
Bell inequality and 
ommon 
ausal explanationin algebrai
 quantum �eld theoryGábor Hofer-Szabó∗Péter Ve
sernyés†Abstra
tBell inequalities, understood as 
onstraints between 
lassi
al 
onditional probabilities, 
anbe derived from a set of assumptions representing a 
ommon 
ausal explanation of 
lassi
al
orrelations. A similar derivation, however, is not known for Bell inequalities in algebrai
 quan-tum �eld theories establishing 
onstraints for the expe
tation of spe
i�
 linear 
ombinations ofproje
tions in a quantum state. In the paper we address the question as to whether a `
om-mon 
ausal justi�
ation' of these non-
lassi
al Bell inequalities is possible. We will show thatalthough the 
lassi
al notion of 
ommon 
ausal explanation 
an readily be generalized for thenon-
lassi
al 
ase, the Bell inequalities used in quantum theories 
annot be derived from thesenon-
lassi
al 
ommon 
auses. Just the opposite is true: for a set of 
orrelations there 
an begiven a non-
lassi
al 
ommon 
ausal explanation even if they violate the Bell inequalities. Thisshows that the range of 
ommon 
ausal explanations in the non-
lassi
al 
ase is wider than thatrestri
ted by the Bell inequalities.Key words: Bell inequality, 
ommon 
ause, non
ommutativity, algebrai
 quantum �eld theory.1 Introdu
tionThe original 
ontext whi
h led to the formulation of the Bell inequalities was the intention to a

o-modate quantum 
orrelations in a lo
ally 
ausal theory. The 
learest formulation of su
h a theory isdue to Bell himself (Bell, 1987, p. 54). In a number of seminal papers Bell 
arefully analyzed the in-tuitions lying behind our notion of lo
ality and 
ausality. His major 
ontribution, however, 
onsistedin translating these intri
ate notions into a simple probabilisti
 language whi
h made these notionstra
table both for mathemati
al treatment and later for experimental testability. This probabilisti
framework made it possible to exa
tly identify the probabilisti
 requirements responsible for the vio-lation of the Bell inequalities in the EPR s
enario. A de
ade later authors like Van Fraassen (1982),Jarrett (1984) and Shimony (1986) spent mu
h time to analyze the philosophi
al 
onsequen
es ofgiving up either the one or the other of these probabilisti
 assumptions. It also turned out soonthat the 
on
eptual framework in whi
h the Bell inequalities 
an be treated most naturally is the
ommon 
ausal explanation of 
orrelations, originally stemming from Rei
henba
h (1956) and lateradopted to the EPR 
ase by Van Fraassen (1982).Sin
e the aim of these 
onsiderations was to a

omodate the EPR s
enario in a 
lassi
al worldpi
ture, both Bell and the subsequent writers used a 
lassi
al probabilisti
 framework in their anal-ysis. All the assumptions representing lo
ality and 
ausality and also the resulting Bell inequalitieswere formulated in the language of the 
lassi
al probability theory. Now, if the Bell inequalities were
lassi
al, how 
ould they be violated in the EPR s
enario whi
h is well known to be des
ribed by
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quantum theory? Well, the answer is that quantum theory with its mathemati
al stru
ture and onto-logi
al 
ommitments played no role at all in the Bell s
enario. Quantum me
hani
s was only used togenerate 
lassi
al probabilities, more spe
i�
ally, 
lassi
al 
onditional probabilities by the Born rule.These 
lassi
al 
onditional probabilities, however, 
ould also have been gained dire
tly from the ex-periments, and indeed later they have been gained so. In other words, the original 
ontext of the Bellinequalities has no intimate link to quantum theory even if quantum theory produ
es probabilitieswhi
h, reinterpreted as 
lassi
al 
onditional probabilities, violate those inequalities. This 
lassi
alview on the Bell inequalities manifests itself in various authors. Ni
olas Gisin for example writes:�Bell inequalities are relations between 
onditional probabilities valid under the lo
ality assumption.�(Gisin 2009, p. 126)In the fa
e of all these, the Bell inequality has made its way into quantum theory. It has been soonformulated as a general mark of entanglement of the given quantum state on a C∗-algebra (Summersand Werner 1987a, b). A quote from Bengtson and Zy
zkowski (2006, p. 362) might illustrate this
hange of fo
us in the role of Bell inequalities: �The Bell inequalities may be viewed as a kind ofseparability 
riterion, related to a parti
ular entanglement witness, so eviden
e of their violation for
ertain states might be regarded as an experimental dete
tion of quantum entanglement.� How 
ouldthe Bell inequality make its way to this non-
lassi
al formalism so alien from its original 
ontext?Does there exist a justi�
ation for this `trespass'?In this paper we would like to investigate a possible justi�
ation for this transition. In this justi�-
ation we intend to follow the route pioneered by Bell, Van Fraassen, Jarrett, Shimony and others inthat we sti
k to the 
onvi
tion that the Bell inequalities follow from the requirement of implement-ing 
orrelations into a lo
ally 
ausal theory. We trans
end, however, this view in not assuming thatthis theory has to be 
lassi
al. Or in other words, we pose the question whether the probabilisti
requirements representing lo
al 
ausality and 
onstituting the 
ore of the Bell inequalities 
an bereasonable formulated also in a non-
lassi
al theory.A natural 
andidate for su
h a non-
lassi
al theory with 
lear 
on
eptions of lo
ality and 
ausal-ity is algebrai
 quantum �eld theory (AQFT) (Haag, 1992). In AQFT events are represented byproje
tions with well de�ned spa
etime support and lo
al 
ausality is ensured by a set of axioms.Hen
e we 
an pose the question as to whether the Bell inequalities featuring in AQFT follow from alo
ally 
ausal explanation of 
orrelations in a similar manner to the 
lassi
al 
ase. Sin
e we intendto give a 
ausal explanation for 
orrelations between events, therefore 
ausal explanation is meantto be a 
ommon 
ausal explanation. We will see that the 
onne
tion between a 
ommon 
ausalexplanation and the Bell inequalities in AQFT is not so tight as in the 
lassi
al 
ase. In the 
lassi
al
ase 
ommon 
auses ne
essarly 
ommute (in the set theoreti
al `meet' operation) with their e�e
ts.Sin
e the quantum events of AQFT form a non
ommutative stru
ture, one 
an de
ide whether torequire that 
ommon 
auses 
ommute with their e�e
ts or not. If 
ommutativity is required, theBell inequalities will follow from the 
ommon 
ause just like in the 
lassi
al 
ase. But, as we willargue, requiring 
ommutativity is only a reminins
en
e of the 
lassi
al treatment of 
orrelations andis 
ompletely unjusti�ed in the quantum 
ase (see e.g. (Clifton, Ruets
he 1999)). For non
ommut-ing 
ommon 
auses the Bell inequalities will turn out not to be derivable from the presen
e of the
ommon 
ause�at least not in the similar way to the the 
lassi
al derivation. This raises the ques-tion whether 
orrelations violating the Bell inequalities 
an have a non
ommuting 
ommon 
ausalexplanation. We will answer this question in the a�rmative showing up a situation when a set of
orrelations maximally violating a spe
i�
 type Bell inequality has a 
ommon 
ausal explanation,whi
h is lo
al in the sense that it 
an be a

omodated in the interse
tion of the 
ausal pasts of the
orrelating events. The model we use for this example is the lo
al quantum Ising model, the simplestAQFT with lo
ally �nite degrees of freedom.The paper is stru
tured as follows. In Se
tion 2 we brie�y 
olle
t the most important 
on
epts andsome of the representative propositions 
on
erning the Bell inequality in AQFT. In Se
tion 3 and 4we give the de�nition of the 
lassi
al and the non-
lassi
al 
ommon 
ausal explanations, respe
tively,2



and show how these explanations relate to the Bell inequalities. Sin
e the 
orre
t `translation' ofthe so-
alled lo
ality and no-
onspira
y 
onditions of the 
lassi
al 
ommon 
ausal explanation intothe non-
lassi
al setting is a subtle point not needed for our main purpose, we transfer it into theAppendix. Now, the 
ommon 
ausal explanations in the EPR-Bell s
enario is always meant asproviding a joint 
ommon 
ause for a set of 
orrelations. Providing a joint 
ommon 
ause for aset of 
orrelations is mu
h more demanding than simply providing a 
ommon 
ause for a single
orrelation. Therefore in Se
tion 5, preparing for the more 
ompli
ated 
ase, we investigate thepossibility of a 
ommon 
ausal explanation of a single 
orrelation, or in the philosophers' jargon, thestatus of the Common Causal Prin
iple in AQFT. In Se
tion 6 we return to our original question andpresent a non
ommutative 
ommon 
ausal explanation for a set of 
orrelations maximally violatingsome Bell inequalities. In Se
tion 7 we brie�y analyze the philosophi
al 
onsequen
es of applyingnon
ommuting 
ommon 
auses in our 
ausal explanation. We 
on
lude the paper in Se
tion 8.2 The Bell inequality in algebrai
 quantum �eld theoryIn this Se
tion we 
olle
t the most important 
on
epts and some of the representative propositions
on
erning the Bell inequality in AQFT (see (Summers 1990) and (Halvorson 2007)). We start withthe general C∗-algebrai
 setting and then go over to the spe
ial algebrai
 quantum �eld theoreti
alformulation.In the general C∗-algebrai
 setting Bell inequality is treated in the following way. Let A and Bbe two mutually 
ommuting C∗-subalgebras of some C∗-algebra C. A Bell operator R for the pair(A,B) is an element of the following set:
B(A,B) :=

{

1

2

(

X1(Y1 + Y2) +X2(Y1 − Y2)
) ∣

∣Xi = X∗
i ∈ A; Yi = Y ∗

i ∈ B; −1 6 Xi, Yi 6 1

}where 1 is the unit element of C. For any Bell operator R the following 
an be proven:Theorem 1. For any state φ : C → C, one has |φ(R)| 6
√

2.Theorem 2. For separable states (i.e. for 
onvex 
ombinations of produ
t states) |φ(R)| 6 1.The Bell 
orrelation 
oe�
ient of a state φ is de�ned as
β(φ,A,B) := sup

{

|φ(R)|
∣

∣R ∈ B(A,B)
}and the Bell inequality is said to be violated if β(φ,A,B) > 1, and maximally violated if β(φ,A,B) =√

