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Abstract

The possibility of spectrum inversion has been debated since it was raised by Locke (1690/1979) and is
still discussed because of its implications for functionalist theories of conscious experience (e.g., Palmer,
1999). This paper provides a mathematical formulation of the question of spectrum inversion and proves
that such inversions, and indeed bijective scramblings of color in general, are logically possible. Symmetries
in the structure of color space are, for purposes of the proof, irrelevant. The proof entails that conscious
experiences are not identical with functional relations. It leaves open the empirical possibility that function-
al relations might, at least in part, be causally responsible for generating conscious experiences. Function-
alists can propose causal accounts that meet the normal standards for scientific theories, including
numerical precision and novel prediction; they cannot, however, claim that, because functional
relationships and conscious experiences are identical, any attempt to construct such causal theories entails
a category error.
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1. Introduction

Is it possible, John Locke pondered in his Essay of 1690/1979, that “the idea that a violet pro-
duced in one man’s mind by his eyes were the same that a marigold produced in another man’s,
and vice versa.” Could the colors I experience differ from yours, even if experiments reveal no dif-
ference between us? Locke’s question is raised by inquisitive children but remains hotly debated by
scientists and philosophers because its answer is key to current theories of the relationship be-
tween brain activity and conscious experience (Bickle, 2003; Braddon-Mitchel & Jackson, 1996;
Chalmers, 1995, 1996, 2002; Churchland, 1996, 2002; Clark, 1983; Crick & Koch, 1998; Gregory,
1998; Metzinger, 2000; Tye, 2000). If color scrambling of the type Locke envisioned is logically
possible, this would entail that conscious experiences could change without concomitant function-
al changes in brain states. Locke’s question has stirred prolific debate through the ensuing centu-
ries (see, e.g., Palmer, 1999, and its commentaries) but no mathematical articulation or proof.
Here, we prove that the answer is “Yes’’: color scrambling is logically possible.

2. Reductive functionalism

Reductive functionalism asserts that the type identity conditions for mental states refer only to
relations between inputs, outputs, and each other (e.g., Block & Fodor, 1972). It does not assert
that such relations cause mental states but rather that they are numerically identical to (i.e., one
and the same as) mental states. Thus, each conscious experience, being a species of mental state,
is numerically identical to some such relations. Although in humans such relations are presumably
instantiated in the nervous system, they could in principle be equally well instantiated in other
physical systems, such as computers.

Reductive functionalists typically deny that the experiences of one person could be scrambled
from those of another without experimental consequences (Churchland, 2002; Dennett, 1998).
For if conscious experiences are identical to functional relations, then to scramble experiences
is to scramble the functional relations, and this would create measurable differences between
the two persons in controlled experiments. Nonreductive functionalists, who hold that conscious
experience is determined by functional organization but not reducible to functional organization,
can allow the logical possibility of scrambled experiences but deny the empirical possibility (Chal-
mers, 1995). Such nonreductive functionalism is not the primary target of the Scrambling Theo-
rem developed in this article.

A critic of reductive functionalism might ask how it could be that functional relations could
cause conscious experiences. The reply would be swift and short: to ask that question is a category
mistake, betraying a fundamental misunderstanding. Reductive functionalism does not claim that
functional relations cause conscious experiences, or that functional relations are correlated with
conscious experiences, but that they are conscious experiences. Hence, to ask how functional rela-
tions could cause conscious experiences is the same mistake as to ask how 12 could cause a dozen.
One cannot impugn reductive functionalism by complaining that reductive functionalists do not
say how functional relations cause, or why they are correlated with, conscious experiences. One
can, however, reasonably ask a nonreductive functionalist to give a scientific theory describing
how functional states cause or determine conscious experiences.
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Then, how might one refute reductive functionalism? It is, after all, an empirical claim and must
therefore be open to potential refutation. The answer is simple. To refute reductive functionalism,
one needs to show that it is logically possible that conscious experiences are not numerically iden-
tical to functional relationships. This does not mean that we must show that, as a matter of empir-
ical fact, conscious experiences are not the same as functional relations. This would be a much
harder program and much stronger than is necessary to refute reductive functionalism. All we
need to do is to show that it is logically possible that conscious experiences are not the same as
functional relations.

