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Abstra
t

The aim of this paper is to give a sharp de�nition of Bell's notion of lo
al 
ausality. To this end,

�rst we unfold a framework, 
alled lo
al physi
al theory, integrating probabilisti
 and spatiotemporal


on
epts. Formulating lo
al 
ausality within this framework and 
lassifying lo
al physi
al theories by

whether they obey lo
al primitive 
ausality�a property rendering the dynami
s of the theory 
ausal,

we then investigate what is needed for a lo
al physi
al theory, with or without lo
al primitive 
ausality,

to be lo
ally 
ausal. Finally, 
omparing Bell's lo
al 
ausality with the Common Cause Prin
iples and

relating both to the Bell inequalities we �nd a ni
e parallelism: Bell inequalities 
annot be derived

neither from lo
al 
ausality nor from a 
ommon 
ause unless the lo
al physi
al theory is 
lassi
al or

the 
ommon 
ause is 
ommuting, respe
tively.
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1 Introdu
tion

In the history of 
ausation spatiotemporal 
onsiderations always played an eminent role: they governed

the general dis
ourse in philosophy and informed the 
on
rete theory 
onstru
tions in physi
s. Just re
all

Hume's ideas on the 
ontiguity of 
ause and e�e
t, Newton's struggling with the a
tion at a distan
e in

his theory of gravitation, or Faraday's �eld theoreti
al program in ele
tromagnetism. There is, however,

an important milestone in the history of lo
al 
ausality, namely John Stewart Bell. Bell's merit is

that he was able to translate the philosophi
al intuitions lying behind lo
al 
ausality into easily tra
table

mathemati
al terms whi
h then set the s
ene for a whole resear
h program in the foundations of quantum

theory.

What are these philosophi
al intuitions? In a 1988 interview Bell formulates them as follows:

�[Lo
al 
ausality℄ is the idea that what you do has 
onsequen
es only nearby, and that any


onsequen
es at a distant pla
e will be weaker and will arrive there only after the time per-

mitted by the velo
ity of light. Lo
ality is the idea that 
onsequen
es propagate 
ontinuously,

that they don't leap over distan
es.� (Mann and Crease, 1988)

Bell has returned to this intuitive notion of lo
al 
ausality from time to time and presented a more

and more re�ned formulation of it. His line of reasoning, however, remained the same. Lo
al 
ausality

ex
ludes 
ausal pro
esses propagating faster than the speed of light but does not ex
lude 
orrelations

between spatially separated events. Su
h 
orrelations, namely, 
an be brought about by a 
ommon 
ause

operating in the past of the events in question. However, �xing the past of an event in a detailed enough

manner, the state of this event in a lo
ally 
ausal theory will be �xed on
e and for all, and no other

spatially separated event 
an 
ontribute to it.
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Looking at purely the logi
al stru
ture of Bell's formulation of lo
al 
ausality, one 
an well see that it is

an inferen
e pattern from spatiotemporal to probabilisti
 relations : if events are lo
alized in the spa
etime

in a 
ertain way, then they are to satisfy 
ertain probabilisti
 independen
ies. Be these inferen
es as

intuitive and appli
able in the 
on
rete physi
al praxis as they are, for a 
lear treatment something

more is needed: a 
on
eptual-formal framework integrating spatiotemporal and probabilisti
 
on
epts in

a 
ommon s
hema. Without su
h a framework, one 
ould not a

ount for the inferen
es from relations

between spa
etime regions to probabilisti
 independen
ies between, say, random variables. Where to �nd

su
h a framework?

The most elaborate formalism used in physi
s o�ering a general method to 
onne
t spatiotemporal

and probabilisti
 entities is quantum �eld theory, or its algebrai
-axiomati
 form, algebrai
 quantum �eld

theory (AQFT) aka lo
al quantum physi
s (Haag, 1992). AQFT is a mathemati
ally transparent theory

ideal for analyzing various 
on
epts related to lo
al 
ausality, su
h as the Bell inequalities (Summers,

1987a,b; Summers and Werner, 1988; Halvorson 2007); relativisti
 
ausality (Butter�eld 1995, 2007;

Earman 2014; Earman and Valente, 2014); or the 
losely related (see below) Common Cause Prin
iple

(Rédei 1997; Rédei and Summers 2002; Hofer-Szabó and Ve
sernyés 2012a, 2013a). To our ends, however,

the full formalism of AQFT would be too mu
h. Our intention is simply to provide a minimal framework

whi
h is needed to formulate Bell's notion of lo
al 
ausality in a stri
t fashion. We will 
all su
h a

framework a lo
al physi
al theory. A lo
al physi
al theory is a formal stru
ture integrating the two most

important 
omponents of a general physi
al theory: a spa
etime stru
ture and an algebrai
-probabilisti


stru
ture. By using only few axioms in 
hara
tering lo
al physi
al theories, our ambition is to 
over

as many 
on
rete physi
al theories with spatiotemporal 
onnotations as possible. Having a �rm formal

framework in hand, we 
an a

omplish our primary goal whi
h is to de�ne Bell's notion of lo
al 
ausality

in a 
lear-
ut way and to relate it to other 
ausality and lo
ality 
on
epts.

The paper is stru
tured as follows. In Se
tion 2 we set the mathemati
al framework of a lo
al physi
al

theory and spend some time to motivate the appli
ation of von Neumann algebras in this framework.

Se
tion 3 is devoted to the important 
on
epts leading to 
ausal dynami
s of the observables in lo
al

physi
al theories, namely primitive 
ausality and lo
al primitive 
ausality. In Se
tion 4 we list and analyze

further relativisti
 
ausality prin
iples used in a lo
al physi
al theory, su
h as parameter and out
ome

independen
e, lo
al determinism and sto
hasti
 Einstein lo
ality. In Se
tion 5 we present Bell's own

formulation of lo
al 
ausality and rede�ne it in the framework of lo
al 
lassi
al or quantum theories.

In the same se
tion we prove that lo
al primitive 
ausality makes a lo
al physi
al theory to be lo
ally


ausal. In Se
tion 6 we relate lo
al 
ausality to 
ausal sto
hasti
 dynami
s in lo
al 
lassi
al theories

without primitive 
ausality. In Se
tion 7 we 
ompare lo
al 
ausality with the Common Cause Prin
iple

and relate both 
on
epts to the Bell inequalities. We sum up in Se
tion 8.

Our paper is �tting into a re
ent resear
h line on a deeper 
on
eptual and formal understanding of

Bell's notion of lo
al 
ausality. Travis Norsen illuminating paper on lo
al 
ausality (Norsen, 2011) or

its relation to Jarrett's 
ompleteness 
riterion (Norsen, 2009); the paper of Seevin
k and U�nk (2011)

aiming at providing a 'sharp and 
lean' formulation of lo
al 
ausality; or Henson's (2013b) paper on the

relation between separability and the Bell inequalities all attest this renewed interest in lo
al 
ausality.

We will 
omment on the points of 
onta
t with these papers underway. For a more philosopher-friendly

and less te
hni
al version of our paper see (Hofer-Szabó and Ve
sernyés 2014).

2 What is a lo
al physi
al theory?

Let us start our proje
t by de�ning a general framework, 
alled lo
al physi
al theory, whi
h enables us

to treat spatiotemporal and probabilisti
 entities in a 
ommon formalism. Instead of jumping dire
tly to

the full-�edged de�nition, we will pro
eed here 'indu
tively' by unfolding the notion of a lo
al physi
al

theory and spe
ifying its di�erent 
hara
teristi
 features step by step. Having listed these features we

formulate the exa
t de�nition only at the end of the se
tion.

The 
entral idea of a lo
al physi
al theory is the asso
iation of lo
al operator algebras to spa
etime
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regions regulated by the following physi
ally motivated requirements (Haag, 1992):

1. Isotony. Let M be a globally hyperboli
 spa
etime

1

and let K be a 
overing 
olle
tion

2

of bounded,

globally hyperboli
 subspa
etime regions of M su
h that (K,⊆) is a dire
ted poset under in
lusion

⊆. The net of lo
al observables is given by the isotone map K ∋ V 7→ A(V ) to unital C∗
-algebras,

that is V1 ⊆ V2 implies that A(V1) is a unital C∗
-subalgebra of A(V2). The quasilo
al algebra A is

de�ned to be the indu
tive limit C∗
-algebra of the net {A(V ), V ∈ K} of lo
al C∗

-algebras.

3

Sometimes additivity, whi
h is a stronger property than isotony, is also required for the net of

observables: A(V1) ∨ A(V2) = A(V1 ∪ V2);V1, V2, V1 ∪ V2 ∈ K, where ∨ refers to the generated

algebra in A.

2. Mi
ro
ausality (also 
alled as Einstein 
ausality) is the requirement that A(V ′)′∩A ⊇ A(V ), V ∈ K,
where primes denote spa
elike 
omplement and algebra 
ommutant, respe
tively.

3. PK-
ovarian
e. Let PK be the subgroup of the group P of global isometries of M leaving the 
ol-

le
tion K invariant. A group homomorphism α : PK → AutA is given su
h that the automorphisms

αg, g ∈ PK of A a
t 
ovariantly on the observable net: αg(A(V )) = A(g · V ), V ∈ K.

Here the possible spa
etimes spread from Minkowski spa
etime through stationary spa
etimes to generi


globally hyperboli
 ones where no global Killing ve
tor �eld exists. Choosing the 
olle
tion K in a way

that every V ∈ K 
ontains only a �nite number of elements of K, one 
an 
onsider lo
al theories with

lo
ally �nite degrees of freedom when the lo
al algebras are �nite dimensional. Otherwise the lo
al

algebras themselves are in�nite dimensional.

We would like to treat 
lassi
al and quantum theories on an equal footing as far as possible. The

di�eren
e between the two is that the quasilo
al algebra of a lo
al 
lassi
al theory is required to be 
om-

mutative while that of a lo
al quantum theory is required to be non
ommutative. Thus, mi
ro
ausality

ful�ls trivially in lo
al 
lassi
al theories. On the other hand, in lo
al quantum theories it is usually

required that the quasilo
al algebra is `highly non
ommutative' and the lo
al algebras are `fat enough'.

This is assured by algebrai
 Haag duality whi
h is a stronger requirement than mi
ro
ausality:

4.Q Algebrai
 Haag duality. A(V ′)′ ∩ A = A(V ), V ∈ K.

Clearly, Haag duality is inherently 
onne
ted to the non
ommutativity of the observable algebra. In 
ase

of 
ommutative lo
al algebras Haag duality would imply that A(V ) = A for any V ∈ K, that is the net
stru
ture of lo
al algebras would be 
ompletely lost. To avoid this trivial net stru
ture in lo
al 
lassi
al

theories, one requires less than Haag duality:

4.C Interse
tion property for spa
elike separated regions. The interse
tion property

A(V1) ∩ A(V2) = A(V1 ∩ V2); V1, V2, V1 ∩ V2 ∈ K (1)

holds for spa
elike separated regions V1, V2 ∈ K, that is A(V1) ∩ A(V2) = A(∅) := C1A for them.

In 
ase of lo
al quantum theories this property follows from Haag duality and primitive 
ausality (see

below) if the net is additive and the quasilo
al algebra is a fa
tor, that is its 
enter is trivial: A′ ∩ A =

1

By a spa
etime we mean a 
onne
ted time-oriented Lorentzian manifold. A spa
etime M is 
alled globally hyperboli


if M 
ontains a Cau
hy hypersurfa
e, whi
h is by de�nition a subset S ⊂ M su
h that ea
h inextendible timelike 
urve in

M meets S at exa
tly one point. (See (Pfä�e, 2009) and referen
es therein.)

