
Bell's lo
al 
ausality for philosophers

Gábor Hofer-Szabó

∗

Péter Ve
sernyés

†

Abstra
t

This paper is the philosopher-friendly version of our more te
hni
al work (Hofer-Szabó and Ve
ser-

nyés, 2014). It aims to give a 
lear-
ut de�nition of Bell's notion of lo
al 
ausality. Having provided a

framework, 
alled lo
al physi
al theory, whi
h integrates probabilisti
 and spatiotemporal 
on
epts,

we formulate the notion of lo
al 
ausality and relate it to other lo
ality and 
ausality 
on
epts. Then

we 
ompare Bell's lo
al 
ausality with Rei
henba
h's Common Cause Prin
iple and relate both to the

Bell inequalities. We �nd a ni
e parallelism: both lo
al 
ausality and the Common Cause Prin
iple

are more general notions than 
aptured by the Bell inequalities. Namely, Bell inequalities 
annot

be derived neither from lo
al 
ausality nor from a 
ommon 
ause unless the lo
al physi
al theory is


lassi
al or the 
ommon 
ause is 
ommuting, respe
tively.
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1 Introdu
tion

Lo
al 
ausality is the prin
iple that 
ausal pro
esses 
annot propagate faster than the speed of light.

This does not mean that in a physi
al theory subje
t to this prin
iple no 
orrelation between spatially

separated events 
an exist; a 
orrelation 
an well be brought about by a 
ommon 
ause in the past of the

events in question. However, sin
e all 
ausal pro
esses propagate within the light
one, �xing the past of

an event in a detailed enough manner, the state of this event will be �xed on
e and for all, and no other

spatially separated event 
an 
ontribute to it any more.

In a nutshell, this is the idea whi
h be
omes primary fo
us in John Bell's (2004) seminal papers

initiating a whole resear
h program in the foundations of quantum theory. In these papers Bell translated

the intuitive idea of lo
al 
ausality into a probabilisti
 language opening the door to treat the prin
iple

in a theoreti
al setting and to test its experimental validity via the Bell inequalities derived from the

prin
iple. The logi
al s
heme of this translation was the following: if physi
al events are lo
alized

in the spa
etime in a 
ertain independent way, then these events are to satisfy 
ertain probabilisti


independen
ies. This manual was highly intuitive, however, to apply it in a formally 
orre
t way one

had to wait until the advent of a mathemati
ally well-de�ned and physi
ally well-motivated formalism

whi
h is able to integrate spatiotemporal and probabilisti
 
on
epts. Without su
h a framework one


ould not a

ount for the (otherwise intuitive) inferen
e from relations between spa
etime regions to

probabilisti
 independen
ies between, say, random variables. The most elaborate formalism o�ering su
h

a general framework is quantum �eld theory, or its algebrai
-axiomati
 form, algebrai
 quantum �eld

theory (AQFT).

Thus, it 
omes as no surprise that AQFT has soon be
ome an important medium to pursue resear
h

on the Bell inequalities (Summers, 1987a,b; Summers and Werner, 1988; Halvorson 2007); relativisti



ausality (Butter�eld 1995, 2007; Earman and Valente, 2014); or the 
losely related (see below) Common

Cause Prin
iple (Rédei 1997; Rédei and Summers 2002; Hofer-Szabó and Ve
sernyés 2012a, 2013a). In
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this paper we follow the route pioneered by the algebraists, but we do not go as far as AQFT. Our aim

is simply to establish a minimal framework whi
h is needed to formulate Bell's notion of lo
al 
ausality

in a stri
t fashion. Thus we will borrow only a part of AQFT to represent something whi
h we will 
all

a lo
al physi
al theory. A lo
al physi
al theory is a formal stru
ture integrating the two most important


omponents of a general physi
al theory: spa
etime stru
ture and algebrai
-probabilisti
 stru
ture. Our

se
ondary aim in this paper is to 
larify the relation of Bell's lo
al 
ausality to su
h other important

notions as lo
al primitive 
ausality, Common Cause Prin
iple and the Bell inequalities.

