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Abstract

This paper is the philosopher-friendly version of our more technical work (Hofer-Szab6 and Vecser-
nyés, 2014). It aims to give a clear-cut definition of Bell’s notion of local causality. Having provided a
framework, called local physical theory, which integrates probabilistic and spatiotemporal concepts,
we formulate the notion of local causality and relate it to other locality and causality concepts. Then
we compare Bell’s local causality with Reichenbach’s Common Cause Principle and relate both to the
Bell inequalities. We find a nice parallelism: both local causality and the Common Cause Principle
are more general notions than captured by the Bell inequalities. Namely, Bell inequalities cannot
be derived neither from local causality nor from a common cause unless the local physical theory is
classical or the common cause is commuting, respectively.
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1 Introduction

Local causality is the principle that causal processes cannot propagate faster than the speed of light.
This does not mean that in a physical theory subject to this principle no correlation between spatially
separated events can exist; a correlation can well be brought about by a common cause in the past of the
events in question. However, since all causal processes propagate within the lightcone, fixing the past of
an event in a detailed enough manner, the state of this event will be fixed once and for all, and no other
spatially separated event can contribute to it any more.

In a nutshell, this is the idea which becomes primary focus in John Bell’s (2004) seminal papers
initiating a whole research program in the foundations of quantum theory. In these papers Bell translated
the intuitive idea of local causality into a probabilistic language opening the door to treat the principle
in a theoretical setting and to test its experimental validity wvia the Bell inequalities derived from the
principle. The logical scheme of this translation was the following: if physical events are localized
in the spacetime in a certain independent way, then these events are to satisfy certain probabilistic
independencies. This manual was highly intuitive, however, to apply it in a formally correct way one
had to wait until the advent of a mathematically well-defined and physically well-motivated formalism
which is able to integrate spatiotemporal and probabilistic concepts. Without such a framework one
could not account for the (otherwise intuitive) inference from relations between spacetime regions to
probabilistic independencies between, say, random variables. The most elaborate formalism offering such
a general framework is quantum field theory, or its algebraic-axiomatic form, algebraic quantum field
theory (AQFT).

Thus, it comes as no surprise that AQFT has soon become an important medium to pursue research
on the Bell inequalities (Summers, 1987a,b; Summers and Werner, 1988; Halvorson 2007); relativistic
causality (Butterfield 1995, 2007; Earman and Valente, 2014); or the closely related (see below) Common
Cause Principle (Rédei 1997; Rédei and Summers 2002; Hofer-Szab6 and Vecsernyés 2012a, 2013a). In
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this paper we follow the route pioneered by the algebraists, but we do not go as far as AQFT. Our aim
is simply to establish a minimal framework which is needed to formulate Bell’s notion of local causality
in a strict fashion. Thus we will borrow only a part of AQFT to represent something which we will call
a local physical theory. A local physical theory is a formal structure integrating the two most important
components of a general physical theory: spacetime structure and algebraic-probabilistic structure. Our
secondary aim in this paper is to clarify the relation of Bell’s local causality to such other important
notions as local primitive causality, Common Cause Principle and the Bell inequalities.

There is a renewed interest in a deeper conceptual and formal understanding of Bell’s notion of local
causality. Travis Norsen illuminating paper on local causality (Norsen, 2011) or its relation to Jarrett’s
completeness criterion (Norsen, 2009); the paper of Seevinck and Uffink (2011) aiming at providing
a ’sharp and clean’ formulation of local causality; or Henson’s (2013) paper on the relation between
separability and the Bell inequalities are all examples of this inquiry. Our research runs parallelly in
some respect to these investigations and we will comment on the points of contact underway.

In Section 2 we fix our mathematical framework, called local physical theory and list some important
relativistic causality principles. In Section 3 we formulate Bell’s notion of local causality in a local physical
theory. In Section 4 we compare local causality with the Common Cause Principle and relate both to
the Bell inequalities. We conclude the paper in Section 5.

This paper is the philosopher-friendly version of our more detailed and more technical work (Hofer-
Szab6 and Vecsernyés, 2014). Many points (such as local causality in a non-atomic local physical theory;
local causality in stochastic dynamics; its complex relation to other locality and causality concepts, etc.)
which are treated in a more conceptual way here obtain a more detailed mathematical analysis there. We
will not refer to these results point-by-point in the paper.

2 What is a local physical theory?

First we set the framework, called local physical theory, within which probabilistic and spatiotemporal
notions can be treated in an integrated way.