2

For all x ∈ M there exists V ∈ K su
h that x ∈ V .

3

This formulation is a spe
ial 
ase of the general 
ategory theoreti
al formulation of AQFTs in 
urved ba
kgrounds

(Brunetti and Fredenhagen, 2009). Namely, the fun
tor from globally hyperboli
 spa
etimes to unital C∗
-algebras is

restri
ted to the full sub
ategory indu
ed by the obje
t M and the (sub)
olle
tion K of its subobje
ts.

3



C1A.
4

We note that the interse
tion property (1) is not required for all pairs V1, V2 ∈ K, sin
e it would

ontradi
t to primitive 
ausality whi
h, as we will see, makes the dynami
s to be deterministi
.

Di�erent physi
al realizations of a single lo
al theory are given by unitary inequivalent representations

π : A → B(H) of the quasilo
al C∗
-algebra A by bounded operators B(H) on a (separable) Hilbert spa
e

H. Inequivalent representations 
an be produ
ed from essentially di�erent states φ : A → C through

GNS�
onstru
tion. Representations are required to be lo
ally faithful not to loose lo
al observables.

On
e a parti
ular representation is 
hosen, one 
an 
onsider the natural von Neumann algebra extension

of the lo
al algebras by taking weak 
losures N (V ) := π(A(V ))′′, V ∈ K.

5. Representation. A lo
ally faithful representation π : A → B(H) is 
hosen where a (strongly 
ontinu-

ous) unitary representation U : PK → B(H) implements α : PK → AutA. The lo
al and quasilo
al

observables are extended as N (V ) := π(A(V ))′′, V ∈ K and AH := ∪V ∈KN (V ) ⊂ B(H), respe
-
tively.

It is easy to see that the net {N (V ), V ∈ K} of lo
al von Neumann algebras given above also obeys

isotony, mi
ro
ausality in the sense that π(A(V ′))′∩B(H) ⊇ N (V ), V ∈ K, and PK-
ovarian
e. Sin
e we


on
entrate on lo
al and 
ausal properties we do not 
onsider further requirements on the representation π,
e.g. how a va
uum representation 
an be 
hara
terized and be 
hosen among the allowed representations.

5

Here we would like to brie�y 
omment on the use of von Neumann algebras as lo
al algebras in lo
al


lassi
al theories. The 
ru
ial point is the link between von Neumann algebras and σ-algebras. Every

element S ⊂ Ω of a σ-algebra (Ω,Σ) determines a proje
tion χS in the abelian

∗
-algebra F(Ω,C) of


omplex fun
tions on Ω, namely, χS is the 
hara
teristi
 fun
tion of the subset S ∈ Σ. In general,

we would like to translate lo
al σ-algebras (Ω,Σ) to lo
al 
ommutative operator algebras generated by

proje
tions χS , S ∈ Σ in the fun
tion algebra F(Ω,C). This abundan
e of proje
tions is, however, the

reason why the lo
al operator algebras 
annot be represented by 
ommutative C∗
-algebras in a lo
al


lassi
al theory. Namely, a 
ommutative unital (nonunital) C∗
-algebra, a

ording to the Gelfand duality,

is isomorphi
 to the algebra of 
omplex valued 
ontinuous fun
tions (vanishing at in�nity) on a (lo
ally)


ompa
t Hausdor� topologi
al spa
e. However, unless the topology is dis
rete, su
h algebras generally do

not 
ontain nontrivial proje
tions at all. Therefore one is to 
onsider 
ommutative von Neumann algebras

in lo
al 
lassi
al theories as lo
al operator algebras whi
h are not only ri
h enough in proje
tions, but

also are generated by them.

The paradigmati
 
ase of a 
ommutative von Neumann algebras is the spa
e of 
omplex-valued essen-

tially bounded measurable fun
tions L∞(Ω,Σ, µ) on the σ-�nite measure spa
e (Ω,Σ, µ). This Neumann

algebra is generated by the sub
lass {χS, S ∈ Σ} of 
hara
teristi
 fun
tions on Ω, and a
ts on the separa-

ble Hilbert spa
e L2(Ω,Σ, µ) by multipli
ation. This sub
lass of 
hara
teristi
 fun
tions, or equivalently,

the sets of their supports form the σ-algebra (Ω,Σ) of 
lassi
al events. The latti
e operations and the

algebra operations relate to one another as follows: χSχT = χS∧T , χS + χT − χSχT = χS∨T . This

σ-algebra, however, is not the most general σ-algebra one 
an imagine, sin
e not every σ-algebra 
an be

equipped by a σ-�nite measure µ. Nevertheless, they give us a ri
h enough set of examples for 
lassi
al

theories. The probability measure p on the 
orresponding σ-algebra (Ω,Σ) 
an be provided by any normal

state ω on the von Neumann algebra L∞(Ω,Σ, µ) by pω(S) := ω(χS), S ∈ Σ.
It is a further question as to what kind of lo
al σ-algebras 
an 
orrespond to lo
al 
lassi
al theories,

e.g. to 
lassi
al �eld theories with 
on�guration spa
e FM := {Φ: M → F} with �eld values F = Rn,Cn
,

for example. The maximal σ-algebra of 
lassi
al events one 
an imagine is (FM,P(FM)) given by the

4

Let V1, V2 ∈ K be spa
elike separated regions. Due to Haag duality and additivity of the net

A(V1) ∩ A(V2) = A(V ′
1 )

′ ∩A(V ′
2 )

′ = (A(V ′
1 ) ∨ A(V ′

2 ))
′ = A(V ′

1 ∪ V ′
2)

′. (2)

Sin
e V ′
1
∪ V ′

2
always 
ontains a Cau
hy surfa
e if V1 and V2 are spa
elike separated bounded spa
etime regions, we arrive

at A(V ′
1
∪ V ′

2
) = A due to primitive 
ausality. Therefore A(V1) ∩ A(V2) = A(V ′

1
∪ V ′

2
)′ = A′ ∩ A =: CenterA.

5

However, to stay within the quasi-equivalen
e 
lass of the representation π one 
onsiders only states in the folium of π
(Haag, 1992), that is normal states of π(A)′′ whi
h lead to lo
ally normal states, that is normal states by restri
ting them

to the lo
al von Neumann algebras N (V ), V ∈ K.
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power set P(FM) of the set of �eld 
on�gurations. One needs also narrower σ-algebras in tune with the

net stru
ture of the theory. This is done by taking lo
al equivalen
e 
lasses of those 
on�gurations whi
h

have the same �eld values on a given region V ∈ K. Two �eld 
on�gurations Φ,Ψ ∈ FM
are said to be

lo
ally V -equivalent, Φ ∼V Ψ, if Φ|V = Ψ|V . The isotone net stru
ture {(FM,Σ(V )), V ∈ K} of unital

σ-subalgebras Σ(V ) ⊂ P(FM) 
an be given by the `
ylindri
al subsets' of FM

orresponding to the

image sets of 
anoni
al proje
tions ZV : P(FM) → P(FM), V ∈ K, whi
h map a set S of 
on�gurations

onto the 
orresponding union of V -equivalen
e 
lasses of 
on�gurations in S:

P(FM) ∋ S 7→ ZV (S) := {Φ ∈ FM |∃Ψ ∈ S : Φ|V = Ψ|V } ∈ Σ(V ) := ZV (P(FM)). (3)

Clearly, the net {(FM,Σ(V )), V ∈ K} � or {Σ(V ), V ∈ K}, for short � is PK-
ovariant. The hard and

unsolved problem is to give a probability measure on the σ-algebra (FM,P(FM)) or on a meaningful σ-
subalgebra of it. We 
an avoid this 
onundrum by 
hoosing a lo
ally �nite 
overing of M, that is 
hoosing

a subnet Km ⊂ K in a way that every V ∈ Km

ontains only a �nite number of elements of Km

, and

restri
ting the �eld 
on�gurations to be pie
ewise 
onstant on regions 
orresponding to minimal elements

in Km
. The power set of this 
on�guration spa
e FSm

, where Sm
denotes the set of minimal elements

in Km
, 
an also be mapped into lo
al σ-algebras (FSm

,Σm(V )), V ∈ Km
as before in (3). Although the

maximal lo
al σ-algebra Σm(V m) of a minimal region V m ∈ Sm
is isomorphi
 to the power set P(F )

of �eld values, one 
an restri
t them to the Borel σ-subalgebra of P(F ). Then a generi
 lo
al σ-algebra
Σm(V ), V ∈ Km

is isomorphi
 to a �nite produ
t of the 
opies of 
orresponding Borel σ-subalgebras,
be
ause V is 
overed by a �nite subset of Sm

. We 
an simplify further the situation by restri
ting

the �eld values F to a �nite set. In our example used below F = Z2, the group with two elements,

represented by the integers ±1. In that 
ase the lo
al σ-algebra of a minimal region V m ∈ Sm
is �nite,

Σm(V m) = P(Z2), hen
e the 
orresponding lo
al von Neumann algebra is �nite (two) dimensional, the

two nontrivial proje
tions 
orrespond to the two nontrivial subsets of Z2.

Last but not least, we would like to stress that the proje
tions χS , S ∈ Σ(V ) in the lo
al von Neumann

algebras do not possess a dire
t spa
etime lo
alization: they proje
t to subsets of FM
and not to those

of M.

Inspired by the above 
onsiderations, we de�ne a lo
al physi
al theory as follows:

De�nition 1. A lo
al physi
al theory (LPT) is a net {N (V ), V ∈ K} of lo
al von Neumann algebras

asso
iated to a dire
ted poset K of globally hyperboli
 bounded regions of a globally hyperboli
 spa
etime

M. The net satis�es isotony, mi
ro
ausality, PK-
ovarian
e, and interse
tion property for spa
elike

separated regions. If the lo
al von Neumann algebras are 
ommutative, we speak about a lo
al 
lassi
al

theory (LCT), if they are non
ommutative, we speak about a lo
al quantum theory (LQT).

Our aim is to interpret and formulate Bell's notion of lo
al 
ausality in the framework of LPTs.

Before turning to lo
al 
ausality, however, we need to understand what is a 
ausal dynami
s in a LPT

and whether its existen
e is ensured by the very properties of a LPT. To this we turn in the next se
tion.

3 Causal dynami
s

The motivation for 
ausal dynami
s (or 
ausal time evolution) 
omes from 
lassi
al �eld theory on a

globally hyperboli
 spa
etime, where a global time parameter 
an be 
hosen. If the �eld equations of

the theory are symmetri
 hyperboli
 partial di�erential equations (see Gero
h, 2010), then there exists

an initial value formulation of the theory in the following form: given the initial values on (a pie
e of)

a Cau
hy surfa
e, the time evolution equation provides a unique solution in the domain of dependen
e

6

of (that pie
e of) the Cau
hy surfa
e. This restri
tion of the 
omplete in�uen
es of the initial values to

6

The domain of dependen
e D(S) of a (pie
e of) a Cau
hy surfa
e S 
onsists of those points in M for whi
h any 
ausal


urve 
ontaining them interse
ts S.

5



the domain of dependen
e is that makes the dynami
s of the theory 
ausal, sin
e it forbids superluminal

propagation (see Earman, 2014).

This 
ausal dynami
s has two basi
 properties: it is de�ned within a 
lassi
al theory, and it is

deterministi
 in the sense that �xing the (expe
tation) values of the observables at a 
ertain time, the

dynami
s provides unique (expe
tation) values of the observables in the future or in the past (within

the domain of dependen
e of the initial values). We will see that the properties of a LPT, 
lassi
al or

quantum, are not strong enough to provide us su
h a 
ausal dynami
s. An additional property, 
alled

primitive 
ausality, will ensure the dynami
s in a LPT to be deterministi
 in the above sense; and another,

more restri
tive property, 
alled lo
al primitive 
ausality, will ensure the dynami
s in a LPT to be 
ausal.