How could we do that? One way is to show that it is imaginable that conscious experiences are
not the same as functional relations. If something is imaginable, then it is logically possible. This
appeal to imagination is often made in philosophical attempts to refute claims of numerical iden-
tity. Of course, this approach has a severe weakness. Claims of imagination can be disputed, lead-
ing not to clean refutation but merely to partisan bickering. The opponent of reductive
functionalism can claim to imagine conscious experiences apart from functional relations, and
the reductive functionalist can simply deny that the opponent has succeeded in the claimed act
of imagination. The result is an unsatisfying stalemate.

There is, however, another approach that is more compelling than bald claims of imagination:
give a mathematical proof that one member of a proposed identity could have some property that
the other does not, thus entailing, by Leibniz’s Law, that the two are not identical. This eliminates
argument over imagination and replaces it with sober discussion of the assumptions required for
the proof.

3. The Scrambling Theorem

This section presents a simple proof that color experiences and functional relations are not
identical. The proof requires one assumption.

Assumption. Conscious experiences can be represented mathematically.

One might object to this assumption on the grounds that there are no conscious experiences or
that, even if there are, they cannot be represented mathematically. The first objection is rare, and
compelling to few, but has been made (e.g., Dennett, 1998). It not only obviates the Scrambling
Theorem proved here but renders pointless any discussion of whether conscious experiences are
identical to functional relations, the key claim considered here. Therefore, we have no further con-
cern with it.

The second objection precludes the possibility of a science of consciousness. For if conscious
experiences cannot be represented mathematically, then one can make no quantitative predictions.
This objection might turn out to be true but we should not embrace it unless forced by repeated
failure to construct a scientific theory of consciousness.

We therefore assume that conscious experiences can be represented mathematically. This allows
us to assert that the color experiences of a person can be represented by a set, X. From this asser-
tion, the Scrambling Theorem follows. Of course, representing color experiences by a set does not
entail any assumption that different color experiences are unrelated to each other. The set X can
have, as we shall see, further mathematical structures imposed on it that model the relations
among the color experiences.
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Fig. 1. Commuting diagrams of the Scrambling Theorem.

Scrambling Theorem. Denote by X the color experiences of one person and by Y the color
experiences of a second person. Let the following be any mathematical structures and functions that
describe the functional relations among color experiences of the first person: (1) f Xy X ---X
X, — W,where X, ..., X, are copies of X, nis a positive integer, and W is any set; (2) X' < 2% and (3)
[ X x--x X — Z whereX|,..., X! are copies of X', m is a positive integer, and Z is any set.
Let b: X — Y be any bijection, i.e., any scrambling, between the two sets of color experiences. Then,
there exist: (1) g: Y1 X -+ x Y,, = W, where Y, ... Y, are copiesof Y:(2) Y c2¥;and (3) g’ - V)X
XY — Z, whereY\,...,Y! are copiesof Y', such that (1) f= gb, (2) X' = b= (Y"), and 3) f = g'b.

Proof. (1) Define g =/ b'. (2) Define Y' = b(X'). (3) Define g’ = f'b~'. O

The Scrambling Theorem is illustrated, for the case n = m = 1, by the two commuting diagrams
shown in Fig. 1. The diagram on the left illustrates that, given sets X, Y, and W, and given any
function f from X to W, then for every bijective scrambling b from X to Y, there exists a function
g from Y to W that makes the diagram commute, i.e., such that g = fb~". Similar comments apply,
mutatis mutandis, for the diagram on the right. (Recall that a bijection is a one-to-one and onto
mapping, i.e., a mapping that is both injective and surjective.)

4. The meaning of the Scrambling Theorem

Suppose we show Jack a display, and he has color experiences x;. If we show Jill the same dis-
play, then she will have color experiences b(x;), since b describes how Jill’s color experiences are
scrambled relative to Jack’s. We ask Jack to perform a color task; his responses are determined by
the functional relations £, X’, and f’. We ask Jill to perform the same task; her responses are deter-
mined by the functional relations g, Y’, and g’. The Scrambling Theorem says that it is always
possible to choose g, Y’, and g’ so that Jill responds identically to Jack, even though her conscious
experiences are scrambled relative to his. In this case, their functional relations are identical but
their conscious experiences differ; therefore, their conscious experiences cannot be numerically
identical to the functional relations. To put this in another way, conscious experiences do not
supervene logically on functional relations.