There is a renewed interest in a deeper 
on
eptual and formal understanding of Bell's notion of lo
al


ausality. Travis Norsen illuminating paper on lo
al 
ausality (Norsen, 2011) or its relation to Jarrett's


ompleteness 
riterion (Norsen, 2009); the paper of Seevin
k and U�nk (2011) aiming at providing

a 'sharp and 
lean' formulation of lo
al 
ausality; or Henson's (2013) paper on the relation between

separability and the Bell inequalities are all examples of this inquiry. Our resear
h runs parallelly in

some respe
t to these investigations and we will 
omment on the points of 
onta
t underway.

In Se
tion 2 we �x our mathemati
al framework, 
alled lo
al physi
al theory and list some important

relativisti
 
ausality prin
iples. In Se
tion 3 we formulate Bell's notion of lo
al 
ausality in a lo
al physi
al

theory. In Se
tion 4 we 
ompare lo
al 
ausality with the Common Cause Prin
iple and relate both to

the Bell inequalities. We 
on
lude the paper in Se
tion 5.

This paper is the philosopher-friendly version of our more detailed and more te
hni
al work (Hofer-

Szabó and Ve
sernyés, 2014). Many points (su
h as lo
al 
ausality in a non-atomi
 lo
al physi
al theory;

lo
al 
ausality in sto
hasti
 dynami
s; its 
omplex relation to other lo
ality and 
ausality 
on
epts, et
.)

whi
h are treated in a more 
on
eptual way here obtain a more detailed mathemati
al analysis there. We

will not refer to these results point-by-point in the paper.

2 What is a lo
al physi
al theory?

First we set the framework, 
alled lo
al physi
al theory, within whi
h probabilisti
 and spatiotemporal

notions 
an be treated in an integrated way.

De�nition 1. A PK-
ovariant lo
al physi
al theory is a net {A(V ), V ∈ K} asso
iating algebras of events
to spa
etime regions whi
h satis�es isotony, mi
ro
ausality and 
ovarian
e de�ned as follows (Haag, 1992):

1. Isotony. Let M be a globally hyperboli
 spa
etime and let K be a 
overing 
olle
tion of bounded,

globally hyperboli
 subspa
etime regions of M su
h that (K,⊆) is a dire
ted poset under in
lusion

⊆. The net of lo
al observables is given by the isotone map K ∋ V 7→ A(V ) to unital C∗
-algebras,

that is V1 ⊆ V2 implies that A(V1) is a unital C∗
-subalgebra of A(V2). The quasilo
al algebra A is

de�ned to be the indu
tive limit C∗
-algebra of the net {A(V ), V ∈ K} of lo
al C∗

-algebras.

2. Mi
ro
ausality (also 
alled as Einstein 
ausality) is the requirement that A(V ′)′∩A ⊇ A(V ), V ∈ K,
where primes denote spa
elike 
omplement and algebra 
ommutant, respe
tively.

3. Spa
etime 
ovarian
e. Let PK be the subgroup of the group P of geometri
 symmetries of M
leaving the 
olle
tion K invariant. A group homomorphism α : PK → AutA is given su
h that the

automorphisms αg, g ∈ PK of A a
t 
ovariantly on the observable net: αg(A(V )) = A(g ·V ), V ∈ K.

If the quasilo
al algebra A of the lo
al physi
al theory is 
ommutative, we speak about a lo
al 
lassi
al

theory ; if it is non
ommutative, we speak about a lo
al quantum theory. For lo
al 
lassi
al theories

mi
ro
ausality ful�lls trivially.

A state φ in a lo
al physi
al theory is de�ned as a normalized positive linear fun
tional on the quasilo
al

observable algebra A. The 
orresponding GNS representation πφ : A → B(Hφ) 
onverts the net of C∗
-

algebras into a net of C∗
-subalgebras of B(Hφ). Closing these subalgebras in the weak topology one

arrives at a net of lo
al von Neumann observable algebras: N (V ) := πφ(A(V ))′′, V ∈ K. Von Neumann
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algebras are generated by their proje
tions, whi
h are 
alled quantum events sin
e they 
an be interpreted

as 0-1�valued observables. The net {N (V ), V ∈ K} of lo
al von Neumann algebras also obeys isotony,

mi
ro
ausality, and PK-
ovarian
e, hen
e one 
an also refer to a net {N (V ), V ∈ K} of lo
al von Neumann

algebras as a lo
al physi
al theory. Although, the lo
al σ-algebras of 
lassi
al observable events provided

by the proje
tions of the lo
al abelian von Neumann algebras are not the most general σ-algebras, still

they provide us a ri
h enough set of examples for 
lassi
al theories.

One 
an introdu
e a number of important lo
ality and 
ausality 
on
epts into the above formalism. Here

we only list them in turn and assert their logi
al relations; for the motivation of these 
on
epts see

(Earman and Valente, 2014).

Lo
al primitive 
ausality. For any globally hyperboli
 bounded subspa
etime region V ∈ K, A(V ′′) =
A(V ).

A lo
al physi
al theory satisfying lo
al primitive 
ausality also satis�es the following two properties:

Lo
al determinism. For any two states φ and φ′
and for any globally hyperboli
 spa
etime region V ∈ K,

if φ|A(V ) = φ′|A(V ) then φ|A(V ′′) = φ′|A(V ′′).

Sto
hasti
 Einstein lo
ality. Let VA, VC ∈ K su
h that VC ⊂ J−(VA) and VA ⊂ V ′′
C . If φ|A(VC ) = φ′|A(VC)

holds for any two states φ and φ′
on A then φ(A) = φ′(A) for any proje
tion A ∈ A(VA).

If a net satis�es Haag duality:

A(V ′)′ ∩ A = A(V ) (1)

for all bounded globally hyperboli
 subspa
etime region V , whi
h is a stronger requirement than mi
ro-


ausality, then it also satis�es lo
al primitive 
ausality. But mi
ro
ausality alone does not entail lo
al

primitive 
ausality.

A global version of lo
al primitive 
ausality (entailed by the lo
al one) is

Primitive 
ausality. Let K(C) ⊆ K be a 
overing 
olle
tion of a Cau
hy surfa
e C and let A(K(C)) be the

orresponding algebra. Then A(K(C)) = A.

A lo
al physi
al theory with primitive 
ausality satis�es

Determinism. If φ|A(KC) = φ′|A(KC) for any two states φ and φ′
on A then φ = φ′

.

In the rest of the paper a lo
al physi
al theory obeys only isotony, mi
ro
ausality, and PK-
ovarian
e

by de�nition without any other lo
ality and 
ausality 
onstraints. We turn now to Bell's notion of lo
al


ausality.

3 Bell's notion of lo
al 
ausality in a lo
al physi
al theory

Lo
al 
ausality has been playing a 
entral notion in Bell's in�uential writings on the foundations of

quantum theory. To our knowledge it gets an expli
it formulation three times: in (Bell, 1975/2004 , p.

54), (Bell, 1986/2004, p. 200), and (Bell, 1990/2004, p. 239-240). In this latter posthumously published

paper �La nouvelle 
uisine�, for example, lo
al 
ausality is formulated as follows:

1

�A theory will be said to be lo
ally 
ausal if the probabilities atta
hed to values of lo
al beables

in a spa
e-time region VA are unaltered by spe
i�
ation of values of lo
al beables in a spa
e-

like separated region VB, when what happens in the ba
kward light 
one of VA is already

1

For the sake of uniformity we slightly 
hanged Bell's denotation and �gures.
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su�
iently spe
i�ed, for example by a full spe
i�
ation of lo
al beables in a spa
e-time region

VC . � (Bell, 1990/2004, p. 239-240)

(For a reprodu
tion of the �gure Bell is atta
hing to this formulation see Fig. 1 with Bell's 
aption.) Bell

V

V V

C

A B

Figure 1: Full spe
i�
ation of what happens in VC makes events in VB irrelevant for predi
tions about

VA in a lo
ally 
ausal theory.

elaborates on his formulation as follows:

�It is important that region VC 
ompletely shields o� from VA the overlap of the ba
kward

light 
ones of VA and VB. And it is important that events in VC be spe
i�ed 
ompletely.

Otherwise the tra
es in region VB of 
auses of events in VA 
ould well supplement whatever

else was being used for 
al
ulating probabilities about VA. The hypothesis is that any su
h

information about VB be
omes redundant when VC is spe
i�ed 
ompletely.� (Bell, 1990/2004,

p. 240)

The notions featuring in Bell's formulation has been target of intensive dis
ussion in philosophy of s
ien
e.

Here we would like to give only a brief exposé of them.