It will turn out that in the absen
e of primitive 
ausality not only the 
ausality of the dynami
s (on

the observables) is meaningless but also the notion of an initial state on the observables is missing. In

this 
ase a state on the quasilo
al algebra involves that one should pres
ribe the state on the proper

Cau
hy surfa
e subalgebras for all time sli
es t ∈ R. Expe
tation values in a generi
 state of su
h LPTs

are hardly expe
ted to show any 
ausal properties. However, at least in LCTs, one 
an restri
t the set

of possible states by sti
king to states obtained by a spe
ial state extension pro
edure from an initial

state on a single Cau
hy surfa
e subalgebra. This extension is spe
ial in the sense that it 
an be de�ned

by a sto
hasti
 pro
ess obeying 
ausal features. Hen
e, the extension pro
edure 
an be 
onsidered as

a `dynami
s on the states', and the 
ausality of this dynami
s, re�e
ted in the 
ausal properties of the

expe
tation values, will arise from the 
ausal properties of the underlying sto
hasti
 pro
ess. The rest

of the se
tion is devoted to what we mean by a 
ausal dynami
s on the observables or, in the absen
e of

primitive 
ausality, on the states, and how to ensure their existen
e in the framework of LPTs.

In 
ase of stationary spa
etimes, i.e. when a global timelike Killing ve
tor �eld exists, a natural dynami
s

exists in LPTs on the observables, the 
ovariant dynami
s : The one parameter isometry group T ≃ (R,+)
of M generated by the global timelike Killing ve
tor �eld leads to a one parameter automorphism group

{αt, t ∈ T } of the quasilo
al observable algebra A a
ting 
ovariantly on the net (Requirement 3). In 
ase

of a generi
 globally hyperboli
 spa
etime M no global timelike Killing ve
tor �eld exists, therefore there

is no natural dynami
s on the observables in LPTs. However, a foliation {St, t ∈ R} of M by Cau
hy

surfa
es exists, whi
h is indexed by a global time parameter. Su
h a foliation will lead to a dynami
s on

the observables if the observable algebra 
orresponding to any of the Cau
hy surfa
es already exhausts

the quasilo
al observable algebra, that is primitive 
ausality holds:

6. Primitive 
ausality. For any 
overing 
olle
tion K(S) ⊆ K of any Cau
hy surfa
e S, one has

AK(S) = A.

The 
overing 
olle
tion K(St) ⊆ K of the Cau
hy surfa
e St determines a subalgebraAK(St) of AH. Let us

de�ne the Cau
hy surfa
e algebraASt
of St by the inje
tive limit algebra of a de
reasing net of subalgebras


orresponding to de
reasing 
overings (see (Brunetti and Fredenhagen, 2009) for details). Thus, in 
ase

of primitive 
ausality any subalgebra AK(S), hen
e any Cau
hy surfa
e subalgebra AS is equal to the

whole quasilo
al algebra A. Therefore, the inje
tive algebra morphisms 
orresponding to embeddings of

globally hyperboli
 Cau
hy surfa
e 
overings into M be
ome isomorphisms and one obtains also algebra

isomorphisms ιt : ASt
→ A, t ∈ R between the Cau
hy surfa
e algebras and the quasilo
al algebra. Then

the isomorphism αt′,t := ι−1
t′ ◦ ιt : ASt

→ ASt′
provides the Cau
hy time evolution isomorphism, that

is the dynami
s on the observables, between the Cau
hy surfa
e algebras 
orresponding to time sli
es

t and t′ in the 
hosen foliation. In the presen
e of a 
ovariant dynami
s the two dynami
s 
oin
ide,

αt′,t = αt′−t if the 
hosen foliation of M by Cau
hy surfa
es is 
ompatible with the a
tion of the global

time translation isometry group of M.

But this is not the only role of primitive 
ausality. It makes the (
ovariant) dynami
s on the observ-

ables deterministi
. Sin
e a state on a single Cau
hy surfa
e algebra AS , i.e. a pres
ription of `initial

(expe
tation) values', �xes already the state on the whole quasilo
al algebra A the expe
tation values

of the observables at arbitrary times 
an be given uniquely in terms of the (
ovariant) time evolution

automorphisms of the observable algebra A and the `initial' state.

6



Although the dynami
s {αt′,t, t, t ∈ R} is deterministi
, it is not ne
essarily 
ausal. That is the

deterministi
 dynami
s per se does not ensure that

(ι−1
t′ ◦ ιt)(A(Vt)) ⊂ A(Vt′ ), Vt′ := St′ ∩ (J+(Vt) ∪ J−(Vt)), Vt ⊂ St; t, t

′ ∈ R, (4)

where Vt := V ∩ St for some V ∈ K and J+(Vt) ∪ J−(Vt) is the 
ausal 
one of Vt, that is the union of its


ausal future and 
ausal past. The (deterministi
) dynami
s on the observables meeting the requirement

(4) is 
alled 
ausal dynami
s on the observables. It means that the `propagation' of lo
al observable

algebras under the dynami
s respe
ts the 
ausal 
one stru
ture of the underlying spa
etime. It ensures

also that the state on a lo
al algebra ιt′(A(Vt‘)) �xes the state on a lo
al algebra ιt(A(Vt)), if Vt is in the

domain of dependen
e of Vt′ .

The lo
al and stronger version of primitive 
ausality is

7. Lo
al primitive 
ausality. For any globally hyperboli
 bounded subspa
etime regions V ∈ K,
A(V ′′) = A(V ).7

Lo
al primitive 
ausality entails not only primitive 
ausality but also the 
ausality requirement (4) of

the dynami
s: given Vt and Vt′ as in (4) lo
al primitive 
ausality and isotony (Requirement 1) leads to

A ⊃ ιt′ (A(Vt′ )) = ιt′(A(V ′′
t′ )) ⊃ ιt(A(Vt)).

We note that if a net satis�es Haag duality for all bounded globally hyperboli
 subspa
etime regions

V ∈ K, then it also satis�es lo
al primitive 
ausality for them:

A(V ) = A(V ′)′ ∩ A = A(V ′′′)′ ∩ A = A((V ′′)′)′ ∩A = A(V ′′), V ∈ K. (5)

Conversely, requiring Haag duality only for 
ausally 
omplete regions (that is for regions V ∈ K satisfying

V ′′ = V ) and lo
al primitive 
ausality for all V ∈ K Haag duality follows for all V ∈ K:

A(V ) = A(V ′′) = A((V ′′)′)′ ∩A = A(V ′′′)′ ∩ A = A(V ′)′ ∩ A. (6)

What 
an we say in the absen
e of primitive 
ausality? In 
ase of a generi
 globally hyperboli


spa
etime there is no Cau
hy dynami
s {αt,t′ , t, t
′ ∈ R} on the observables and the Cau
hy surfa
e

proper subalgebras ASt
, t ∈ R are not ne
essarily isomorphi
. In 
ase of stationary spa
etimes a 
ovariant

dynami
s {αt, t ∈ R} ⊂ AutA does exist, however, the isomorphi
 Cau
hy surfa
e subalgebras ASt
, t ∈ R

remain proper subalgebras of A. Their interse
tion 
an be even trivial. Therefore there is no point in

speaking about 
ausality of the 
ovariant dynami
s, be
ause lo
al subalgebras `propagate' into 
ompletely

new lo
al subalgebras of A. Moreover, the 
ovariant dynami
s is not deterministi
 in this 
ase, that is

the 
ovariant dynami
s and the `initial' state φs : ASs
→ C does not �x for t 6= s the expe
tation values

of the isomorphi
 but not identi
al proper subalgebras ASt
of A. Hen
e, either one pres
ribes the state

for the whole quasilo
al algebra A or an extension of the initial state φs from ASs
to A is needed. In

the �rst 
ase no property forbids a generi
 state to reveal a
ausal properties. However, in the latter


ase properly 
hosen 
ausal restri
tions on the state extension pro
edure may lead to a sub
lass of states

obeying 
ausal properties. Unfortunately, we do not know how to do su
h a state extension in 
ase of

a LQT. However, in LCTs, where 
onditional probabilities of lo
al observables have a meaning and they

provide lo
al extensions of a state, a state extension pro
edure 
an be interpreted in terms of a sto
hasti


dynami
s, where the mentioned 
onditional probabilities are given by the transition probabilities of the

underlying sto
hasti
 pro
ess. To this end there is no need for a 
ovariant dynami
s on the 
lassi
al

observables either. Of 
ourse, this would ensure the isomorphisms of the image σ-algebras of the random
variables on the di�erent Cau
hy surfa
es in the underlying sto
hasti
 pro
ess, however a sto
hasti


pro
ess 
an be de�ned without su
h isomorphisms.

7

If V ′′ /∈ K this requirement would mean that extending K by the globally hyperboli
 bounded subspa
etime regions

V ′′, V ∈ K and de�ning A(V ′′) := A(V ) one obtains an extended net of lo
al algebras satisfying isotony, mi
ro
ausality,

and 
ovarian
e.

7



Clearly, any requirement on the state extension pro
edure in LCTs 
oming from 
ausality be
omes a

restri
tion on the sto
hasti
 dynami
s. Sto
hasti
 dynami
s is an existing and well-established resear
h

�eld in general (that is not ne
essarily lo
al) 
lassi
al theories (Karlin and Taylor, 1975). In 
ase of LQTs

we do not know how to do a 
ausal state extension pro
ess, therefore we 
annot know about its possible

(sto
hasti
) interpretation either.

8

Hen
e, all of our attempts and examples for establishing a 
ausal

sto
hasti
 dynami
s interpretation of the state extension in the absen
e of primitive 
ausality are within

the frame of LCTs. In the rest of this se
tion we de�ne what is meant by 
ausal sto
hasti
 dynami
s in

LCTs. We use the language of random variables and sto
hasti
 dynami
s here be
ause 
ertain notions will

have a meaning in terms of lo
al σ-algebras or lo
al abelian von Neumann algebras only if the sto
hasti


pro
ess obeys 
ertain lo
al 
ausality requirements.

Let {Xt, t ∈ R} be random variables indexed by the global time parameter of a foliation {St, t ∈ R}
of M by Cau
hy surfa
es. The image σ-algebra (Ct,Σt) of the measurable map Xt, i.e. the random

variable is thought to be the (sub-)σ-algebra of the power set of 
lassi
al �eld 
on�gurations Ct on the

Cau
hy surfa
e St. In 
ase of a 
ovariant dynami
s the image σ-algebras (Ct,Σt) of Xt are isomorphi


for all t ∈ R. The map Xt is given only for the initial time, Xs : (Ω, σ, p) → (Cs,Σs), that is only the

probabilities of the elements C ∈ Σs are known, they are given by the probabilities of the inverse images

p(X−1
s (C)). It is the sto
hasti
 dynami
s whi
h provides the expli
it maps Xt, that is the probabilities

of sets of 
on�gurations, for t 6= s. The sto
hasti
 dynami
s is given in terms of transition probabilities

Pr{Xt ∈ CV (t)|Xti = xi ∈ Cti , i = 1, . . . , n}, t1 < t2 < · · · < tn < t, (7)

where CV (t) ∈ Σt is lo
al, namely, it is a 
ylindri
al set of �eld 
on�gurations on the bounded pie
e

V (t) := V ∩ St, V ∈ K of a Cau
hy surfa
e St. Observe that, in fa
e of the denotation, the transition

probabilities are not ne
essarily 
onditional probabilities on lo
al σ-algebras sin
e the set {xi} 
ontaining
a single �eld 
on�guration on the whole Cau
hy surfa
e Sti is not lo
al, even it is not ne
essarily in Σti .

The subsequent requirements are introdu
ed just to make (7) to be a 
onditional probability on lo
al

σ-algebras, whi
h allows the sto
hasti
 dynami
s to be interpreted as a state extension pro
edure from

the initial Cau
hy surfa
e algebra ASs
to the whole quasilo
al algebra A.

The sto
hasti
 dynami
s will be 
alled 
ausal if the transition probability of a 
onditioned lo
al


on�guration set depends only on 
on�gurations on its 
ausal past:

Pr{Xt ∈ CV (t)|Xti = xi, i = 1, . . . , n} = Pr{Xt ∈ CV (t)|(Xti = xi)|J−(V (t)), i = 1, . . . , n}, (8)

where J−(V (t)) is the 
ausal past of V (t) and the subs
ript |J−(V (t)) means that the pres
ription of

the values of the random variables Xti is restri
ted to the Cau
hy surfa
e pie
e Sti ∩ J−(V (t)). Note,

that the right hand side of (8) is the same for any 
hoi
e of 
on�gurations from the 
ylindri
al sets

CJ−(V (t))∩Sti
(xi) ∈ Σti , i = 1, . . . , n obtained by the images of the mapping ZV in (3) of the single


on�guration {xi} with V = CJ−(V (t))∩Sti
, i = 1, . . . , n. Therefore in 
ase of a 
ausal pro
ess it is

meaningful to 
onsider the transition probabilities as depending only on the interse
tion of the 
ylindri
al

sets CJ−(V (t))∩Sti
(xi) ∈ Σti of the 
on�gurations xi ∈ Cti , i = 1, . . . , n.

In the presen
e of a 
ovariant dynami
s on the observables we assume that (7) are stationary transition

probabilities, i.e. they depend only on the di�eren
es t1 − t, . . . , tn − t. We will examine only Markov

pro
esses, where only the `
losest' 
onditioning 
ounts, that is

Pr{Xt ∈ CV (t)|Xti = xi, i = 1, . . . , n} = Pr{Xt ∈ CV (t)|Xtn = xn} (9)

holds whenever t1 < t2 < · · · < tn < t. In 
ase of a 
ausal Markov pro
ess the transition probabilities (7)

are 
alled independent with respe
t to spa
elike separation if the following property holds: Let V (t) be a
�nite union of disjoint regions Vk(t) := Vk ∩ St, Vk ∈ K, k = 1, . . . , r on the Cau
hy surfa
e St su
h that

8

There exist quantum me
hani
al models with pres
ribed sto
hasti
 and not unitary time evolution (Károlyházy, 1966;

Ghirardi, Rimini and Weber, 1986; Diósi 1989). However, they are not lo
al theories in our sense, and `primitive 
ausality'

holds there in the sense that the `observable algebra' is the same for all time sli
es.

8



their `
ausal shadows' J−(Vk(t))∩Ss are also disjoint regions in the Cau
hy surfa
e Ss, i.e. they are also

spa
elike separated. Then the transition probability be
omes a produ
t of transition probabilities

Pr{Xt ∈ CV (t)|Xs = xs} =
r
∏

k=1

Pr{Xt ∈ CVk(t)|Xs = xs} (10)


orresponding to the spa
elike separable regions.

The important role of 
ausality property (8) is that the transition probabilities (9) of the Markov

pro
ess depend only on the equivalen
e 
lass, the 
ylindri
al set, CJ−(V (t))∩Stn
(xtn) ∈ Σtn of the 
on�g-

uration xtn ∈ Ctn thus they 
an be interpreted as 
onditional probabilities. Hen
e, they 
an serve as a

state (probability measure) extension pro
edure of the initial state

9 φs := p ◦X−1
s on Σs to the state φ

on the σ-algebra generated by Σt, t ≥ s:

φ(CV (t) ∩ CJ−(V (t))∩Ss
(xs)) := Pr{Xt ∈ CV (t)|Xs = xs}φs(CJ−(V (t))∩Ss

(xs)). (11)

Therefore a fortiori the equality (11) implies that the the transition probability is equal to the 
onditional

probability

Pr{Xt ∈ CV (t)|Xs = xs} =
φ(CV (t) ∩ CJ−(V (t))∩Ss

(xs))

φs(CJ−(V (t))∩Ss
(xs))

=
φ(CV (t) ∩ CJ−(V (t))∩Ss

(xs))

φ(CJ−(V (t))∩Ss
(xs))

=: φ(CV (t) ∩ CJ−(V (t))∩Ss
(xs)|CJ−(V (t))∩Ss

(xs)), (12)

whi
h is possible only in 
ase of a 
ausal pro
ess.

We do not know whether Bell's lo
al 
ausality holds in an arbitrary LCT equipped with a state ob-

tained by a 
ausal Markov pro
ess with stationary transition probabilities obeying independen
e with

respe
t to spa
elike separation. Nevertheless, this impli
ation holds in LCTs with lo
ally �nite dimen-

sional Neumann algebras, whi
h we prove in Se
tion 6.

4 Further relativisti
 
ausality prin
iples

Before turning to Bell's lo
al 
ausality prin
iple and its relation to (lo
al) primitive 
ausality in this se
tion

we brie�y review some other relativisti
 
ausality prin
iples present in the literature and their relations

to (lo
al) primitive 
ausality. These prin
iples are formulated in a quasilo
al algebra AH generated by

an isotone (Requirement 1) net {N (V ), V ∈ K} of lo
al von Neumann algebras.

Let {Ak}k∈K ⊂ N (VA) be a de
omposition of the unit, that is a set of mutually orthogonal proje
-

tions in the lo
al von Neumann algebra N (VA) su
h that

∑

k Ak = 1. The 
orresponding non-sele
tive

proje
tive measurement is de�ned as a map T{Ak} : AH → AH

T{Ak}(X) :=
∑

k∈K

AkXAk, X ∈ AH. (13)

Being a unit preserving 
ompletely positive map (even a 
onditional expe
tation) T{Ak} maps states to

states via

φ 7→ φ{Ak} := φ ◦ T{Ak}. (14)

The following 
ausality prin
iple requires that proje
tions (quantum events) lo
ated in spatially separated

regions should be insensitive of su
h a 
hange of states:

8. No-signaling (also 
alled as parameter independen
e). (Shimony, 1986) Let VA, VB ∈ K be spa
elike

separated. For any de
omposition of the unit {Ak}k∈K ⊂ N (VA) and proje
tion B ∈ N (VB), and
for any lo
ally faithful and normal state φ : AH → C, we have

φ{Ak}(B) = φ(B) (15)

9

The random variable Xs is a measurable map from the probability spa
e (Ω,Σ, p) into the σ-algebra (Cs,Σs).
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No-signaling follows from mi
ro
ausality (Requirement 2). S
hlieder (1969) showed that the 
onverse also

holds: if no-signaling holds for a de
omposition of the unit {Ak}k∈K and a proje
tion B for all normal

states of a von Neumann algebra, then [Ak, B] = 0 for all k ∈ K. Being equivalent to mi
ro
ausality

no-signaling trivially ful�ls in LCTs. Although it is formulated as a requirement for states, it gives a

restri
tion for the stru
ture of the lo
al algebras.

Instead of non-sele
tive proje
tive measurements (13) one 
an also 
onsider sele
tive proje
tive mea-

surements using a single lo
al proje
tion A ∈ N (A):

TA(X) := AXA, X ∈ AH, (16)

whi
h de�nes a 
ompletely positive but not unit preserving map TA : AH → AH. The generated state

transition

φ 7→ φA :=
φ ◦ TA
φ(A)

=
φ ◦ TA

(φ ◦ TA)(1)
(17)

sometimes 
alled Lüders proje
tion (Lüders 1950), provides another 
ausality requirement:

9. Out
ome independen
e. (Shimony, 1986) For any proje
tions A ∈ N (VA) and B ∈ N (VB) su
h
that VA, VB ∈ K are spa
elike separated regions, and for any lo
ally faithful and normal state φ,
we have

φA(B) = φ(B) (18)

In 
ase of mi
ro
ausality (Requirement 2), out
ome independen
e implies that φ(AB) = φ(A)φ(B), that
is φ be
omes a produ
t state by restri
ting it to the subalgebra generated by N (VA) and N (VB). Hen
e,
it is a too strong assumption, whi
h is violated in LQTs, for example, by any entangled state. Of 
ourse,

it is violated also in 
ase of superluminal 
orrelations.

In general, (
ompletely) positive maps T : A → A on a C∗
-algebra A with the property 0 < T (1) 6 1


an be 
onsidered as generalized measurements or operations. They are 
alled inner if T has the form

T :=
∑

i AdKi with Ki ∈ A. If the Ki-s are mutually orthogonal proje
tions one speaks about proje
tive

(inner) operations. Operations with T (1) = 1 and T (1) < 1 are 
alled non-sele
tive and sele
tive

operations, respe
tively. If A is a von Neumann algebra one usually requires T to be normal. If A = B(H)
this means that T is σ-weakly 
ontinuous. See e.g. (Werner, 1987) and referen
es therein.

A net satisfying lo
al primitive 
ausality (Requirement 7) also satis�es:

10. Lo
al determinism. (Earman and Valente, 2014) For any two states φ and φ′
and for any globally

hyperboli
 spa
etime region V ∈ K, if φ|A(V ) = φ′|A(V ) then φ|A(V ′′) = φ′|A(V ′′)

and 
onsequently it also satis�es

11. Sto
hasti
 Einstein lo
ality. Let VA, VC ∈ K su
h that VC ⊂ J−(VA) and VA ⊂ V ′′
C . If φ|A(VC ) =

φ′|A(VC) holds for any two states φ and φ′
on A then φ(A) = φ′(A) for any proje
tion A ∈ A(VA).

Mi
ro
ausality alone does not entail lo
al primitive 
ausality. Sin
e mi
ro
ausality is equivalent to

no-signaling and lo
al primitive 
ausality represents no-superluminal propagation (Earman and Valente,

2014), therefore it is an interesting question whether there exist nets whi
h satisfy lo
al primitive 
ausality

but violate mi
ro
ausality. Usually the translation 
ovariant �eld algebra extension of the observablesF ⊃
A, in whi
h the lo
alized and transportable endomorphisms� the Dopli
her�Haag�Roberts morphisms�

of the observables 
an be implemented, serve su
h examples: Although lo
al �eld algebras are de�ned to

be relatively lo
al to observables

F(V ) := A(V ′)′ ∩ F , V ∈ K, (19)

lo
al �eld algebras 
orresponding to spa
elike separated regions do not 
ommute in general, hen
e mi-


ro
ausality fails. (For example, in the �eld algebra of the lo
al quantum Ising model there are �eld

10



operators with spa
elike separated supports that anti
ommute.) However, lo
al primitive 
ausality does

hold in the net of �eld algebras, be
ause V ′ = V ′′′
and hen
e

F(V ) := A(V ′)′ ∩ F = A(V ′′′)′ ∩ F = A((V ′′)′)′ ∩ F =: F(V ′′), V ∈ K. (20)

Thus, for su
h a net of lo
al (�eld) algebras no-signaling is violated whereas no-superluminal propagation

holds.

In the following we will work within the framework of a LPT. When speaking about deterministi


dynami
s, we will also assume Requirements 6-7.

