Skip to main content

Simple or Complex Bodies? Trade-offs in Exploiting Body Morphology for Control

  • Chapter
  • First Online:
Representation and Reality in Humans, Other Living Organisms and Intelligent Machines

Part of the book series: Studies in Applied Philosophy, Epistemology and Rational Ethics ((SAPERE,volume 28))

Abstract

Engineers fine-tune the design of robot bodies for control purposes; however, a methodology or set of tools is largely absent, and optimization of morphology (shape, material properties of robot bodies, etc.) is lagging behind the development of controllers. This has become even more prominent with the advent of compliant, deformable or ‘soft’ bodies. These carry substantial potential regarding their exploitation for control—sometimes referred to as ‘morphological computation’. In this article, we briefly review different notions of computation by physical systems and propose the dynamical systems framework as the most useful in the context of describing and eventually designing the interactions of controllers and bodies. Then, we look at the pros and cons of simple versus complex bodies, critically reviewing the attractive notion of ‘soft’ bodies automatically taking over control tasks. We address another key dimension of the design space—whether model-based control should be used and to what extent it is feasible to develop faithful models for different morphologies.

This article is a substantially revised version of [20].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Project LOCOMORPH. FP7-ICT-231688

    Google Scholar 

  2. Albu-Schaffer, A., Eiberger, O., Grebenstein, M., Haddadin, S., Ott, C., Wimbock, T., Wolf, S., Hirzinger, G.: Soft robotics. IEEE Robot. Autom. Mag. 15(3), 20 –30 (2008)

    Article  Google Scholar 

  3. Aström, K.J., Murray, R.M.: Feedback Systems: An Introduction for Scientists and Engineers. Princeton University Press (2008)

    Google Scholar 

  4. Bhounsule, P.A., Cortell, J., Grewal, A., Hendriksen, B., Daniël Karssen, J.G., Paul, C., Ruina, A.: Low-bandwidth reflex-based control for lower power walking: 65 km on a single battery charge. Int. J. Robot. Res. 33(10), 1305–1321 (2014)

    Article  Google Scholar 

  5. Blickhan, R., Seyfarth, A., Geyer, H., Grimmer, S., Wagner, H., Guenther, M.: Intelligence by mechanics. Phil. Trans. R. Soc. Lond. A 365, 199–220 (2007)

    Article  MathSciNet  Google Scholar 

  6. Bongard, J.: Morphological change in machines accelerates the evolution of robust behavior. Proc. Nat. Acad. Sci. 108(4), 1234–1239 (2011)

    Article  Google Scholar 

  7. Brodbeck, L., Hauser, S., Iida, F.: Morphological evolution of physical robots through model-free phenotype development. PloS one 10(6), e0128444 (2015)

    Article  Google Scholar 

  8. Brown, E., Rodenberg, N., Amend, J., Mozeika, A., Steltz, E., Zakin, M.R., Lipson, H., Jaeger, H.M.: From the cover: Universal robotic gripper based on the jamming of granular material. Proc. Natl. Acad. Sci. U.S.A. 107(44), 18809–18814 (2010)

    Article  Google Scholar 

  9. Caluwaerts, K., D’Haene, M., Verstraeten, D., Schrauwen, B.: Locomotion without a brain: physical reservoir computing in tensegrity structures. Artificial Life 19(1), 35–66 (2013)

    Article  Google Scholar 

  10. Carbajal, J.P. : Harnessing nonlinearities: behavior generation from natural dynamics. PhD thesis, University of Zurich (2012)

    Google Scholar 

  11. Crutchfield, J.P., Ditto, W.L., Sinha, S.: Introduction to focus issue: intrinsic and designed computation: information processing in dynamical systems—beyond the digital hegemony. Chaos 20(3), 037101_1–037101_6 (2010)

    Google Scholar 

  12. Emami-Naeini, A., Franklin, G.F., Powell, J.D.: Feedback Control of Dynamic Systems. Prentice Hall (2002)

    Google Scholar 

  13. Fresco, N.: Physical Computation and Cognitive Science. Springer (2014)

    Google Scholar 

  14. Füchslin, R.M., Dzyakanchuk, A., Flumini, D., Hauser, H., Hunt, K.J., Luchsinger, R.H., Reller, B., Scheidegger, S., Walker, R.: Morphological computation and morphological control: steps towards a formal theory and applications. Artificial Life 19(1), 9–34 (2013)

    Article  Google Scholar 

  15. Hauser, H., Ijspeert, A.J., Füchslin, R.M., Pfeifer, R., Maass, W.: Towards a theoretical foundation for morphological computation with compliant bodies. Biol. Cybern. 105, 355–370 (2011)