Definition 1. A Pi-covariant local physical theory is a net {A(V),V € K} associating algebras of events
to spacetime regions which satisfies isotony, microcausality and covariance defined as follows (Haag, 1992):

1. Isotony. Let M be a globally hyperbolic spacetime and let /C be a covering collection of bounded,
globally hyperbolic subspacetime regions of M such that (K, C) is a directed poset under inclusion
C. The net of local observables is given by the isotone map K 3 V +— A(V) to unital C*-algebras,
that is V3 C V4 implies that A(V4) is a unital C*-subalgebra of A(V2). The quasilocal algebra A is
defined to be the inductive limit C*-algebra of the net {A(V),V € K} of local C*-algebras.

2. Microcausality (also called as Einstein causality) is the requirement that A(V')'NA D A(V),V € K,
where primes denote spacelike complement and algebra commutant, respectively.

3. Spacetime covariance. Let Px be the subgroup of the group P of geometric symmetries of M
leaving the collection K invariant. A group homomorphism «: Px — Aut A is given such that the
automorphisms a4, g € Px of A act covariantly on the observable net: a,(A(V)) = A(g-V),V € K.

If the quasilocal algebra A of the local physical theory is commutative, we speak about a local classical
theory; if it is noncommutative, we speak about a local quantum theory. For local classical theories
microcausality fulfills trivially.

A state ¢ in alocal physical theory is defined as a normalized positive linear functional on the quasilocal
observable algebra A. The corresponding GNS representation my: A — B(Hy) converts the net of C*-
algebras into a net of C*-subalgebras of B(H,). Closing these subalgebras in the weak topology one
arrives at a net of local von Neumann observable algebras: N(V) := ms(A(V))"”,V € K. Von Neumann



algebras are generated by their projections, which are called quantum events since they can be interpreted
as 0-1-valued observables. The net {N(V),V € K} of local von Neumann algebras also obeys isotony,
microcausality, and Px-covariance, hence one can also refer to a net {N'(V),V € K} of local von Neumann
algebras as a local physical theory. Although, the local o-algebras of classical observable events provided
by the projections of the local abelian von Neumann algebras are not the most general o-algebras, still
they provide us a rich enough set of examples for classical theories.

One can introduce a number of important locality and causality concepts into the above formalism. Here
we only list them in turn and assert their logical relations; for the motivation of these concepts see
(Earman and Valente, 2014).

Local primitive causality. For any globally hyperbolic bounded subspacetime region V € K, A(V") =
A(V).

A local physical theory satisfying local primitive causality also satisfies the following two properties:

Local determinism. For any two states ¢ and ¢’ and for any globally hyperbolic spacetime region V' € K,
if lacvy = ¢'|av) then ¢l sy = ¢ |awny.

Stochastic Einstein locality. Let V4, Ve € K such that Vo € J_(Va) and Va4 C VE. If | acve) = &' | ave)
holds for any two states ¢ and ¢’ on A then ¢(A) = ¢'(A) for any projection A € A(Vy4).

If a net satisfies Haag duality:
AV NnA=AV) (1)

for all bounded globally hyperbolic subspacetime region V', which is a stronger requirement than micro-
causality, then it also satisfies local primitive causality. But microcausality alone does not entail local
primitive causality.

A global version of local primitive causality (entailed by the local one) is

Primitive causality. Let K(C) C K be a covering collection of a Cauchy surface C and let A(K(C)) be the
corresponding algebra. Then A(K(C)) = A.

A local physical theory with primitive causality satisfies
Determinism. If ¢| a(x.) = ¢'| a(xe) for any two states ¢ and ¢’ on A then ¢ = ¢'.

In the rest of the paper a local physical theory obeys only isotony, microcausality, and Pi-covariance
by definition without any other locality and causality constraints. We turn now to Bell’s notion of local
causality.

3 Bell’s notion of local causality in a local physical theory

Local causality has been playing a central notion in Bell’s influential writings on the foundations of
quantum theory. To our knowledge it gets an explicit formulation three times: in (Bell, 1975/2004 , p.
54), (Bell, 1986,/2004, p. 200), and (Bell, 1990/2004, p. 239-240). In this latter posthumously published
paper “La nouvelle cuisine”, for example, local causality is formulated as follows:!