The notion �beable� is Bell's neologism. (See Norsen 2009, 2011.) �The beables of the theory are

those entities in it whi
h are, at least tentatively, to be taken seriously, as 
orresponding to something

real� (Bell, 1990/2004, p. 234). The 
lari�
ation of the �beables� of a given theory is indispensable in

order to de�ne lo
al 
ausality sin
e �there are things whi
h do go faster than light. British sovereignty

is the 
lassi
al example. When the Queen dies in London (long may it be delayed) the Prin
e of Wales,

le
turing on modern ar
hite
ture in Australia, be
omes instantaneously King� (p. 236).

Beables are to be lo
al: �Lo
al beables are those whi
h are de�nitely asso
iated with parti
ular spa
e-

time regions. The ele
tri
 and magneti
 �elds of 
lassi
al ele
tromagnetism, E(t, x) and B(t, x) are again
examples.� (p. 234). Furthermore, lo
al beables are to �spe
ify 
ompletely� region VC in order to blo
k


ausal in�uen
es arriving at VA from the 
ommon past of VA and VB. (For the question of 
omplete vs.

su�
ient spe
i�
ation see (Seevin
k and U�nk, 2014).)

One 
an translate Bell's above terms in the following way. In a 
lassi
al �eld theory beables are


hara
terized by sets of �eld 
on�gurations. Taking the equivalen
e 
lasses of those �eld 
on�gurations

whi
h have the same �eld values on a given spa
etime region one 
an generate lo
al σ-algebras. Translating

σ-algebras into the language of abelian von Neumann algebras one 
an 
apture Bell's notion of �lo
al

beables� in the framework of a lo
al physi
al theory. More generally, one 
an use the term �lo
al beables�

both for abelian and also for non-abelian lo
al von Neumann algebras, hen
e treating lo
al 
lassi
al and

quantum theories on an equal footing.

How to translate the term �
omplete spe
i�
ation�? Complete spe
i�
ation of �eld 
on�gurations

in a given spa
etime region means that one spe
i�es the �eld values to a pres
ribed value in the given

spa
etime region, that is one spe
i�es the 
orresponding lo
al equivalen
e 
lass of a single 
on�guration.

In probabilisti
 language 
omplete spe
i�
ation is translated into a probability measure having support
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on this lo
al equivalen
e 
lass of the single spe
i�ed 
on�guration. In the abelian von Neumann language

this 
orresponds to a 
hange of the original state that results in a pure state on the lo
al von Neumann

algebra in question with value 1 on the proje
tion 
orresponding to the lo
al equivalen
e 
lass of the

single spe
i�ed 
on�guration. We also would like this 
hange of states to be as lo
al as possible. Both

pureness and lo
ality 
an be 
aptured in a general lo
al physi
al theory by some 
onditions imposed on a


ompletely positive map generating the 
hange of states. If the lo
al algebras of the net are atomi
 (whi
h,

by the way, is not the 
ase in a general AQFT), the 
hange of states 
an be generated by 
onditioning

the original state on an arbitrary atomi
 event (a minimal proje
tion) in the lo
al algebra. In this 
ase

�
omplete spe
i�
ation of beables� will mean a so-
alled sele
tive measurement by an atomi
 event in a

lo
al algebra (Henson, 2013). With these notions in hand we 
an formulate Bell's notion of lo
al 
ausality

in lo
al physi
al theories:

2

De�nition 2. A lo
al physi
al theory represented by a net {N (V ), V ∈ K} of von Neumann algebras

is 
alled (Bell) lo
ally 
ausal, if for any pair A ∈ N (VA) and B ∈ N (VB) of proje
tions supported in

spa
elike separated regions VA, VB ∈ K and for every lo
ally normal and faithful state φ establishing a


orrelation, φ(AB) 6= φ(A)φ(B), between A and B, and for any spa
etime region VC su
h that

(i) VC ⊂ J−(VA),

(ii) VA ⊂ V ′′
C ,

(iii) J−(VA) ∩ J−(VB) ∩
(

J+(VC) \ VC

)

= ∅,

(see Fig. 2) and for any atomi
 event Ck of A(VC) (k ∈ K), the following holds:

VA B

C

V

V

Figure 2: A region VC satisfying Requirements (i)-(iii).

φ(CkABCk)

φ(Ck)
=

φ(CkACk)

φ(Ck)

φ(CkBCk)

φ(Ck)
(2)

Remarks:

1. Again we stress that De�nition 2 
aptures lo
al 
ausality only for lo
al physi
al theories with atomi


lo
al von Neumann algebras.

2. In 
ase of 
lassi
al theories a lo
ally faithful state φ determines a lo
ally nonzero probability measure

p by p(A) := φ(A) > 0, A ∈ P(N (V )). By means of this (2) 
an be written in the following

'symmetri
' form:

p(AB|Ck) = p(A|Ck)p(B|Ck) (3)

2

For a similar approa
h to lo
al 
ausality using σ-algebras see (Henson, 2013); for a 
omparison of the two approa
hes

see our (Hofer-Szabó and Ve
sernyés 2014).
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or equivalent in the 'asymmetri
' form:

p(A|BCk) = p(A|Ck) (4)

sometimes used in the literature (for example in (Bell, 1975/2004 , p. 54)).

3. The role of Requirement (iii) in the de�nition is to ensure that �VC shields o� from VA the overlap

of the ba
kward light 
ones of VA and VB�. Namely, a spa
etime region above VC in the 
ommon

past of the 
orrelating events (see Fig. 3) may 
ontain sto
hasti
 events whi
h, though 
ompletely

VA B

C

V

V

Figure 3: A region VC for whi
h Requirement (iii) does not hold.

spe
i�ed by the region VC , still, being sto
hasti
, 
ould establish a 
orrelation between A and B in

a 
lassi
al sto
hasti
 theory (Norsen, 2011; Seevin
k and U�nk 2011). If VC is a pie
e of a Cau
hy

surfa
e Requirement (iii) 
oin
ides with Requirement (iv):

(iv) J−(VA) ∩ J−(VB) ∩ VC = ∅

visualized in Fig. 4. However, for algebras 
orresponding to 
overings of Cau
hy surfa
es Require-

VA B

C

V

V

Figure 4: A region VC for whi
h Requirement (iv) holds.

ment (iii) is weaker than Requirement (iv) sin
e it allows for regions penetrating into the top part

of the 
ommon past. For lo
al 
lassi
al theories Requirement (iii) is enough, but for lo
al quantum

theories Requirement (iv) should be used.

Of 
ourse the main question is how to ensure that a lo
al physi
al theory is lo
ally 
ausal. Generally

the question is di�
ult to answer; here we simply mention a su�
ient 
ondition in 
ase of atomi
 lo
al

algebras:
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1. A lo
al 
lassi
al theory is lo
ally 
ausal if the lo
al von Neumann algebras are atomi
 and satisfy

lo
al primitive 
ausality.

Proof. Due to isotony and lo
al primitive 
ausality N (VA) ⊂ N (V ′′
C ) = N (VC) and hen
e for any

atom Ck of N (VC): either (i) ACk = 0 or (ii) ACk = Ck. In 
ase of (i) both sides of (2) is zero, in


ase of (ii) (2) holds as follows:

φ(ABCk)

φ(Ck)
=

φ(BCk)

φ(Ck)
=

φ(ACk)

φ(Ck)

φ(BCk)

φ(Ck)
. (5)

2. A lo
al quantum theory is lo
ally 
ausal if the lo
al von Neumann algebras are atomi
 and satisfy

lo
al primitive 
ausality, and if Requirement (iii) in the de�nition of lo
al 
ausality is repla
ed by

Requirement (iv).

Proof. Sin
e region VC is spatially separated from region VB, B ∈ N (VB) and an atomi
 event

Ck ∈ N (VC) will 
ommute due to mi
ro
ausality. Using CkACk = r Ck (where r ∈ [0, 1] depends
on both A and Ck) we obtain:

φ(CkABCk)

φ(Ck)
=

φ(CkACkB)

φ(Ck)
= r

φ(CkB)

φ(Ck)
=

φ(CkACk)

φ(Ck)

φ(BCk)

φ(Ck)
. (6)

Looking at Point 2 the reader may justly ask: how 
an a lo
al quantum theory be lo
ally 
ausal if lo
al


ausality implies various Bell inequalities, whi
h are known to be violated for 
ertain set of quantum


orrelations. Does De�nition 2 
orre
tly grasp Bell's intuition of lo
al 
ausality? We answer these

questions in the next se
tion.