    Article  MathSciNet  Google Scholar 

  16. Hauser, H., Ijspeert, A.J., Füchslin, R.M., Pfeifer, R., Maass, W.: The role of feedback in morphological computation with compliant bodies. Biol. Cybern. 106, 595–613 (2012)

    Article  MathSciNet  Google Scholar 

  17. Hermans, M., Schrauwen, B., Bienstman, P., Dambre, J.: Automated design of complex dynamic systems. PLOS ONE 9(1), e86696 (2014)

    Article  Google Scholar 

  18. Hoffmann, M., Assaf, D., Pfeifer, R.: A tutorial on embodiment (2011). http://www.eucognition.org/index.php?page=tutorial-on-embodiment

  19. Hoffmann, M., Pfeifer, R.: The implications of embodiment for behavior and cognition: animal and robotic case studies. In: The Implications of Embodiment: Cognition and Communication, pp. 31–58. Exeter: Imprint Academic (2011)

    Google Scholar 

  20. Hoffmann, M., Müller, V.C.: Trade-offs in exploiting body morphology for control: from simple bodies and model-based control to complex bodies with model-free distributed control schemes. In: Hauser, H., Füchslin, R.M., Pfeifer, R. (eds.) E-book on Opinions and Outlooks on Morphological Computation, chap. 17, pp. 185–194 (2014)

    Google Scholar 

  21. Holmes, P., Full, R.J., Koditschek, D., Guckenheimer, J.: The dynamics of legged locomotion: models, analyses and challenges. SIAM Rev. 48(2), 207–304 (2006)

    Article  MathSciNet  Google Scholar 

  22. Horsman, C., Stepney, S., Wagner, R.C., Kendon, V.: When does a physical system compute? Proc. R. Soc. A 470(2169), 20140182 (2014)

    Article  Google Scholar 

  23. Iida, F., Gómez, G., Pfeifer, R.: Exploiting body dynamics for controlling a running quadruped robot. In: Proceedings of the 12th International Conferences on Advanced Robotics (ICAR05), pp. 229–235, Seattle, U.S.A. (2005)

    Google Scholar 

  24. Jakobi, N., Husbands, P., Harvey, I.: Noise and the reality gap: the use of simulation in evolutionary robotics. In: Advances in Artificial Life, pp. 704–720. Springer (1995)

    Chapter  Google Scholar 

  25. Kirk, D.: Optimal Control Theory: An Introduction. Dover Publications (2004)

    Google Scholar 

  26. Klyubin, A.S., Polani, D., Nehaniv, C.L.: All else being equal be empowered. In: Advances in Artificial Life, pp. 744–753. Springer (2005)

    Chapter  Google Scholar 

  27. Kooijman, J.D.G., Meijaard, J.P., Papadopoulos, J.M., Ruina, A., Schwab, A.: A bicycle can be self-stable without gyroscopic or caster effects. Science 332(6027), 339–342 (2011)

    Article  MathSciNet  Google Scholar 

  28. Koos, S., Mouret, J.-B., Doncieux, S.: The transferability approach: crossing the reality gap in evolutionary robotics. IEEE Trans. Evol. Comput. 17(1), 122–145 (2013)

    Article  Google Scholar 

  29. Laschi, C., Cianchetti, M., Mazzolai, B., Margheri, L., Follador, M., Dario, P.: Soft robot arm inspired by the octopus. Adv. Robot. 26(7), 709–727 (2012)

    Article  Google Scholar 

  30. Lipson, H.: Challenges and opportunities for design, simulation, and fabrication of soft robots. Soft Robot. 1, 21–27 (2013)

    Article  Google Scholar 

  31. Lipson, H., Pollack, J.B.: Automatic design and manufacture of robotic lifeforms. Nature 406(6799), 974–978 (2000)

    Article  Google Scholar 

  32. McEvoy, M.A., Correll, N.: Materials that couple sensing, actuation, computation, and communication. Science 347(6228), 1261689 (2015)

    Article  Google Scholar 

  33. McGeer, T.: Passive dynamic walking. Int. J. Robot. Res. 9(2), 62–82 (1990)

    Article  Google Scholar 

  34. Moore, A., Ober-Blöbaum, S., Marsden, J.E.: Trajectory design combining invariant manifolds with discrete mechanics and optimal control. J. Guid. Control Dyn. 35(5), 1507–1525 (2012)

    Article  Google Scholar 

  35. Nakanishi, Y., Asano, Y., Kozuki, T., Mizoguchi, H., Motegi, Y., Osada, M., Shirai, T., Urata, J., Okada, K., Inaba, M.: Design concept of detail musculoskeletal humanoid Kenshiro—toward a real human body musculoskeletal simulator. In: 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids) 2012, pp. 1–6. IEEE (2012)