2. An important result of Ba

iagaluppi (1994) is the following:Theorem 3. If A and B are C∗-algebras, then there are some states violating the Bell inequalityfor A⊗ B i� both A and B are non-abelian.Going over to von Neumann algebras Landau (1987) has shown that the maximal violation of theBell inequality is generi
 in the following sense:Theorem 4. LetN1 andN2 be von Neumann algebras, and suppose thatN1 is abelian andN1 ⊆ N ′
2(N ′ being the 
ommutant of N ). Then for any state β(φ,A,B) 6 1. On the other hand, ifboth N1 and N2 are non-abelian von Neumann algebras su
h that N1 ⊆ N ′

2, and if (N1,N2)satis�es the S
hlieder-property,1 then there is a state φ for whi
h β(φ,A,B) =
√

2.1The 
ommuting pair (A,B) of C∗-subalgebras in C obeys the S
hlieder-property, if for 0 6= A ∈ A and 0 6= B ∈ B,
AB 6= 0. Sin
e in 
ase of von Neumann algebras A and B 
an be required to be proje
tions, S
hlieder-property is theanalogue of logi
al independen
e in 
lassi
al logi
. 3



Adding further 
onstraints on the von Neumann algebras one obtains other important results su
has the following two:Theorem 5. If N1 and N2 are properly in�nite2 von Neumann algebras on the Hilbert spa
e Hsu
h that N1 ⊆ N ′
2, and (N1,N2) satis�es the S
hlieder-property, then there is a dense set ofve
tors in H indu
ing states whi
h violate the Bell inequality a
ross (N1,N2) (Halvorson andClifton, 2000).Theorem 6. Let H be a separable Hilbert spa
e and let R be a von Neumann fa
tor of type III1a
ting on H. Then every normal state φ of B(H) maximally violates the Bell inequality a
ross

(R,R′) (Summers and Werner, 1988).Type III fa
tors featuring in Theorems 5-6. are the typi
al lo
al von Neumann algebras in AQFTwith lo
ally in�nite degrees of freedom. Here we brie�y survey the basi
 notions of the theory.In AQFT observables (in
luding quantum events) are represented by unital C∗-algebras asso
iatedto bounded regions of a given spa
etime. The asso
iation of algebras and spa
etime regions isestablished along the following lines.(i) Isotony. Let S be a spa
etime. A double 
one in S is the interse
tion of the 
ausal past of apoint x with the 
ausal future of a point y timelike to x. Let K be a 
olle
tion of double 
onesof S su
h that (K,⊆) is a dire
ted poset under in
lusion ⊆. The net of lo
al observables isgiven by the isotone map K ∋ V 7→ A(V ) to unital C∗-algebras, that is V1 ⊆ V2 implies that
A(V1) is a unital C∗-subalgebra of A(V2). The quasilo
al observable algebra A is de�ned to bethe indu
tive limit C∗-algebra of the net {A(V ), V ∈ K} of lo
al C∗-algebras.(ii) Mi
ro
ausality. The net {A(V ), V ∈ K} satis�es mi
ro
ausality (aka Einstein 
ausality):
A(V ′)′ ∩ A ⊇ A(V ), V ∈ K, where primes denote spa
elike 
omplement and algebra 
om-mutant, respe
tively. A(V ′) is the smallest C∗-algebra in A 
ontaining the lo
al algebras
A(Ṽ ),K ∋ Ṽ ⊂ V ′.(iii) Covarian
e. Let PK be the subgroup of the group P of geometri
 symmetries of S leavingthe 
olle
tion K invariant. A group homomorphism α : PK → AutA is given su
h that theautomorphisms αg, g ∈ PK of A a
t 
ovariantly on the observable net: αg(A(V )) = A(g ·
V ), V ∈ K.To the net {A(V ), V ∈ K} satisfying the above requirements we will refer to as a PK-
ovariantlo
al quantum theory. If S = M is the Minkowski spa
etime and K is the net of all double 
ones then

PK is the Poin
aré group, and we obtain Poin
aré 
ovariant algebrai
 quantum �eld theories withlo
ally in�nite degrees of freedom. Restri
ting the 
olle
tion K one 
an obtain PK-
ovariant lo
alquantum theories with lo
ally �nite degrees of freedom, for instan
e our example, the lo
al quantumIsing model (see below).A state φ in a lo
al quantum theory is de�ned as a normalized positive linear fun
tional on thequasilo
al observable algebra A. The 
orresponding GNS representation πφ : A → B(Hφ) 
onvertsthe net of C∗-algebras into a net of C∗-subalgebras of B(Hφ). Closing these subalgebras in the weaktopology one arrives at a net of lo
al von Neumann observable algebras: N (V ) := πφ(A(V ))′′, V ∈ K.Von Neumann algebras are generated by their proje
tions, whi
h are 
alled quantum events sin
ethey 
an be interpreted as 0-1�valued observables. The expe
tation value of a proje
tion is theprobability of the event that the observable takes on the value 1 in the appropriate quantum state.Two 
ommuting quantum events A and B are said to be 
orrelating in a state φ if
φ(AB) 6= φ(A)φ(B).2The 
enter 
ontains no �nite proje
tions. 4



If the events are supported in spatially separated spa
etime regions VA and VB , respe
tively, then the
orrelation between them is said to be superluminal. To see that superluminal 
orrelations violatingBell inequalities abound in Poin
aré 
ovariant algebrai
 quantum �eld theories, one has to introdu
efurther requirements on the representations of A (see Haag 1992):(iv) Unitary implementability. There is a strongly 
ontinuous unitary representation of the Poin
arégroup, U : P → B(Hφ), su
h that
πφ(αg(A)) = U(g)πφ(A)U(g)∗, A ∈ A, g ∈ P .(v) Va
uum 
ondition. There is a (up to a s
alar) unique ve
tor Ω in the Hilbert spa
e H0
orresponding to the va
uum state φ0 su
h that U(g)Ω = Ω for all g ∈ P .(vi) Spe
trum 
ondition. The spe
trum of the self-adjoint generators of the strongly 
ontinuousunitary representation of the translation subgroup R

4 of P lies in the 
losed forward light
one.(vii) Weak additivity. For any nonempty open region V , the set of operators ∪g∈R4N (g ·V ) is densein B(H0) (in the weak operator topology).Now, under 
onditions (i)-(vii) the lo
al von Neumann algebras supported in spa
elike separateddouble 
ones satisfy the S
hlieder property (S
hlieder, 1969). Therefore Theorem 4 applies to thesealgebras stating that there is a state maximally violating the Bell inequality a
ross these lo
alalgebras. Moreover, if the net is non-trivial3, then the lo
al von Neumann algebras are properlyin�nite. This makes Theorem 5 appli
able to lo
al von Neumann algebras supported in spa
elikeseparated double 
ones stating that there is a dense set of ve
tors in H indu
ing states whi
h violatethe Bell inequality.Being properly in�nite the von Neumann algebras 
annot be of type In and II1 but they still 
anbe of type I∞ or II∞ . However, a set of independent results indi
ates that the lo
al von Neumannalgebras are of type III, more spe
i�
ally hyper�nite4 fa
tors of type III1. Bu
hholz et al. (1987)proved that the lo
al algebras for relativisti
 free �elds are type III1 and it was also shown thatone 
an 
onstru
t the lo
al von Neumann algebras as a unique type III1 hyper�nite fa
tor from theunderlying Wightman theory by adding the assumption of s
aling limit (see (Fredenhagen (1985)).Instead of deriving the type of the von Neumann algebras from more general physi
al require-ments, one also 
an expli
itely add this 
ondition as a new axiom of AQFT:(viii) The type of the algebras. For every double 
one V the von Neumann algebra N (V ) is of type
III1.Under 
onditions (i)-(viii) the lo
al von Neumann algebras supported in spa
elike separeted double
ones satisfy the assumptions of Theorem 6, therefore every normal state will maximally violate theBell inequality a
ross pairs of algebras supported in spa
elike separated double 
ones.Finally, we mention a physi
ally important 
onsequen
e of Theorem 6:Theorem 7. The va
uum state maximally violates the Bell inequality a
ross the wedge5 algebras
(N (W ),N (W )′). (Summers, Werner 1988).As said above, the Bell inequality typi
ally used in AQFT is of the following form:

∣

∣φ
(

X1(Y1 + Y2) +X1(Y1 − Y2)
)∣

∣ 6 2, (1)3For ea
h double 
one V , A(V ) 6= C1.4The weak 
losure of an as
ending sequen
e of �nite dimensional algebras.5Poin
aré transforms of the region WR := {x ∈ M|x1 > |x0|}.5



where Xm ∈ N (VA) and Yn ∈ N (VB) are self-adjoint 
ontra
tions (that is −1 6 Xm, Yn 6 1 for
m,n = 1, 2) supported in spatially separated spa
etime regions VA and VB , respe
tively. This typeof Bell inequality is usually referred to as the Clauser�Horne�Shimony�Holte (CHSH) inequality(Clauser, Horne, Shimony and Holt, 1969). Sometimes in the EPR-Bell literature another Bell-typeinequality is used instead of (1): the Clauser�Horne (CH) inequality (Clauser and Horne, 1974)de�ned in the following way:

−1 6 φ(A1B1 +A1B2 +A2B1 −A2B2 −A1 −B1) 6 0, (2)where Am and Bn are proje
tions lo
ated in N (VA) and N (VB), respe
tively. It is easy to see,however, that the two inequalities are equivalent: in a given state φ the set {(Am, Bn);m,n = 1, 2}violates the CH inequality (2) if and only if the set {(Xm, Yn);m,n = 1, 2} of self-adjoint 
ontra
tionsgiven by
Xm := 2Am − 1 (3)
Yn := 2Bn − 1 (4)violates the CHSH inequality (1). Therefore, from now on we will 
on
entrate only on the CH-typeBell inequalities.In the next two se
tions we turn to the 
ommon 
ausal explanation behind the Bell inequalities.In the next Se
tion we introdu
e the basi
 notions of the 
lassi
al 
ommon 
ausal explanation leadingto the Bell inequalities; in the subsequent Se
tion we generalize these notions for the quantum 
ase.3 Classi
al 
ommon 
ausal explanationLet us begin with Hans Rei
henba
h's (1956) original de�nition whi
h is histori
ally the �rst prob-abilisti
 
hara
terization of the notion of the 
ommon 
ause. Let (Ω,Σ, p) be a 
lassi
al probabilitymeasure spa
e and let A and B be two positively 
orrelating events in Σ:

p(A ∧B) > p(A) p(B). (5)De�nition 1. An event C ∈ Σ is said to be the Rei
henba
hian 
ommon 
ause of the 
orrelationbetween events A and B if the following 
onditions hold:
p(A ∧B|C) = p(A|C)p(B|C) (6)

p(A ∧B|C⊥) = p(A|C⊥)p(B|C⊥) (7)
p(A|C) > p(A|C⊥) (8)
p(B|C) > p(B|C⊥) (9)where C⊥ denotes the ortho
omplement of C and p( · | · ) is the 
onditional probability de�ned bythe Bayes rule. One refers to equations (6)-(7) as the s
reening-o� 
onditions and to inequalities(8)-(9) as the positive statisti
al relevan
y 
onditions.Rei
henba
h's de�nition, however, 
annot be applied dire
tly to AQFT for four reasons. First, thepositive statisti
al relevan
y 
onditions restri
t one to 
ommon 
auses whi
h in
rease the probabilityof their e�e
ts; or in other words, they ex
lude negative 
auses. Se
ond, the de�nition also ex
ludessituations in whi
h the 
orrelation is not due to a single 
ause but to a system of 
ooperating
ommon 
auses. Third, it is silent about the spatiotemporal lo
alization of the events. Fourth andmost importantly, it is 
lassi
al.Let us �rst address the �rst two problems. Let A and B be two 
orrelating events in a 
lassi
alprobability measure spa
e (Ω,Σ, p) that is
p(A ∧B) 6= p(A) p(B). (10)6



De�nition 2. A partition {Ck}k∈K in Σ is said to be the 
ommon 
ause system of the 
orrelation(10) if the following s
reening-o� 
ondition holds for all k ∈ K:
p(A ∧B|Ck) = p(A|Ck) p(B|Ck), (11)where |K|, the 
ardinality of K is said to be the size of the 
ommon 
ause system. A 
ommon 
ausesystem of size 2 is 
alled a 
ommon 
ause (without the adje
tive `Rei
henba
hian', indi
ating thatthe inequalities (8)-(9) are not required).Con
erning the third problem, namely, the lo
alization of the 
ommon 
ause, one has (at least)three di�erent options. Suppose that the two events A and B are lo
alized in two bounded andspatially separated regions VA and VB of a spa
etime S. Then one 
an lo
alize {Ck} either (i)in the union or (ii) in the interse
tion of the 
ausal past of the regions VA and VB; or (iii) morerestri
tively, in the spa
etime region whi
h lies in the interse
tion of 
ausal pasts of every point of

VA ∪ VB . Formally, we have
wpast(VA, VB) := I−(VA) ∪ I−(VB)

cpast(VA, VB) := I−(VA) ∩ I−(VB)

spast(VA, VB) := ∩x∈VA∪VB
I−(x)where I−(V ) denotes the union of the ba
kward light 
ones i.e. the 
ausal pasts I−(x) of everypoint x in V (Rédei, Summers 2007). We will refer to the above three pasts in turn as the weakpast, 
ommon past, and strong past of A and B, respe
tively (see Fig. 1). The notion of these pastspresupposes a spa
etime lo
alization stru
ture of the 
lassi
al event algebra. (For su
h an attemptsee (Henson, 2005).)
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Figure 1: Possible lo
alizations of the 
ommon 
ause system in di�erent pasts of VA and VB.Now, suppose that we do not fa
e one 
orrelation (A,B) but a set of 
orrelations that is events
Am and Bn in Σ su
h that for any m ∈M,n ∈ N

p(Am ∧Bn) 6= p(Am) p(Bn). (12)If our aim is to explain all of these pair-
orrelations {(Am, Bn);m ∈M,n ∈ N} by a single 
ommon
ause system, then we are led to the following de�nition:De�nition 3. A partition {Ck}k∈K in Σ is said to be a joint6 
ommon 
ause system of the set of
orrelations {(Am, Bn);m ∈M,n ∈ N} if the following s
reening-o� 
ondition holds for all m ∈M ,
n ∈ N , and k ∈ K:

p(Am ∧Bn|Ck) = p(Am|Ck) p(Bn|Ck). (13)6In (Hofer-Szabó and Ve
sernyés, 2012a,b) 
alled 
ommon 
ommon 
ause system.7



Obviously, for a set of 
orrelations to have a joint 
ommon 
ause system is mu
h more demandingthan to simply have a separate 
ommon 
ause system for ea
h 
orrelation.Now, let us 
ompli
ate the pi
ture a little further by introdu
ing 
onditional probabilities. Supposethat events Am and Bn are out
omes of measurements of the observables Am and Bn, respe
tively.Let am and bn, respe
tively denote the events that the appropriate measurement devi
es are setto measure the observables Am and Bn, respe
tively. Let us refer to these events as measurement
hoi
es. To be more spe
i�
, suppose that ea
h measurement 
hoi
e am in region VA 
an yieldonly two out
omes Am and A⊥
m, and similarly the measurement 
hoi
es bn in region VB 
an againyield only two out
omes Bn and B⊥

n . Finally, suppose that probability of the di�erent measurement
hoi
es am in region VA add up to 1, and similarly for the measurement 
hoi
es bn in region VB .Now, the events Am and Bn are said to be 
orrelating in the 
onditional sense if for all Am, Bn,
am, bn ∈ Σ (m ∈M,n ∈ N) the following holds:

p(Am ∧Bn | am ∧ bn) 6= p(Am|am ∧ bn) p(Bn|am ∧ bn). (14)What does a joint 
ommon 
ausal explanation of these 
onditional 
orrelations 
onsists in? Theanswer to this question is given in the following de�nition:De�nition 4. A lo
al, non-
onspiratorial joint 
ommon 
ausal explanation of the 
onditional 
or-relations (14) 
onsists in providing a partition {Ck} in Σ su
h that for any m,m′ ∈M,n, n′ ∈ N thefollowing requirements hold:
p(Am ∧Bn|am ∧ bn ∧ Ck) = p(Am|am ∧ bn ∧ Ck) p(Bn|am ∧ bn ∧Ck) (s
reening-o�) (15)

p(Am|am ∧ bn ∧ Ck) = p(Am|am ∧ bn′ ∧Ck) (lo
ality) (16)
p(Bn|am ∧ bn ∧ Ck) = p(Bn|am′ ∧ bn ∧Ck) (lo
ality) (17)

p(am ∧ bn ∧ Ck) = p(am ∧ bn) p(Ck) (no-
onspira
y) (18)The motivation behind requirements (15)-(18) is the following. S
reening-o� (15) is simply theappli
ation of the notion of 
ommon 
ause for 
onditional 
orrelations: although Am and Bn are
orrelating 
onditioned on am and bn, they will 
ease to do so if we further 
ondition on {Ck}.Lo
ality (16)-(17) is the natural requirement that the measurement out
ome on the one side shoulddepend only on the measurement 
hoi
e on the same side and the value of the 
ommon 
ause butnot on the measurement 
hoi
e on the opposite side. Finally, no-
onspira
y (18) is the requirementthat the 
ommon 
ause system and the measurement 
hoi
es should be probabilisti
ally independent.(For the justi�
ation of the above requirements by Causal Markov Condition see (Glymour, 2006).)Let us now pro
eed further. A straightforward 
onsequen
e of De�nition 4 is the following proposition(Clauser, Horne, 1974):Proposition 1. Let Am, Bn, am and bn (m,n = 1, 2) be eight events in a 
lassi
al probabilitymeasure spa
e (Ω,Σ, p) su
h that the pairs {(Am, Bn);m,n = 1, 2} 
orrelate in the 
onditional senseof (14). Suppose that {(Am, Bn);m,n = 1, 2} has a lo
al, non-
onspriratorial joint 
ommon 
ausalexplanation in the sense of De�nition 4. Then for anym,m′, n, n′ = 1, 2;m 6= m′;n 6= n′ the following
lassi
al Clauser�Horne inequality holds:
−1 6 p(Am ∧Bn|am ∧ bn) + p(Am ∧Bn′ |am ∧ bn′) + p(Am′ ∧Bn|am′ ∧ bn)

−p(Am′ ∧Bn′ |am′ ∧ bn′) − p(Am|am ∧ bn) − p(Bn|am ∧ bn) 6 0 (19)Proof. It is an elementary fa
t of arithmeti
 that for any α, α′, β, β′ ∈ [0, 1] the number
αβ + αβ′ + α′β − α′β′ − α− β (20)8



lies in the interval [−1, 0]. Now let α, α′, β, β′ be the following 
onditional probabilities:
α := p(Am|am ∧ bn ∧Ck) (21)
α′ := p(Am′ |am′ ∧ bn′ ∧ Ck) (22)
β := p(Bn|am ∧ bn ∧ Ck) (23)
β′ := p(Bn′ |am′ ∧ bn′ ∧ Ck) (24)Plugging (21)-(24) into (20) and using lo
ality (16)-(17) one obtains

−1 6 p(Am|am ∧ bn ∧ Ck)p(Bn|am ∧ bn ∧ Ck) + p(Am|am ∧ bn′ ∧ Ck)p(Bn′ |am ∧ bn′ ∧ Ck)

+p(Am′ |am′ ∧ bn ∧Ck)p(Bn|am′ ∧ bn ∧ Ck) − p(Am′ |am′ ∧ bn′ ∧ Ck)p(Bn′ |am′ ∧ bn′ ∧ Ck)

−p(Am|am ∧ bn ∧ Ck) − p(Bn|am ∧ bn ∧ Ck) 6 0 (25)Using s
reening-o� (15) one gets
−1 6 p(Am ∧Bn|am ∧ bn ∧Ck) + p(Am ∧Bn′ |am ∧ bn′ ∧Ck) + p(Am′ ∧Bn|am′ ∧ bn ∧Ck)

−p(Am′ ∧Bn′ |am′ ∧ bn′ ∧ Ck) − p(Am|am ∧ bn ∧ Ck) − p(Bn|am ∧ bn ∧ Ck) 6 0 (26)Multiplying the above inequality by p(Ck), using no-
onspira
y (18) and summing up for the index
k one obtains
−1 6

∑

k

(

p(Am ∧Bn ∧ Ck|am ∧ bn) + p(Am ∧Bn′ ∧ Ck|am ∧ bn′) + p(Am′ ∧Bn ∧ Ck|am′ ∧ bn)

−p(Am′ ∧Bn′ ∧ Ck|am′ ∧ bn′) − p(Am ∧Ck|am ∧ bn) − p(Bn ∧ Ck|am ∧ bn)
)