5 Bell's notion of lo
al 
ausality

Lo
al 
ausality has been one of the 
entral notions in Bell's writings on the foundations of quantum

me
hani
s. Still, interestingly the notion of lo
al 
ausality gets an expli
it formulation only in few

of his papers; to our knowledge only in (Bell, 1975/2004, p. 54), (Bell, 1986/2004, p. 200), and (Bell,

1990/2004, p. 239-240). In this latter posthumously published paper, �La nouvelle 
uisine�, lo
al 
ausality

is formulated as follows:

10

�A theory will be said to be lo
ally 
ausal if the probabilities atta
hed to values of lo
al beables

in a spa
e-time region VA are unaltered by spe
i�
ation of values of lo
al beables in a spa
e-

like separated region VB, when what happens in the ba
kward light 
one of VA is already

su�
iently spe
i�ed, for example by a full spe
i�
ation of lo
al beables in a spa
e-time region

VC . � (Bell, 1990/2004, p. 239-240)

V

V V

C

A B

Figure 1: Full spe
i�
ation of what happens in VC makes events in VB irrelevant for predi
tions about

VA in a lo
ally 
ausal theory.

The �gure Bell is atta
hing to this formulation is reprodu
ed in Fig. 1 with the original 
aption. Bell

elaborates on his formulation as follows:

�It is important that region VC 
ompletely shields o� from VA the overlap of the ba
kward

light 
ones of VA and VB. And it is important that events in VC be spe
i�ed 
ompletely.

Otherwise the tra
es in region VB of 
auses of events in VA 
ould well supplement whatever

else was being used for 
al
ulating probabilities about VA. The hypothesis is that any su
h

information about VB be
omes redundant when VC is spe
i�ed 
ompletely.� (Bell, 1990/2004,

p. 240)

10

For the sake of uniformity throughout the paper we slightly 
hanged Bell's denotation and �gures.
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The notions featuring in Bell's formulation has been target of intensive dis
ussion in philosophy of s
ien
e

(see Norsen 2009, 2011). Here we would like to 
on
entrate only on three terms, namely lo
al beables,


omplete spe
i�
ation and shielding-o�.

Lo
al beables. The notion �beable� is Bell's neologism and is 
ontrasted to the term �observable� used

in quantum theory. �The beables of the theory are those entities in it whi
h are, at least tentatively,

to be taken seriously, as 
orresponding to something real� (Bell, 1990/2004, p. 234). The 
lari�
ation

of what the �beables� of a theory are, is indispensable in order to de�ne lo
al 
ausality sin
e �there are

things whi
h do go faster than light. British sovereignty is the 
lassi
al example. When the Queen dies

in London (long may it be delayed) the Prin
e of Wales, le
turing on modern ar
hite
ture in Australia,

be
omes instantaneously King� (p. 236).

Beables are to be lo
al: �Lo
al beables are those whi
h are de�nitely asso
iated with parti
ular spa
e-

time regions. The ele
tri
 and magneti
 �elds of 
lassi
al ele
tromagnetism, E(t, x) and B(t, x) are again
examples.� (p. 234).

Complete spe
i�
ation. Lo
al beables are to �spe
ify 
ompletely� region VC in order to blo
k 
ausal

in�uen
es arriving at VA from the 
ommon past of VA and VB . (For the question of 
omplete vs. su�
ient

spe
i�
ation see (Norsen, 2011; Seevin
k and U�nk 2011; Hofer-Szabó 2015a).)

Shielding-o�. �It is important that region VC 
ompletely shields o� from VA the overlap of the ba
kward

light 
ones of VA and VB .� Why is that so? Why lo
al 
ausality is not required for su
h regions VC as

depi
ted in Fig. 2, for example? The reason for that is the following. If VC is lo
alized as in Fig. 2,

VA B

C

V

V

Figure 2: A not 
ompletely shielding-o� region VC .

then the spa
etime region above VC in the 
ommon past of the 
orrelating events may 
ontain sto
hasti


events (with determined probabilities by the 
omplete spe
i�
ation on the region VC) whi
h 
an establish

a 
orrelation between A and B in a 
lassi
al sto
hasti
 theory. The �shielding-o�� 
ondition is required

just to ex
lude this 
ase.

But if this is the reason, then why not to allow also for regions VC as depi
ted in Fig. 3? Allowing for

shielding-o� regions whi
h interse
t with the 
ommon past is indeed a possible interpretation of Bell's

term �shielding-o��. We will return to this point below. (For the relation between the lo
alization of the

region VC and the Causal Markov Condition see (Hofer-Szabó 2015b).)

How to translate Bell's three above terms into the framework of LPT? Let us see them again in turn.

Lo
al beables. In a 
lassi
al �eld theory beables are 
hara
terized by sets of �eld 
on�gurations. In our

lo
al algebrai
 framework lo
al equivalen
e 
lasses of �eld 
on�gurations, namely, 
on�gurations having

the same �eld values on a given spa
etime region, generate lo
al σ-algebras, as explained in Se
tion 2.

The elements of lo
al σ-algebras 
apture all the beables of the theory, moreover they also provide a

lo
alization for them. Translating σ-algebras into abelian von Neumann algebras one 
an use a 
ommon

12



VA B

C

V

V

Figure 3: An interse
ting and 
ompletely shielding-o� region VC .

language for 
lassi
al and quantum theories: �lo
al beables� in a region V ∈ K are elements of the lo
al

von Neumann algebra N (V ), whi
h is abelian for a 
lassi
al and non-abelian for a quantum theory.

Complete spe
i�
ation. Complete spe
i�
ation of �eld 
on�gurations in a given spa
etime region means

that one spe
i�es the �eld values to a pres
ribed value in the given spa
etime region, that is one spe
i�es

the 
orresponding lo
al equivalen
e 
lass (a 
ylindri
al set) of a single 
on�guration. In probabilisti


language 
omplete spe
i�
ation is translated to a probability measure having support on this lo
al equiv-

alen
e 
lass of the single spe
i�ed 
on�guration. More pre
isely, 
omplete spe
i�
ation is su
h a 
hange

of the probability measure on the whole σ-algebra that the resulted probability measure restri
ted to

the lo
al σ-algebra in question will have support on the lo
al equivalen
e 
lass of the single spe
i�ed


on�guration. In the abelian von Neumann language this 
orresponds to a 
hange of the original state

that results in a pure state on the lo
al von Neumann algebra in question with value 1 on the proje
tion


orresponding to the lo
al equivalen
e 
lass of the single spe
i�ed 
on�guration. However, we would like

also this 
hange of states to be as lo
al as possible. Therefore we translate a �
omplete spe
i�
ation of

beables in a region V ∈ K� as a 
hange of state

φ(X) 7→ φT (X) :=
φ ◦ T

(φ ◦ T )(1)
(21)

by a 
ompletely positive map T on the quasilo
al observables obeying the following properties:

P1 : the restri
tion of φT to the lo
al algebra N (V ) is pure,

P2 : BT (1) = T (B) = T (1)B hold for lo
al observables B supported in V ′
.

Con
erning property P1 we note that von Neumann algebras in B(H) whi
h have a separating ve
tor in

H, irrespe
tively of being abelian or non-abelian algebras, do not possess a pure normal state (Clifton

and Halvorson, 2001). This is the 
ase, for example, in AQFTs with type III lo
al von Neumann algebras.

Thus starting from a (lo
ally) normal state φ on them a normal operation T leads to a (lo
ally) normal

state φT whi
h 
annot be pure. There are two ways to 
ir
umvent this problem (none of them being

fully satisfa
tory): 1. One 
an use a non-normal operation to get a pure state for the lo
al von Neumann

algebra. In this 
ase, however, one jumps into a di�erent quasi-equivalen
e 
lass of representations of

observables whi
h we just wanted to avoid by 
onsidering only (lo
ally) normal states for the lo
al von

Neumann algebras. 2. In 
ase of type III (hen
e non-abelian) lo
al von Neumann algebras one 
an also

assume the split property (see e.g. (Werner, 1987) and referen
es therein) and use the (atomi
) type I

intermediate von Neumann algebra to provide a pure state, hen
e a `full spe
i�
ation', for a somewhat

larger lo
al observable algebra supported in a somewhat larger lo
al region.

11

11

The authors thank to Yui
hiro Kitajima for drawing their attention to these points.
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Con
erning property P2 we note that weakly lo
alized operations in V (Werner, 1987) obey property

P2 for all elements B ∈ N (V )′ ⊇ AH(V ′) by de�nition. Moreover, if T is normal and AH = B(H) then
every weakly lo
alized operation T with respe
t to V ∈ K is inner in N (V ), that is T =

∑

i AdKi with

Ki ∈ N (V ).
In a general LPT, we do not know how to 
hara
terize the operations that result in a state obeying

properties P1 and P2, but in 
ase of atomi
 (type I) lo
al von Neumann algebras it is almost trivial: one

has to do a sele
tive proje
tive measurement de�ned in (16) by an atom (a minimal proje
tion) C in the

lo
al algebra N (V ) whi
h indu
es the 
hange of states φ 7→ φC de�ned in (17).

Shielding-o�. Finally, a shielding-o� region in a LQT (see Fig. 1) 
an be de�ned as VC ∈ K satisfying

the following three lo
alization requirements:

L1 : VC ⊂ J−(VA),

L2 : VA ⊂ V ′′
C ,

L

Q
3 : VC ⊂ V ′

B.

In a LCT a shielding-o� region interse
ting with the 
ommon past (see Fig. 3) is allowed, and requirement

LQ
3 
an be repla
ed by the weaker requirement:

L

C
3 : J−(VC) ⊃ J−(VA) ∩ J−(VB).

In 
ase of a Cau
hy algebra of an in�nitely thin Cau
hy surfa
e, requirement LC
3 
oin
ides with require-

ment LQ
3 .

Given the above translations of the terms �lo
al beables�, �
omplete spe
i�
ation� and �shielding-o�,� now

we are in the position to formulate Bell's notion of lo
al 
ausality in the framework of LPTs:

De�nition 2. Let an LPT represented by a net {N (V ), V ∈ K} of von Neumann algebras. Let A ∈
N (VA) and B ∈ N (VB) be a pair of proje
tions supported in spa
elike separated regions VA, VB ∈ K. Let
φ be a lo
ally normal and lo
ally faithful state on the quasilo
al observables establishing a 
orrelation

φ(AB) 6= φ(A)φ(B) between A and B. Let T be an operation on the quasilo
al observables obeying

properties P1 and P2. Finally, let VC ∈ K be a spa
etime region de�ned by requirements L1, L2 and

LQ
3 /L

C
3 . The LPT is 
alled (Bell) lo
ally 
ausal if for any su
h quintuple (A,B, φ, T , VC) the following

s
reening property holds:

φT (AB) = φT (A)φT (B). (22)

Remarks:

1. If the lo
al algebras of the net are atomi
,

12

the states φT in De�nition 2 
an be repla
ed by the

state φC given by (16�17), where C ∈ A(VC) is an arbitrary atomi
 event, i.e. a minimal proje
tion.

This 
onverts (22) into the s
reening-o� property:

φ(CABC)

φ(C)
=

φ(CAC)

φ(C)

φ(CBC)

φ(C)
. (23)

In LCTs this 
an be written into the well-known 
onditional form

p(AB|C) = p(A|C)p(B|C), (24)

or into the equivalent asymmetri
 form

p(A|BC) = p(A|C) (25)

sometimes used in the literature (for example in (Bell, 1975/2004, p. 54)).