    Google Scholar 

  36. Niiyama, R., Nagakubo, A., Kuniyoshi, Y.: Mowgli: a bipedal jumping and landing robot with an artificial musculoskeletal system. In: IEEE International Conference Robotics and Automation (ICRA), pp. 2546–2551. IEEE (2007)

    Google Scholar 

  37. Nolfi, S., Floreano, D.: Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-organizing Machines. MIT Press Cambridge (2000)

    Google Scholar 

  38. Pekarek, D.N.: Variational methods for control and design of bipedal robot models. PhD thesis, California Institute of Technology (2010)

    Google Scholar 

  39. Pfeifer, R., Bongard, J.C.: How the Body Shapes the Way We Think: A New View of Intelligence. MIT Press, Cambridge, MA (2007)

    Google Scholar 

  40. Pfeifer, R., Lungarella, M., Iida, F.: The challenges ahead for bio-inspired ‘soft’ robotics. Commun. ACM 55(11), 76–87 (2012)

    Article  Google Scholar 

  41. Pfeifer, R., Marques, H.G., Iida, F.: Soft robotics: the next generation of intelligent machines. In: Proceedings 23rd International Joint Conference on Artificial Intelligence, pp. 5–11. AAAI Press (2013)

    Google Scholar 

  42. Pfeifer, R., Scheier, C.: Understanding Intelligence. MIT Press (1999)

    Google Scholar 

  43. Potkonjak, V., Svetozarevic, B., Jovanovic, K., Holland, O.: The puller-follower control of compliant and noncompliant antagonistic tendon drives in robotic systems. Int. J. Adv. Robot. Syst. 8(5), 143–155 (2011)

    Article  Google Scholar 

  44. Rieffel, J.A., Valero-Cuevas, F.J., Lipson, H.: Morphological communication: exploiting coupled dynamics in a complex mechanical structure to achieve locomotion. J. R. Soc. Interface 7(45), 613–621 (2010)

    Article  Google Scholar 

  45. Rückert, E., Neumann, G.: Stochastic optimal control methods for investigating the power of morphological computation. Artificial Life 19, 115–131 (2013)

    Article  Google Scholar 

  46. Rus, D., Tolley, M.T.: Design, fabrication and control of soft robots. Nature 521(7553), 467–475 (2015)

    Article  Google Scholar 

  47. Sims, K.: Evolving 3D morphology and behavior by competition. Artificial Life 1(4), 353–372 (1994)

    Article  Google Scholar 

  48. Trimmer, B.: A journal of soft robotics: why now? Soft Robot. 1, 1–4 (2013)

    Google Scholar 

  49. Trivedi, D., Rahn, C.D., Kier, W.M., Walker, I.D.: Soft robotics: biological inspiration, state of the art, and future research. Appl. Bionics Biomech. 5(3), 99–117 (2008)

    Article  Google Scholar 

  50. Wang M.Y.: A kinetoelastic formulation of compliant mechanism optimization. J. Mech. Robot. 1(2), 021011 (2009)

    Article  Google Scholar 

  51. Wittmeier, S., Alessandro, C., Bascarevic, N., Dalamagkidis, K., Devereux, D., Diamond, A., Jäntsch, M., Jovanovic, K., Knight, R., Marques, H.G., et al.: Toward anthropomimetic robotics: development, simulation, and control of a musculoskeletal torso. Artificial life 19(1), 171–193 (2013)

    Article  Google Scholar 

  52. Zahedi, K., Ay, N.: Quantifying morphological computation. Entropy 15(5), 1887–1915 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

M.H. was supported by the Czech Science Foundation under Project GA17-15697Y and by the Marie Curie Intra European Fellowship iCub Body Schema (625727) within the 7th European Community Framework Programme. M.H. also thanks Juan Pablo Carbajal for fruitful discussions and pointers to literature. Both authors thank the EUCogIII project (FP7-ICT 269981) for making us talk to each other.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matej Hoffmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hoffmann, M., Müller, V.C. (2017). Simple or Complex Bodies? Trade-offs in Exploiting Body Morphology for Control. In: Dodig-Crnkovic, G., Giovagnoli, R. (eds) Representation and Reality in Humans, Other Living Organisms and Intelligent Machines. Studies in Applied Philosophy, Epistemology and Rational Ethics, vol 28. Springer, Cham. https://doi.org/10.1007/978-3-319-43784-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43784-2_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43782-8

  • Online ISBN: 978-3-319-43784-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics