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Abstract 
According to one theory, the brain is a sophisticated hypothesis tester: perception is 
Bayesian unconscious inference where the brain actively uses predictions to test, and 
then refine, models about what the causes of its sensory input might be. The brain’s 
task is simply continually to minimise prediction error. This theory, which is getting 
increasingly popular, holds great explanatory promise for a number of central areas of 
research at the intersection of philosophy and cognitive neuroscience. I show how the 
theory can help us understand striking phenomena at three cognitive levels: vision, 
sensory integration, and belief. First, I illustrate central aspects of the theory by 
showing how it provides a nice explanation of why binocular rivalry occurs. Then I 
suggest how the theory may explain the role of the unified sense of self in rubber hand 
and full body illusions driven by visuotactile conflict. Finally, I show how it provides 
an approach to delusion formation that is consistent with one-deficit accounts of 
monothematic delusions. 
 
 
1. Introduction 
From inside the skull, the brain must figure out what out in the world, or in the body, 
cause its sensory input. This is a difficult, indeed intractable, problem because it 
requires an inference from effects, the sensory input, to causes, the states of affairs in 
the world. Causes in the world occur in many contexts and interact in many ways so 
there is no easy mapping from the world to the input. The same input can be caused 
by many different things, and the same things may cause different kinds of input. 
 
One way to deal with this kind of problem is to turn things around such that, instead 
of attempting an inference from effect to cause, one makes assumptions about what 
the cause could be and use a model of those causes to generate an estimate of what the 
sensory effects should be, if indeed those are the causes. One can then compare actual 
and expected input and, if the fit is good, infer that those were probably the causes. 
 
On this kind of approach, prediction is crucial. The system in question, for example 
the brain, would constantly be trying to look ahead and predict what the sensory input 
will be like. Perception is then the currently best prediction. Perhaps the system could 
utilise this to overcome the processing delays that would occur if it could only begin 
make inferences about the causes in the environment after having received the sensory 
input (Helmholtz 1860; Gregory 1980; Gregory 1998). 
 
This appeal to generative models and prediction – hypothesis testing – as the guiding 
principle for the brain has been around for a long time but is, I think, gaining in 
popularity. It is, in various guises, becoming more and more mainstream in machine 
learning, AI, and computational neuroscience (Mumford 1992). It is also beginning to 
coalesce into a dominant stream in cognitive neuroscience and areas of psychology 
(Kersten, Mamassian et al. 2004). Here, I mainly use work by Karl Friston and 
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colleagues to exemplify this approach and then discuss its various applications to 
areas of philosophical interest (Friston 2003; Friston 2005; Friston and Stephan 2007). 
 
2. Prediction error minimisation – a simplified account 
Viewed in a very simplistic manner, the brain has bottom-up signals and top-down 
signals. On the approach which emphasises generative models, bottom-up signals 
embody sensory input and top-down processing embodies predictions about the input 
generated on the basis of models of probable causes. The basic mechanism for this 
system is to minimise prediction error. Prediction error is the part of the bottom-up 
signal which is not predicted by the current model’s top-down predictions. The more 
prediction error, the worse the predictions; and if no predictions occur at all, then the 
entire incoming signal is conceived as prediction error. If the brain had a procedure 
for minimising prediction error, its predictions would continually improve (barring 
evil demon scenarios), and it would be perceiving the world aright. This is perception. 
Models can then be revised in the light of prediction error. Model parameters are 
continually updated until prediction error is minimised, up to expected levels of noise. 
This is learning (Friston 2003; Friston and Stephan 2007). Once the right parameters 
have been found, they can be precisified such that more fine-grained prediction error 
leads to revision of the model. This can be viewed as attention (Friston 2009). The 
basic message is that the brain performs one main task: it minimises prediction error. 
This can, it is claimed, account for perception, learning and attention. 
 
