I1I; and it was also shown that
one can construct the local von Neumann algebras as a unique type I11; hyperfinite factor from the
underlying Wightman theory by adding the assumption of scaling limit (see (Fredenhagen (1985)).

Instead of deriving the type of the von Neumann algebras from more general physical require-
ments, one also can explicitely add this condition as a new axiom of AQFT:

(viii) The type of the algebras. For every double cone V the von Neumann algebra N(V) is of type
I11.

Under conditions (i)-(viii) the local von Neumann algebras supported in spacelike separeted double
cones satisfy the assumptions of Theorem 6, therefore every normal state will maximally violate the
Bell inequality across pairs of algebras supported in spacelike separated double cones.

Finally, we mention a physically important consequence of Theorem 6:

Theorem 7. The vacuum state maximally violates the Bell inequality across the wedge® algebras
(NW),N(W)"). (Summers, Werner 1988).

As said above, the Bell inequality typically used in AQFT is of the following form:

|p(X1(Y1+Y2) + X1 (Y1 — Y2))| < 2, (1)

3For each double cone V, A(V) # C1.
4The weak closure of an ascending sequence of finite dimensional algebras.
5Poincaré transforms of the region Wg := {z € M|z1 > |zo|}.




where X,,, € N(V4) and Y,, € N (V) are self-adjoint contractions (that is —1 < X,,,,Y,, < 1 for
m,n = 1,2) supported in spatially separated spacetime regions V4 and Vg, respectively. This type
of Bell inequality is usually referred to as the Clauser—-Horne—Shimony—Holte (CHSH) inequality
(Clauser, Horne, Shimony and Holt, 1969). Sometimes in the EPR-Bell literature another Bell-type
inequality is used instead of (1): the Clauser—-Horne (CH) inequality (Clauser and Horne, 1974)
defined in the following way:

—1< ¢p(A1B1+ A1By + AsB1 — A3By — A1 — By) <0, (2)

where A,, and B, are projections located in N(V4) and N (Vg), respectively. It is easy to see,

however, that the two inequalities are equivalent: in a given state ¢ the set {(A,,, B,);m,n = 1,2}

violates the CH inequality (2) if and only if the set {(X,,, Y,);m,n = 1,2} of self-adjoint contractions

given by

X = 24,1 (3)

Y, = 2B,-1 (4)

violates the CHSH inequality (1). Therefore, from now on we will concentrate only on the CH-type
Bell inequalities.

In the next two sections we turn to the common causal explanation behind the Bell inequalities.

In the next Section we introduce the basic notions of the classical common causal explanation leading
to the Bell inequalities; in the subsequent Section we generalize these notions for the quantum case.

3 Classical common causal explanation

Let us begin with Hans Reichenbach’s (1956) original definition which is historically the first prob-
abilistic characterization of the notion of the common cause. Let (€, 3, p) be a classical probability
measure space and let A and B be two positively correlating events in X:

p(AAB) > p(A)p(B). (5)

Definition 1. An event C € ¥ is said to be the Reichenbachian common cause of the correlation
between events A and B if the following conditions hold:

pP(ANB|C) = p(A[C)p(B|C) (6)
P(ANBICT) = p(A|CH)p(BIC) (7)
p(AIC) > p(AICH) (8)
p(BIC) > p(B|CY) (9)

where C* denotes the orthocomplement of C and p(-|-) is the conditional probability defined by
the Bayes rule. One refers to equations (6)-(7) as the screening-off conditions and to inequalities
(8)-(9) as the positive statistical relevancy conditions.

Reichenbach’s definition, however, cannot be applied directly to AQFT for four reasons. First, the
positive statistical relevancy conditions restrict one to common causes which increase the probability
of their effects; or in other words, they exclude negative causes. Second, the definition also excludes
situations in which the correlation is not due to a single cause but to a system of cooperating
common causes. Third, it is silent about the spatiotemporal localization of the events. Fourth and
most importantly, it is classical.

Let us first address the first two problems. Let A and B be two correlating events in a classical
probability measure space (2, 2, p) that is

p(AANB) # p(A)p(B). (10)



Definition 2. A partition {Cy},, in ¥ is said to be the common cause system of the correlation
(10) if the following screening-off condition holds for all k € K:

p(ANB|Cy) = p(A|Ck)p(B|Ck), (11)

where | K|, the cardinality of K is said to be the size of the common cause system. A common cause
system of size 2 is called a common cause (without the adjective ‘Reichenbachian’, indicating that
the inequalities (8)-(9) are not required).

Concerning the third problem, namely, the localization of the common cause, one has (at least)
three different options. Suppose that the two events A and B are localized in two bounded and
spatially separated regions V4 and Vp of a spacetime S. Then one can localize {Cy} either (i)
in the wnion or (ii) in the intersection of the causal past of the regions V4 and Vp; or (iii) more
restrictively, in the spacetime region which lies in the intersection of causal pasts of every point of
V4 UVp. Formally, we have

wpast(Va,Vg) = I_(Va)UI_(Vp)
epast(Va,Ve) = I-(Va)NI_(Vp)
SpaSt(VAa VB) = MNzevauvgs I (‘T)

where I_ (V) denotes the union of the backward light cones i.e. the causal pasts I_(x) of every
point z in V' (Rédei, Summers 2007). We will refer to the above three pasts in turn as the weak
past, common past, and strong past of A and B, respectively (see Fig. 1). The notion of these pasts
presupposes a spacetime localization structure of the classical event algebra. (For such an attempt

see (Henson, 2005).)
/ \

A

Figure 1: Possible localizations of the common cause system in different pasts of V4 and Vjg.

Now, suppose that we do not face one correlation (A, B) but a set of correlations that is events
A,, and B, in ¥ such that for any m € M,n € N

P(Am ABn) #  p(Am)p(Bn). (12)

If our aim is to explain all of these pair-correlations {(A4,,, B,);m € M,n € N} by a single common
cause system, then we are led to the following definition:

Definition 3. A partition {Cr},cx in ¥ is said to be a joint® common cause system of the set of
correlations {(A,, B,);m € M,n € N} if the following screening-off condition holds for all m € M,
ne N,and k € K:

p(Am/\Bnlck) = p(Am|Ck)p(Bn|Ck)- (13)

6Tn (Hofer-Szab6 and Vecsernyés, 2012a,b) called common common cause system.



Obviously, for a set of correlations to have a joint common cause system is much more demanding
than to simply have a separate common cause system for each correlation.

Now, let us complicate the picture a little further by introducing conditional probabilities. Suppose
that events A,, and B,, are outcomes of measurements of the observables A,, and By, respectively.
Let a,, and b,, respectively denote the events that the appropriate measurement devices are set
to measure the observables A,, and By, respectively. Let us refer to these events as measurement
choices. To be more specific, suppose that each measurement choice a,, in region V4 can yield
only two outcomes A, and A, and similarly the measurement choices b,, in region Vz can again
yield only two outcomes B,, and B;-. Finally, suppose that probability of the different measurement
choices a,, in region V4 add up to 1, and similarly for the measurement choices b,, in region Vp.

Now, the events A,, and B,, are said to be correlating in the conditional sense if for all A,,, B,,
G, by € X (m € M,n € N) the following holds:

p(Am A Bplam Aby)  # p(Amlam Aby) p(Brlam A by). (14)

What does a joint common causal explanation of these conditional correlations consists in? The
answer to this question is given in the following definition:

Definition 4. A local, non-conspiratorial joint common causal explanation of the conditional cor-
relations (14) consists in providing a partition {Cy} in X such that for any m,m’ € M,n,n’ € N the
following requirements hold:

p(Am A Bplam A by A Cr) = p(Am|am A by A C) p(Brlam A by A Ck) (screening-off)  (15)
p(Am|am Aby A Cr) = p(Am|am A bp A Cy) (locality) (16)

P(Bnlam A by A Ck) = p(Bplam: Aby ACk) (locality) (17)

P(am A by A Ck) = p(am Abyp) p(Ck) (no-conspiracy) (18)

The motivation behind requirements (15)-(18) is the following. Sereening-off (15) is simply the
application of the notion of common cause for conditional correlations: although A,, and B, are
correlating conditioned on a,, and b,, they will cease to do so if we further condition on {C}.
Locality (16)-(17) is the natural requirement that the measurement outcome on the one side should
depend only on the measurement choice on the same side and the value of the common cause but
not on the measurement choice on the opposite side. Finally, no-conspiracy (18) is the requirement
that the common cause system and the measurement choices should be probabilistically independent.
(For the justification of the above requirements by Causal Markov Condition see (Glymour, 2006).)

Let us now proceed further. A straightforward consequence of Definition 4 is the following proposition
(Clauser, Horne, 1974):

Proposition 1. Let A,,, By, a, and b, (m,n = 1,2) be eight events in a classical probability
measure space (£2, X, p) such that the pairs {(A,,, Bn);m,n = 1,2} correlate in the conditional sense
of (14). Suppose that {(A, Bn);m,n = 1,2} has a local, non-conspriratorial joint common causal
explanation in the sense of Definition 4. Then for any m,m/,n,n’ = 1,2;m # m/;n # n’ the following
classical Clauser—Horne inequality holds:

-1 < p(Am A Bn|am A bn) +p(Am A Bn/|am A bn/) +p(Am’ A Bn|am/ A bn)
7p(Am’ A Bn/|am/ A bn/) - p(Am|am A bn) - p(Bn|am A bn) <0 (19)

Proof. Tt is an elementary fact of arithmetic that for any «, o', 3,5’ € [0,1] the number

aB+af +dB—-df —a-3 (20)



lies in the interval [—1,0]. Now let a, &', 3, 3" be the following conditional probabilities:

= p(Amlam A b, ACy) (21)
= p(Apms|am: A by A Cy) (22)

p(Bnlam A by A Cy) (23)
(B am: A bpr A C) (24)

R e o
i

Plugging (21)-(24) into (20) and using locality (16)-(17) one obtains
—1 < p(Aplam A bp A Cr)p(Bp|am A bp A Cl) 4+ p(Amlam A bnr A Cr)p(Bpr|am A by A C)
+p(An |am: A by A Cr)p(Bplam: Abn A Cr) — p(Amy|am: Abp A Cr)p(Bas |am: A by A Ck)
—p(Amlam ANby ACr) — p(Brlam ANby ACr) <0 (25)
Using screening-off (15) one gets

—1 < p(Am A Bplam Aby A Ck) + p(Apm A Burlam A by ACk) + (A A Bplam: A by AC)
7p(Am/ A\ Bn/|am/ Abyr A Ck) — p(Am|am A b, A Ck) fp(Bn|am A b, N Ck) <0 (26)

Multiplying the above inequality by p(C}), using no-conspiracy (18) and summing up for the index
k one obtains

1<) (p(Am A Bo A Cilam Abn) + p(Am A Byt A Cilam Abu) +p(Amr A By A Clam: A by)
k
7p(Am/ A B A Ck|am/ AN bn/) — p(Am A\ C’k|am A\ bn) — p(Bn AN C’k|am A\ bn)) <0 (27)

Finally, applying the theorem of total probability

ZP(Y A Ck) = p(Y)
e

one arrives at (19) which completes the proof. m

Proposition 1 plays a crucial role in understanding the CH inequality (19). It provides, so to
say, a ‘classical common causal justification’ of the classical CH inequality by showing that (19) is a
necessary condition for the existence of a local, non-conspriratorial joint common causal explanation
for a set of conditional correlations.

The well-known situation in which the classical CH inequality (19) is violated and hence the cor-
relations in question have no local, non-conspriratorial joint common causal explanation, is the
EPR-Bohm scenario. Consider a pair of spin—% particles prepared in the singlet state (see Fig. 2).
Let a,, (m = 1,2) denote the event that the measurement apparatus is set to measure the spin

Figure 2: EPR-Bohm setup for spin—% particles



in direction @, in the left wing; and let p(a.,,) stand for the probability of a,,. Let b, (n = 1,2)
and p(by,) respectively denote the same for direction b, in the right wing. (Note that m = n does
not mean that d,, and l;n are parallel directions.) Furthermore, let p(A,,) stand for the probability
that the spin measurement in direction @,, in the left wing yields the result ‘up’ and let p(B,) be
defined in a similar way in the right wing for direction bn. According to the statistical algorithm
of quantum mechanics the conditional probability of getting an ‘up’ result provided we measure the
spin in direction @, in the left wing; getting an ‘up’ result provided we measure the spin in direction
b, in the right wing; and getting ‘up-up’ result provided we measure the spin in both directions @,
and b, are given by the following relations:

p(Amlam Nb,) = (28)

p(Bnlam ANb,) = (29)

O, b
22 AmOn
S11 (' 9 ) (30)

where 0,5, denotes the angle between directions a,, and l;n For non-perpendicular directions @,
and b,, (28)-(30) predict conditional correlations specified in (14). Now, in order to provide a classical
local, non-conspiratorial joint common causal explanation for these correlations, the conditional
probabilities (28)-(30) have to satisfy the classical CH inequality (19). Since for appropriate choice
of the measurement directions this inequalitity is violated, EPR correlations cannot be given a
classical local, non-conspiratorial joint common causal explanation.

N N~ DN

p(Am A Bplam ANb,) =

Observe that up to this point everything has been classical. Quantum mechanics (QM) was simply
used to generate classical conditional probabilities by the Born rule. These conditional probabilities,
however, could also have been directly obtained from the laboratory and in the actual experiments
they are gained in this direct way indeed. So it is completely satisfactory to interpret the EPR
scenario—in accord with the quote from Gisin in the Introduction—as a classical situation with
classical conditional correlation (between detector clicks) violating the classical CH inequality (19)
(see (Szabd 1998)).

But this is not the standard interpretation. The standard way to describe the above EPR
situation is to adopt another mathematical formalism, the formalism of quantum theory. Here
events are represented as projections of the von Neumann lattice of the tensor product matrix
algebra M3(C) ® M2(C) and probabilities are gained by the quantum states. So instead of (28)-(30)
one writes the following:

F(An) = Tr(p" (A ©1p)) = ¢ (31)
#(B) = Tr(p'(1a@B) =5 (32)
S AnB) = Trl (A B,)) = o (Lste) (33)

where A,, and B,, denote projections onto the eigensubspaces with eigenvalue +% of the spin oper-

ators associated with directions @, and by, respectively, and ¢*(-) = Tr(p*-) is the singlet state.
Moreover, if we go over to AQFT, these projections will be localized in a well-defined spacetime
region.

Substituting the non-classical probabilities (31)-(33) into the non-classical CH inequality (2)
defined in the Introduction one finds a violation of this inequality for appropriate choices of the
projections A,,, B,. But what does it mean? First, it is important to be aware of the fact that now
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we adopt another theory to account for correlations. But then we need to take the consequences of
this move seriously. This means that we need to represent every event of the model as projections
of a von Neumann algebra. Among them common causes! So the following questions arise: Can the
classical notion of the common cause (system) generalized for the non-classical case? What is the
relation of this non-classical notion of common cause to the non-classical CH inequality (2)? Does
there exist a non-classical common causal justification of the Bell inequalities used in AQFT similar
to the classical one?

As it will turn out soon, one can generalize the notion of the common cause also for the alge-
braic quantum field theoretical setting, and one can also give a precise definition of a local, non-
conspiratorial joint common causal explanation of a set of correlations in AQFT. However, it also
will turn out that there is no direct relation between this common causal explanation and the Bell
inequalities. Or to put it briefly, correlation violating the Bell inequality can still have a local, non-
conspiratorial joint common causal explanation. In order to see all these, first we have to generalize
the notions of this Section to the quantum case.

4 Non-classical common causal explanation

Let us first generalize the notion of the common cause system to the quantum case in the following
way. Replace the classical probability measure space (2, X, p) by the non-classical probability mea-
sure space (N, P(N), o) where P(N) is the (non-distributive) lattice of projections (events) and ¢
is a state of a von Neumann algebra A/. We note that in case of projection lattices we will use only
algebra operations (products, linear combinations) instead of lattice operations (V,A). In case of
commuting projections A, B € P(N) lattice operations can be given in terms of algebraic operations.

A set of mutually orthogonal projections {Cr} . C P(N) is called a partition of the unit 1 € N'
if >~ Cr = 1. Two commuting projections A and B € P(N) are said to be correlating in the state
¢: N — Cif

P(AB) # ¢(A)d(B). (34)

Since ¢ is linear, a kind of ‘theorem of total probablity’, >, ¢(AP;) = ¢(A>", Pi) = ¢(A), holds for
any partition {P;} of the unit, hence (34) is equivalent to

¢(AB) p(ATB*) # ¢(AB*) (A B). (35)

Now, following the lines of Definition 2 one can characterize the non-classical common cause system
of the correlation (34) as a screener-off partition of the unit. To make the definition meaningful we
have to introduce the following conditional expectation E.: N — C:

E.(A) = CLAC, (36)

keK

where {Ck}rex is a partition of the unit of A/ (Umegaki, 1954). The image C of this map is a
unital subalgebra of N’ containing exactly those elements that commute with Cj,k € K. There-
fore, E.(A)Cy = E.(ACk) = CLAC, (A € N,k € K) for example. By means of this conditional
expectation we can define the notion of the common cause system in the non-classical case:

Definition 5. A partition of the unit {Cy}, ., C P(N) is said to be the common cause system of
the commuting events A, B € P(N'), which correlate in the state ¢: N — C, if for those k € K for
which ¢(Cy) # 0, the following condition holds:

(9o Ec)(ABCy) _ (¢0E)(AC) (¢ 0 Ec)(BCy)
¢(Cr) ¢(Cr) #(Cr)

(37)
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If Cy, commutes with both A and B for all k € K, we call {Cy}, ., a commuting common cause
system, otherwise a noncommauting one. A common cause system of size |K| = 2 is called a common
cause.

Some remarks are in place here. First, using the ‘theorem of total probability’ the common cause
condition (37) can be written as

(p o E.)(ABCY)) (¢ o E)(ATBLCr) = (¢o0E.)(ABYCy) (po E)(ATBCY), ke K. (38)

One can even allow here the case ¢(Cy) = 0, since then both sides of (38) are zero.

Second, the non-classical character of the common cause system of Definition 5 lies in the fact
that the common cause system need not commute with the correlating events. If the events A
and B commute with Cj,k € K, then not only C) € C but also A, B, A+, B+ € C, and therefore
E.(ABC}) = ABCY, for example. Thus, the conditional expectation E. vanishes from the defining
equation (37); and (38) leads to

$(ABCy) $(A*B*Cy) = ¢(ABCy) p(A"BCy). (39)

Finally, it is obvious from (39) that if Cy < X with X = A, A+, B or B+ for any k € K
then {Cr},cx serve as a common cause system (and hence a commuting common cause system)
of the given correlation independently of the chosen state ¢. These solutions are called trivial
common cause systems. In case of common cause, |K| = 2, triviality means that {Cy} = {A, At} or
{Ci} = {B.B*}.

Having generalized the notion of the common cause system for the quantum case, the next step
is to localize it. Suppose that the projection A is localized in the algebra A(V4) with support V4
and the projection B is localized in the algebra A(Vp) with support Vp such that V) and V) are
spacelike separated double cones in a spacetime S. A common cause system {Cj }rex is said to be
a commuting/noncommuting (strong/weak) common cause system of the correlation between A and
B if {Ck}rex is localizable in an algebra A(Ve) with support Ve such that Vi is in cpast(Va, Vi)
(spast(Va,Vg)/wpast(Va, Vg)).

In the same vein, we obtain the definition of the joint common cause system in the non-classical
case. Let {(A,,B,);m € M,n € N} be a set of pairs of commuting projections correlating in the
sense that

$(AmBn) #  O(Am) ¢(Bn). (40)

Definition 6. A partition of the unit {Cy.}, ., C P(N) is said to be a joint common cause system
of the set {(Am, Bn);m € M,n € N} of commuting pairs of correlating events, if for any k € K,
when ¢(Cy) # 0, the conditions

(90 E)(AnBnCr) _ (60 E)(AnC) (90 E)(BuCy) (41)

?(Ck) ?(Ck) ?(Ck)
hold, where E. is the conditional expectation defined in (36). Again, if {Cy}, ., commutes with A,
and B, for all m € M,n € N, then we call it a commuting joint common cause system, otherwise a
noncommauting one.

Equation (41) can again be understood in the more permissive way as
(¢ 0 Ec)(AmBnCy)) (¢ 0 EC)(A#LB#CIC) = (¢o EC)(AmBrJ{Ck) (¢po EC)(ArJﬁBan) (42)

incorporating cases when ¢(Cj) = 0.
And here comes a subtle point. Having introduced the notion of the joint common cause system
of a correlation in the preceding Section we went over to conditional correlations and defined a local,
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non-conspriratorial common causal explanation of these correlations. What is the analogue move in
the non-classical case? We claim that we need not introduce any new concept; the definition of a
local, non-conspriratorial common cause system in the non-classical case is just identical to the one
given in Definition 6 that is to the definition of the joint common cause system. For the details see
the Appendix (and (Butterfield 1995)). So from now on we drop the prefix ‘local, non-conspiratorial’
before the term ‘joint common cause system’ in the non-classical case.

Now, we are able to ask whether there is a proposition similary to Proposition 1 in the non-classical
case, that is whether one can derive a CH inequality (2) from the fact that the set of correlating
projections {(A,,,Bn);m € M,n € N} has a joint common causal explanation? The following
proposition provides a sufficient condition.

Proposition 2. Let A,, € A(Va) and B, € A(Vg) (m,n = 1,2) be four projections localized in
spacelike separated spacetime regions V4 and Vg, respectively, which correlate in the locally faithful
state ¢ in the sense of (40). Suppose that {(A,,, B,);m,n = 1,2} has a joint common causal
explanation in the sense of Definition 6. Then for any m,m/,n,n’ = 1,2;m # m/;n # n’ the CH
inequality

-1 < (¢ o Ec)(AmBn + AmBn’ + Am’Bn - Am’Bn’ - Am - Bn) < 0. (43)

holds for the state ¢ o E.. If the joint common cause is a commuting one, then the CH inequality
holds for the original state ¢:

1< ¢(AmBn + AnBp + A By, — Ay By — Ay — By) < 0. (44)

Proof. Substituting the expressions

e B2EC) -
¢ - g
p o= 2Tt (47)
y o BoENBCY "

into the inequality
—-1<af+af +d'B-af —a-p3<0
and using (41) we get
(60 E)(AnBuCr) | (60 E)(AnBuCh) | (60 E)(Aw BuCi)

-1<

?(Cr) #(Ck) ?(Cr)
_ (¢ © E¢)(Am By Cr) _ (¢ © E¢)(AmCk) _ (¢ 0 E¢)(ByCl)
H(C) S(Cw) s SO (49

Multiplying the above inequality by ¢(Cy) and summing up for the index k one obtains

-1 g Z <(¢ © Ec)(AmBan) + ((b © Ec)(AmBn/Ck) + ((b © Ec)(Am’Ban)
k

(60 Ee)(Am BuCr) — (60 Eo) (AnCr) — (60 Ec><Bnck>> <0, (50)
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which leads to (43) by performing the summation. If {Cy}, o, is a commuting joint common cause
system, then F, drops out from the above expression since all the arguments are in C (see the remark
before (38)). Therefore (50) becomes identical to (44), which completes the proof. m

First note that similarly to Proposition 1, neither Proposition 2 refers to the spacetime localization
of {Cy} in a direct way. Indirectly, however, it restricts the localization of the possible joint common
cause systems for states violating the CH inequality (44): the support of {Cj} must intersect the
union of the causal past or the causal future of V4 U Vg. It is so because otherwise the support of
{C} ek would be spacelike separated from those of A and B, and hence {C%} would be a commuting
joint common cause system for a set of correlations violating the CH inequality (44), in contradiction
with Proposition 2.

Proposition 2—similarly to Proposition 1—provides a common causal justification of the CH
inequality (44). It states that in order to yield a commuting joint common causal explanation for
the set {(Am, Bn);m,n = 1,2} the CH inequality (44) has to be satisfied. But what is the situation
with noncommuting common cause systems? Since—apart from (43)—Proposition 2 is silent about
the relation between a noncommauting joint common causal explanation and the CH inequality (44),
the question arises: Can a set of correlations violating the CH inequality (44) have a noncommauting
joint common causal explanation? Before addressing this question, we pose an easier one: Can a
single correlation have a common causal explanation in AQFT? This leads us over to the question
of the validity of the Common Cause Principles in AQFT.

5 Common Cause Principles in algebraic quantum field theory

Reichenbach’s Common Cause Principle (CCP) is the following hypothesis: If there is a correlation
between two events and there is no direct causal (or logical) connection between the correlating
events, then there exists a common cause of the correlation. The precise definition of this informal
statement that fits to the algebraic quantum field theoretical setting is the following;:

Definition 7. A Pi-covariant local quantum theory {A(V),V € K} is said to satisfy the Commu-
tative/Noncommutative (Weak/Strong) Common Cause Principle if for any pair A € A(V;) and
B € A(V,) of projections supported in spacelike separated regions Vi, V2 € K and for every locally
faithful state ¢: A — C establishing a correlation between A and B, there exists a nontrivial
commuting/noncommuting common cause system {Cr}rex C A(V),V € K of the correlation (34)
such that the localization region V' is in the (weak/strong) common past of V; and V5.

What is the status of these six different notions of the Common Cause Principle in AQFT?