Notice that the Scrambling Theorem does not require a specific mathematical structure for the
functional relations f, X”, and f’. The function f could be, for instance, a distance metric, a quasi-
pseudometric, a partial order, or any one of countless other relations. The structure X’ could be
the open sets of a topology, the measurable sets of a c-algebra, or any one of countless other
structures. The function f” could be, for instance, a metric or probability measure. It does not
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matter, since the Scrambling Theorem makes no assumption about the specific nature of the func-
tional relations and holds for whatever particular functional relations happen to be appropriate.
The Theorem applies, therefore, not just to the scrambling of color experiences but also to the
scrambling of any sensory experiences. The spaces of the sensory experiences need have no special
symmetries for the Theorem to apply, since any bijection will do.

5. Objections to the Scrambling Theorem

Several objections have been raised to the Scrambling Theorem and its interpretation. One
objection is that the points of X and Y could not represent conscious experiences because such
points could, instead, be taken to represent internal codes or states of, say, unconscious robots.
Thus, according to this objection, although the Scrambling Theorem is mathematically correct,
it does not apply to conscious experiences. This objection makes an elementary mistake of logic.
Although the Scrambling Theorem could indeed be applied to the unconscious states of a robot,
this possibility does not preclude applying the Scrambling Theorem to conscious experiences any
more than using the integers to count apples precludes using them to count oranges.

A second objection is that the Scrambling Theorem is not adequately tied to the plethora of
empirical facts about color perception, facts about cone sensitivities, opponent color channels,
the role of surface reflectances, and the known metrical structure of color space. The Scrambling
Theorem, according to this objection, is interesting only insofar as it connects to the “real world,”
and otherwise does not tell us about genuinely possible inverted spectra in actual human beings.

This objection is also an elementary mistake. The target of the Scrambling Theorem is not an
empirical claim about actual spectrum inversions in human beings. The target is the reductive func-
tionalist claim that color experiences and functional relations are identical. To refute this claim of
identity, the Scrambling Theorem establishes the logical possibility of inverted spectra, not their
empirical existence or nature. The Scrambling Theorem shows that no appeal to empirical details
about color is needed to establish the logical possibility of inverted spectra. Therefore, discussion
of the empirical data would, in this context, obscure the fundamental point of logic made by the
Scrambling Theorem. If our goal was to disprove nonreductive functionalism, then empirical data
on color perception would, in all likelihood, be relevant in formulating such a proof.

A third objection is longer. According to this objection, the possibilities for set-theoretic
transformations used in the Scrambling Theorem are well known and not in dispute in the invert-
ed-qualia literature. The real issue is whether any such formal transformations could in fact
correspond to alternative phenomenal realities. Many claim that they could not, arguing that
specific qualia, i.e., conscious experiences, have intrinsic natures that inherently constrain their
relations, including their similarity and resemblance relations. If that were so, it might well not
be possible to preserve those phenomenal resemblance relations under an inversion or scramble.
The mere formal possibility of defining some distance metric or other mathematical structure that
could be preserved does not in itself show that those structural relations could correspond with the
reality of phenomenally perceived resemblance. The key point here is whether or not specific qualia
are mere items in a set which can be structured arbitrarily or whether they have intrinsic natures
that determine, or at least constrain, their possible relations. The Scrambling Theorem seems to
assume the former and does not really give any arguments to refute the latter alternative view.
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One interpretation of this objection is that color experiences cannot be represented by a set.
This interpretation precludes any mathematical analysis and so is probably not intended. A sec-
ond interpretation, then, is that a person’s color experiences can be represented by a set but, be-
cause of the intrinsic qualities of such experiences, only certain mathematical structures on this set
are possible. But we must ask, Possible in what sense? Empirically or logically? If empirical pos-
sibility is meant, then this objection makes the same elementary mistake as the second objection.
If logical possibility is meant, then the Scrambling Theorem proves the logical possibility by pro-
ducing the required mathematical structures. This result might strain the imagination: How could
a red be more similar to a green than to another red? But imagination here appeals to empirical
intuitions when what is at question is logical possibility. When imagination conflicts with math-
ematical proof, imagination must yield, for it is proved wrong. If the argument of the Scrambling
Theorem is well known, it is apparently not well understood.

A fourth objection is that the Scrambling Theorem is mathematically trivial. Indeed it is. Once
one has formulated the question of logical possibility at the appropriate level of mathematical
abstraction, the proof is a single line. The real work, then, is finding the proper mathematical for-
mulation. It is a bonus, not a defect, that once the proper formulation is found the answer be-
comes disarmingly clear.

A fifth objection concerns representationalist accounts of qualia (e.g., Harman, 1996; Shoe-
maker, 2000; Tye, 1996, 2000). For representationalists, qualia are not properties of brain states
but properties that those states represent objects as having, and those representational relations
are determined by the functional or causal or information—theoretic relations between the brain
states and the objects. Given such a view, the idea of switching red qualia states with green ones
in terms of their total functional roles is incoherent. Being a red qualia state just is a matter of
representing objects as being red, and that representational content is determined by the state’s
role and connections to the relevant sorts of objects. Lots of people reject this sort of strong rep-
resentationalism, and indeed, they sometimes appeal to the intuitive appeal of inverted-qualia
thought experiments to challenge it, but nonetheless it is a serious view in the current debate,
and if it was true it would surely undercut the Scrambling Theorem’s claim about the possibility
of qualia scrambling.

This objection simply gets representationalism wrong. Representationalism does not entail, as
this objection asserts, that qualia inversion is incoherent. Tye, for instance, notes that “the pure
representationalist can happily allow the possibility of phenomenally inverted color experiences in
normal observers” (p. 107, 2000) and ‘“‘the pure representationalist can admit with impunity the
conceptual possibility of phenomenal inversions without representational difference in both
swamp duplicates and human beings” (p. 112, 2000). Moreover, the objection that representation-
alism, if true, “would surely undercut the Scrambling Theorem’s claim about the possibility of
qualia scrambling” misses the point. Representationalism, at least according to Tye, claims each
conscious sensory experience is identical to some tracking relationship, i.e., to causal covariation
under optimal conditions. If we wish to evaluate that claim, then we must ask if it is logically pos-
sible that the two are not identical, and hence we look for proofs like the Scrambling Theorem; we
cannot evaluate the identity claim by assuming it is true and then concluding that any logical
proof to the contrary must therefore be impossible.

A sixth objection is that the Scrambling Theorem uses discrete mathematics and therefore fails
to apply to some sensory experiences, such as color experiences, that are plausibly assumed to be
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continuous. This objection misunderstands the formalism of the Scrambling Theorem. The sets X
and Y can be finite, countable, or uncountable, and the Theorem applies in each case. By describ-

ing functional relations on X by the mapping f: X1, ..., X,, > W, one does not thereby require X
to be discrete or to have only # elements.
A seventh objection is that the mapping f: X1, ..., X,, &> W requires the listing of (possibly infi-

nite) sets of n tuples. According to this objection, one can get away with that for small sets of dis-
crete elements, where listing such sets is a reasonable way to represent them and searching through
them is a reasonable way to verify them, but in very large and/or continuous domains, however,
the relations are going to have to be computable by some productive algorithm other than retriev-
al from lists of n tuples, and it does not seem reasonable that such systems can pre-store the set of
n tuples for a true continuum.

This objection misses the point. The Scrambling Theorem answers Locke by establishing a
point of logic. It is not intended to provide a computational model of human sensory processing.
The Scrambling Theorem uses mathematical structures that capture all relevant functional rela-
tions. However, to answer Locke’s question, the Theorem does not need to specify how these
functional relations might in fact be represented or computed in human sensory systems. This
empirical issue, although interesting, is irrelevant here. Indeed, to focus on such details would
be to obscure the simple answer to Locke’s question.

An eighth objection claims that representations of experiences could differ from one another in
essentially nonformal ways, depending on whether the logical properties of the represented rela-
tions (such as symmetry and transitivity) were necessarily present in the representing relations (as
in the case of representing color experiences by points in a three-dimensional geometric space) or
present only by virtue of the representational mapping into more general (i.c., less constrained)
structures (as in the case of representing color experiences by elements in sets of n tuples). The
reason why set-theoretic formulations are so tremendously useful in mathematics is probably be-
cause they are so tremendously unconstrained: anything seems to be representable within them. It
is very much in this spirit that set-theoretic concepts are used to formulate the Scrambling The-
orem and why it seems so completely general. The issue is whether the very generality of the for-
malization methods used might throw the proverbial baby out with the bathwater. It is certainly
worth entertaining the possibility that more intrinsic constraints than are available in set theory
are required to adequately capture the nature of the functional relations relevant to functionalist
accounts of experience.

This objection makes a fundamental mathematical mistake. It contrasts the unconstrained nat-
ure of representations based on the sets to the necessarily constrained nature of representations
based on, e.g., three-dimensional geometric spaces. But three-dimensional geometric spaces are
themselves nothing but sets with certain added structures, e.g., metrics or group actions. The
Scrambling Theorem uses sets but allows any formal structure to be imposed on those sets that
is required to model functional relations. If one needs to transform the set of color experiences
into a three-dimensional metric space, then the functions f and f’ of the Scrambling Theorem
are there to oblige. If one needs to transform the set of color experiences into a topological or
measurable space, the structure X’ is available for this purpose. The way one obtains constrained
or structured representations in mathematics is to start with sets and add structure. Even moves
from set theory to the theory of classes or to category theory do not obviate this method of cre-
ating structured representations.
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A ninth objection claims that the Scrambling Theorem assumes that an observer’s experiences can
be represented as a simple set of simple elements and that a scrambling of experiences can be rep-
resented as a bijection between the simple elements of two such simple sets. One might allow for
the possibility of a mathematical representation of experience as some sort of set-theoretic structure
but deny that a simple set of independent elements is adequate and in turn insist that such a repre-
sentation is properly a more complex set-theoretic structure. This would then allow that a scram-
bling of experience might be represented by a map to a different set-theoretic structure or a
set-theoretic structure not necessarily isomorphic to the first. The implication of this possibility
for the main argument here is that the Scrambling Theorem has shown that scrambling of experi-
ence entails no functional differences in any world where experiential states and functional proper-
ties of such states can be mathematically represented by simple sets and bijections between such sets.
The salient question now, in consequence, is whether a simple unstructured set is an adequate math-
ematical representation of our experiential states. The challenge then is to argue against such a rep-
resentation. This is progress in the sense that it helps to clarify the proper nature of the disagreement.

This objection misunderstands the Scrambling Theorem. The Theorem does not require repre-
senting experiential states as simple unstructured sets. It provides the functions f'and f* precisely
to allow the sets of experiential states to be appropriately structured. Once such structures are
properly in place, the bijections induce morphisms of those structures, i.e., the bijections preserve
the structures. The next section provides a concrete example of the Scrambling Theorem in which
these structures and morphisms can be clearly seen.

A tenth objection states that a radical functionalist—one who thinks that all there is to mental
states is their relations to all other mental states—would simply deny that the Scrambling
Theorem actually scrambles anything of consequence at all. Rather the scrambling would simply
“rename’’ the experiences by assigning them to different formal symbols. The reason is, of course,
that for the radical functionalist, there is absolutely nothing to any mental state beyond these
relations: the mental states are devoid of content except for the relations, and if a/l of the relations
are preserved, then everything about the mental states is preserved. And since the Scrambling
Theorem proves that all the same relations are intact after scrambling, nothing of any functional
consequence has been changed in the slightest by the scrambling. In this sense, the Scrambling
Theorem is essentially a proof that, within radical functionalism, any assignment of mental states
(or experiences) to symbols is as good as any other because it proves that all of the same relations
are there despite the scrambling. To say this in another way, for a functionalist, all scramblings of
a given mental domain are members of the same equivalence class: there is simply no basis on
which to distinguish among them.

This objection misunderstands the purpose of the Scrambling Theorem. The radical function-
alist this objection considers could be of two types: (1) one who denies that there are any
conscious experiences and (2) one who asserts that there are conscious experiences and that these
experiences are identical to certain functional relations. The Scrambling Theorem is not addressed
to the first type of radical functionalist. If such a functionalist refuses to grant the existence of
conscious experiences, that is fine. The Scrambling Theorem does not try to dissuade one from
this position. It is not surprising, however, that few claim to be of this first type; if we know
anything, we know we have conscious experiences. But if, as is more common, the radical
functionalist claims to be of the second type, claims that conscious experiences are identical to
functional relations, then the Scrambling Theorem refutes that claim.
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An eleventh objection claims that the Scrambling Theorem shows only something about rela-
tions between formal representations, but not about relations between conscious experiences.
Strictly speaking, this objection is true. But then it is also true, in the same strict sense, that Pea-
no’s axioms apply only in number theory, but not, e.g., to apples. But we do not conclude, there-
fore, that Peano’s axioms are irrelevant to counting apples. Nor should we conclude that the
Scrambling Theorem is irrelevant to identity claims made about conscious experiences. Once
one grants that there are conscious experiences and that these experiences can be represented
by sets, one has granted the relevance of the Scrambling Theorem to conscious experiences. All
empirical applications of mathematics require a similar granting of relevance.

6. The Probabilistic Scrambling Theorem

The Scrambling Theorem is intentionally abstract to make clear the logical possibility of spec-
trum inversion. For some readers, however, the implications of this theorem might more readily
be grasped if cast more concretely and discussed in more detail. This is the goal of this section.

To do this, let us again denote possible color experiences of Jack by X and those of Jill by Y.
Such experiences can be more or less certain: thus we can describe probabilities of sensory events,
e.g., the probability that Jack sees orange. The probabilistic nature of sensory experiences is a ba-
sic assumption universally employed by psychophysicists who use Signal Detection Theory (Green
& Swets, 1988; Wickens, 2002) and by researchers in computational vision who model perception
as a process of Bayesian inference (Bennett, Hoffman, & Prakash, 1989; Knill & Richards, 1996).
Therefore, following the standard theory of probability, we assume that X and Y are probability
spaces, in which events of X are certain subsets of X (Fine, 1973). In this setting, we can consider
the probabilities, p, of various color events of X.

We also wish to assume as little as possible about the scrambling function, b, that maps Jack’s
color experiences X to Jill’s color experiences Y. At a minimum, we need this scrambling function
to respect the structure of color events for X and Y, so that statements about probabilities for Jill’s
color events can be translated into corresponding statements for Jack’s color events. A scrambling
function that does this is called a measurable function or, if it is real valued, a random variable
(Ash & Doleans-Dade, 2000).

Note the purely probabilistic nature of our setting. The sensory spaces X and Y need not have a
dimension. The scrambling function b need not be linear or continuous.

A shade of red is more readily discriminated from green than from another shade of red. We
wish to model all such empirical similarities and differences between color experiences. All of them
must be preserved by our function that scrambles color experiences between Jack and Jill, other-
wise controlled experiments could detect the scrambling.

One way to describe these similarities and differences is to define a distance metric, d, between
color events such that, the more similar two events are, the less distance lies between them. Again,
we want to assume as little as possible. We have a probability, p, for Jack’s sensory events, and we
wish to assume nothing more about them. Therefore, we derive our notion of distance solely from
this probability.

This can be done simply. As illustrated in Fig. 2A, let event 4 represent one color experience
and B a second color experience. The symmetric difference of 4 and B, denoted AAB, is the
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Fig. 2. The probability of symmetric difference (PSD) metric. (A) The symmetric difference, shaded blue, of events 4
and B. The symmetric difference of 4 and B is their union minus their intersection. (B) The PSD distance between events
A and B. This distance is the green area above A4 plus the red area above B. The probability measure in this example is
(G, + G)/2, where G is a Gaussian with mean 0 and standard deviation 1, and G, is a Gaussian with mean 4 and
standard deviation 2. (C) The PSD distance between events 4 and B that overlap. The region of overlap is not included
in the symmetric difference, and so the PSD distance is less than in (B). (For interpretation of the references to colors in
this figure legend, the reader is referred to the web version of this paper.)

blue-shaded region in Fig. 2A. Intuitively, it is the part of 4 that is outside of B plus the part of B
that is outside of 4. Then the distance, d(A4, B), between color experience A4 and color experience
B is just the probability p of this symmetric difference (Blumenthal, 1970; Ferrer, 2003). That is,
d(A, B) = p(AAB). This probability-of-symmetric difference (PSD) metric specifies the distances
between all pairs of color experiences, not just a particular pair 4 and B, and therefore captures
all empirically measurable similarities and differences among these experiences. According to
functionalism the distances, ¢, between color experiences, but not the color experiences
themselves, enter into functional architecture.

Given the probability p of Jack’s color experiences X and given our scrambling function b, we
can canonically transport p to Jill’s color experiences Y. This transport, which is a probability
measure ¢ on Y, is simply the distribution of b. Recall that, if D is any event for Jill’s color
experiences Y, and if Cis its corresponding unscrambled event for Jack’s color experiences X, then
the probability ¢(D) is just p(C).
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We have canonically transported Jack’s probabilities p of color experiences X to Jill’s probabil-
ities ¢ of color experiences Y. Now, we can derive from ¢ a new distance metric, d’, on Jill’s color
experiences Y, just as we derived from p the distance metric, d, on Jack’s color experiences X. And
here is the striking result:

For every choice of probability, p, and every choice of scrambling, b, Jack’s distance metric,
d, and Jill’s distance metric, d’, always agree.

A proof of this “Probabilistic Scrambling Theorem™ is given in Appendix A.

The Probabilistic Scrambling Theorem entails that, if A’ and B’ are any two sensory experiences
for Jill and if 4 and B are the corresponding unscrambled sensory experiences for Jack, then the
distance between 4’ and B’ for Jill is identical to the distance between 4 and B for Jack. Thus, all
perceptual experiments involving Jill evince the same results as for Jack. A simple illustration of
this is shown in Fig. 3A, where the color experiences of Jill are scrambled relative to those of Jack,
but all distances between corresponding experiences remain unchanged. This example uses no in-
puts from the world and no outputs from Jack or Jill; scrambling is possible nonetheless.

Fig. 3B extends this example by adding inputs and outputs, and illustrates that Jack and Jill will
apply the same color names to the same objects, so that one cannot tell by talking with them that

B apple
A X=Y={0.000 sky
Jack Jill grass
X Y. lemon
1 @ ® 2
2 @ 0 4
P b q Jill
3 0 o .1 '.
4 0O o 3 3 o
de@o) =.3 dee =.3 Q
dee =4 d@0 =4 o
d@o) =5 d'@e) =.5
de@ =.5 d@o =.5 "red"
deo) =.6 d:(0,0) =.6 "blue"
d(.,o} = .7 d (O;O) = -7 Ilg reenu

L

yellow"

Fig. 3. Simple examples of the Probabilistic Scrambling Theorem. (A) A scrambling of experiences preserves all
distances. The arrows define the scrambling and transport the probability p to its distribution ¢. Since the four basic
color events are disjoint, the measure of the symmetric difference, and therefore of the distance, between any two of
these color events is just the sum of their measures. One can easily verify that the distances d and d between
corresponding color events remain unchanged. (B) Objects, subjective experience, and language. Although Jack and Jill
differ in their color experiences, they still use the same color names to describe objects. An apple leads to one color
experience for Jack, as indicated by its arrow on the left, and to another color experience for Jill, as indicated by its
arrow on the right. But both Jack and Jill call their color experience “red,” as indicated by their arrows to the color
words. Mathematically, one says that the diagram commutes. (For interpretation of the references to colors in this
figure legend, the reader is referred to the web version of this paper.)
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their experiences differ. This example uses language, but the same result applies to nonlinguistic
experiments. Thus, the color experiences of Jack and Jill could be differently connected to the
external world without any experimental divergences to betray that phenomenal difference. If Jack
makes finer discriminations among stimuli in the region of color space called “green” than in the
region called “blue,” so also will Jill, even if Jill’s color experience upon viewing grass is the same
as Jack’s upon viewing the sky. The nonuniformity of color space (Mausfeld & Heyer, 2003) or of
any other phenomenal space is no obstacle to application of the Probabilistic Scrambling Theo-
rem. But if we suppose instead that Jack is red-green color blind and Jill is not, then of course
experiments would reveal differences between them, with no attendant violation of the Probabi-
listic Scrambling Theorem.

The Probabilistic Scrambling Theorem models subjective similarities between conscious
experiences with the PSD metric, a metric that is derived solely from probabilities governing
those experiences and, as described in Appendix A, that generalizes standard measures of
perceptual discrimination from Signal Detection Theory (Green & Swets, 1988; Wickens,
2002). This metric, however, is not required for the Probabilistic Scrambling Theorem.
The Theorem holds if, instead of probabilities of symmetric differences, one uses probabilities
of any measurable function of the relevant events, or of their unions, intersections, and
differences.

7. Conclusion

We have proved the logical possibility of Locke’s suggestion that color experiences might vary
from person to person, with no measurable differences. The proof applies not just to color expe-
riences but to all experiences in all sensory modalities. This result proves that reductive function-
alism is false: conscious experiences are not identical to functional relations. Conscious
experiences do not supervene logically on functional relations. This still leaves open the logical
possibility that nonreductive functionalism might be true; however, since there is, as yet, no sci-
entific theory of consciousness based on nonreductive functionalism, we do not yet know precisely
what might be true.
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Appendix A

Probabilistic Scrambling Theorem. Ler (X, &) and (Y, () be measurable spaces, b: X —> Y a
measurable function, p a probability measure on (X, &), and d the metric on & induced by p defined, for
all A, Be &, by d(A,B)= p(AAB), where A denotes symmetric difference. Then, the probability
measure q on (Y, () defined, for all E € {, by q(E) = p(b~"(E)), induces a metric d’ on { satisfying,
for all E,Fe (, d(E, F)=d(b " (E), b (F)).

Proof. d'(E, F) = q(EAF) = p(b"(EAF)) =p(b"(E) Ab " \(F))=d(b~"(E), b '(F)). O
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Fig. 4. Plots of the PSD metric and the function A. of Signal Detection Theory. (A) PSD and 4. for two Gaussians with
standard deviations 1 and 5, as the difference in their means varies from 0 to 20. PSD and 4. are related monotonically, but
PSD has greater sensitivity than A., where sensitivity is needed most, viz, for small differences between the mean values. (B)
PSD and 4. for two Gaussians with mean values 0 and 5 as the difference in their standard deviations varies from 0 to 20.
Again, PSD and A. are related monotonically but PSD has greater sensitivity than 4. for small differences between the
standard deviations. (C) Ratio of PSD distances. For each position of an event, C, of width 0.2 we plot the ratio G, (RAC)/
G, (RAC), where R denotes the real line. Gy is always a Gaussian with mean 0 and standard deviation 1. G, is a Gaussian
with mean 4 and standard deviation 1 for the blue curve, standard deviation 2 for the green curve, and standard deviation 4
for the red curve. On the far left of the plot, the red curve lies above the value 1, indicating that in the PSD metric the event C
in this region is closer to the Gaussian with mean 4 than to the Gaussian with mean 0. (For interpretation of the references
to colors in this figure legend, the reader is referred to the web version of this paper.)



44 D.D. Hoffman | Consciousness and Cognition 15 (2006) 31-45

If b is bimeasurable, then the Probabilistic Scrambling Theorem also holds in the other direc-
tion, i.e., for all G, H € £, d(G, H) =d'(b(G), b(H)). The Theorem also holds if, instead of the
PSD metric, one uses the probability of any measurable function of the relevant sets. For instance,
it holds for the quasi-pseudometric (Ferrer, 2003) d*(A4, B)=p(B\A4), where p(B\A)+
p(A\B) = p(AAB); d”, like some psychological judgments of similarity (Tversky, 1977), is not
symmetric. The Theorem assumes that & and { are g-algebras, but holds more generally. If, for
instance, ¢ and ( are closed under disjoint union then the metric, where defined, is preserved under
scrambling. This more general formulation permits incomparable pairs of subjective experiences,
for which there is no distance: What is the distance between the smell of garlic and the sound of a
flute?

The PSD metric used in the Probabilistic Scrambling Theorem generalizes the function A, the
area under a receiver-operating characteristic curve, used in Signal Detection Theory (Green &
Swets, 1988; Wickens, 2002). A, describes an observer’s ability to discriminate between two signals
with Gaussian distributions G; and G, on the measurable real line (R, ¢). Using the PSD metric,
one obtains this special case by letting p = (G; + G,)/2, and choosing two events, 4 and B € ¢,
satisfying: (1) event A is radially symmetric about the mean of G; and B about the mean of G,
and (2) 4 and B together maximize p(AAB). An example is shown in Fig. 2B. This special case
of the PSD metric varies monotonically with 4, as the mean values and variances of the gaussians
vary, as shown in Figs. 4A and B. If an observation results in an event C, and one must decide
between G; and G, given C, then an unbiased decision criterion is the value 1 for the ratio of
the distances from C to G; and G», viz, the ratio G;(RAC)/G»(RAC), as shown in Fig. 4C.

The PSD metric is preserved, up to a global scale factor, by the entailment relation of the
Lebesgue logic on probability measures, in which p entails ¢ if p is a normalized restriction of
g (Bennett, Hoffman, & Prakash, 1993). Perceptual inferences of observers are morphisms of
the Lebesgue logic (Bennett et al., 1989, 1993) and therefore respect the PSD metric.
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