6 0 (27)Finally, applying the theorem of total probability
∑

k

p(Y ∧ Ck) = p(Y )one arrives at (19) whi
h 
ompletes the proof.Proposition 1 plays a 
ru
ial role in understanding the CH inequality (19). It provides, so tosay, a `
lassi
al 
ommon 
ausal justi�
ation' of the 
lassi
al CH inequality by showing that (19) is ane
essary 
ondition for the existen
e of a lo
al, non-
onspriratorial joint 
ommon 
ausal explanationfor a set of 
onditional 
orrelations.The well-known situation in whi
h the 
lassi
al CH inequality (19) is violated and hen
e the 
or-relations in question have no lo
al, non-
onspriratorial joint 
ommon 
ausal explanation, is theEPR-Bohm s
enario. Consider a pair of spin- 1
2
parti
les prepared in the singlet state (see Fig. 2).Let am (m = 1, 2) denote the event that the measurement apparatus is set to measure the spin

Figure 2: EPR�Bohm setup for spin- 1
2
parti
les9



in dire
tion ~am in the left wing; and let p(am) stand for the probability of am. Let bn (n = 1, 2)and p(bn) respe
tively denote the same for dire
tion ~bn in the right wing. (Note that m = n doesnot mean that ~am and ~bn are parallel dire
tions.) Furthermore, let p(Am) stand for the probabilitythat the spin measurement in dire
tion ~am in the left wing yields the result `up' and let p(Bn) bede�ned in a similar way in the right wing for dire
tion ~bn. A

ording to the statisti
al algorithmof quantum me
hani
s the 
onditional probability of getting an `up' result provided we measure thespin in dire
tion ~am in the left wing; getting an `up' result provided we measure the spin in dire
tion
~bn in the right wing; and getting `up-up' result provided we measure the spin in both dire
tions ~amand ~bn are given by the following relations:

p(Am|am ∧ bn) =
1

2
(28)

p(Bn|am ∧ bn) =
1

2
(29)

p(Am ∧Bn|am ∧ bn) =
1

2
sin2

(

θambn

2

) (30)where θambn
denotes the angle between dire
tions ~am and ~bn. For non-perpendi
ular dire
tions ~amand~bn (28)-(30) predi
t 
onditional 
orrelations spe
i�ed in (14). Now, in order to provide a 
lassi
allo
al, non-
onspiratorial joint 
ommon 
ausal explanation for these 
orrelations, the 
onditionalprobabilities (28)-(30) have to satisfy the 
lassi
al CH inequality (19). Sin
e for appropriate 
hoi
eof the measurement dire
tions this inequalitity is violated, EPR 
orrelations 
annot be given a
lassi
al lo
al, non-
onspiratorial joint 
ommon 
ausal explanation.Observe that up to this point everything has been 
lassi
al. Quantum me
hani
s (QM) was simplyused to generate 
lassi
al 
onditional probabilities by the Born rule. These 
onditional probabilities,however, 
ould also have been dire
tly obtained from the laboratory and in the a
tual experimentsthey are gained in this dire
t way indeed. So it is 
ompletely satisfa
tory to interpret the EPRs
enario�in a

ord with the quote from Gisin in the Introdu
tion�as a 
lassi
al situation with
lassi
al 
onditional 
orrelation (between dete
tor 
li
ks) violating the 
lassi
al CH inequality (19)(see (Szabó 1998)).But this is not the standard interpretation. The standard way to des
ribe the above EPRsituation is to adopt another mathemati
al formalism, the formalism of quantum theory. Hereevents are represented as proje
tions of the von Neumann latti
e of the tensor produ
t matrixalgebraM2(C)⊗M2(C) and probabilities are gained by the quantum states. So instead of (28)-(30)one writes the following:

φs(Am) = Tr
(

ρs (Am ⊗ 1B)
)

=
1

2
(31)

φs(Bn) = Tr
(

ρs (1A ⊗Bn)
)

=
1

2
(32)

φs(AmBn) = Tr
(

ρs (Am ⊗Bn)
)

=
1

2
sin2

(

θambn

2

) (33)where Am and Bn denote proje
tions onto the eigensubspa
es with eigenvalue + 1

2
of the spin oper-ators asso
iated with dire
tions ~am and ~bn, respe
tively, and φs( · ) = Tr(ρs · ) is the singlet state.Moreover, if we go over to AQFT, these proje
tions will be lo
alized in a well-de�ned spa
etimeregion.Substituting the non-
lassi
al probabilities (31)-(33) into the non-
lassi
al CH inequality (2)de�ned in the Introdu
tion one �nds a violation of this inequality for appropriate 
hoi
es of theproje
tions Am, Bn. But what does it mean? First, it is important to be aware of the fa
t that now10



we adopt another theory to a

ount for 
orrelations. But then we need to take the 
onsequen
es ofthis move seriously. This means that we need to represent every event of the model as proje
tionsof a von Neumann algebra. Among them 
ommon 
auses! So the following questions arise: Can the
lassi
al notion of the 
ommon 
ause (system) generalized for the non-
lassi
al 
ase? What is therelation of this non-
lassi
al notion of 
ommon 
ause to the non-
lassi
al CH inequality (2)? Doesthere exist a non-
lassi
al 
ommon 
ausal justi�
ation of the Bell inequalities used in AQFT similarto the 
lassi
al one?As it will turn out soon, one 
an generalize the notion of the 
ommon 
ause also for the alge-brai
 quantum �eld theoreti
al setting, and one 
an also give a pre
ise de�nition of a lo
al, non-
onspiratorial joint 
ommon 
ausal explanation of a set of 
orrelations in AQFT. However, it alsowill turn out that there is no dire
t relation between this 
ommon 
ausal explanation and the Bellinequalities. Or to put it brie�y, 
orrelation violating the Bell inequality 
an still have a lo
al, non-
onspiratorial joint 
ommon 
ausal explanation. In order to see all these, �rst we have to generalizethe notions of this Se
tion to the quantum 
ase.4 Non-
lassi
al 
ommon 
ausal explanationLet us �rst generalize the notion of the 
ommon 
ause system to the quantum 
ase in the followingway. Repla
e the 
lassi
al probability measure spa
e (Ω,Σ, p) by the non-
lassi
al probability mea-sure spa
e (N ,P(N ), φ) where P(N ) is the (non-distributive) latti
e of proje
tions (events) and φis a state of a von Neumann algebra N . We note that in 
ase of proje
tion latti
es we will use onlyalgebra operations (produ
ts, linear 
ombinations) instead of latti
e operations (∨,∧). In 
ase of
ommuting proje
tions A,B ∈ P(N ) latti
e operations 
an be given in terms of algebrai
 operations.A set of mutually orthogonal proje
tions {Ck}k∈K ⊂ P(N ) is 
alled a partition of the unit 1 ∈ Nif ∑

k Ck = 1. Two 
ommuting proje
tions A and B ∈ P(N ) are said to be 
orrelating in the state
φ : N → C if

φ(AB) 6= φ(A)φ(B). (34)Sin
e φ is linear, a kind of `theorem of total probablity', ∑

i φ(APi) = φ(A
∑

i Pi) = φ(A), holds forany partition {Pi} of the unit, hen
e (34) is equivalent to
φ(AB)φ(A⊥B⊥) 6= φ(AB⊥)φ(A⊥B). (35)Now, following the lines of De�nition 2 one 
an 
hara
terize the non-
lassi
al 
ommon 
ause systemof the 
orrelation (34) as a s
reener-o� partition of the unit. To make the de�nition meaningful wehave to introdu
e the following 
onditional expe
tation Ec : N → C:

Ec(A) :=
∑

k∈K

CkACk, (36)where {Ck}k∈K is a partition of the unit of N (Umegaki, 1954). The image C of this map is aunital subalgebra of N 
ontaining exa
tly those elements that 
ommute with Ck, k ∈ K. There-fore, Ec(A)Ck = Ec(ACk) = CkACk (A ∈ N , k ∈ K) for example. By means of this 
onditionalexpe
tation we 
an de�ne the notion of the 
ommon 
ause system in the non-
lassi
al 
ase:De�nition 5. A partition of the unit {Ck}k∈K ⊂ P(N ) is said to be the 
ommon 
ause system ofthe 
ommuting events A,B ∈ P(N ), whi
h 
orrelate in the state φ : N → C, if for those k ∈ K forwhi
h φ(Ck) 6= 0, the following 
ondition holds:
(φ ◦ Ec)(ABCk)

φ(Ck)
=

(φ ◦Ec)(ACk)

φ(Ck)

(φ ◦ Ec)(BCk)

φ(Ck)
. (37)11



If Ck 
ommutes with both A and B for all k ∈ K, we 
all {Ck}k∈K a 
ommuting 
ommon 
ausesystem, otherwise a non
ommuting one. A 
ommon 
ause system of size |K| = 2 is 
alled a 
ommon
ause.Some remarks are in pla
e here. First, using the `theorem of total probability' the 
ommon 
ause
ondition (37) 
an be written as
(φ ◦ Ec)(ABCk)) (φ ◦Ec)(A

⊥B⊥Ck) = (φ ◦ Ec)(AB
⊥Ck) (φ ◦ Ec)(A

⊥BCk), k ∈ K. (38)One 
an even allow here the 
ase φ(Ck) = 0, sin
e then both sides of (38) are zero.Se
ond, the non-
lassi
al 
hara
ter of the 
ommon 
ause system of De�nition 5 lies in the fa
tthat the 
ommon 
ause system need not 
ommute with the 
orrelating events. If the events Aand B 
ommute with Ck, k ∈ K, then not only Ck ∈ C but also A,B,A⊥, B⊥ ∈ C, and therefore
Ec(ABCk) = ABCk, for example. Thus, the 
onditional expe
tation Ec vanishes from the de�ningequation (37); and (38) leads to

φ(ABCk)φ(A⊥B⊥Ck) = φ(AB⊥Ck)φ(A⊥BCk). (39)Finally, it is obvious from (39) that if Ck ≤ X with X = A,A⊥, B or B⊥ for any k ∈ Kthen {Ck}k∈K serve as a 
ommon 
ause system (and hen
e a 
ommuting 
ommon 
ause system)of the given 
orrelation independently of the 
hosen state φ. These solutions are 
alled trivial
ommon 
ause systems. In 
ase of 
ommon 
ause, |K| = 2, triviality means that {Ck} = {A,A⊥} or
{Ck} = {B,B⊥}.Having generalized the notion of the 
ommon 
ause system for the quantum 
ase, the next stepis to lo
alize it. Suppose that the proje
tion A is lo
alized in the algebra A(VA) with support VAand the proje
tion B is lo
alized in the algebra A(VB) with support VB su
h that V ′′

A and V ′′
B arespa
elike separated double 
ones in a spa
etime S. A 
ommon 
ause system {Ck}k∈K is said to bea 
ommuting/non
ommuting (strong/weak) 
ommon 
ause system of the 
orrelation between A and

B if {Ck}k∈K is lo
alizable in an algebra A(VC) with support VC su
h that VC is in cpast(VA, VB)(spast(VA, VB)/wpast(VA, VB)).In the same vein, we obtain the de�nition of the joint 
ommon 
ause system in the non-
lassi
al
ase. Let {(Am, Bn);m ∈ M,n ∈ N} be a set of pairs of 
ommuting proje
tions 
orrelating in thesense that
φ(AmBn) 6= φ(Am)φ(Bn). (40)De�nition 6. A partition of the unit {Ck}k∈K ⊂ P(N ) is said to be a joint 
ommon 
ause systemof the set {(Am, Bn);m ∈ M,n ∈ N} of 
ommuting pairs of 
orrelating events, if for any k ∈ K,when φ(Ck) 6= 0, the 
onditions

(φ ◦ Ec)(AmBnCk)

φ(Ck)
=

(φ ◦ Ec)(AmCk)

φ(Ck)

(φ ◦ Ec)(BnCk)

φ(Ck)
, m ∈M,n ∈ N (41)hold, where Ec is the 
onditional expe
tation de�ned in (36). Again, if {Ck}k∈K 
ommutes with Amand Bn for all m ∈M,n ∈ N , then we 
all it a 
ommuting joint 
ommon 
ause system, otherwise anon
ommuting one.Equation (41) 
an again be understood in the more permissive way as

(φ ◦ Ec)(AmBnCk)) (φ ◦ Ec)(A
⊥
mB

⊥
n Ck) = (φ ◦ Ec)(AmB

⊥
n Ck) (φ ◦ Ec)(A

⊥
mBnCk) (42)in
orporating 
ases when φ(Ck) = 0.And here 
omes a subtle point. Having introdu
ed the notion of the joint 
ommon 
ause systemof a 
orrelation in the pre
eding Se
tion we went over to 
onditional 
orrelations and de�ned a lo
al,12



non-
onspriratorial 
ommon 
ausal explanation of these 
orrelations. What is the analogue move inthe non-
lassi
al 
ase? We 
laim that we need not introdu
e any new 
on
ept; the de�nition of alo
al, non-
onspriratorial 
ommon 
ause system in the non-
lassi
al 
ase is just identi
al to the onegiven in De�nition 6 that is to the de�nition of the joint 
ommon 
ause system. For the details seethe Appendix (and (Butter�eld 1995)). So from now on we drop the pre�x `lo
al, non-
onspiratorial'before the term `joint 
ommon 
ause system' in the non-
lassi
al 
ase.Now, we are able to ask whether there is a proposition similary to Proposition 1 in the non-
lassi
al
ase, that is whether one 
an derive a CH inequality (2) from the fa
t that the set of 
orrelatingproje
tions {(Am, Bn);m ∈ M,n ∈ N} has a joint 
ommon 
ausal explanation? The followingproposition provides a su�
ient 
ondition.Proposition 2. Let Am ∈ A(VA) and Bn ∈ A(VB) (m,n = 1, 2) be four proje
tions lo
alized inspa
elike separated spa
etime regions VA and VB , respe
tively, whi
h 
orrelate in the lo
ally faithfulstate φ in the sense of (40). Suppose that {(Am, Bn);m,n = 1, 2} has a joint 
ommon 
ausalexplanation in the sense of De�nition 6. Then for any m,m′, n, n′ = 1, 2;m 6= m′;n 6= n′ the CHinequality
−1 6 (φ ◦ Ec)(AmBn +AmBn′ +Am′Bn −Am′Bn′ −Am −Bn) 6 0. (43)holds for the state φ ◦ Ec. If the joint 
ommon 
ause is a 
ommuting one, then the CH inequalityholds for the original state φ:

−1 6 φ(AmBn +AmBn′ +Am′Bn −Am′Bn′ − Am −Bn) 6 0. (44)Proof. Substituting the expressions
α :=

(φ ◦ Ec)(AmCk)

φ(Ck)
(45)

α′ :=
(φ ◦ Ec)(Am′Ck)

φ(Ck)
(46)

β :=
(φ ◦ Ec)(BnCk)

φ(Ck)
(47)

β′ :=
(φ ◦ Ec)(Bn′Ck)

φ(Ck)
(48)into the inequality

−1 6 αβ + αβ′ + α′β − α′β′ − α− β 6 0and using (41) we get
−1 6

(φ ◦ Ec)(AmBnCk)

φ(Ck)
+

(φ ◦ Ec)(AmBn′Ck)

φ(Ck)
+

(φ ◦ Ec)(Am′BnCk)

φ(Ck)

− (φ ◦ Ec)(Am′Bn′Ck)

φ(Ck)
− (φ ◦ Ec)(AmCk)

φ(Ck)
− (φ ◦ Ec)(BnCk)

φ(Ck)
6 0. (49)Multiplying the above inequality by φ(Ck) and summing up for the index k one obtains

−1 6
∑

k

(

(φ ◦ Ec)(AmBnCk) + (φ ◦ Ec)(AmBn′Ck) + (φ ◦ Ec)(Am′BnCk)

−(φ ◦ Ec)(Am′Bn′Ck) − (φ ◦ Ec)(AmCk) − (φ ◦ Ec)(BnCk)

)

6 0, (50)13



whi
h leads to (43) by performing the summation. If {Ck}k∈K is a 
ommuting joint 
ommon 
ausesystem, then Ec drops out from the above expression sin
e all the arguments are in C (see the remarkbefore (38)). Therefore (50) be
omes identi
al to (44), whi
h 
ompletes the proof.First note that similarly to Proposition 1, neither Proposition 2 refers to the spa
etime lo
alizationof {Ck} in a dire
t way. Indire
tly, however, it restri
ts the lo
alization of the possible joint 
ommon
ause systems for states violating the CH inequality (44): the support of {Ck} must interse
t theunion of the 
ausal past or the 
ausal future of VA ∪ VB . It is so be
ause otherwise the support of
{Ck}k∈K would be spa
elike separated from those of A and B, and hen
e {Ck} would be a 
ommutingjoint 
ommon 
ause system for a set of 
orrelations violating the CH inequality (44), in 
ontradi
tionwith Proposition 2.Proposition 2�similarly to Proposition 1�provides a 
ommon 
ausal justi�
ation of the CHinequality (44). It states that in order to yield a 
ommuting joint 
ommon 
ausal explanation forthe set {(Am, Bn);m,n = 1, 2} the CH inequality (44) has to be satis�ed. But what is the situationwith non
ommuting 
ommon 
ause systems? Sin
e�apart from (43)�Proposition 2 is silent aboutthe relation between a non
ommuting joint 
ommon 
ausal explanation and the CH inequality (44),the question arises: Can a set of 
orrelations violating the CH inequality (44) have a non
ommutingjoint 
ommon 
ausal explanation? Before addressing this question, we pose an easier one: Can asingle 
orrelation have a 
ommon 
ausal explanation in AQFT? This leads us over to the questionof the validity of the Common Cause Prin
iples in AQFT.5 Common Cause Prin
iples in algebrai
 quantum �eld theoryRei
henba
h's Common Cause Prin
iple (CCP) is the following hypothesis: If there is a 
orrelationbetween two events and there is no dire
t 
ausal (or logi
al) 
onne
tion between the 
orrelatingevents, then there exists a 
ommon 
ause of the 
orrelation. The pre
ise de�nition of this informalstatement that �ts to the algebrai
 quantum �eld theoreti
al setting is the following:De�nition 7. A PK-
ovariant lo
al quantum theory {A(V ), V ∈ K} is said to satisfy the Commu-tative/Non
ommutative (Weak/Strong) Common Cause Prin
iple if for any pair A ∈ A(V1) and
B ∈ A(V2) of proje
tions supported in spa
elike separated regions V1, V2 ∈ K and for every lo
allyfaithful state φ : A → C establishing a 
orrelation between A and B, there exists a nontrivial
ommuting/non
ommuting 
ommon 
ause system {Ck}k∈K ⊂ A(V ), V ∈ K of the 
orrelation (34)su
h that the lo
alization region V is in the (weak/strong) 
ommon past of V1 and V2.What is the status of these six di�erent notions of the Common Cause Prin
iple in AQFT?The question whether the Commutative Common Cause Prin
iples are valid in a Poin
aré 
o-variant lo
al quantum theory in the von Neumann algebrai
 setting was �rst raised by Rédei (1997,1998). As an answer to this question, Rédei and Summers (2002, 2007) have shown that the Commu-tative Weak CCP is valid in algebrai
 quantum �eld theory with lo
ally in�nite degrees of freedom.Namely, in the von Neumann setting they proved that for every lo
ally normal and faithful stateand for every superluminally 
orrelating pair of proje
tions there exists a weak 
ommon 
ause, thatis a 
ommon 
ause system of size 2 in the weak past of the 
orrelating proje
tions. They have alsoshown (Rédei and Summers, 2002, p 352) that the lo
alization of a 
ommon 
ause C < AB 
annot berestri
ted to wpast(V1, V2)\I−(V1) or wpast(V1, V2)\I−(V2) due to logi
al independen
e of spa
elikeseparated algebras.Con
erning the Commutative (Strong) CCP less is known. If one also admits proje
tions lo
alizedonly in unbounded regions, then the Strong CCP is known to be false: von Neumann algebraspertaining to 
omplementary wedges 
ontain 
orrelated proje
tions but the strong past of su
h wedgesis empty (see (Summers andWerner, 1988) and (Summers, 1990)). In spa
etimes having horizons, e.g.those with Robertson�Walker metri
, the 
ommon past of spa
elike separated bounded regions 
an14



be empty, although there are states whi
h provide 
orrelations among lo
al algebras 
orrespondingto these regions (Wald 1992).7 Hen
e, CCP is not valid there. Restri
ting ourselves to lo
al algebrasin Minkowski spa
es the situation is not 
lear. We are of the opinion that one 
annot de
ide onthe validity of the (Strong) CCP without an expli
it referen
e to the dynami
s sin
e there is nobounded region V in cpast(V1, V2) (hen
e neither in spast(V1, V2)) for whi
h isotony would ensurethat A(V1 ∪ V2) ⊂ A(V ′′). But dynami
s relates the lo
al algebras sin
e A(V1 ∪ V2) ⊂ A(V ′′ + t) =
αt(A(V ′′)) 
an be ful�lled for 
ertain V ⊆ V ′′ ⊂ cpast(V1, V2) and for 
ertain time translation by t.Coming ba
k to the proof of Rédei and Summers, the proof had a 
ru
ial premise, namely thatthe algebras in question are von Neumann algebras of type III. Although these algebras arise in anatural way in the 
ontext of Poin
aré 
ovariant theories, other lo
al quantum theories apply vonNeumann algebras of other type. For example, theories with lo
ally �nite degrees of freedom arebased on �nite dimensional (type I) lo
al von Neumann algebras. This raised the question whetherthe Commutative Weak CCP is valid in other lo
al quantum theories. To address the problem Hofer-Szabó and Ve
sernyés (2012a) have 
hosen the lo
al quantum Ising model (see Müller, Ve
sernyés)having lo
ally �nite degrees of freedom. It turned out that the Commutative Weak CCP is not validin the lo
al quantum Ising model and it 
annot be valid either in theories with lo
ally �nite degreesof freedom in general.But why should we require 
ommutativity between the 
ommon 
ause and its e�e
ts at all?Commutativity has a well-de�ned role in any quantum theories: observables should 
ommuteto be simultaneously measurable. In AQFT 
ommutativity of observables with spa
elike separatedsupports is an axiom. To put it simply, 
ommutativity 
an be required for events whi
h 
an happen`at the same time'. But 
ause and e�e
t are typi
ally not this sort of events. If one 
onsiders ordinaryQM, one well sees that observables do not 
ommute even with their own time translates in general.For example, the time translate x(t) := U(t)−1xU(t) of the position operator x of the harmoni
os
illator in QM does not 
ommute with x ≡ x(0) for generi
 t, sin
e in the ground state ve
tor ψ0we have

[

x, x(t)
]

ψ0 =
−i~ sin (~ωt)

mω
ψ0 6≡ 0. (51)Thus, if an observable A is not a 
onserved quantity, that is A(t) 6= A, then the 
ommutator

[A,A(t)] 6= 0 in general. So why should the 
ommutators [A,C] and [B,C] vanish for the events
A,B and for their 
ommon 
ause C supported in their (weak/
ommon/strong) past? We think that
ommuting 
ommon 
auses are only unne
essary reminis
ense of their 
lassi
al formulation. Due totheir relative spa
etime lo
alization, that is due to the time delay between the 
orrelating events andthe 
ommon 
ause, it is also an unreasonable assumption.Abandoning 
ommutativity in the de�nition of the 
ommon 
ause is therefore a natural move.To our knowledge the �rst to 
ontemplate the possibility of the non
ommuting 
ommon 
auses wereClifton and Ruets
he (1999) in their paper 
riti
izing Rédei (1997, 1998) who required 
ommutativityfrom the 
ommon 
ause. They say: �[requiring 
ommutativity℄ bars form 
andida
y to the post of
ommon 
ause the vast majority of events in the 
ommon past of events problemati
ally 
orrelated� (p165). And indeed, the bene�t of allowing non
ommuting 
ommon 
auses is that the non
ommutativeversion of the result of Rédei and Summers 
an be regained: as it was shown in (Hofer-Szabó andVe
sernyés 2012b), by allowing 
ommon 
auses that do not 
ommute with the 
orrelating events,the Weak CCP 
an be proven in lo
al UHF-type quantum theories.Now, let us turn to our original question as to whether a set of 
orrelations violating the CHinequality (2) 
an have a non
ommuting joint 
ommon 
ausal explanation in AQFT. Sin
e our answeris provided in an AQFT with lo
ally �nite degrees of freedom, in the lo
al quantum Ising model,we give a short and non-te
hni
al tutorial to this model in the next Se
tion. (For more detail see(Hofer-Szabó, Ve
sernyés, 2012
).)7We thank David Malament for 
alling our attention to this point and the paper of Wald.15



6 Non
ommutative 
ommon 
auses for 
orrelations violatingthe CH inequalityConsider a `dis
retized' version of the two dimensional Minkowski spa
etime M2 whi
h is 
omposedof minimal double 
onesOm(t, i) of unit diameter with their 
enter in (t, i) for t, i ∈ Z or t, i ∈ Z+1/2.The set {Om
i , i ∈ 1

2
Z} of su
h minimal double 
ones with t = 0,−1/2 de�nes a `thi
kened' Cau
hysurfa
e in this spa
etime (see Fig. 3). The double 
one Om

i,j sti
ked to this Cau
hy surfa
e is de�nedto be the smallest double 
one 
ontaining both Om
i and Om

j : Om
i,j := Om

i ∨ Om
j . Similarly, let

Om(t, i; s, j) := Om(t, i)∨Om(s, j). The dire
ted set of su
h double 
ones is denoted by Km, and thedire
ted subset of it whose elements are sti
ked to a Cau
hy surfa
e is denoted by Km
CS . Obviously,

Km
CS will be left invariant by integer spa
e translations and Km will be left invariant by integer spa
eand time translations.

1O OO0OO

1/2OO−1/2 O3/2O−3/2

−1−2

m m m m m

mmm m
2

Figure 3: A thi
kened Cau
hy surfa
e in the two dimensional Minkowski spa
e M2The net of lo
al algebras is de�ned as follows. The `one-point' observable algebras asso
iated tothe minimal double 
ones Om
i , i ∈ 1

2
Z are de�ned to be A(Om

i ) ≃ M1(C) ⊕M1(C). Between theunitary selfadjoint generators Ui ∈ A(Om
i ) one demands the following 
ommutation relations:

UiUj =

{

−UjUi, if |i− j| = 1

2
,

UjUi, otherwise. (52)Now, the lo
al algebras A(Oi,j),Oi,j ∈ Km
CS are linearly spanned by the monoms

Uki

i U
k

i+ 1
2

i+ 1
2

. . . U
k

j− 1
2

j− 1
2

U
kj

j (53)where ki, ki+ 1
2
. . . kj− 1

2
, kj ∈ {0, 1}.8Sin
e the lo
al algebras A(Oi,i− 1

2
+n), i ∈ 1

2
Z for n ∈ N are isomorphi
 to the full matrix algebra

M2n(C), the quasilo
al observable algebra A is a uniformly hyper�nite (UHF) C∗-algebra and 
on-sequently there exists a unique (non-degenerate) normalized tra
e Tr : A → C on it. We note thatall nontrivial monoms in (53) have zero tra
e.In order to extend the `Cau
hy surfa
e net' {A(O),O ∈ Km
CS} to the net {A(O),O ∈ Km}in a 
ausal and time translation 
ovariant manner one has to 
lassify 
ausal (integer valued) timeevolutions in the lo
al quantum Ising model. This 
lassi�
ation was given in (Müller, Ve
sernyés)and it also was shown that the extended net satis�es isotony, Einstein 
ausality, algebrai
 Haag8For detailed Hopf algebrai
 des
ription of the lo
al quantum spin models see (Szla
hányi, Ve
sernyés, 1993), (Nill,Szla
hányi, 1997), (Müller, Ve
sernyés)). 16



duality
A(O′)′ ∩A = A(O), O ∈ Km, (54)

Z× Z 
ovarian
e with respe
t to integer time and spa
e translations and primitive 
ausality:
A(V ) = A(V ′′), (55)where V is a �nite 
onne
ted pie
e of a thi
kened Cau
hy surfa
e (
omposed of minimal double
ones). V ′′ denotes the double spa
elike 
omplement of V , whi
h is the smallest double 
one in Km
ontaining V . We will be interested here only in a spe
ial subset of these 
ausal automorphismsgiven by:

β(Ux) = Ux− 1
2
UxUx+ 1

2
, x ∈ Z +

1

2
. (56)(In our following example we need not spe
ify the 
hoi
e for β(Ux), x ∈ Z.) Now, 
onsider the double
ones OA := Om(0,−1) ∪ Om(1

2
,− 1

2
) and OB := Om(1

2
, 1

2
) ∪ Om(0, 1) and the `two-point' algebras

A(OA) and A(OB) pertaining to them. (See Fig. 4.) A linear basis of the algebra A(OA) is given
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Figure 4: Proje
tions in A(OA) and A(OB)by the monoms
1, U−1, β(U− 1

2
) ≡ U−1U− 1

2
U0, iU−1β(U− 1

2
) ≡ iU− 1

2
U0 (57)(where i in the fourth monom is the imaginary unit). They satisfy the same 
ommutation relationslike the Pauli matri
es σ0 = 1, σx, σy and σz in M2(C). Therefore, introdu
ing the notation

U := (U−1, U−1U− 1
2
U0, iU− 1

2
U0) (58)any minimal proje
tion in A(OA) 
an be parametrized as

A(a) :=
1

2
(1 + aU) (59)where a = (a1, a2, a3) is a unit ve
tor in R

3. In the same vein, any minimal proje
tion in A(OB)
an be paremetrized as
B(b) :=

1

2
(1 + bV) (60)17



where
V := (U1, −U0U 1

2
U1, iU0U 1

2
) (61)is the ve
tor 
omposed of the generators of A(OB) and b = (b1, b2, b3) is a unit ve
tor in R

3.The proje
tions A(a) and B(b) 
an be interpreted as the event lo
alized in A(OA) and A(OB),respe
tively pertaining to the generalized spin measurement in dire
tion a and b, respe
tively.Now, 
onsider two proje
tions Am := A(am);m = 1, 2 lo
alized in OA, and two other proje
tions
Bn := B(bn);n = 1, 2 lo
alized in the spa
elike separated double 
one OB . Suppose that our systemis in the faithful state φ( · ) = Tr(ρ · ) where

ρ = ρ(λ) := 1 + λ
(

U−1U− 1
2
U 1

2
U1 − U−1U1 + U− 1

2
U 1

2

)

, λ ∈ [0, 1). (62)For λ = 1 the state de�ned by (62) gives us ba
k the usual singlet state. It is easy to see that in thestate (62) the 
orrelation between Am and Bn will be:
corr(Am, Bn) := φ(AmBn) − φ(Am)φ(Bn) = −λ

4
〈am,bn〉 (63)where 〈 , 〉 is the s
alar produ
t in R

3. In other words Am and Bn will 
orrelate whenever a
m and

b
n are not orthogonal. Now, if a

m and b
n are 
hosen as

a
1 = (0, 1, 0) (64)

a
2 = (1, 0, 0) (65)

b
1 =

1√
2
(1, 1, 0) (66)

b
2 =

1√
2
(−1, 1, 0) (67)the CH inequality (2) will be violated at the lower bound sin
e

φ(A1B1 +A1B2 +A2B1 −A2B2 −A1 −B1

)

=

−1

2
− λ

4

(〈

a
1,b1

〉

+
〈

a
1,b2

〉

+
〈

a
2,b1

〉

−
〈

a
2,b2

〉)

= −1 + λ
√

2

2
, (68)whi
h is smaller than −1 if λ > 1√

2
. Or, equivalently, the CHSH inequality (1) where

Xm := 2Am − 1 (69)
Yn := 2Bn − 1 (70)will be violated for the above setting sin
e

φ(X1(Y1 + Y2) +X1(Y1 − Y2)) =

= −λ
(〈

a
1,b1 + b

2
〉

+
〈

a
2,b1 − b

2
〉)

= −λ2
√

2 (71)is smaller than −2 if λ > 1√
2
. Both the CH and the CHSH inequality are maximally violated for thesinglet state, that is if λ = 1.The question whether the four 
orrelations {(Am, Bn);m,n = 1, 2} violating the CH inequality(2) have a joint 
ommon 
ausal explanation was answered in (Hofer-Szabó, Ve
sernyés, 2012
) bythe following 18



Proposition 3. Let Am := A(am) ∈ A(OA), Bn := B(bn) ∈ A(OB);m,n = 1, 2 be four proje
tionsde�ned in (59)-(60), where a
m and b

n are non-orthogonal unit ve
tors in R
3 establishing four
orrelations {(Am, Bn);m,n = 1, 2} in the state (62). Let furthermore C be any proje
tion lo
alizedin OC := O− 1

2
∨ O 1

2
∈ Km

CS (see Fig. 5.) of the shape
C =

1

4

(

1 + U− 1
2
U 1

2

)(

1 + c1U0 + c2U 1
2

+ c3iU0U 1
2

)

+
1

4

(

1 − U− 1
2
U 1

2

)(

1 + c′1U0 + c′2U 1
2

+ c′3iU0U 1
2

) (72)where c = (c1, c2, c3) and c
′ = (c′1, c

′
2, c

′
3) are arbitrary unit ve
tors in R

3. Then {C,C⊥} is a joint
ommon 
ause of the 
orrelations {(Am, Bn)} if am
3 b

n
3 = 0 for any m,n = 1, 2 and c2 = 0.
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Figure 5: Lo
alization of a 
ommon 
ause for the 
orrelations {(Am, Bn)}.Sin
e for the dire
tions a
m and b

n de�ned in (64)-(67) the requirement am
3 b

n
3 = 0 holds for any

m,n = 1, 2, therefore the 
orrelations (maximally) violating the CH/CHSH inequality do have ajoint 
ommon 
ause�any C of form (72) with c2 = 0.Finally, here is a Proposition (
onsistently with the derivability of a CH inequality from the
ommuting joint 
ommon 
ause system) 
laiming that there exists no 
ommuting joint 
ommon 
ausefor these 
orrelations even without any restri
tion to their lo
alization (Hofer-Szabó, Ve
sernyés,2012
):Proposition 4. Let Am ∈ A(OA), Bn ∈ A(OB);m,n = 1, 2 be proje
tions de�ned in (59)-(60) with
a
m and b

n given in (64)-(67). The 
orrelations {(Am, Bn);m,n = 1, 2} in the state (62) do not havea 
ommuting joint 
ommon 
ause {C1, C2} in A.Proposition 3 answers the question raised at the end of the last Se
tion as to whether there isa 
ommon 
ausal justi�
ation of the CH inequalities in the general, that is in the non
ommuting
ase. The answer to this question is 
learly no. The violation of the CH inequality for a givenset of 
orrelation does not prevent us from �nding a 
ommon 
ausal explanation for them. Allwe have to do is to extend our s
ope of sear
h and to embra
e non
ommuting 
ommon 
auses inthe 
ommon 
ausal explanation. So the Bell inequalities in the non-
lassi
al 
ase do not play thesame role as in the 
lassi
al one. In the 
lassi
al 
ase there was a dire
t logi
al link between thepossibility of a 
ommon 
ausal explanation and the validity of the Bell inequalities; here the violationof the Bell inequalities ex
ludes only a subset of the possible 
ommon 
ausal explanations 
ontainingthe 
ommuting ones. To put it di�erently, taking seriously the ontology of AQFT where events arerepresented by not ne
essarily 
ommuting proje
tions, one 
an provide a 
ommon 
ausal explanationin a mu
h wider range than simply sti
king to 
ommutative 
ommon 
auses.19



7 On the meaning of non
ommuting 
ommon 
ausesBut what are the 
onsequen
es of applying non
ommutative 
ommon 
auses? Let us see the storyfrom the beginning, going ba
k to Rei
henba
h's original de�nition of the 
ommon 
ause. TheRei
henba
hian 
ommon 
ause has the ni
e property that the presen
e of a 
ommon 
ause impliesa (positive) 
orrelation between the events in question. This fa
t is a simple 
onsequen
e of thefollowing identity:
p(A ∧B) − p(A) p(B) = p(C)p(C⊥)

[

p(A|C) − p(A|C⊥)
][

p(B|C) − p(B|C⊥)
]

. (73)It is straightforward to 
he
k that if C is a Rei
henba
hian 
ommon 
ause ful�lling requirements(6)-(9) then the right hand side of (73) is positive therefore there is a positive 
orrelation between
A and B. In this sense the 
ommon 
ause provids a Hempelian explanation for the 
orrelation.9Going over to the notion of the 
ommon 
ause system this `explanatory for
e' of the 
ommon 
ausedisappears: from the presen
e of the 
ommon 
ause (11) the 
orrelation (10) between A and B doesnot follow. (For an attempt to de�ne the notion of the 
ommon 
ause system su
h that it preservesthis dedu
tive relation between the 
ommon 
ause system and the 
orrelation see (Hofer-Szabó andRédei 2004, 2006).)The non
ommutative generalization of the 
ommon 
ause system is one step further into thedire
tion of relaxing the relation between the 
ommon 
ause and the 
orrelation. Here not only thededu
tive relation between the 
ommon 
ause and the 
orrelation gets lost, but also the relationbetween the 
onditioned and un
onditioned probalitity of the 
orrelating events. Namely,

φ(A) = φc(A) := (φ ◦ Ec)(A) ≡
∑

k

(φ ◦ Ec)(ACk)

φ(Ck)
φ(Ck) (74)holds in general i� A = Ec(A), that is i� [A,Ck] = 0 for all k ∈ K. That is the state φc di�ers from

φ for A ∈ A\ ImEc in general, whi
h means that the statisti
s of A 
an di�er depending on whetherwe 
al
utate it dire
tly from the state φ or as a weighted average of 
onditional probabilities overthe subensembles Ck.But then one might 
ome up with the following 
on
ern: Non
ommuting 
ommon 
auses are nota
tual but only 
ontrafa
tual entities sin
e if the Ck-s had been realized, then we would have endedup with another probability (the right hand side of (74)) for the 
orrelating events than the a
tualones (the left hand side of (74)). So these 
ommon 
auses 
annot be realized in the same (a
tual)world in whi
h those event are a

omodated whi
h they are supposed to explain.We do not 
onsider this obje
tion to be serious against the appli
ation of non
ommuting 
ommon
auses. An analogy between the notion of the 
ommon 
ause and the notion of the 
ause in QMmight help to illuminate why. An observable/event X 
an be said to be the 
ause of anotherobservable/event Y in QM, if X evolves in time into Y . But if X and Y do not 
ommute, thenhad X been earlier realized, the unitary dynami
s would have been distorted, so X would not haveevolved into Y . Still, we regard X to be the 
ause of Y . Similarly, C is a 
ommon 
ause of A and
B if 
onditioned on it the 
orrelation between A and B disappears. If C does not 
ommute with Aand B, then had C been realized, the statisti
s would have been distorted, so the probability of A,
B and AB would be di�erent. Still, we think that C is the 
ommon 
ause.What is important to see here is that the de�nition of the 
ommon 
ause does not 
ontain therequirement (whi
h our 
lassi
aly informed intuition would di
tate) that the 
onditional probabilites,when added up, should give ba
k the un
onditional probabilities, that is φ = φc should ful�l. Or inother words, that the probability of the 
orrelating events should be built up from a �ner des
riptionof the situation provided by the 
ommon 
ause. To put it in a more formal way: the theorem of9One is tempted to spe
ulate that this desired property might just have been the reason why Rei
henba
h took upthe statisti
al relevan
y 
onditions (8)-(9) in the de�nition of the 
ommon 
ause.20



total probability is not part of the de�nition of the 
ommon 
ause.10 The de�ning property of the
ommon 
ause is simply the s
reening-o�.So 
ommon 
auses might not be realized without the distortion of the statisti
s of the original
orrelating events. But this fa
t is ubiquitous for non
ommuting observables in QM. If we toleratethis fa
t in general, then why not to tolerate it for 
ommon 
auses? As we have seen, allowing non-
ommuting 
ommon 
auses helps us to maintain Bell's original intuition 
on
erning lo
al 
ausality.8 Con
lusionsIn the paper we saw that the Bell inequalities used in AQFT 
annot be given a 
ommon 
ausaljusti�
ation similar to the 
lassi
al Bell inequalities if we allow non
ommuting 
ommon 
auses inthe explanation. Just the opposite is true: for a set of 
orrelations violating the CH inequalities anon
ommutative 
ommon 
ausal explanation 
an be given and this 
ommon 
ause 
an be lo
alized inthe 
ommon past of the 
orrelating events. Thus, abandoning 
ommutativity gives us extra freedomin the sear
h of 
ommon 
auses for 
orrelations. But how big is this freedom? Is it big enough to�nd a 
ommon 
ause for any set of 
orrelations? We saw that for the worst 
andidate, so to say,for the set maximally violating the CH inequality we have found su
h a 
ommon 
ause. But doesit mean that this strategy 
an be applied a
ross the board? What is the range of 
orrelations forwhi
h a joint 
ommon 
ausal explanation 
an be given? Is this range determined only by the size ofthe set of 
orrelations or by some other properties thereof? Is it true for example that for any �niteset of 
orrelations a weak joint 
ommon 
ausal explanation 
an always be given? Or to put it in amore formal way, 
an one always �nd a partition of the unit for any �nite set of 
orrelations su
hthat the ne
essary 
ondition (43) for a joint 
ommon 
ausal explanation ful�lls? All these questionsare still open.Appendix: In what sense non-
lassi
al joint 
ommon 
ause sys-tems are lo
al and non-
onspiratorial?In Se
tion 4 we 
laimed that De�nition 6 of the joint 
ommon 
ause system is the 
orre
t non-
lassi
algeneralization of De�nition 4 of the (
lassi
al) lo
al, non-
onspiratorial joint 
ommon 
ause system.But how 
an the single non-
lassi
al s
reening-o� 
ondition (41) generalize not only the 
lassi
als
reening-o� 
ondition (15) but also the lo
ality 
onditions (16)-(17) and non-
onspira
y (18)? Thisis the question we address in this Appendix.Let us �rst introdu
e a 
lassi
al probability measure pCk
on a 
ommon measure spa
e (Ω,Σ) forevery element of a 
lassi
al 
ommon 
ause system {Ck, k ∈ K}, if p(Ck) 6= 0:

pCk
(X |x) :=

p(X ∧Ck|x)
p(Ck)