The question whether the Commutative Common Cause Principles are valid in a Poincaré co-
variant local quantum theory in the von Neumann algebraic setting was first raised by Rédei (1997,
1998). As an answer to this question, Rédei and Summers (2002, 2007) have shown that the Commu-
tative Weak CCP is valid in algebraic quantum field theory with locally infinite degrees of freedom.
Namely, in the von Neumann setting they proved that for every locally normal and faithful state
and for every superluminally correlating pair of projections there exists a weak common cause, that
is a common cause system of size 2 in the weak past of the correlating projections. They have also
shown (Rédei and Summers, 2002, p 352) that the localization of a common cause C' < AB cannot be
restricted to wpast(Vy, V2)\ I_ (V1) or wpast(Vy, Vo) \ I (V2) due to logical independence of spacelike
separated algebras.

Concerning the Commutative (Strong) CCP less is known. If one also admits projections localized
only in wnbounded regions, then the Strong CCP is known to be false: von Neumann algebras
pertaining to complementary wedges contain correlated projections but the strong past of such wedges
is empty (see (Summers and Werner, 1988) and (Summers, 1990)). In spacetimes having horizons, e.g.
those with Robertson-Walker metric, the common past of spacelike separated bounded regions can
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be empty, although there are states which provide correlations among local algebras corresponding
to these regions (Wald 1992).7 Hence, CCP is not valid there. Restricting ourselves to local algebras
in Minkowski spaces the situation is not clear. We are of the opinion that one cannot decide on
the validity of the (Strong) CCP without an explicit reference to the dynamics since there is no
bounded region V in cpast(Vi, V2) (hence neither in spast(Vi,V2)) for which isotony would ensure
that A(Vy U V) C A(V"). But dynamics relates the local algebras since A(V; U V2) C A(V” +1¢) =
a(A(V")) can be fulfilled for certain V- C V" C cpast(Vy, Vz) and for certain time translation by ¢.

Coming back to the proof of Rédei and Summers, the proof had a crucial premise, namely that
the algebras in question are von Neumann algebras of type III. Although these algebras arise in a
natural way in the context of Poincaré covariant theories, other local quantum theories apply von
Neumann algebras of other type. For example, theories with locally finite degrees of freedom are
based on finite dimensional (type I) local von Neumann algebras. This raised the question whether
the Commutative Weak CCP is valid in other local quantum theories. To address the problem Hofer-
Szab6 and Vecsernyés (2012a) have chosen the local quantum Ising model (see Miiller, Vecsernyés)
having locally finite degrees of freedom. It turned out that the Commutative Weak CCP is not valid
in the local quantum Ising model and it cannot be valid either in theories with locally finite degrees
of freedom in general.

But why should we require commutativity between the common cause and its effects at all?

Commutativity has a well-defined role in any quantum theories: observables should commute
to be simultaneously measurable. In AQFT commutativity of observables with spacelike separated
supports is an axiom. To put it simply, commutativity can be required for events which can happen
‘at the same time’. But cause and effect are typically not this sort of events. If one considers ordinary
QM, one well sees that observables do not commute even with their own time translates in general.
For example, the time translate x(t) := U(t)"'zU(t) of the position operator z of the harmonic
oscillator in QM does not commute with « = z(0) for generic ¢, since in the ground state vector 1
we have

[, a(t)] o = ), (51)
mw

Thus, if an observable A is not a conserved quantity, that is A(¢) # A, then the commutator
[A, A(t)] # 0 in general. So why should the commutators [A, C| and [B,C] vanish for the events
A, B and for their common cause C' supported in their (weak/common/strong) past? We think that
commuting common causes are only unnecessary reminiscense of their classical formulation. Due to
their relative spacetime localization, that is due to the time delay between the correlating events and
the common cause, it is also an unreasonable assumption.

Abandoning commutativity in the definition of the common cause is therefore a natural move.
To our knowledge the first to contemplate the possibility of the noncommuting common causes were
Clifton and Ruetsche (1999) in their paper criticizing Rédei (1997, 1998) who required commutativity
from the common cause. They say: “[requiring commutativity] bars form candidacy to the post of
common cause the vast majority of events in the common past of events problematically correlated” (p
165). And indeed, the benefit of allowing noncommuting common causes is that the noncommutative
version of the result of Rédei and Summers can be regained: as it was shown in (Hofer-Szabo and
Vecsernyés 2012b), by allowing common causes that do not commute with the correlating events,
the Weak CCP can be proven in local UHF-type quantum theories.

Now, let us turn to our original question as to whether a set of correlations violating the CH
inequality (2) can have a noncommuting joint common causal explanation in AQFT. Since our answer
is provided in an AQFT with locally finite degrees of freedom, in the local quantum Ising model,
we give a short and non-technical tutorial to this model in the next Section. (For more detail see
(Hofer-Szabo, Vecsernyés, 2012c).)

"We thank David Malament for calling our attention to this point and the paper of Wald.
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6 Noncommutative common causes for correlations violating
the CH inequality

Consider a ‘discretized’ version of the two dimensional Minkowski spacetime M? which is composed
of minimal double cones O™ (t,4) of unit diameter with their center in (¢,7) fort,i € Zort,i € Z+1/2.
The set {O!",i € +Z} of such minimal double cones with ¢ = 0, —1/2 defines a ‘thickened’ Cauchy
surface in this spacetime (see Fig. 3). The double cone O7"; sticked to this Cauchy surface is defined
to be the smallest double cone containing both Of" and O7': O} := O" v O]". Similarly, let
O™(t,i58,7) == O™(t,i) VO™ (s,j). The directed set of such double cones is denoted by K™, and the
directed subset of it whose elements are sticked to a Cauchy surface is denoted by Kg. Obviously,

&s will be left invariant by integer space translations and K™ will be left invariant by integer space
and time translations.

Figure 3: A thickened Cauchy surface in the two dimensional Minkowski space M?

The net of local algebras is defined as follows. The ‘one-point’ observable algebras associated to
the minimal double cones O",i € 1Z are defined to be A(OM) ~ M;(C) & M;(C). Between the
unitary selfadjoint generators U; € A(OF") one demands the following commutation relations:

bitls = { U;U;, otherwise. (52)
Now, the local algebras A(O; ;), 0; ; € K@ are linearly spanned by the monoms
k1 k1 K
UMU U (53

where ki,k/‘iJr% ...kjfé,k/’j € {0, 1}_8

Since the local algebras A(O; ;_1.,), 1 € 17 for n € N are isomorphic to the full matrix algebra
M3n(C), the quasilocal observable algebra A is a uniformly hyperfinite (UHF) C*-algebra and con-
sequently there exists a unique (non-degenerate) normalized trace Tr: A — C on it. We note that
all nontrivial monoms in (53) have zero trace.

In order to extend the ‘Cauchy surface net’ {A(0),0 € K@g} to the net {A(O0),0 € K™}
in a causal and time translation covariant manner one has to classify causal (integer valued) time
evolutions in the local quantum Ising model. This classification was given in (Miiller, Vecsernyés)
and it also was shown that the extended net satisfies isotony, Einstein causality, algebraic Haag

8For detailed Hopf algebraic description of the local quantum spin models see (Szlachanyi, Vecsernyés, 1993), (Nill,
Szlachanyi, 1997), (Miiller, Vecsernyés)).
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duality
A0 NA=A0), 0OeK™, (54)
Z x Z covariance with respect to integer time and space translations and primitive causality:
A(V) = A(V"), (55)

where V is a finite connected piece of a thickened Cauchy surface (composed of minimal double
cones). V" denotes the double spacelike complement of V', which is the smallest double cone in K™
containing V. We will be interested here only in a special subset of these causal automorphisms
given by:

1
BU:) = Up yUslpyy, w€Z+7. (56)

(In our following example we need not specify the choice for §(U,.), z € Z.) Now, consider the double
cones Oy 1= O™(0,—1) U O™(, 1) and Op := O™(3,4) U O™(0,1) and the ‘two-point’ algebras
A(O4) and A(Op) pertaining to them. (See Fig. 4.) A linear basis of the algebra A(O4) is given

Figure 4: Projections in A(O4) and A(Op)
by the monoms
1, U_1, BU_1) = U1U_1U, WU_1B(U_y) =iU_1 Uy (57)

(where i in the fourth monom is the imaginary unit). They satisfy the same commutation relations
like the Pauli matrices op = 1,0,,0, and o, in M2(C). Therefore, introducing the notation

U = (U, UU_ U, iU_,Up) (58)

any minimal projection in A(Q4) can be parametrized as

A@) = %(lJraU) (59)

where a = (a1,az,a3) is a unit vector in R®. In the same vein, any minimal projection in A(Op)
can be paremetrized as

B() = =(1+bV) (60)

N | —

17



where
V = (Ui, ~UeUsUy, ilUy) (61)

is the vector composed of the generators of A(Op) and b = (b1, by, b3) is a unit vector in R3.
The projections A(a) and B(b) can be interpreted as the event localized in A(O4) and A(Op),
respectively pertaining to the generalized spin measurement in direction a and b, respectively.

Now, consider two projections A,, := A(a™);m = 1,2 localized in O4, and two other projections
B,, := B(b™);n = 1,2 localized in the spacelike separated double cone Op. Suppose that our system
is in the faithful state ¢(-) = Tr(p-) where

p o= p(\) =1+ ANUU_ U U —U_yUy+U_,Uy), A€[0,1). (62)

For A =1 the state defined by (62) gives us back the usual singlet state. It is easy to see that in the
state (62) the correlation between A,, and B,, will be:

A m n
COTT(Ama Bn) = ¢(AmBn) - ¢(Am) ¢(Bn) = _Z <a , b > (63)
where (, ) is the scalar product in R3. In other words A,, and B,, will correlate whenever a™ and
b™ are not orthogonal. Now, if a™ and b™ are chosen as

al = (0,1,0) (64)
a? = (1,0,0) (65)
1 _ 1

b! = ﬁ(1,1,0) (66)
2 _ L.

b2 = ﬁ( 1,1,0) (67)

the CH inequality (2) will be violated at the lower bound since
¢(A1B1 + A1By + As By — As By — Ay — B1) =

LAY ) () (a2 ) = Y2 (69

A
1

N~

which is smaller than —1 if A\ > % Or, equivalently, the CHSH inequality (1) where

X, = 24, -1 (69)
Y, = 2B,-1 (70)
will be violated for the above setting since
X111 +Ye)+ X1(Vh —Y2)) =
= - ((a',b* + b?) + (a%,b' — b?)) = —\2V2 (71)
is smaller than —2 if \ > % Both the CH and the CHSH inequality are maximally violated for the
singlet state, that is if A = 1.
The question whether the four correlations {(A,,, By);m,n = 1,2} violating the CH inequality

(2) have a joint common causal explanation was answered in (Hofer-Szabo, Vecsernyés, 2012c) by
the following
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Proposition 3. Let 4, := A(a™) € A(O4), B, := B(b®) € A(Op);m,n = 1,2 be four projections
defined in (59)-(60), where a™ and b™ are non-orthogonal unit vectors in R? establishing four
correlations {(A,, Bn);m,n = 1,2} in the state (62). Let furthermore C' be any projection localized
in Oc :=0_1 VO € K{ig (see Fig. 5.) of the shape

1
2

C = U%) (1 + a1l + c2Uy +03iU0U%)

1
@—Uﬁw)@+d%+éU{H@%%) (72)

2

where ¢ = (c1, 2, c3) and ¢’ = (¢}, ch, ) are arbitrary unit vectors in R®. Then {C,C1} is a joint
common cause of the correlations {(A,,, B,)} if a§'by = 0 for any m,n = 1,2 and ¢z = 0.

Figure 5: Localization of a common cause for the correlations {(A,, Byn)}.

Since for the directions a™ and b™ defined in (64)-(67) the requirement a3"b5 = 0 holds for any
m,n = 1,2, therefore the correlations (maximally) violating the CH/CHSH inequality do have a
joint common cause—any C' of form (72) with c2 = 0.

Finally, here is a Proposition (consistently with the derivability of a CH inequality from the
commuting joint common cause system) claiming that there exists no commuting joint common cause
for these correlations even without any restriction to their localization (Hofer-Szabo, Vecsernyés,
2012¢):

Proposition 4. Let A, € A(O4), B, € A(Op);m,n = 1,2 be projections defined in (59)-(60) with
a™ and b™ given in (64)-(67). The correlations {(A,,, B,); m,n = 1,2} in the state (62) do not have
a commuting joint common cause {C1,Cs} in A.

Proposition 3 answers the question raised at the end of the last Section as to whether there is
a common causal justification of the CH inequalities in the general, that is in the noncommuting
case. The answer to this question is clearly no. The violation of the CH inequality for a given
set of correlation does not prevent us from finding a common causal explanation for them. All
we have to do is to extend our scope of search and to embrace noncommuting common causes in
the common causal explanation. So the Bell inequalities in the non-classical case do not play the
same role as in the classical one. In the classical case there was a direct logical link between the
possibility of a common causal explanation and the validity of the Bell inequalities; here the violation
of the Bell inequalities excludes only a subset of the possible common causal explanations containing
the commuting ones. To put it differently, taking seriously the ontology of AQFT where events are
represented by not necessarily commuting projections, one can provide a common causal explanation
in a much wider range than simply sticking to commutative common causes.
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7 On the meaning of noncommuting common causes

But what are the consequences of applying noncommutative common causes? Let us see the story
from the beginning, going back to Reichenbach’s original definition of the common cause. The
Reichenbachian common cause has the nice property that the presence of a common cause implies
a (positive) correlation between the events in question. This fact is a simple consequence of the
following identity:

p(AN B) = p(A) p(B) = p(C)p(C*) [p(AIC) = p(A|CT)] [p(B|C) — p(BICH)]. (73)

It is straightforward to check that if C is a Reichenbachian common cause fulfilling requirements
(6)-(9) then the right hand side of (73) is positive therefore there is a positive correlation between
A and B. In this sense the common cause provids a Hempelian explanation for the correlation.’
Going over to the notion of the common cause system this ‘explanatory force’ of the common cause
disappears: from the presence of the common cause (11) the correlation (10) between A and B does
not follow. (For an attempt to define the notion of the common cause system such that it preserves
this deductive relation between the common cause system and the correlation see (Hofer-Szabo and
Redei 2004, 2006).)

The noncommutative generalization of the common cause system is one step further into the
direction of relaxing the relation between the common cause and the correlation. Here not only the
deductive relation between the common cause and the correlation gets lost, but also the relation
between the conditioned and unconditioned probalitity of the correlating events. Namely,

O(A) = ¢e(A) = (Do Ee)(A) = %

?(C) (74)
holds in general iff A = E.(A), that is iff [A, Cx] = 0 for all k € K. That is the state ¢, differs from
¢ for A € A\ Im E. in general, which means that the statistics of A can differ depending on whether
we calcutate it directly from the state ¢ or as a weighted average of conditional probabilities over
the subensembles Cj.

But then one might come up with the following concern: Noncommuting common causes are not
actual but only contrafactual entities since if the Ci-s had been realized, then we would have ended
up with another probability (the right hand side of (74)) for the correlating events than the actual
ones (the left hand side of (74)). So these common causes cannot be realized in the same (actual)
world in which those event are accomodated which they are supposed to explain.

We do not consider this objection to be serious against the application of noncommuting common
causes. An analogy between the notion of the common cause and the notion of the cause in QM
might help to illuminate why. An observable/event X can be said to be the cause of another
observable/event Y in QM, if X evolves in time into Y. But if X and Y do not commute, then
had X been earlier realized, the unitary dynamics would have been distorted, so X would not have
evolved into Y. Still, we regard X to be the cause of Y. Similarly, C' is a common cause of A and
B if conditioned on it the correlation between A and B disappears. If C' does not commute with A
and B, then had C been realized, the statistics would have been distorted, so the probability of A,
B and AB would be different. Still, we think that C' is the common cause.

What is important to see here is that the definition of the common cause does not contain the
requirement (which our classicaly informed intuition would dictate) that the conditional probabilites,
when added up, should give back the unconditional probabilities, that is ¢ = ¢. should fulfil. Or in
other words, that the probability of the correlating events should be built up from a finer description
of the situation provided by the common cause. To put it in a more formal way: the theorem of

90ne is tempted to speculate that this desired property might just have been the reason why Reichenbach took up
the statistical relevancy conditions (8)-(9) in the definition of the common cause.
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total probability is not part of the definition of the common cause.'® The defining property of the
common cause is simply the screening-off.

So common causes might not be realized without the distortion of the statistics of the original
correlating events. But this fact is ubiquitous for noncommuting observables in QM. If we tolerate
this fact in general, then why not to tolerate it for common causes? As we have seen, allowing non-
commuting common causes helps us to maintain Bell’s original intuition concerning local causality.

8 Conclusions

In the paper we saw that the Bell inequalities used in AQFT cannot be given a common causal
justification similar to the classical Bell inequalities if we allow noncommuting common causes in
the explanation. Just the opposite is true: for a set of correlations violating the CH inequalities a
noncommutative common causal explanation can be given and this common cause can be localized in
the common past of the correlating events. Thus, abandoning commutativity gives us extra freedom
in the search of common causes for correlations. But how big is this freedom? Is it big enough to
find a common cause for any set of correlations? We saw that for the worst candidate, so to say,
for the set mazimally violating the CH inequality we have found such a common cause. But does
it mean that this strategy can be applied across the board? What is the range of correlations for
which a joint common causal explanation can be given? Is this range determined only by the size of
the set of correlations or by some other properties thereof? Is it true for example that for any finite
set of correlations a weak joint common causal explanation can always be given? Or to put it in a
more formal way, can one always find a partition of the unit for any finite set of correlations such
that the necessary condition (43) for a joint common causal explanation fulfills? All these questions
are still open.

Appendix: In what sense non-classical joint common cause sys-
tems are local and non-conspiratorial?

In Section 4 we claimed that Definition 6 of the joint common cause system is the correct non-classical
generalization of Definition 4 of the (classical) local, non-conspiratorial joint common cause system.
But how can the single non-classical screening-off condition (41) generalize not only the classical
screening-off condition (15) but also the locality conditions (16)-(17) and non-conspiracy (18)? This
is the question we address in this Appendix.

Let us first introduce a classical probability measure pc, on a common measure space (£2, %) for
every element of a classical common cause system {Cy,k € K}, if p(Cy) # 0:

po, (X|z) = % (75)

With this denotation screening-off (15), locality (16)-(17), and no-conspiracy (18) will read as

e, (Am A Bplam A by,
ey, (Am|am A by
ey, (Brlam A by

Poy (Qam A by

pPc, (Am|am A bn)ka (Bn|am N bn)v
= DPcC; (Am|am A bn’);
= DPcC; (Bn|am’ A bn)a

)
)
)
) = 1

(
(
(
(

)