On this account it is wrong to say that perception is a matter of top-down processing 
(perhaps as in some “New Look” approaches in psychology). It is also wrong to say 
that it is a matter of bottom-up processing (perhaps as in some responses to the New 
Look). The truth is in the middle: perception is what happens in the “meeting” of top-
down and bottom-up processing in the brain. The best way of looking at this involves 
turning the usual labelling of top-down signals as feed-back on bottom-up signalling 
on its head: “Cortical hierarchies are trying to generate sensory data from high-level 
causes. This means the causal structure of the world is embodied in the backward 
connections. Forward connections simply provide feedback by conveying prediction 
error to higher levels. In short, forward connections are the feedback connections.” 
(Friston 2005: 825). 
 
3. Core aspects of prediction error minimisation in the brain: hierarchy, agency, 
explaining away 
A good heuristic for appreciating this approach to the brain is Bayesian probability 
theory. The current generative model is the model with the highest prior probability. 
This model is used to generate predictions about what the next sensory input will be. 
Being good at this translates to having a high likelihood. High prior and likelihood 
means high posterior probability. The model with the highest posterior wins and 
determines perceptual inference. This is a very intellectualist notion of perception but 
the suggestion is of course not that networks in the brain directly know and apply 
Bayes’ rule or that perceptual inference is in any sense conscious. More research is 
needed to determine whether and how the brain implements such a Bayesian scheme 
of unconscious perceptual inference and there is indeed interesting work being done 
in this regard. One intriguing but also controversial idea is to assimilate the 
information theoretical notion of free energy (the sum of squared prediction errors) to 
the thermodynamic notion of free energy, which would make probabilistic prediction 
error minimisation a matter of dynamics of far from equilibrium open systems 
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(Friston and Stephan 2007; Hohwy, Roepstorff et al. 2008). Here I take no stance on 
this kind of high level issue. I will assume a Bayesian understanding of generative 
models implemented with predictive coding. I will however briefly describe some 
general characteristics of the PEM scheme and also attempt to tie this to some general 
aspects of Bayesian causal networks concerning the notion of ‘explaining away’. 
Later, I will use these in considering various areas of philosophical interest. 
 
Hierarchy 
So far, the story is very simple: as if there is just an input level connected to a model 
level. It is however a crucial part of the PEM scheme that the brain is ordered in a 
hierarchy of overlapping pairs of bottom-up and top-down levels. To illustrate (and 
oversimplify): level 1 is the basic input level, level 2 tries to predict activity at level 1 
and is also input level to level 3. Level three predicts activity in a top-down manner 
for level 2 and is paired upwards with level 4, and so on. Different levels allow the 
brain to build up representations of environmental causes from basic stimulus 
attributes to more and more abstract and perspective invariant properties. Importantly, 
this happens at varying time scales beginning with milliseconds, over hundreds of 
milliseconds, to seconds, minutes and on to months and stable rules. The hierarchy 
allows more subtle and hidden causal chains to be represented and in turn work as 
control parameters for lower level, faster moving attributes. This hierarchical structure 
is plausibly borne out anatomically in the brain with time scales getting progressively 
longer as one moves forwards along cortex from the occipital towards the frontal lobe 
(Friston 2008; Kiebel, Daunizeau et al. 2008). If prediction error minimisation works 
in this way then the brain must recapitulate the causal structure of the world (Friston 
2008). Intriguingly, this means that the brain is indeed, and must be, a mirror of 
nature (excluding sceptical scenarios of evil demons). 
 
Two salient aspects are noted. First, the level of detail and fineness of temporal grain 
decreases as one goes up in the hierarchy. Second, the prediction horizon shrinks as 
one goes down the hierarchy. High level causal models can predict things a long time 
in advance but are unable to directly predict fast low level sensory input in any great 
detail. Conversely, low level models can predict sensory input with great detail but 
only a few milliseconds or seconds in advance. This is commonsense too: you may 
know in rough outline what tomorrow will be like with lots of familiar causal 
interactions but you don’t know exactly what you will perceive, from what 
perspective, and precisely when. 
 
