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Abstract Engineers fine-tune the design of robot bodies for control purposes, how-
ever, a methodology or set of tools is largely absent, and optimization of morphology 
(shape, material properties of robot bodies, etc.) is lagging behind the development 
of controllers. This has become even more prominent with the advent of compliant, 
deformable or ”soft” bodies. These carry substantial potential regarding their ex-
ploitation for control—sometimes referred to as ”morphological computation”. In 
this article1, we briefly review different notions of computation by physical systems 
and propose the dynamical systems framework as the most useful in the context 
of describing and eventually designing the interactions of controllers and bodies. 
Then, we look at the pros and cons of simple vs. complex bodies, critically review-
ing the attractive notion of ”soft” bodies automatically taking over control tasks. 
We address another key dimension of the design space—whether model-based con-
trol should be used and to what extent it is feasible to develop faithful models for 
different morphologies.

1 Introduction

It has become increasingly common to explain the intelligent abilities of natural
agents through reference to their bodily structure, their morphology, and to make ex-
tended use of this morphology for the engineering of intelligent abilities in artificial
agents, e.g. robots—thus ”offloading” computational processing from a central con-
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troller to the morphology. These uses of morphology for explanation and engineer-
ing are sometimes referred to as ”morphological computation” (e.g., [15, 16, 39]).
However, in our view, only some of the characteristic cases that are embraced by the
community as instances of morphological computation have a truly computational
flavor. Instead, many of them are concerned with exploiting morphological prop-
erties to simplify a control task. This has been labeled ”morphological control” in
[14]; ”mechanical control” could be an alternative label. Developing controllers that
exploit a given morphology is only a first step. The space of possible solutions to
a task increases dramatically once the mechanical design is included in the design
space: imagine having a hand with 10 instead of 5 fingers: there will be completely
new ways of grasping things. At the same time, the search space of controllers and
mechanical design combinations also becomes enormous.

In this work, we want to take a close look at these issues. First, we will borrow
the ”trading spaces” landscape from [41] that introduces a number of character-
istic examples and distributes them along a metaphorical axis from ”informational
computation” to ”morphological computation”. Second, we will analyze under what
circumstances can physical bodies be said to compute and then propose the dynam-
ical systems description as the most versatile framework to deal with brain-body-
environment interactions. Third, we will critically look at the pros and cons of sim-
ple vs. complex (highly dimensional, dynamic, nonlinear, compliant, deformable,
”soft”) bodies. Fourth, we will address another key dimension of the design space—
whether model-based control should be used and to what extent it is feasible to de-
velop faithful models for different morphologies. We will close with an outlook into
the future of ”soft” robotics.

2 Design ”trading spaces”

Pfeifer et al. [41] offer one possible perspective on the problem in Fig. 1. In tradi-
tional robots—as represented by industrial robots and Asimo in the figure—, con-
trol is essentially confined to the software domain where a model of the robot exists
and current state of the robot and the environment is continuously being updated
in order to generate appropriate control actions sent to the actuators. In biological
organisms, on the other hand, this does not seem to be the case: the separation be-
tween ”controllers” and ”controlled” is much less clear and behavior is orchestrated
through a distributed network of interactions of informational (neural) and physical
processes. Furthermore, there is no centralized neural control, but a multitude of re-
current loops from the lowest level (e.g., reflexes and pattern generators in the spinal
cord) to different subcortical and cortical areas in the brain. At the same time, the
bodies themselves tend to be much more complex in terms of geometrical as well
as dynamical properties. This has motivated the design of compliant, tendon-driven
robots like ECCE [51] or Kenshiro [35], and soft, deformable robots like Octo-
pus (e.g., [29]) (we are moving from left to right in Fig. 1). However, compared to
humans or biological octopus, a comparable level of versatility and robustness in
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the orchestration of behavior has not yet been achieved in the robotic counterparts.
In more restricted settings, the design and subsequent exploitation of morphology
is easier, as the jumping and landing robot frog [36], the passive dynamic based
walker (Cornell Ranger [4]), or the coffee balloon gripper demonstrate. The pre-
decessors of the Cornell Ranger, the original passive dynamic walkers [33] are a
powerful demonstration that appropriate design of morphology can generate behav-
ior in complete absence of software control. Yet, there is only a single behavior and
the environmental niche is very narrow. The coffee-balloon gripper [8] employs a
similar strategy, but achieves surprising versatility on the types of objects that can be
grasped. Body designs that follow this guideline were also labeled ”cheap designs”
[42].