10Ag it is not part of the definition of the cause either: if one measures X, one cannot reconstruct the probability
of a noncommuting Y from the conditional probabities over the subensembles pertaining to the outcomes of X.
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if one uses no-conspiracy (18) in the first three equations. The subscript Cy of the probability
measure might remind the reader to the standard hidden variable approach where a parameter
A is used to index a set of probability measures on a common event algebra. In this approach
the derivation of the Bell inequalities then proceeds through the summation/integration over this
parameter. In our opinion this indexical treatment of the common cause conceals an important fact,
namely that the common cause and the correlating events stand on the same ontological footing: they
are all events, accomodated in a common event algebra with a single probability measure. Therefore
the index in (76)-(79) is simply an abbreviation of the conditionalization (75), which abbreviation
is motivated by trying to find a classically equivalent form, where the non-classicaly meaningless
expression a,, Ab, A C, of non-commuting quantities can have a definite interpretation. (See below.)
Now, how does the non-classical Definition 6 of the joint common cause system relate to the
above characterization of a classical local, non-conspiratorial joint common cause system? The link
is provided by the (in our oppinion) correct interpretation of the non-classical probabilities according
to which quantum probabilities are classical conditional probabilities. The quantum probability ¢(X)
of a projection X is to be interpreted as a conditional probability p(X|x.) of getting the outcome
X given the quantity z.; has been set to be measured. The precise mathematical formulation of
this interpretation is given in the so-called ‘Kolmogorovian Censorship Hyptothesis’. Here we just
state the proposition; for the proof see (Bana and Durt 1997), (Szabo 2001) and (Rédei 2010).

Kolmogorovian Censorship Hypothesis. Let (M, P(N), ¢) be a non-classical probability space.
Let T be a countable set of non-commuting selfadjoint operators in A/. For every Q € T, let P(Q)
be a maximal Abelian sublattice of P(N) containing all the spectral projections of @Q. Finally, let a
map po : I' — [0, 1] be such that

Y @ =1, p(Q)>0. (80)

Qer

Then there exists a classical probability space (£2,Y,p) such that for every projection X in any
P(Q) there exist events Xfl? and x?l in ¥ such that

X3 cag (81)

29Nl =0, fQ+#R (82)
p(x8) = po(Q) (83)

P(X?) = p(X3|8) (84)

The intuitive content of the above proposition is the following. A set of incompatible observables
represented by noncommuting selfadjoint operators in the set I" are selected for measurement with the
probabilities po(Q) specified in (80). This measurement and selection procedure is then represented
by classical events Xg and z 7, respectively: XS represents a certain measurement outcome of the
measurement @, and xg is the classical event of setting up the measurement device to measure
Q. Condition (81) expresses that no outcome is possible without this setting up of a measuring
device. Condition (82) expresses that incompatible observables ) and R cannot be simultaneously
measured: the measurement choices xg and zt are disjoint events. Condition (83) states that
the classical probability model captures the prescribed probabilities po(Q) as the probability of the
measurement choices. Finally, condition (84) is the central relation of the Hypothesis, it states that
quantum probabilities can be written as classical conditional probabilities: conditional probabilities

of outcomes of measurements on condition that the appropriate measuring device has been set up.

Applying the above proposition to our case,'! we obtain that the quantum probabilities ¢(A,,),

"'From now on, we will denote both the classical event and the projection representing it by the same symbol.
However, the quantum state ¢ or the classical probability p will always indicate in which sense we use it.
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¢(By) and ¢(A,,By) can be interpreted as classical conditional probabilities p(Am,|am), p(Bn|bn)
and p(Am A Bplam A by), respectively, with A,,, By, amm and b, (m € M,n € N) accomodated in a
classical probability space (€2, 3, p). Hence the quantum correlations

P(AmBn) #  ¢(Am) ¢(Bn) (85)

between the elements of the set {(Am, Bn);m € M,n € N} can be interpreted as conditional corre-
lations

P(Am A By lam ANbn)  #  p(Amlam) p(Bnlbn) (86)

between classical measurement outcome events conditioned on measurement choice events in accor-
dance with (14).

To see the link between the classical and non-classical version of the common cause let us first
introduce a similar notation for the conditionalization on C}, in the non-classical case, if ¢(Cy) # 0,
as was introduced above in (75) for the classical case, that is let

(po E)(XCr)  d(CrXCh)

bc, (X) = = : 87

<) H(C) 3(Ch) &7

With this notation the definition of the non-classical joint common cause system reads as follows:
¢c,(AmBn) = ¢c,(Am) dc, (Bn). (88)

Using the Kolmogorovian Censorship Hypothesis the classical interpretation of (88) is the following:

bcy (Am A Bplam Abn) = bcy (Am|a7n)p0k (Bnlbn) (89)

which is almost the screening-off (76) except that the conditions on the right hand side are not
am N by This defect will be cured however by the locality conditions. Observe namely that since
A,, and B,, commute, therefore

d’Ck (Am) = d)Ck (AmBn) + ¢Ck (Amez_) (90)
60, (Bn) = 60, (AmBn) + dc, (A7, Bn) (91)

which translated into classical conditional probabilities due to the Kolmogorovian Censorship Hy-
pothesis read as:

pe, (Amlam) = po,(Am A Bplam Aby) + po, (Am A Brﬂam Aby) =po, (Amlam Aby) (92)
e, (Bulbn) = po,(Am A Bplam Aby) + pe, (A,J;L A Bplam Aby) = po, (Bplam Aby)  (93)

Now, observe that (92)-(93) are equivalent to locality (77)-(78), so locality is ‘automatically’ fulfilled
for the non-classical common cause due to the commutativity of A,, and B,,. (This fact is sometimes
referred as the ‘no-signalling theorem’; for more on that see (Schlieder 1969).) Moreover (92)-(93)
also cure the defect of (89), since

bcy (Amlam) bcy (Bnlbn)

on the right hand side of (89) can be replaced with

pPc,, (Am|am A bn) pPc,, (Bn|am A bn)

turning (89) into the classical screening-off property (76).
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Putting all this together, a non-classical, local, non-conspiratorial joint common causal expla-
nation of the correlations (85) is a partition {Cy},cx € P(N) if for any k € K the following
requirements hold:

oc, (AmBn) = ¢, (Am) bcy (Bn) (94)
¢Ck (AM) = ¢Ck (AmBn) + ¢C;€ (AmB#) (95)
¢C;€ (Bn) = ¢Ck (AmBn) + ‘bCk (AjﬁBn) (96)

¢c (1) = 1 (97)

which using the Kolmogorovian Censorship Hypothesis as a ‘translation manual’ leads us over to
the classical, local, non-conspiratorial joint common causal explanation (76)-(79) of the correlations
(86). But recall that (95)-(97) representing locality and no-conspiracy are just identities, and hence
the screening-off condition (94) carries the whole content of the common causal explanation—in
accordance with our Definition 6.
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