12

Whi
h is typi
ally not the 
ase in a general AQFT.
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2. Here we would like to brie�y 
omment on a de�nition of lo
al 
ausality re
ently given by Joe

Henson (2013b). Henson's de�nition di�ers from ours in three respe
ts: First, Henson formulates

lo
al 
ausality in terms of σ-algebras. Using the re
ipe given in Se
tion 2 to 
onvert σ-algebras into
abelian von Neumann algebras this di�eren
e 
an be easily dissolved. Se
ond, Henson de�nition

applies only to atomi
 σ-algebras: his s
reening-o� 
ondition is equivalent to (23). Our more general

s
reening 
ondition (22) applies both to non
ommutative and to nonatomi
 lo
al algebras. Third,

in Henson's de�nition the s
reener-o� region VC is not lo
alized a

ording to requirements L1, L2

and LQ
3 /L

C
3 . It is an unbounded region, a �suitable past� of VA and VB .

13

In our opinion, Henson

follows here Bell's �rst formulation of lo
al 
ausality given in (Bell, 1975/2004, p. 54), where the

s
reener-o� regions are identi�ed with the 
omplete, unbounded 
ausal past of the 
orrelating events.

Our de�nition, on the other hand, is based on Bell's last, operationally more desirable de�nition

provided in (Bell, 1990/2004, p. 239-240), where the s
reener-o� regions are only bounded Cau
hy

segments of the unbounded past regions.

14

(For a 
omparison of Bell's di�erent versions of lo
al


ausality see (Hofer-Szabó 2015b).)

In his paper Henson shows that the la
k of separability (additivity, in our language, see Se
tion

2) does not blo
k the derivation of the Bell inequalities. As we will see, this result is in 
omplete

agreement with ours: additivity is not required in our paper, hen
e it plays no role in the derivation

of the Bell inequalities in LCTs.

Coming ba
k to De�nition 2 of lo
al 
ausality, the main question is that when a LPT is lo
ally 
ausal?

We answer this question by the following

Proposition 1. Let the lo
al von Neumann algebras of a LPT be atomi
. Then Bell's lo
al 
ausality

holds if the LPT obeys lo
al primitive 
ausality.

Proof. If A is a proje
tion and C is a minimal proje
tion in an atomi
 von Neumann algebra then

CAC = r(C,A)C with r(C,A) ∈ {0, 1} in 
ase of abelian and r(C,A) ∈ [0, 1] ⊂ R in 
ase of non-abelian

algebras. Hen
e, using notations of De�nition 2, A is a proje
tion in the atomi
 von Neumann algebra

N (VC) due to lo
al primitive 
ausality. Thus if C ∈ N (VC) is a minimal proje
tion then

φC(AB) :=
φ(CABC)

φ(C)
=

φ(CACB)

φ(C)
= r(C,A)

φ(CB)

φ(C)
=

φ(CAC)

φ(C)

φ(CBC)

φ(C)

=: φC(A)φC(B). (26)

Here we used that CB = BC due to 
ommutativity in 
ase of a LCT and due to the spa
elike separation

of VB and VC (ensured by requirement LQ
3 ) and mi
ro
ausality in a LQT.

In the light of this proposition the reader may ask how a lo
al quantum theory 
an be lo
ally 
ausal if

lo
al 
ausality implies various Bell inequalities whi
h are known to be violated for 
ertain set of quantum


orrelations. We 
ome ba
k to this point in Se
tion 7.

In 
ase of LPTs with lo
al primitive 
ausality but with non-atomi
 von Neumann algebras we do

not know how to 
hara
terize the lo
al manipulation on the state des
ribed in De�nition 2, therefore a

similar proof 
annot be applied. In 
ase of LPTs without lo
al primitive 
ausality the dynami
s is not

deterministi
, hen
e an initial state on a Cau
hy surfa
e algebra does not determine the state on the

whole quasilo
al algebra A. States 
an be for
ed by a properly 
hosen state extension pro
edure to show

suitable 
ausality properties. We will not investigate su
h state extensions in LQTs but only in LCTs

where the extension pro
edure 
an be interpreted as a 
ausal sto
hasti
 dynami
s on the states. LCTs

13

Where the term �suitable past� �has been left open deliberately.� �It 
ould be . . . the 'mutual past' . . . the 'joint past'

or the past of one of the regions but not the other.� (Henson, 2013b, p. 1015) For an argument for, against and again for

not spe
ifying the s
reener-o� region see (Henson, 2005), (Rédei and San Pedro, 2012) and (Henson, 2013a), respe
tively.

14

Cf. also (Bell, 1986/2004, p. 200): �The notion of lo
al 
ausality presented in this referen
e [namely in (Bell, 1975/2004)℄

involves 
omplete spe
i�
ation of the beables in an in�nite spa
e-time region. The following 
on
eption is more attra
tive

in this respe
t.� And then 
omes the new de�nition based on bounded regions.
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equipped by su
h states will be 
alled sto
hasti
 LCTs for short. In the next se
tion we 
onsider their

relation to Bell's lo
al 
ausality and a simple prototype of them, the 
ausal sto
hasti
 Ising model will

be 
onstru
ted.

6 Bell's lo
al 
ausality in sto
hasti
 LCTs

We start the se
tion by a

Proposition 2. Let the sto
hasti
 dynami
s in a LCT (without primitive 
ausality) be given by a

stationary 
ausal Markov pro
ess with transition probabilities independent with respe
t to spa
elike

separation de�ned in Se
tion 3. Let the lo
al von Neumann algebras of the LCT be �nite dimensional.

Then Bell's lo
al 
ausality holds for any region VC allowed by De�nition 2.

Proof. Let φ : A(s, s′) → C be the state on a time interval quasilo
al observable algebra extended

from a state φs on the Cau
hy surfa
e algebra As by the sto
hasti
 pro
ess. Let A,B ∈ A(s, s′) and
C = CtC̃ ∈ A(s, s′) be given as in De�nition 2 su
h that Ct is a minimal proje
tion in a Cau
hy surfa
e

algebra At obeying V ′′
Ct

⊃ VA, and J−(VCt
) ⊃ VC̃ . Let {D

k
t } ⊂ A(St ∩ J−(VB)) be the (�nite) partition

of unit into minimal proje
tions. Then using (12), Markov property, and the independen
e of transition

probabilities with respe
t to spa
elike separation one obtains

φC(AB) :=
φ(ABC)

φ(C)
=

∑

k

φ(ABCDk
t )

φ(C)
=

∑

k

φ(ABCDk
t )

φ(CDk
t )

φ(CDk
t )

φ(C)
=

∑

k

Pr{AB|CtC̃Dk
t }

φ(CDk
t )

φ(C)

=
∑

k

Pr{AB|CtD
k
t }

φ(CDk
t )

φ(C)
=

∑

k

Pr{A|Ct}Pr{B|Dk
t }

φ(CDk
t )

φ(C)

=
∑

k

Pr{A|C}Pr{B|Dk
t }

φ(CDk
t )

φ(C)
= φC(A)

∑

k

Pr{B|Dk
t }φC(D

k
t ) = φC(A)φC(B), (27)

whi
h is the s
reening 
ondition (23) required by Bell's lo
al 
ausality.

In the following we present a simple sto
hasti
 LCT in M2
with �nite dimensional lo
al algebras. Sin
e

the dynami
s is given by a stationary 
ausal Markov pro
ess with transition probabilities independent

with respe
t to spa
elike separations and sin
e the lo
al algebras on minimal elements of K are two

dimensional we 
all it 
ausal sto
hasti
 Ising model. We show that due to the pres
ribed properties of

the pro
ess the model 
an be 
hara
terized by eight parameters, whi
h are lo
al transition probabilities.

Consider a lo
ally �nite 
overing of the two dimensional Minkowski spa
etime M2
given by minimal

double 
ones V m(t, i) of unit diameter with their 
enter in (t, i) for t, i ∈ Z or t, i ∈ Z+ 1/2. This set of
minimal double 
ones is denoted by Sm

. A generi
 double 
one V in this dis
retization is a �nite subset

of Sm
generated by two of its elements: V ≡ V (t, i; s, j) := V m(t, i) ∨ V m(s, j) is the smallest double


one in M2

ontaining both V m(t, i) and V m(s, j). The dire
ted poset of su
h double 
ones in M2

is

denoted by Km
.

Let Sm
t ⊂ Sm

be the subset of minimal double 
ones with time 
oordinate t ∈ 1
2Z. Minimal double


ones with time 
oordinates t and t+ 1
2 form a `thi
kened' Cau
hy surfa
e St := Sm

t ∪Sm
t+ 1

2

in this lo
ally

�nite 
overing of M2
(see Fig. 4). A double 
one V ∈ Km

is sti
ked to the Cau
hy surfa
e St if it is

generated by two minimal double 
ones in St. The dire
ted poset of double 
ones sti
ked to St is denoted

by Km
t , it is 
ontained in Km

. Obviously, Km
t is left invariant by integer spa
e translations and Km

is

left invariant by integer spa
e and time translations.

Let Z2 be the group with two elements represented by the multipli
ative group of the integers {1,−1}.
A Z2-valued �eld 
on�guration on this 
overing of M2

is a map c : Sm → Z2. Using the identi�
ation

F = Z2 for �eld values and M = Sm
for the underlying spa
etime we will follow not only the general


onstru
tion of a LCT from a 
lassi
al �eld theory but also the de�nition of a 
ausal Markov pro
ess with
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Figure 4: Lo
ally �nite 
overing of the two dimensional Minkowski spa
etime with a `thi
kened' Cau
hy

surfa
e.

stationary transition probabilities obeying independen
e with respe
t to spa
elike separation des
ribed

in Se
tion 3. As a result we arrive at a LCT with a very simple lo
al rule of a sto
hasti
 dynami
s.

Let C := {c : Sm → Z2} ≡ ZSm

2 be the set of �eld 
on�gurations. The maximal σ-algebra of 
lassi
al

events one 
an imagine in this model is (C,P(C)) given by the power set P(C) of the set of �eld 
on�gu-

rations. An isotone net stru
ture {(C,Σ(V )), V ∈ Km} of unital σ-subalgebras Σ(V ) ⊂ P(C) labeled by

double 
ones in Km
(or even by elements of Lm

being �nite subsets of Sm
) 
an be given by the `
ylindri
al

subsets' of C 
orresponding to the image sets of the mappings ZV : P(C) → P(C), V ∈ Km
de�ned in (3)

P(C) ∋ C 7→ ZV (C) := {c′ ∈ C |∃c ∈ C : c|V = c′|V } ∈ Σ(V ) := ZV (P(C)). (28)

Sin
e Km
is a subset of Lm

, that is every V ∈ Km
is a �nite subset of Sm

, the lo
al σ-algebras are
�nite. Namely, Σ(V ) is isomorphi
 to the power set P(CV ) of CV , the set of lo
al equivalen
e 
lasses

of single 
on�gurations, where the lo
al, i.e. V -dependent equivalen
e relation introdu
ed in Se
tion 2

is given by the restri
tion to V : c ∼V c′ if c|V = c′|V . Clearly, CV 
ontains 2|V |
elements, where |V | is

the number of minimal double 
ones in V . Note, that the lo
al V -equivalen
e 
lass C ≡ [c]V ∈ CV of

a single 
on�guration c ∈ C is a minimal 
ylindri
al subset of C 
orresponding to V by the map (28):

[c]V = ZV ({c}), i.e it is an atom in Σ(V ). Hen
e, the 2|V |
dimensional abelian lo
al von Neumann

algebra N (V ) 
orresponding to the lo
al σ-algebra Σ(V ) is (C-linearly) spanned by the set of mutually

orthogonal minimal proje
tions PC
V , C ∈ CV . They 
orrespond to 
hara
teristi
 fun
tions χC

V : C → C

whi
h are 1 on the 
ylindri
al subset C ∈ CV , i.e. on a V -equivalen
e 
lass of a single 
on�guration in C,
and 0 otherwise. The lo
al σ-algebras obey the interse
tion property

Σ(V1) ∩Σ(V2) = Σ(V1 ∩ V2), V1, V2 ∈ Lm, (29)

espe
ially Σ(V1) ∩ Σ(V2) = {∅, C} if V1 ∩ V2 = ∅. Of 
ourse, the lo
al von Neumann algebras inherit this

interse
tion property. First and last, {N (V ), V ∈ Km} ⊂ {N (V ), V ∈ Lm} is an isotone net of �nite

dimensional, hen
e atomi
, abelian von Neumann algebras obeying the interse
tion property not only for

spa
elike separated regions; that is they de�ne a LCT without lo
al primitive 
ausality.

The quasilo
al C∗
-algebra A is given by the indu
tive limit of the lo
al von Neumann algebras

N (V ), V ∈ Km
. The unital C∗

-subalgebras At, t ∈
1
2Z of A 
orrespond to the thi
kened Cau
hy surfa
es

St ⊂ Sm
. Clearly, A is an integer time and spa
e translation 
ovariant net, i.e. PKm = Z×Z. Moreover,

it is also 
ovariant with respe
t to the `half shift' of 
oordinates of the minimal double 
ones: (t, i) 7→

17



(t + 1
2 , i +

1
2 ).

15

The 
ovariant dynami
s, that is image automorphisms α(n, 0), n ∈ Z of the mapping

α : PKm → AutA, maps the Cau
hy subalgebra At onto At+n, hen
e, they are isomorphi
 subalgebras

of A for n ∈ Z. However, their interse
tion is trivial for n 6= 0. Therefore primitive 
ausality does not

hold in this LCT and the 
ovariant dynami
s {α(n, 0), n ∈ Z} ⊂ AutA does not 
arry any further 
ausal

property. Causality will reappear in the state extension pro
edure from a state φs : As → C on a proper

Cau
hy subalgebra to a state φ on the whole quasilo
al algebra A. The extension will be given in terms

of a 
ausal sto
hasti
 dynami
s des
ribed in Se
tion 3.

The set of �eld 
on�gurations on the subset Sm
t ⊂ Sm

of minimal double 
ones on the time sli
e t ∈ 1
2Z

is denoted by Ct. The image σ-algebras of the 
orresponding Ct-valued random variables Xt, t ∈
1
2Z will

be (Ct,P(Ct)) in this model. As an artifa
t of the lo
ally �nite 
overing of M2
a (thi
kened) Cau
hy

surfa
e St will 
ontain a pair (Xt, Xt+ 1

2

) of random variables. The dis
rete sto
hasti
 dynami
s on the

random variables is given by transition probabilities (7) spe
i�ed to this 
ase as

Pr{Xt ∈ CV (t)|(Xti , Xti+
1

2

) = (xi, x
′
i) ∈ Cti × Cti+ 1

2

, i = 1, . . . , n}, ti+1 − ti ≥ 1, t− tn ≥ 1, (30)

where the pairs (Xti , Xti+
1

2

) 
orrespond to random variables on the Cau
hy surfa
e Sti and V (t) ⊂ Sm
t

is a �nite set of minimal double 
ones on the time sli
e t, that is V (t) ∈ Lm
t . The Z×Z-
ovarian
e of the

model allows us to require the transition probabilities to be stationary (time translation invariant) and

spa
e translation invariant. Using the notations Yt ≡ (Xt, Xt+ 1

2

) and y ≡ (x, x′) the Markov 
ondition

(9) for the transition probabilities (30) requires that

Pr{Xt ∈ CV (t)|Yti = yi, i = 1, . . . , n} = Pr{Xt ∈ CV (t)|Ytn = yn}, (31)

whenever ti+1 − ti ≥ 1 and t − tn ≥ 1 hold. Therefore the `nearest time sli
e' transition probabilities

Pr{X1 ∈ CV (1)|Y0 = y} 
ompletely spe
ify the pro
ess if we require invarian
e of transition probabilities

also with respe
t to the half shift (t, i) 7→ (t + 1
2 , i +

1
2 ) of 
oordinates of the minimal double 
ones

mentioned before. The pro
ess is required to be 
ausal (8) that is

Pr{X1 ∈ CV (1)|Y0 = y} = Pr{X1 ∈ CV (1)|(Y0 = y)|J−(V (1))}, (32)

where J−(V (1)) is the 
ausal past of V (1) and the subs
ript |J−(V (1)) means that the pres
ription of

the values of the random variable Y0 is restri
ted to the `
ausal shadow' P0(V (1)) ≡ S0∩ (S0 \J−(V (1)))′

of V (1) on the Cau
hy surfa
e S0.
16

We 
onsider only transition probabilities that are independent with

respe
t to spa
elike separation, that is they will satisfy (10).

17

Sin
e on a single time sli
e any �nite set

V (t) ∈ Lm
t 
onsists of (�nite number of) mutually spa
elike separated minimal double 
ones V m

t ∈ V (t),
we have

Pr{X1 ∈ CV (1)|(Y0 = y)|J−(V (1))} =
∏

V m
1

∈V (1)

Pr{X1 ∈ CV m
1
|(Y0 = y)|J−(V m

1
)}. (33)

Therefore it is enough to give the transition probabilities Pr{X1 ∈ CV m
1
|(Y0 = y)|J−(V m

1
)} for a single

minimal double 
one V m
1 ∈ Sm

1 to spe
ify the pro
ess 
ompletely. Sin
e the 
ausal shadow P0(V
m
1 ) of

V m
1 on the Cau
hy surfa
e S0 
onsists of three minimal double 
ones (see Fig. 5), whi
h 
arry 23 di�erent


on�gurations, we need to spe
ify eight transition probabilities, for example those with CV m
1

= {+1}.
However, the requirement of the existen
e of unique state extension ba
kward in time restri
ts not only

the possible eight transition probabilities but also the possible `�nal' states, that is the sto
hasti
 pro
ess

15

This transformation 
orresponds to the Kramers�Wannier duality in the lo
al quantum Ising model.

16

It is the artifa
t of the thi
kened Cau
hy surfa
e that the interse
tion S0 ∩ J−(V (1)) 
ontains two plus two minimal

double 
ones at the boundary of J−(V (1)) for V (1) ∈ Km
1
. However, the �eld 
on�guration on the `older' minimal double


ones is not needed for a 
ausal transition probability, the relevant double 
ones are 
ontained in S0 ∩ (S0 \ J−(V (1)))′.
17

As an artifa
t of the thi
kened Cau
hy surfa
e one 
an 
hoose among di�erent pres
riptions whi
h lead to the same


ondition in 
ase of a `true' (in�nitely thin) Cau
hy surfa
e. Namely, the 
ondition that spa
elike separated regions

V1, V2 ∈ K have spa
elike separated shadows Pt(V1),Pt(V2) on the Cau
hy surfa
e St 
an be formulated as J−(V1) ∩
J−(V2) ⊂ J−(Pt(V1) ∪ Pt(V2)). This pres
ription is used in (33).

18
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Figure 5: Three minimal double 
ones adja
ent to V m
1 from below, the 
on�guration on whi
h spe
i�es

the transition probabilities.

shrinks the possible states that 
an o

ur on future Cau
hy surfa
e subalgebras: Let c ∈ Σt be the set

of 
on�gurations whi
h is �xed on V ⊂ Sm
t 
onsisting of two neighboring minimal double 
ones in Sm

t .

The 
on�guration sets c± and c± will mean the subset of c where the 
on�gurations is �xed to ± on a

third minimal double 
one in the future and past domain of dependen
e region of V , respe
tively. Then

the lo
al extension of a state φ on the Cau
hy surfa
e algebra At− 1

2

to the Cau
hy surfa
e algebra At is

given by two dimensional linear mappings:

(

φ(c+)
φ(c−)

)

:=

(

p(c+) p(c−)
1− p(c+) 1− p(c−)

)(

φ(c+)
φ(c−)

)

(34)

where p(c±) are the lo
al transition probabilities 
orresponding to �xed 
on�gurations c± on three neigh-

boring minimal double 
ones on the Cau
hy surfa
e St− 1

2

and with 
on�guration value +1 on the fourth

minimal double 
one in their (future) domain of dependen
e. Hen
e, the state extension ba
kward in

time, that is from the Cau
hy surfa
e algebra At to the Cau
hy surfa
e algebra At− 1

2

is de�ned uniquely

by the inverse mappings

1

p(c+)− p(c−)

(

1− p(c−) −p(c−)
−1 + p(c+) p(c+)

)(

φ(c+)
φ(c−)

)

=

(

p(c+) p(c−)
1− p(c+) 1− p(c−)

)−1 (
φ(c+)
φ(c−)

)

=:

(

φ(c+)
φ(c−)

)

i� the four matri
es are invertible, that is p(c+) 6= p(c−) for the four possible 
hoi
es of 
on�gurations

of two neighboring minimal double 
ones in Sm
t . However, one has to ensure also the inequalities 0 ≤

φ(c+), φ(c−) ≤ 1, whi
h in 
ase of φ(c+)+φ(c−) > 0 lead to restri
tions for the ratio ρ(c) := φ(c+)/φ(c−):

p(c+) ≥ (1− p(c+))ρ(c), (1 − p(c−))ρ(c) ≥ p(c+), p(c+) > p(c−),

p(c−) ≥ (1− p(c+))ρ(c), (1 − p(c−))ρ(c) ≥ p(c), p(c−) > p(c+). (35)

Forgetting the di�
ulties of state extensions ba
kward in time on
e a state φs : As → C on the Cau
hy

surfa
e subalgebra As of the 
ausal sto
hasti
 Ising model is given then the eight determining lo
al

transition probabilities {p(c±)} as 
onditional probabilities give rise to the extension of φs to a state on

time interval quasilo
al algebras A(s.t), t > s. Having performed this extension Bell's lo
al 
ausality will

hold in the time interval quasilo
al algebras for any values of the eight determining transition probabilities

due to Proposition 2.
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Having established the validity of lo
al 
ausality in LPTs with lo
al primitive 
ausality and in sto
has-

ti
 LCTs without lo
al primitive 
ausality, in the next se
tion we will review how Bell's notion of lo
al


ausality relates to the Common Cause Prin
iple and the Bell inequalities.

7 Lo
al 
ausality, Common Cause Prin
iple and the Bell inequal-

ities

Lo
al 
ausality is 
losely related to Rei
henba
h's (1956) Common Cause Prin
iple. The Common Cause

Prin
iple (CCP) states that if there is a 
orrelation between two events A and B and there is no dire
t


ausal (or logi
al) 
onne
tion between the 
orrelating events, then there always exists a 
ommon 
ause

C of the 
orrelation. Rei
henba
h's original de�nition is formulated in a purely 
lassi
al probabilisti


setting la
king any spatiotemporal 
onsiderations; however, it 
an readily be generalized to the LPT

framework. (For the steps of the generalization see (Rédei 1997, 1998), (Rédei and Summers 2002, 2007),

(Hofer-Szabó and Ve
sernyés 2012, 2013) and (Hofer-Szabó, Rédei and Szabó 2013).)