4 Lo
al 
ausality, Common Cause Prin
iple and the Bell inequal-

ities

Lo
al 
ausality is 
losely related to Rei
henba
h's (1956) Common Cause Prin
iple. The Common Cause

Prin
iple (CCP) states that if there is a 
orrelation between two events A and B and there is no dire
t


ausal (or logi
al) 
onne
tion between the 
orrelating events, then there always exists a 
ommon 
ause C

of the 
orrelation. Rei
henba
h's original 
lassi
al probabilisti
 de�nition of the 
ommon 
ause 
an readily

be generalized to the lo
al physi
al theory framework. (See (Rédei 1997, 1998), (Rédei and Summers

2002, 2007), (Hofer-Szabó and Ve
sernyés 2012, 2013) and (Hofer-Szabó, Rédei and Szabó 2013).)

Let {N (V ), V ∈ K} be a net representing a lo
al physi
al theory. Let A ∈ N (VA) and B ∈ N (VB)
be two events (proje
tions) supported in spa
elike separated regions VA, VB ∈ K whi
h 
orrelate in a

lo
ally normal and faithful state φ. The 
ommon 
ause of the 
orrelation is an event s
reening o� the


orrelating events from one another and lo
alized in the past of A and B. But in whi
h past? Here one

has (at least) three options. One 
an lo
alize C either (i) in the union J−(VA) ∪ J−(VB) or (ii) in the

interse
tion J−(VA) ∩ J−(VB) of the 
ausal past of the regions VA and VB ; or (iii) more restri
tively in

∩x∈VA∪VB
J−(x), that is in the spa
etime region whi
h lies in the interse
tion of 
ausal pasts of every

point of VA ∪ VB . We will refer to the above three pasts in turn as the weak past, 
ommon past, and

strong past of A and B, respe
tively (Rédei, Summers, 2007).

Depending on the 
hoi
e of the past we 
an de�ne various CCPs in a lo
al physi
al theory:

De�nition 3. A lo
al physi
al theory represented by a net {N (V ), V ∈ K} is said to satisfy the

(Weak/Strong) CCP, if for any pair A ∈ N (VA) and B ∈ N (VB) of proje
tions supported in spa
e-

like separated regions VA, VB ∈ K and for every lo
ally faithful state φ establishing a 
orrelation between

A and B, there exists a nontrivial 
ommon 
ause system, that is a set of mutually orthogonal proje
tions

{Ck}k∈K ⊂ N (VC), VC ∈ K summing up to the unit of the algebra, satisfying

φ(CkABCk)

φ(Ck)
=

φ(CkACk)

φ(Ck)

φ(CkBCk)

φ(Ck)
, for all k ∈ K (7)
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su
h that the lo
alization region of VC is in the (weak/strong) 
ommon past of VA and VB .

A 
ommon 
ause is 
alled nontrivial if Ck 6≤ X with X = A,A⊥, B or B⊥
for some k ∈ K. If

{Ck}k∈K 
ommutes with both A and B, then we 
all it a 
ommuting 
ommon 
ause system, otherwise a

non
ommuting one, and the appropriate CCP a Commutative/Non
ommutative CCP.

The status of these six di�erent notions of the CCP has been thoroughly s
rutinized in a spe
ial lo
al

quantum theory, namely algebrai
 quantum �eld theory (AQFT). Here we only give a brief overview.

The question whether the Commutative CCPs are valid in a Poin
aré 
ovariant lo
al quantum theory

was �rst raised by Rédei (1997, 1998). As an answer, Rédei and Summers (2002, 2007) have shown that

the Commutative Weak CCP is valid in Poin
aré 
ovariant AQFT. Sin
e lo
al algebras in a Poin
aré


ovariant AQFT are atomless (type III) von Neumann algebras, the question has been raised whether

Commutative Weak CCP is valid in lo
al quantum theories with lo
ally �nite dimensional, hen
e atomi


lo
al von Neumann algebras. De
iding the question, Hofer-Szabó and Ve
sernyés (2012a) have given an

example in the lo
al quantum Ising model where the Commutative Weak CCP is not valid. A natural

rea
tion to these fa
ts was to ask what role 
ommutativity plays in these propositions. Addressing this

question, Hofer-Szabó and Ve
sernyés (2013) have shown that allowing 
ommon 
auses not to 
ommute

with the 
orrelating events, the Non
ommutative Weak CCP 
an be proven in lo
al (UHF-type) quantum

theories with �nite dimensional lo
al von Neumann algebras.

Con
erning the Commutative (Strong) CCP less is known. If one also admits proje
tions lo
alized

only in unbounded regions, then the Strong CCP is known to be false: von Neumann algebras pertaining

to 
omplementary wedges 
ontain 
orrelated proje
tions but the strong past of su
h wedges is empty

(see (Summers and Werner, 1988) and (Summers, 1990)). In spa
etimes having horizons, e.g. those

with Robertson�Walker metri
, the 
ommon past of spa
elike separated bounded regions 
an be empty,

although there are states whi
h provide 
orrelations among lo
al algebras 
orresponding to these regions

(Wald 1992). Hen
e, CCP is not valid there. Restri
ting ourselves to proje
tions in lo
al algebras on

Minkowski spa
etimes the situation is not 
lear. We are of the opinion that one 
annot de
ide on the

validity of the (Strong) CCP in this 
ase without an expli
it referen
e to the dynami
s.

Now, what is the relationship between the various CCPs and Bell's lo
al 
ausality? The following list

of prima fa
ie similarities and di�eren
es may help to expli
ate this relationship:

Similarities:

1. Both lo
al 
ausality and the CCPs are properties of a lo
al physi
al theory represented by a net

{N (V ), V ∈ K}.

2. The 
ore mathemati
al requirement of both prin
iples is the s
reening-o� 
ondition (2) or equiva-

lently (7).

3. The Bell inequalities 
an be derived from both prin
iples. (But see below.)

Di�eren
es:

1. In 
ase of lo
al 
ausality the s
reening-o� 
ondition (2) is required for every atomi
 event (satisfying


ertain lo
alization 
onditions). In 
ase of the CCP for every 
orrelation only a single subset of

events is postulated satisfying the s
reening-o� 
ondition (7).

2. In 
ase of lo
al 
ausality the s
reening-o� 
ondition is required only for atomi
 events. In 
ase of

the CCPs these atomi
 s
reener-o�s of the algebra A(VC) are 
alled trivial, sin
e they s
reen any


orrelation o�. What one is typi
ally looking for are nontrivial 
ommon 
auses.

3. In 
ase of lo
al 
ausality s
reener-o�s are lo
alized 'asymmetri
ally' in the past of VA; in 
ase of

the CCP they are lo
alized 'symmetri
ally' in either the weak, 
ommon or strong past of VA and

VB .
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Let us 
ome ba
k to Point 1 of the Similarities, that is to the relation of lo
al 
ausality and the CCPs to

the Bell inequalities. In (Hofer-Szabó and Ve
sernyés, 2013b, Proposition 2) we have proven a proposition

whi
h 
lari�es the relation between the CCPs and the Bell inequalities. It asserts that the Bell inequalities


an be derived from the existen
e of a (lo
al, non-
onspiratorial joint) 
ommon 
ause system for a set of


orrelations if 
ommon 
auses are understood as 
ommuting 
ommon 
auses. However, if we also allow

for non
ommuting 
ommon 
auses, the Bell inequalities 
an be derived only for another state whi
h is

not identi
al to the original one. And indeed in (Hofer-Szabó and Ve
sernyés, 2013a,b) a non
ommuting


ommon 
ause was 
onstru
ted for a set of 
orrelations violating the Clauser�Horne inequality. Moreover,

this 
ommon 
ause was lo
alized in the strong past of the 
orrelating events.

Now, an analogous proposition holds for the relation between lo
al 
ausality and the Bell inequalities.

We assert here only the proposition without the proof sin
e the proof is step-by-step the same as that of

the proposition mentioned above.