Fig. 1 The design trading space. This figure illustrates the degree to which each system relies on
explicit control or self-organization of mechanical dynamics. On the left-hand side of the spectrum,
computer algorithms and commercial computers rely on physical self-organization at the minimum
level, while towards the right-hand side, more embodied, more soft, and smaller-scale systems
require physical interactions as driving forces of behaviors. The design goal then is to find a proper
compromise between efficiency and flexibility, taking into account that a certain level of flexibility
can also be achieved by changing morphological and material characteristics. (Fig. and caption
from [41]).

3 Is the body really computing?

The systems toward the right-hand-side of Fig. 1 rely on physical interactions rather
than computer programs to orchestrate their behaviors. This end of the spectrum is
labeled ”morphological computation”. However, in which sense can these systems
be said to compute? In the case of the passive dynamic walker and its active descen-
dants (Cornell Ranger) or the jamming-based (coffee-balloon) grippers cited above,
the body is ingeniously contributing to its, perhaps primary, function: enabling phys-
ical behavior in the real world. This is often interpreted in the ”offloading sense”:
the body design takes over computation from the brain (e.g., [39])—the hypothetical
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computation that is needed for walking has been fully off-loaded from a hypothet-
ical controller to the morphology of the walker. However, we argue that this view
is hard to defend beyond the level of a metaphor. It is difficult to imagine a real
example where one could choose to solve the task ”through the brain” or ”through
the body” and smoothly interchange their contributions.

A word on what we mean by computation is in order. Let’s take the Cornell
Ranger example—a robot based on the passive dynamic walker with a simple con-
troller on top. The robot is certainly not performing abstract digital computation (as
represented by the Turing model, for example). Borrowing the terminology from
[13, p. 5-6], the part of the controller can be said to perform online and embed-
ded computation—such computation is interactive rather than batch, as it relies on
a continuous stream of inputs (from sensors in this case) for its execution and pro-
duces a continuous stream of outputs (control actions). However, it is the physical
interaction, not the controller, that plays the key part in accomplishing the task here.
Some authors would subsume this type of interaction under a computational frame-
work as well—e.g., ”embodied computation should be understood as a physical
process in an ongoing interaction with its environment” [13, p. 6]. Other authors
pose much stricter requirements on physical computation: according to Horseman
et al. [22], a physical system can be said to compute only if it was designed as such.
That is, there needs to be a user that has an abstract computational problem that
he wants to solve by a physical machine. This machine (the computer) needs to be
designed and its model derived that allows for encoding of abstract inputs into the
machine and decoding them again after physical evolution of the machine’s state. In
this view, computation cannot be assigned ex post and physical systems with inter-
esting computational properties, ”intrinsically computing” [11], do not fulfill these
requirements.

It is not central to practitioners whether the controlled system is ”computing”.
However, a unified theory or level of description is desirable. The dynamical sys-
tems framework seems to be the most versatile in this context, as it (i) fits the infor-
mational and physical processes equally well; (ii) copes with continuous (in time)
streams of continuous input and output signals; (iii) is already used by control the-
ory.

4 Dynamical systems perspective

Let us look at the concept of self-stabilization, which is often cited in the ”mor-
phological computation community”. While maximally exploiting the interaction
of the body with the environment can lead to ”pure physics walking” like in the
passive dynamic walker case [33], what if the agent is perturbed out of this pre-
ferred regime? It seems that corrective action needs to be taken. However, it can be
the very same mechanical system that can generate this corrective response. This
phenomenon is known as self-stabilization and is a result of a mechanical feed-
back loop. To use the dynamical systems description, certain trajectories (such as
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walking with a particular gait) have attracting properties and small perturbations are
automatically corrected, without control, or one could say that ”control” is inherent
in the mechanical system. Examples of this phenomenon are a self-stable bike, driv-
ing alone after being pushed and compensating for major disturbances [27] or the
contribution of biological muscles to human walking as reviewed by Blickhan et al.
[5] in a paper entitled ”Intelligence by mechanics” (more examples in this line can
be found in [19] or [18] with videos of the bicycle and other material).