“A theory will be said to be locally causal if the probabilities attached to values of local beables
in a space-time region V4 are unaltered by specification of values of local beables in a space-
like separated region Vg, when what happens in the backward light cone of V4 is already

IFor the sake of uniformity we slightly changed Bell’s denotation and figures.



sufficiently specified, for example by a full specification of local beables in a space-time region
Ve. ” (Bell, 1990/2004, p. 239-240)

(For a reproduction of the figure Bell is attaching to this formulation see Fig. 1 with Bell’s caption.) Bell

X

Figure 1: Full specification of what happens in Vi makes events in Vp irrelevant for predictions about
V4 in a locally causal theory.

elaborates on his formulation as follows:

“It is important that region Vi completely shields off from V4 the overlap of the backward
light cones of V4 and Vp. And it is important that events in Vi be specified completely.
Otherwise the traces in region Vp of causes of events in V4 could well supplement whatever
else was being used for calculating probabilities about V4. The hypothesis is that any such
information about Vg becomes redundant when Ve is specified completely.” (Bell, 1990,/2004,
p. 240)

The notions featuring in Bell’s formulation has been target of intensive discussion in philosophy of science.
Here we would like to give only a brief exposé of them.

The notion “beable” is Bell’s neologism. (See Norsen 2009, 2011.) “The beables of the theory are
those entities in it which are, at least tentatively, to be taken seriously, as corresponding to something
real” (Bell, 1990/2004, p. 234). The clarification of the “beables” of a given theory is indispensable in
order to define local causality since “there are things which do go faster than light. British sovereignty
is the classical example. When the Queen dies in London (long may it be delayed) the Prince of Wales,
lecturing on modern architecture in Australia, becomes instantaneously King” (p. 236).

Beables are to be local: “Local beables are those which are definitely associated with particular space-
time regions. The electric and magnetic fields of classical electromagnetism, E(t, 2) and B(¢, z) are again
examples.” (p. 234). Furthermore, local beables are to “specify completely” region Vi in order to block
causal influences arriving at V4 from the common past of V4 and Vp. (For the question of complete wvs.
sufficient specification see (Seevinck and Uffink, 2014).)

One can translate Bell’s above terms in the following way. In a classical field theory beables are
characterized by sets of field configurations. Taking the equivalence classes of those field configurations
which have the same field values on a given spacetime region one can generate local o-algebras. Translating
o-algebras into the language of abelian von Neumann algebras one can capture Bell’s notion of “local
beables” in the framework of a local physical theory. More generally, one can use the term “local beables”
both for abelian and also for non-abelian local von Neumann algebras, hence treating local classical and
quantum theories on an equal footing.

How to translate the term “complete specification”? Complete specification of field configurations
in a given spacetime region means that one specifies the field values to a prescribed value in the given
spacetime region, that is one specifies the corresponding local equivalence class of a single configuration.
In probabilistic language complete specification is translated into a probability measure having support
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on this local equivalence class of the single specified configuration. In the abelian von Neumann language
this corresponds to a change of the original state that results in a pure state on the local von Neumann
algebra in question with value 1 on the projection corresponding to the local equivalence class of the
single specified configuration. We also would like this change of states to be as local as possible. Both
pureness and locality can be captured in a general local physical theory by some conditions imposed on a
completely positive map generating the change of states. If the local algebras of the net are atomic (which,
by the way, is not the case in a general AQFT), the change of states can be generated by conditioning
the original state on an arbitrary atomic event (a minimal projection) in the local algebra. In this case
“complete specification of beables” will mean a so-called selective measurement by an atomic event in a
local algebra (Henson, 2013). With these notions in hand we can formulate Bell’s notion of local causality
in local physical theories:?

Definition 2. A local physical theory represented by a net {N(V),V € K} of von Neumann algebras
is called (Bell) locally causal, if for any pair A € N (V4) and B € N (Vg) of projections supported in
spacelike separated regions V4, Vp € K and for every locally normal and faithful state ¢ establishing a
correlation, ¢(AB) # ¢(A)p(B), between A and B, and for any spacetime region Vi such that

(i) Vo € J-(Va),
(i) Va C V4,
(iii) J-(Va) N J- (V) N (J4(Ve) \ Vo) =0,
(see Fig. 2) and for any atomic event Cy, of A(Ve) (k € K), the following holds:

[ Ve /N

Figure 2: A region V¢ satisfying Requirements (i)-(iii).

$(CkABCy) _ d(CrACK) 9(Cu BCx) (2)
5(Cr) o(Cr)  #(Cr)

Remarks:

1. Again we stress that Definition 2 captures local causality only for local physical theories with atomic
local von Neumann algebras.