. (75)With this denotation s
reening-o� (15), lo
ality (16)-(17), and no-
onspira
y (18) will read as
pCk

(Am ∧Bn|am ∧ bn) = pCk
(Am|am ∧ bn) pCk

(Bn|am ∧ bn), (76)
pCk

(Am|am ∧ bn) = pCk
(Am|am ∧ bn′), (77)

pCk
(Bn|am ∧ bn) = pCk

(Bn|am′ ∧ bn), (78)
pCk

(Ω|am ∧ bn) = 1, (79)10As it is not part of the de�nition of the 
ause either: if one measures X, one 
annot re
onstru
t the probabilityof a non
ommuting Y from the 
onditional probabities over the subensembles pertaining to the out
omes of X.21



if one uses no-
onspira
y (18) in the �rst three equations. The subs
ript Ck of the probabilitymeasure might remind the reader to the standard hidden variable approa
h where a parameter
λ is used to index a set of probability measures on a 
ommon event algebra. In this approa
hthe derivation of the Bell inequalities then pro
eeds through the summation/integration over thisparameter. In our opinion this indexi
al treatment of the 
ommon 
ause 
on
eals an important fa
t,namely that the 
ommon 
ause and the 
orrelating events stand on the same ontologi
al footing: theyare all events, a

omodated in a 
ommon event algebra with a single probability measure. Thereforethe index in (76)-(79) is simply an abbreviation of the 
onditionalization (75), whi
h abbreviationis motivated by trying to �nd a 
lassi
ally equivalent form, where the non-
lassi
aly meaninglessexpression am∧bn∧Ck of non-
ommuting quantities 
an have a de�nite interpretation. (See below.)Now, how does the non-
lassi
al De�nition 6 of the joint 
ommon 
ause system relate to theabove 
hara
terization of a 
lassi
al lo
al, non-
onspiratorial joint 
ommon 
ause system? The linkis provided by the (in our oppinion) 
orre
t interpretation of the non-
lassi
al probabilities a

ordingto whi
h quantum probabilities are 
lassi
al 
onditional probabilities. The quantum probability φ(X)of a proje
tion X is to be interpreted as a 
onditional probability p(Xcl|xcl) of getting the out
ome
Xcl given the quantity xcl has been set to be measured. The pre
ise mathemati
al formulation ofthis interpretation is given in the so-
alled `Kolmogorovian Censorship Hyptothesis'. Here we juststate the proposition; for the proof see (Bana and Durt 1997), (Szabó 2001) and (Rédei 2010).Kolmogorovian Censorship Hypothesis. Let (N ,P(N ), φ) be a non-
lassi
al probability spa
e.Let Γ be a 
ountable set of non-
ommuting selfadjoint operators in N . For every Q ∈ Γ, let P(Q)be a maximal Abelian sublatti
e of P(N ) 
ontaining all the spe
tral proje
tions of Q. Finally, let amap p0 : Γ → [0, 1] be su
h that

∑

Q∈Γ

p0(Q) = 1, p0(Q) > 0. (80)Then there exists a 
lassi
al probability spa
e (Ω,Σ, p) su
h that for every proje
tion XQ in any
P(Q) there exist events XQ

cl and xQ
cl in Σ su
h that

XQ
cl ⊂ xQ

cl (81)
xQ

cl ∩ xR
cl = 0, if Q 6= R (82)
p(xQ

cl) = p0(Q) (83)
φ(XQ) = p(XQ

cl |x
Q
cl) (84)The intuitive 
ontent of the above proposition is the following. A set of in
ompatible observablesrepresented by non
ommuting selfadjoint operators in the set Γ are sele
ted for measurement with theprobabilities p0(Q) spe
i�ed in (80). This measurement and sele
tion pro
edure is then representedby 
lassi
al events XQ

cl and xQ
cl, respe
tively: XQ

cl represents a 
ertain measurement out
ome of themeasurement Q, and xQ
cl is the 
lassi
al event of setting up the measurement devi
e to measure

Q. Condition (81) expresses that no out
ome is possible without this setting up of a measuringdevi
e. Condition (82) expresses that in
ompatible observables Q and R 
annot be simultaneouslymeasured: the measurement 
hoi
es xQ
cl and xR

cl are disjoint events. Condition (83) states thatthe 
lassi
al probability model 
aptures the pres
ribed probabilities p0(Q) as the probability of themeasurement 
hoi
es. Finally, 
ondition (84) is the 
entral relation of the Hypothesis, it states thatquantum probabilities 
an be written as 
lassi
al 
onditional probabilities: 
onditional probabilitiesof out
omes of measurements on 
ondition that the appropriate measuring devi
e has been set up.Applying the above proposition to our 
ase,11 we obtain that the quantum probabilities φ(Am),11From now on, we will denote both the 
lassi
al event and the proje
tion representing it by the same symbol.However, the quantum state φ or the 
lassi
al probability p will always indi
ate in whi
h sense we use it.22



φ(Bn) and φ(AmBn) 
an be interpreted as 
lassi
al 
onditional probabilities p(Am|am), p(Bn|bn)and p(Am ∧ Bn|am ∧ bn), respe
tively, with Am, Bn, am and bn (m ∈ M,n ∈ N) a

omodated in a
lassi
al probability spa
e (Ω,Σ, p). Hen
e the quantum 
orrelations
φ(AmBn) 6= φ(Am)φ(Bn) (85)between the elements of the set {(Am, Bn);m ∈M,n ∈ N} 
an be interpreted as 
onditional 
orre-lations

p(Am ∧Bn | am ∧ bn) 6= p(Am|am) p(Bn|bn) (86)between 
lassi
al measurement out
ome events 
onditioned on measurement 
hoi
e events in a

or-dan
e with (14).To see the link between the 
lassi
al and non-
lassi
al version of the 
ommon 
ause let us �rstintrodu
e a similar notation for the 
onditionalization on Ck in the non-
lassi
al 
ase, if φ(Ck) 6= 0,as was introdu
ed above in (75) for the 
lassi
al 
ase, that is let
φCk

(X) :=
(φ ◦ Ec)(XCk)

φ(Ck)
=
φ(CkXCk)

φ(Ck)
. (87)With this notation the de�nition of the non-
lassi
al joint 
ommon 
ause system reads as follows:

φCk
(AmBn) = φCk

(Am)φCk
(Bn). (88)Using the Kolmogorovian Censorship Hypothesis the 
lassi
al interpretation of (88) is the following:

pCk
(Am ∧Bn|am ∧ bn) = pCk

(Am|am) pCk
(Bn|bn) (89)whi
h is almost the s
reening-o� (76) ex
ept that the 
onditions on the right hand side are not

am ∧ bn. This defe
t will be 
ured however by the lo
ality 
onditions. Observe namely that sin
e
Am and Bn 
ommute, therefore

φCk
(Am) = φCk

(AmBn) + φCk
(AmB

⊥
n ) (90)

φCk
(Bn) = φCk

(AmBn) + φCk
(A⊥

mBn) (91)whi
h translated into 
lassi
al 
onditional probabilities due to the Kolmogorovian Censorship Hy-pothesis read as:
pCk

(Am|am) = pCk
(Am ∧Bn|am ∧ bn) + pCk

(Am ∧B⊥
n |am ∧ bn) = pCk

(Am|am ∧ bn) (92)
pCk

(Bn|bn) = pCk
(Am ∧Bn|am ∧ bn) + pCk

(A⊥
m ∧Bn|am ∧ bn) = pCk

(Bn|am ∧ bn) (93)Now, observe that (92)-(93) are equivalent to lo
ality (77)-(78), so lo
ality is `automati
ally' ful�lledfor the non-
lassi
al 
ommon 
ause due to the 
ommutativity of Am and Bn. (This fa
t is sometimesreferred as the `no-signalling theorem'; for more on that see (S
hlieder 1969).) Moreover (92)-(93)also 
ure the defe
t of (89), sin
e
pCk

(Am|am) pCk
(Bn|bn)on the right hand side of (89) 
an be repla
ed with

pCk
(Am|am ∧ bn) pCk

(Bn|am ∧ bn)turning (89) into the 
lassi
al s
reening-o� property (76).23



Putting all this together, a non-
lassi
al, lo
al, non-
onspiratorial joint 
ommon 
ausal expla-nation of the 
orrelations (85) is a partition {Ck}k∈K ⊂ P(N ) if for any k ∈ K the followingrequirements hold:
φCk

(AmBn) = φCk
(Am)φCk

(Bn) (94)
φCk

(Am) = φCk
(AmBn) + φCk

(AmB
⊥
n ) (95)

φCk
(Bn) = φCk

(AmBn) + φCk
(A⊥

mBn) (96)
φCk

(1) = 1. (97)whi
h using the Kolmogorovian Censorship Hypothesis as a `translation manual' leads us over tothe 
lassi
al, lo
al, non-
onspiratorial joint 
ommon 
ausal explanation (76)-(79) of the 
orrelations(86). But re
all that (95)-(97) representing lo
ality and no-
onspira
y are just identities, and hen
ethe s
reening-o� 
ondition (94) 
arries the whole 
ontent of the 
ommon 
ausal explanation�ina

ordan
e with our De�nition 6.A
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