Let {N (V ), V ∈ K} be a net representing a LPT. Let A ∈ N (VA) and B ∈ N (VB) be two events

(proje
tions) supported in spa
elike separated regions VA, VB ∈ K, whi
h 
orrelate in a lo
ally normal

and faithful state φ. The 
ommon 
ause of a the 
orrelation is an event C whi
h (together with its


omplement) s
reens o� the 
orrelating events from one another, and whi
h is lo
alized in the 
ausal

past of A and B. For the pre
ise 
hoi
e of this past one has (at least) three options. One 
an lo
alize

C either (i) in the union or (ii) in the interse
tion of the 
ausal past of the regions VA and VB; or (iii)

more restri
tively, in the spa
etime region whi
h lies in the interse
tion of 
ausal pasts of every point of

VA ∪ VB , formally ∩x∈VA∪VB
J−(x); see (Rédei, Summers 2007). We will refer to the above three pasts

in turn as the weak past, 
ommon past, and strong past of A and B, respe
tively.

Now, we 
an de�ne various CCPs in a LPT:

De�nition 3. A LPT represented by a net {N (V ), V ∈ K} is said to satisfy the (Weak/Strong) CCP, if for

any pair A ∈ N (VA) and B ∈ N (VB) of proje
tions supported in spa
elike separated regions VA, VB ∈ K
and for every lo
ally faithful state φ establishing a 
orrelation between A and B, there exists a nontrivial


ommon 
ause system that is a set of mutually orthogonal proje
tions {Ck}k∈K ⊂ N (VC), VC ∈ K
lo
alized in the (weak/strong) 
ommon past of VA and VB, whi
h de
ompose the unit and satisfy

φCk
(AB) = φCk

(A)φCk
(B), k ∈ K, (36)

where the state φCk
is given by (17).

A 
ommon 
ause is 
alled trivial if Ck ≤ X with X = A,A⊥, B or B⊥
for all k ∈ K. If Ck 
ommutes

with both A and B for all k ∈ K, then we 
all it a 
ommuting 
ommon 
ause system, otherwise a

non
ommuting one, and the appropriate CCP a Commutative/Non
ommutative CCP.

Trivial 
ommon 
ause systems provide solutions of (36) independently of the state φ. Therefore they
are 
onsidered as purely `kinemati
' or `algebrai
' solutions that are insensitive to the a
tual physi
al

environment provided by a parti
ular state φ. If at least one of the algebras N (VA) and N (VB) is �nite
dimensional, then even a more trivial 
ommon 
ause system 
an be given whi
h is not sensitive even to

the given algebra elements A and B. Namely, any de
omposition of the unit into minimal proje
tions

of the 
orresponding �nite dimensional algebra

18

, i.e. any maximal (atomi
) de
omposition of the unit,

provides a weak 
ommon 
ause system solution of (36) irrespe
tively of the 
hosen events in N (VA)
and N (VB), and irrespe
tively of the 
orrelating state φ on them (Caval
anti and Lal, 2013). Therefore

these trivial, maximal size solutions re�e
t more the stru
ture of the underlying �nite dimensional lo
al

algebras, N (VA) or N (VB) or both, whi
h 
ontain them. For example, in this 
ase φCk
, k ∈ K be
ome

18

Of 
ourse the 
ardinality |K| of these (
ommuting or non
ommuting) 
ommon 
ause systems is uniquely determined

by the �nite dimensional algebra: |K| =
∑

r
nr if the �nite dimensional algebra is isomorphi
 to �nite dire
t sum of full

matrix algebras, ⊕rMnr
.
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always pure states by restri
tion to the 
orresponding �nite dimensional algebra. Sin
e Ck, k ∈ K are

spa
elike separated to the other lo
al algebra, (36) should hold in a lo
ally 
ausal theory for any 
hoi
e

of A ∈ N (VA), B ∈ N (VB) and any lo
ally faithful state φ on the quasilo
al observables a

ording to

De�nition 1.

To reveal the similarities and the di�eren
es between Bell's lo
al 
ausality and the CCPs we note that

the 
ore mathemati
al requirement of both properties is the s
reening-o� 
onditions (22) or equivalently

(36). However, the subje
ts of these 
onditions are very di�erent: In the �rst 
ase the s
reening-o�

should hold for all pairs of algebra elements supported in the spa
elike regions VA, VB ∈ K. On the


ontrary, di�erent 
ommon 
ause systems are not only allowed for di�erent triples (A,B, φ) but also a

nontrivial dependen
e is expe
ted on physi
al grounds. Moreover, in 
ase of lo
al 
ausality the s
reening-

o� 
ondition (22) is required for every atomi
 event (satisfying 
ertain lo
alization 
onditions). In 
ase

of the CCP the s
reening-o� 
ondition (36) should be satis�ed only by a single subset of events, by a

de
omposition of unit, whi
h, apart from the `kinemati
' maximal size solution, is typi
ally not given by

atomi
 events.

However, there is an ex
iting similarity: there exist derivations of the Bell inequalities from both 
ondi-

tions (together with some additional requirements). In (Hofer-Szabó and Ve
sernyés, 2013b, Proposition

2) we have proven a proposition whi
h 
lari�es the relation between the CCPs and the Bell inequalities.

It asserts that the Bell inequalities 
an be derived from the existen
e of a 
ommon 
ause system for a set

of 
orrelations if 
ommon 
auses are understood as 
ommuting 
ommon 
auses. However, if we also allow

for non
ommuting 
ommon 
auses, the Bell inequalities 
an be derived only for another state whi
h is

not identi
al to the original one. And indeed in (Hofer-Szabó and Ve
sernyés, 2013a,b) a non
ommuting


ommon 
ause was 
onstru
ted for a set of 
orrelations violating the Clauser�Horne inequality. Moreover,

this 
ommon 
ause was lo
alized in the strong past of the 
orrelating events.

Now, an analogous proposition holds for the relation between lo
al 
ausality and the Bell inequalities.

We assert here only the proposition without the proof sin
e the proof is step-by-step the same as that of

the proposition mentioned above.

Proposition 3. Let {N (V ), V ∈ K} be a lo
ally 
ausal LPT with atomi
 (type I) lo
al von Neumann

algebras. Let A1, A2 ∈ A(VA) and B1, B2 ∈ A(VB) be four proje
tions lo
alized in spa
elike separated

spa
etime regions VA and VB, respe
tively, whi
h pairwise 
orrelate in the lo
ally faithful state φ that is

φ(AmBn) 6= φ(Am)φ(Bn) (37)

for any m,n = 1, 2. Let VC ∈ K be a region satisfying requirements L1, L2 and LQ
3 /L

C
3 in De�nition 2 of

lo
al 
ausality and let {Ck}k∈K ⊂ N (VC) be a maximal partition of unit 
ontaining mutually orthogonal

atomi
 proje
tions. Then the Clauser�Horne inequality

−1 6 (φ ◦ T{Ck})(A1B1 +A1B2 +A2B1 −A2B2 −A1 −B1) 6 0. (38)

holds for the state φ ◦ T{Ck}. If {Ck} 
ommutes with A1, A2, B1 and B2, then the Clauser�Horne

inequality holds for the original state φ:

−1 6 φ(A1B1 +A1B2 +A2B1 −A2B2 − A1 −B1) 6 0. (39)

The moral is the same as in the 
ase of the CCPs: the Bell inequalities 
an be derived in a lo
ally 
ausal

LPT only for a modi�ed state φ ◦ T{Ck} in general. It 
an be derived for the original state φ if the set

of atomi
 proje
tions {Ck} lo
alized in VC 
ommutes with A1, A2, B1 and B2. Clearly, if the LPT is


lassi
al, the elements taken from any lo
al algebra will 
ommute, therefore Bell inequalities hold for the

original state φ in LCTs. However, going over to lo
ally 
ausal LQTs, 
ommutation of {Ck} with the


orrelating events is not guaranteed. If VC is spatially separated from VB (ensured by requirement LQ
3 but

not LC
3 ), then {Ck} will 
ommute with B1 and B2 due to mi
ro
ausality, hen
e (22) will be satis�ed, even
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if the B1 and B2 do not 
ommute. However, in 
ase of lo
al primitive 
ausality one 
annot pi
k a maximal

partition of unit {Ck} in N (VC) (whi
h is needed for the states φCk
to be pure on N (VC)) su
h that {Ck}


ommutes also with proje
tions A1 and A2, if [A1, A2] 6= 0. Namely, N (VA) ⊂ N (V ′′
C ) = N (VC) due to

isotony and lo
al primitive 
ausality, and the image T{Ck}(N (VC )) is a maximal abelian subalgebra of

N (VC) 
ontaining exa
tly those elements that 
ommute with {Ck}. Hen
e, in order to 
ommute with

{Ck}, both A1 and A2 should be 
ontained in T{Ck}(N (VC )), whi
h 
annot be the 
ase, if [A1, A2] 6= 0.
The 
on
lusion is that in 
ase of non
ommuting proje
tionsA1 and A2 the theorem of total probability,

∑

k φ(CkAmCk) = φ(Am), will not hold for the original state

19 φ at least for one of the proje
tions A1

and A2. This fa
t blo
ks the derivation of Bell inequalities for the original state φ. (For the details see
(Hofer-Szabó and Ve
sernyés, 2013b, p. 410).) In short, the Bell inequalities 
an be derived in a lo
ally

primitive 
ausal LQT with atomi
 von Neumann algebras, hen
e in a lo
ally 
ausal LQT, only if the

proje
tions supported on both of the 
orrelating regions 
ommute.

20

Coming ba
k to the question posed at the end of the previous se
tion, namely how a lo
al quantum

theory 
an be lo
ally 
ausal in the fa
e of the Bell inequalities, we already know the answer: the Bell

inequalities 
an be derived from lo
al 
ausality if the 'beables' of the lo
al theory are represented by


ommutative lo
al algebras. This fa
t is 
ompletely analogous with the relation shown in (Hofer-Szabó

and Ve
sernyés, 2013b): Bell inequalities 
an be derived from a (joint, non
onpiratorial, lo
al) 
ommon


ause system if it is a 
ommuting 
ommon 
ause system. Thus, both 
ommon 
ausal explanation and

lo
al 
ausality are more general notions than what is 
aptured by the Bell inequalities.

8 Summary

In this paper we aimed to give a 
lear-
ut de�nition of Bell's notion of lo
al 
ausality. To this end, �rst

we unfolded a framework, 
alled lo
al physi
al theory, whi
h integrates probabilisti
 and spatiotemporal


on
epts in a 
ommon 
on
eptual s
hema. We have 
lari�ed how primitive 
ausality and lo
al primitive


ausality lead to deterministi
 and 
ausal dynami
s, respe
tively. We have introdu
ed the notion of


ausal Markov pro
ess with independent transition probabilities with respe
t to spa
elike separation and

showed that they lead to a 
ausal sto
hasti
 dynami
s interpretation of the state extension pro
edure

in LCTs without primitive 
ausality. Having formulated Bell's lo
al 
ausality within the framework of

LPTs we have given su�
ient 
onditions for a LPT to be lo
ally 
ausal: 1. lo
al primitive 
ausality holds

and the lo
al von Neumann algebras are atomi
, 2. primitive 
ausality does not hold but the state on

the quasilo
al algebra arises from the mentioned 
ausal sto
hasti
 pro
ess and the lo
al von Neumann

algebras are �nite dimensional. We have 
onstru
ted an expli
it model for the latter 
ase, 
alled sto
hasti



ausal Ising model. We 
ompared Bell's lo
al 
ausality with the various Common Cause Prin
iples and

related both to the Bell inequalities. We found a ni
e parallelism: Bell inequalities 
annot be derived

neither from lo
al 
ausality nor from a 
ommon 
ause unless the lo
al physi
al theory is 
lassi
al or the


ommon 
ause is 
ommuting, respe
tively.
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