2. In case of classical theories a locally faithful state ¢ determines a locally nonzero probability measure
p by p(4) := ¢(4) > 0,A € P(N(V)). By means of this (2) can be written in the following
‘symmetric’ form:

p(AB|Cy) = p(A|Ck)p(B|Cy) (3)

2For a similar approach to local causality using o-algebras see (Henson, 2013); for a comparison of the two approaches
see our (Hofer-Szab6 and Vecsernyés 2014).



or equivalent in the ’asymmetric’ form:
P(A|BCy) = p(A|Cy) (4)
sometimes used in the literature (for example in (Bell, 1975/2004 , p. 54)).

3. The role of Requirement (iii) in the definition is to ensure that “V¢ shields off from V4 the overlap
of the backward light cones of V4 and Vp”. Namely, a spacetime region above V¢ in the common
past of the correlating events (see Fig. 3) may contain stochastic events which, though completely

Ve

Figure 3: A region V¢ for which Requirement (iii) does not hold.

specified by the region Vi, still, being stochastic, could establish a correlation between A and B in
a classical stochastic theory (Norsen, 2011; Seevinck and Uffink 2011). If Vi is a piece of a Cauchy
surface Requirement (iii) coincides with Requirement (iv):

(iv) J_(Va)NJ_(Vs) N Ve =0

visualized in Fig. 4. However, for algebras corresponding to coverings of Cauchy surfaces Require-

/o

Figure 4: A region V¢ for which Requirement (iv) holds.

ment (iii) is weaker than Requirement (iv) since it allows for regions penetrating into the top part
of the common past. For local classical theories Requirement (iii) is enough, but for local quantum
theories Requirement (iv) should be used.

Of course the main question is how to ensure that a local physical theory is locally causal. Generally
the question is difficult to answer; here we simply mention a sufficient condition in case of atomic local
algebras:



1. A local classical theory is locally causal if the local von Neumann algebras are atomic and satisfy
local primitive causality.

Proof. Due to isotony and local primitive causality N'(V4) C N(VZ) = N(V¢) and hence for any
atom Cj of N'(V¢): either (i) ACk = 0 or (ii) ACy = Ck. In case of (i) both sides of (2) is zero, in
case of (ii) (2) holds as follows:
P(ABCy) _ ¢(BCr) _ $(ACk) ¢(BCk)
¢(Ck) ¢(Ck) ¢(Ck)  #(Cr)
2. A local quantum theory is locally causal if the local von Neumann algebras are atomic and satisfy

local primitive causality, and if Requirement (iii) in the definition of local causality is replaced by
Requirement (iv).

(3)

Proof. Since region V¢ is spatially separated from region Vg, B € N(Vp) and an atomic event
Cr € N(V¢) will commute due to microcausality. Using Cx, ACy = r C) (where r € [0,1] depends
on both A and Cy) we obtain:
d(CrABCY,) _ o(CLACKB) _ rqS(CkB) _ ?(CLACY) &(BCy) (©)
¢(Ck) ¢(Ck) ?(Ck) o(Ck)  ¢(Ck)
Looking at Point 2 the reader may justly ask: how can a local quantum theory be locally causal if local
causality implies various Bell inequalities, which are known to be violated for certain set of quantum
correlations. Does Definition 2 correctly grasp Bell’s intuition of local causality? We answer these
questions in the next section.

4 Local causality, Common Cause Principle and the Bell inequal-
ities

Local causality is closely related to Reichenbach’s (1956) Common Cause Principle. The Common Cause
Principle (CCP) states that if there is a correlation between two events A and B and there is no direct
causal (or logical) connection between the correlating events, then there always exists a common cause C
of the correlation. Reichenbach’s original classical probabilistic definition of the common cause can readily
be generalized to the local physical theory framework. (See (Rédei 1997, 1998), (Rédei and Summers
2002, 2007), (Hofer-Szabd and Vecsernyés 2012, 2013) and (Hofer-Szabo, Rédei and Szabo 2013).)

Let {NM(V),V € K} be a net representing a local physical theory. Let A € N(V4) and B € N(Vp)
be two events (projections) supported in spacelike separated regions V4, Vp € K which correlate in a
locally normal and faithful state ¢. The common cause of the correlation is an event screening off the
correlating events from one another and localized in the past of A and B. But in which past? Here one
has (at least) three options. One can localize C either (i) in the union J_(V4) U J_(Vp) or (ii) in the
intersection J_(V4) N J_(Vg) of the causal past of the regions V4 and Vp; or (iii) more restrictively in
Nzevauvs J— (), that is in the spacetime region which lies in the intersection of causal pasts of every
point of V4 U Vp. We will refer to the above three pasts in turn as the weak past, common past, and
strong past of A and B, respectively (Rédei, Summers, 2007).

Depending on the choice of the past we can define various CCPs in a local physical theory:

Definition 3. A local physical theory represented by a net {N(V),V € K} is said to satisfy the
(Weak/Strong) CCP, if for any pair A € N(V4) and B € N(Vg) of projections supported in space-
like separated regions V4, Vg € K and for every locally faithful state ¢ establishing a correlation between
A and B, there exists a nontrivial common cause system, that is a set of mutually orthogonal projections
{Cx}rex CN(Ve), Ve € K summing up to the unit of the algebra, satisfying

¢(CxABCy) _ ¢(CrACk) ¢(CrBCk)

5(Cr) = 5(Cr) S(Cr) forall k € K (7)




such that the localization region of V¢ is in the (weak/strong) common past of V4 and Vp.

A common cause is called nontrivial if C, £ X with X = A, AL, B or B* for some k € K. If
{Cr} ek commutes with both A and B, then we call it a commuting common cause system, otherwise a
noncommuting one, and the appropriate CCP a Commutative/Noncommutative CCP.

The status of these six different notions of the CCP has been thoroughly scrutinized in a special local
quantum theory, namely algebraic quantum field theory (AQFT). Here we only give a brief overview.

The question whether the Commutative CCPs are valid in a Poincaré covariant local quantum theory
was first raised by Rédei (1997, 1998). As an answer, Rédei and Summers (2002, 2007) have shown that
the Commutative Weak CCP is valid in Poincaré covariant AQFT. Since local algebras in a Poincaré
covariant AQFT are atomless (type III) von Neumann algebras, the question has been raised whether
Commutative Weak CCP is valid in local quantum theories with locally finite dimensional, hence atomic
local von Neumann algebras. Deciding the question, Hofer-Szab6 and Vecsernyés (2012a) have given an
example in the local quantum Ising model where the Commutative Weak CCP is not valid. A natural
reaction to these facts was to ask what role commutativity plays in these propositions. Addressing this
question, Hofer-Szabo and Vecsernyés (2013) have shown that allowing common causes not to commute
with the correlating events, the Noncommutative Weak CCP can be proven in local (UHF-type) quantum
theories with finite dimensional local von Neumann algebras.

Concerning the Commutative (Strong) CCP less is known. If one also admits projections localized
only in unbounded regions, then the Strong CCP is known to be false: von Neumann algebras pertaining
to complementary wedges contain correlated projections but the strong past of such wedges is empty
(see (Summers and Werner, 1988) and (Summers, 1990)). In spacetimes having horizons, e.g. those
with Robertson—-Walker metric, the common past of spacelike separated bounded regions can be empty,
although there are states which provide correlations among local algebras corresponding to these regions
(Wald 1992). Hence, CCP is not valid there. Restricting ourselves to projections in local algebras on
Minkowski spacetimes the situation is not clear. We are of the opinion that one cannot decide on the
validity of the (Strong) CCP in this case without an explicit reference to the dynamics.

Now, what is the relationship between the various CCPs and Bell’s local causality? The following list
of prima facie similarities and differences may help to explicate this relationship:

Similarities:

1. Both local causality and the CCPs are properties of a local physical theory represented by a net
{N(V),V e K}

2. The core mathematical requirement of both principles is the screening-off condition (2) or equiva-
lently (7).

3. The Bell inequalities can be derived from both principles. (But see below.)

Differences:

1. In case of local causality the screening-off condition (2) is required for every atomic event (satisfying
certain localization conditions). In case of the CCP for every correlation only a single subset of
events is postulated satisfying the screening-off condition (7).

2. In case of local causality the screening-off condition is required only for atomic events. In case of
the CCPs these atomic screener-offs of the algebra A(V¢) are called trivial, since they screen any
correlation off. What one is typically looking for are nontrivial common causes.

3. In case of local causality screener-offs are localized ’asymmetrically’ in the past of Vy; in case of
the CCP they are localized ’symmetrically’ in either the weak, common or strong past of V4 and
V.