A general formulation of a control problem in control theory is making a dynam-
ical system follow a desired trajectory. For our purposes, we will consider the cases
where the dynamical system is physical—the body of the agent; in control theory,
this is the so-called ”plant”. There are numerous control schemes and branches of
control theory and the reader is referred to abundant literature on the topic (e.g.,
[3, 12, 25]). The performance of the controller can be evaluated on various grounds:
precision of a trajectory with respect to a reference trajectory, or energy expenditure,
for example. In addition, performance, stability and robustness guarantees are re-
quired by industry. Control theory typically deals with the design of controllers that
optimize these criteria. Some control schemes with appropriate cost functions will
automatically result in minimal control actions and thus ”optimize the contribution
of the morphology”. For example, Moore et al. [34] used Discrete Mechanics and
Optimal Control to steer a satellite while exploiting its dynamics to the maximum.
Carbajal [10] developed related methods for reaching, plus offered a formalization
of the concept of ”natural dynamics”. Nevertheless, the plant is treated as fixed in
these approaches. Yet, the properties of the physical body obviously have a key in-
fluence on the final performance of the whole system (plant + controller), which
calls for including them into the design space.

5 Simple or complex bodies?

The spirit of the morphological computation literature that follows the ”offloading”
or ”trade-off” perspective, is that complex (highly dimensional, dynamic, nonlinear,
compliant, deformable, ”soft” ) bodies are advantageous for control because they
can take over the ”computation” that a controller would otherwise have to perform
(e.g., [15, 16, 39] or [9] explicitly in Fig. 1). Complex nonlinear bodies certainly
give rise to more complex dynamical landscapes where the location of attractors
could—if properly exploited— facilitate the performance on a given task.

This view is in stark contrast to the views prevalent in control theory. There, lin-
ear time-invariant systems are the ideal plants to control. Solutions for nonlinear
systems are much more difficult to obtain and they often involve a linearization of
the system of some sort. In fact, human-like bodies are a nightmare for control engi-
neers ([43] is an interesting case study) and highly complex models and controllers
would be required.

What would be an ideal body then? And, does a complex body imply simple
or complex control? Recent attempts at quantifying the amount of morphological
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computation shed more light on this issue. Zahedi and Ay [52] propose two con-
cepts for measuring the amount of morphological computation by calculating the
conditional dependence of future world states W ′ (encompassing the body state) on
previous world states W and action A taken by the agent. According to Concept 1,
the amount of morphological computation is inversely proportional to the contri-
bution of the agent’s actions to the overall behavior. That is, if action of the agent’s
motors (A) has little influence on the future physical state of the agent in the environ-
ment (W ′), morphological computation is high. Concept 2 calculates the amount of
morphological computation by isolating the positive contribution of the world to the
overall behavior (effect of W on W ′), obtained from the ”difference” between condi-
tional probability distributions with and without the action variable, p(w′ | w,a) vs.
p(w′ | w) (see [52] for details). Here, systems with high morphological computation
would be those with strong ”body dynamics” or ”natural dynamics” (see e.g., [23]
or [10] for a formal definition). However, optimizing for morphological computa-
tion in the above sense, one would arrive at systems with strong internal dynamics
(Concept 2), resisting control actions (Concept 1), which seems very impractical for
engineers. In fact, Klyubin et al. [26] proposed a different measure relying on infor-
mation theory, empowerement, which is equivalent to the opposite of morphological
computation under Concept 1; maximizing empowerement amounts to maximizing
the effect of the agent’s actions.

Rückert and Neumann [45] study learning of optimal control policies for a sim-
ulated 4-link pendulum which needs to maintain balance in the presence of distur-
bances. The morphology (link lengths and joint friction and stiffness) is manipulated
and controllers are learned for every new morphology. They show that: (1) for a sin-
gle controller, the complexity of the control (as measured by the ”variability” of
the controller) varies with the properties of the morphology: certain morphologies
can be controlled with simple controllers; (2) optimal morphology depends on the
controller used; (3) more complex (time-varying) controllers achieve much higher
performance than simple control across morphologies.

In summary, the performance on a task will always depend on a complex inter-
play of the controller, body, and environment: taking out the controller is just as
big a mistake as taking out the body was. The tasks that can be completely solved
by appropriate tuning of the body, like passive dynamic walking, are the exception
rather than the rule. A controller will thus be needed too. A complex body may have
the potential to partially solve certain tasks on its own; yet, it may present itself as
difficult to control, model (if the controller is relying on models), design, and man-
ufacture. An optimal balance thus needs to be found. For that, however, new design
methodologies that would encompass complex cost functions (performance on a
task, versatility, robustness, costs associated with hardware whose parameters can
be manipulated etc.) are needed. Hermans et al. [17] very recently proposed such
a method that uses machine learning to optimize physical systems; an approximate
parametric model of the system’s dynamics and sufficient examples of the desired
dynamical behavior need to be available though—which leads us to the next section.
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6 With or without a model?

Including the parameters of the body into the design considerations may give rise to
better performance of the whole system; these may be solutions involving a simpler
controller, but also solutions that were previously unattainable when the body was
fixed. Following the dynamical system’s perspective, [14] provide an illustration
of the possible goals of the design process: (1) To design the physical dynamical
system such that desired regions of the state space have attracting properties. Then
it is sufficient to use a simple control signal that will bring the system to the basins
of attraction of individual stable points that correspond to target behaviors. (2) More
complicated behavior can be achieved if the attractor landscape can be manipulated
by the control signal.

If a mathematical formulation of the controller and the plant is available, this de-
sign methodology can be directly applied. The first part is demonstrated by McGeer
[33] on the passive dynamic walker: The influence of scale, foot radius, leg iner-
tia, height of center of mass, hip mass and damping, mass offset, and leg mismatch
is evaluated. In addition, the stability of the walker is calculated. Recently, Jerrold
Marsden and his coworkers presented a method that allows for co-optimization of
the controller and plant by combining an inner loop (with discrete mechanics and
optimal control) and an outer loop (multiscale trend optimization). They applied it
to a model of a walker and obtained the best position of the knee joints ([38] – Ch.
5).

However, typical real-world agents are more complex than simple walkers.
Holmes et al. [21] provide an excellent dynamical systems analysis of the locomo-
tion of rapidly running insects and derive implications for the design of the RHex
robot. Yet, they conclude that ”a gulf remains between the performance we can elicit
empirically and what mathematical analyses or numerical simulations can explain.
Modeling is still too crude to offer detailed design insights for dynamically stable
autonomous machines in physically interesting settings.” Hermans et al. [17] simi-
larly note that applying their method to robotics, which is known to suffer from lack
of accurate models, is a challenge. The modeling and optimization of more compli-
cated morphologies—like compliant structures—is nevertheless an active research
topic (e.g., Wang [50] and other work by the author). The second point of Füchslin
et al. [14]—achieving ”morphological programmability” by constructing a dynami-
cal system with a parametrized attractor landscape—remains even more challenging
though.

One of the merits of exploiting the contributions of body morphology should be
that the physical processes do not need to be modeled, but can be used directly.
However, without a model of the body at hand, several body designs need to be pro-
duced and—together with the controller—tested in the respective task setting. The
design space of the joint controller-body system blows up and we may be facing
a curse of dimensionality. This is presumably the strategy adopted by the evolu-
tion of biological organisms that could cope with the enormous dimensionality of
the space. In robotics, this has been taken up by evolutionary robotics [37]. The
simulated agents of Karl Sims [47] demonstrate that co-evolving brains and bodies
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together can give rise to unexpected solution to problems. More recently, Bongard
[6] showed that morphological change indeed accelerates the evolution of robust
behavior in such a brain-body co-evolution setting. With the advent of rapid pro-
totyping technologies, physics-based simulation could be complemented by testing
in real hardware [31], but this reintroduces the modeling through the back door: the
phenotypes in the simulator now become models and they need to sufficiently match
their real counterparts. Yet, a ”reality gap” [24, 28] always remains between simu-
lated and real physics. The only alternative is to optimize in hardware directly, which
is in general slow and costly. Brodbeck et al. [7] provide an interesting illustration
how locomoting cube-like creatures can be evolved in a model-free fashion through
automated manufacturing and testing. However, in summary, the design decisions—
which parameters to optimize—are based on heuristics and a clear methodology is
still missing. Furthermore, with the absence of an analytical model of the controller
and plant, no guarantees on the system’s performance can be given.

7 Conclusion and outlook

”Morphological computation” or ”morphological control” are very attractive con-
cepts, receiving significant attention and carrying great potential. The rich proper-
ties of ”soft” bodies (highly dimensional, dynamic, nonlinear, compliant and de-
formable) have been largely overlooked or deliberately suppressed by classical
mechatronic designs, as they are largely incompatible with traditional control frame-
works, where linear plants are preferred. This is definitely a missed opportunity. On
the other hand, while complex bodies carry a lot of ”auto-control” potential, this
property does not come for free. In this article, we provided a critical review of the
design ”trading spaces”, an imaginary landscape from ”control dominant” systems
whose natural dynamics is suppressed to designs that capitalize on self-organization
of the physical system interacting with the environment. We conclude that the con-
tributions of the body to the task are not computational in any substantial sense and
proposed the dynamical systems descriptions as the most versatile in order to fa-
cilitate description, understanding, control and design of brain-body-environment
systems. The pros and cons of simple vs. complex bodies were illustrated on exam-
ples. It has to be said that the exploitation of truly complex bodies to accomplish
tasks is still mostly at a ”proof-of-concept” stage. A closely connected issue is the
one of modeling of these systems—soft bodies are notoriously difficult to model.
The model may not be necessary for the system to perform the task, however, with-
out a model, the understanding and design is more complicated and performance
guarantees are limited. The field, which has been dominated by heuristics so far,
needs to embrace more systematic approaches that allow to navigate in this com-
plex landscape.

In terms of applications, the most relevant area where exploitation of morphology
is and will be the key is probably robotics, and in particular soft robotics (see [2,
40, 41, 49] and the first issue of the journal Soft Robotics [48]). ”Soft” robots, with
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the robot Octopus (e.g., [29]) serving as a good representative, break the traditional
separation of control and mechanics and exploit the morphology of the body and
properties of materials to assist control as well as perceptual tasks. Pfeifer et al.
[40] even discuss a new industrial revolution. Appropriate, ”cheap”, designs lead
to simpler control structures, and eventually can lead to technology that is cheap in
a monetary sense and thus more likely to impact on practical applications. Yet, a
lot of research in design, simulation and fabrication is needed (see [30, 32, 46] for
reviews).

The area of soft robotics and morphological computation seems to be rife with
different trading spaces [41]. As we move from the traditional engineering frame-
work with a central controller that commands a ”dumb” body toward delegating
more functionality to the physical morphology, some convenient properties will be
lost. In particular, the solutions may not be portable to other platforms anymore,
as they will become dependent on the particular morphology and environment (the
passive dynamic walker is the extreme case). The versatility of the solutions is likely
to drop as well. To some extent, the morphology itself can be used to alleviate these
issues—if it becomes adaptive. Online changes of morphology (like changes of
stiffness or shape) thus constitute another tough technological challenge (see also
project LOCOMORPH [1]). Completely new, distributed control algorithms that
rely on self-organizing properties of complex bodies and local distributed control
units will need to be developed [32, 44].
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28. Sylvain Koos, Jean-Baptiste Mouret, and Stéphane Doncieux. The transferability approach:

Crossing the reality gap in evolutionary robotics. Evolutionary Computation, IEEE Transac-
tions on, 17(1):122–145, 2013.

29. C. Laschi, M. Cianchetti, B. Mazzolai, L. Margheri, M. Follador, and P. Dario. Soft robot arm
inspired by the octopus. Advanced Robotics, 26(7):709–727, 2012.

30. H. Lipson. Challenges and opportunities for design, simulation, and fabrication of soft robots.
Soft Robotics, 1:21–27, 2013.



Simple or complex bodies? Trade-offs in exploiting body morphology for control 11

31. H. Lipson and J.B. Pollack. Automatic design and manufacture of robotic lifeforms. Nature,
406(6799):974–978, 2000.

32. MA McEvoy and N Correll. Materials that couple sensing, actuation, computation, and com-
munication. Science, 347(6228):1261689, 2015.

33. T. McGeer. Passive dynamic walking. The International Journal of Robotics Research,
9(2):62–82, 1990.
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