Proposition 1. Let {N (V ), V ∈ K} be a lo
ally 
ausal lo
al physi
al theory with atomi
 (type I)

lo
al von Neumann algebras. Let A1, A2 ∈ A(VA) and B1, B2 ∈ A(VB) be four proje
tions lo
alized in

spa
elike separated spa
etime regions VA and VB , respe
tively, whi
h pairwise 
orrelate in the lo
ally

faithful state φ that is

φ(AmBn) 6= φ(Am)φ(Bn) (8)

for any m,n = 1, 2. Let furthermore {Ck}k∈K ⊂ N (VC), VC ∈ K be a maximal partition of the unit,

where the set {Ck}k∈K 
ontains mutually orthogonal atomi
 proje
tions satisfying Requirements (i)-(iii)

in De�nition 2 of lo
al 
ausality. Then the Clauser�Horne inequality

−1 6 φ{Ck}(A1B1 +A1B2 +A2B1 −A2B2 −A1 −B1) 6 0. (9)

holds for the state φ{Ck}(X) :=
∑

k φ(CkXCk). If {Ck} 
ommutes with A1, A2, B1 and B2, then the

Clauser�Horne inequality holds for the original state φ:

−1 6 φ(A1B1 +A1B2 +A2B1 −A2B2 − A1 −B1) 6 0. (10)

The moral is the same as in the 
ase of the CCPs: the Bell inequalities 
an be derived in a lo
ally 
ausal

lo
al physi
al theory only for a modi�ed state φ{Ck}; it 
an be derived for the original state φ if the set

of atomi
 proje
tions {Ck} lo
alized in VC 
ommutes with A1, A2, B1 and B2. What is needed for this

to be the 
ase?

In lo
al 
lassi
al theories any element taken from any lo
al algebra will 
ommute, therefore the Bell

inequalities will hold in lo
al 
lassi
al theories. In lo
ally 
ausal lo
al quantum theories, 
ommutativity

of {Ck} and the 
orrelating events is not guaranteed. If VC is spatially separated from VB (due to

Requirement (iv) in De�nition 2), then {Ck} will 
ommute with B1 and B2 and hen
e (2) will be

satis�ed. However, for non
ommuting A1 and A2 one 
annot pi
k a maximal partition {Ck} 
ommuting

with both proje
tions, and therefore the theorem of total probability,

∑

k φ(CkAmCk) = φ(Am), will not
hold for the original state φ at least for one of the proje
tions A1 and A2 (it will hold only for the state

φ{Ck}). This fa
t blo
ks the derivation of Bell inequalities for the original state φ. (For the details see

(Hofer-Szabó and Ve
sernyés, 2013b, p. 410) In short, the Bell inequalities 
an be derived in a lo
ally


ausal lo
al quantum theory only if all the proje
tions 
ommute.

Coming ba
k to the question posed at the end of the previous Se
tion, namely how a lo
al quantum

theory 
an be lo
ally 
ausal in the fa
e of the Bell inequalities, we already know the answer: the Bell

inequalities 
an be derived from lo
al 
ausality if it is required that the 'beables' of the lo
al theory are

represented by 
ommutative lo
al algebras. This fa
t is 
ompletely analogous to the relation shown in

(Hofer-Szabó and Ve
sernyés, 2013b), namely that the Bell inequalities 
an be derived from a (lo
al,

non-
onpiratorial, joint) 
ommon 
ause system if it is a 
ommuting 
ommon 
ause system. Thus, the

9



violation of the Bell inequalities for 
ertain quantum 
orrelations is 
ompatible with lo
ally 
ausal lo
al

quantum theories but not with lo
ally 
ausal lo
al 
lassi
al theories. Lo
al 
ausality is a more general

notion than 
aptured by the Bell inequalities.

5 Con
lusions

In this paper we have shown the following:

(i) Bell's notion of lo
al 
ausality presupposes a 
lear-
ut framework in whi
h probabilisti
 and spa-

tiotemporal entities 
an be related. This aim 
an be rea
hed by introdu
ing the notion of a lo
al

physi
al theory represented by an isotone net of algebras.

(ii) Within this general framework we have de�ned Bell's notion of lo
al 
ausality and shown su�
ient


onditions on whi
h lo
al physi
al theories will be lo
ally 
ausal.

(iii) Finally, we pointed out some important similarities and di�eren
es between lo
al 
ausality and

the CCPs and showed that in a lo
ally 
ausal lo
al quantum theory one 
annot derive the Bell

inequalities from lo
al 
ausality just as one 
annot derive them from non
ommuting 
ommon 
auses.
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