Let us come back to Point 1 of the Similarities, that is to the relation of local causality and the CCPs to
the Bell inequalities. In (Hofer-Szabo and Vecsernyés, 2013b, Proposition 2) we have proven a proposition
which clarifies the relation between the CCPs and the Bell inequalities. It asserts that the Bell inequalities
can be derived from the existence of a (local, non-conspiratorial joint) common cause system for a set of
correlations if common causes are understood as commuting common causes. However, if we also allow
for noncommuting common causes, the Bell inequalities can be derived only for another state which is
not identical to the original one. And indeed in (Hofer-Szabo and Vecsernyés, 2013a,b) a noncommuting
common cause was constructed for a set of correlations violating the Clauser—Horne inequality. Moreover,
this common cause was localized in the strong past of the correlating events.

Now, an analogous proposition holds for the relation between local causality and the Bell inequalities.
We assert here only the proposition without the proof since the proof is step-by-step the same as that of
the proposition mentioned above.

Proposition 1. Let {NV(V),V € K} be a locally causal local physical theory with atomic (type I)
local von Neumann algebras. Let A;, Ay € A(V4) and By, Bs € A(Vg) be four projections localized in
spacelike separated spacetime regions V4 and Vg, respectively, which pairwise correlate in the locally
faithful state ¢ that is

$(AmBn) # ¢(Am) ¢(Bn) (8)

for any m,n = 1,2. Let furthermore {Ci}rex C N(Ve), Ve € K be a maximal partition of the unit,
where the set {C}}, . x contains mutually orthogonal atomic projections satisfying Requirements (i)-(iii)
in Definition 2 of local causality. Then the Clauser—-Horne inequality

—1 < ¢ro (A1Br + A1Ba + A2 By — A2 By — Ay — By) < 0. (9)

holds for the state ¢(c,y(X) := >, #(Cr XCy). If {Cr} commutes with Ay, Az, By and By, then the
Clauser—Horne inequality holds for the original state ¢:

—-1< ¢(AlBl + A1By + AsB1 — AsBy — A — Bl) < 0. (10)

The moral is the same as in the case of the CCPs: the Bell inequalities can be derived in a locally causal
local physical theory only for a modified state ¢, y; it can be derived for the original state ¢ if the set
of atomic projections {C%} localized in Vi commutes with Ay, Ay, By and Bs. What is needed for this
to be the case?

In local classical theories any element taken from any local algebra will commute, therefore the Bell
inequalities will hold in local classical theories. In locally causal local quantum theories, commutativity
of {Cx} and the correlating events is not guaranteed. If Vi is spatially separated from Vp (due to
Requirement (iv) in Definition 2), then {Cj%} will commute with B; and By and hence (2) will be
satisfied. However, for noncommuting A; and As one cannot pick a maximal partition {Cy} commuting
with both projections, and therefore the theorem of total probability, >, ¢(CrA,Cr) = ¢(A,,), will not
hold for the original state ¢ at least for one of the projections A; and Ay (it will hold only for the state
b1c,y)- This fact blocks the derivation of Bell inequalities for the original state ¢. (For the details see
(Hofer-Szabo and Vecsernyés, 2013b, p. 410) In short, the Bell inequalities can be derived in a locally
causal local quantum theory only if all the projections commute.

Coming back to the question posed at the end of the previous Section, namely how a local quantum
theory can be locally causal in the face of the Bell inequalities, we already know the answer: the Bell
inequalities can be derived from local causality if it is required that the ’beables’ of the local theory are
represented by commutative local algebras. This fact is completely analogous to the relation shown in
(Hofer-Szab6 and Vecsernyés, 2013b), namely that the Bell inequalities can be derived from a (local,
non-conpiratorial, joint) common cause system if it is a commuting common cause system. Thus, the



violation of the Bell inequalities for certain quantum correlations is compatible with locally causal local
quantum theories but not with locally causal local classical theories. Local causality is a more general
notion than captured by the Bell inequalities.

5 Conclusions

In this paper we have shown the following:

(i) Bell’s notion of local causality presupposes a clear-cut framework in which probabilistic and spa-
tiotemporal entities can be related. This aim can be reached by introducing the notion of a local
physical theory represented by an isotone net of algebras.

(ii) Within this general framework we have defined Bell’s notion of local causality and shown sufficient
conditions on which local physical theories will be locally causal.

(iii) Finally, we pointed out some important similarities and differences between local causality and
the CCPs and showed that in a locally causal local quantum theory one cannot derive the Bell
inequalities from local causality just as one cannot derive them from noncommuting common causes.
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