Agency 
Minimising prediction error is minimising surprise since the better you can predict 
things the less you will be surprised. So the task for the brain is to make life less 
surprising – in particular to avoid dangerous, man-eating surprises. At this point a 
common objection is that this makes a mockery of thrill seekers and fear of death 
since they seem to involve cases where surprise is actively sought. The answer is that 
thrill seekers predict the rush of hard-to-predict sensory data they get when, say, 
bungy jumping. In particular they expect a surge in the autonomic system and will go 
to considerable lengths to ensure this surge happens (and this kind of predictive 
system is even more strongly high-jacked in addiction). Likewise, it is mistaken to 
think that death minimises prediction error. Using the thermodynamic idiom, death 
comes with a massive increase in prediction error since a dead organism is no longer 
able to attenuate input – and decomposes. 
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In fact, a strength of recent versions of this type of theory is that the incorporation of 
agency as a crucial element of prediction error minimisation. Agency is just a matter 
of putting the organism in a situation where prediction error is minimised without 
necessarily having to revise model parameters (Friston and Stephan 2007). Notice that 
such prediction of sensory input given agency depends on a current state estimate. If 
you don’t know where you are and what your configuration is, then you cannot plan 
how to act such as to minimise prediction error. Notice also that, since perceptual 
inference depends on agency, we should expect interference with normal perceptual 
inference when there is interference with an organism’s agency. 
 
Explaining away 
One morning you observe your lawn is wet. You consider two explanatory models: 
that it has been raining or that the sprinklers have been on. Each model explains the 
evidence of your wet lawn equally well. If one of them has a higher prior, then you 
might infer it is more probable but for now we can assume priors are balanced. Now 
you observe your neighbour’s lawn is wet too. The Rain model explains that well, but 
the Sprinkler model doesn’t since the sprinklers being on would only make your lawn 
wet. The Rain model accounts for all the evidence leaving no evidence behind for the 
Sprinkler model to explain. Even though the Sprinkler model did increase its 
probability in the light of the first observation, it seems intuitive right to say that its 
probability is now returned to near its prior value. The model has been explained 
away. This is commonsense but also puzzling since the two models are conditionally 
independent (given the first observation) but become dependent given the second 
observation. It is an aspect of causality which is particularly difficult to model 
quantitatively (Wellman and Henrion 1993; Jensen and Lauritzen 2000; Pearl 2000). 
 
It seems natural to expect this kind of explaining away pattern in a brain governed by 
PEM. Top-down predictions attenuate the predicted input and leave as bottom-up 
signal only the unpredicted part. This means that alternative models will not be able to 
account for the attenuated parts of the input such that, as the winning model gets 
stronger, alternative models will weaken even though in principle they could account 
for the evidence. (Slightly confusingly, the ‘explaining away’ idiom is sometimes 
used in the PEM literature for the attenuating or accounting for the input). 
 
4. Prediction error minimisation and philosophy. 
I have described, in simple terms, a general approach to how the brain solves the 
problem of perception: it minimises prediction error. This explains not only 
perception but also learning and attention, and can plausibly be applied to emotion 
and bodily sensation as well. I find this approach extremely promising and I expect it 
to become dominant in the years to come. I am not alone in this belief as is indicated 
by the prominent neuroscientist Stan Dehaene, who says “It is the first time that we 
have had a theory of this strength, breadth and depth in cognitive neuroscience…Most 
other models, including mine, are just models of one small aspect of the brain, very 
limited in their scope. This one falls much closer to a grand theory.” (New Scientist, 
2658: 30-33, 2008). 
 
Here I will work within this general framework. It is close to a universal theory of the 
mind and brain so we should expect it to have wide-ranging implications. This 
includes implications for domains of philosophical interest. My project here is 
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therefore to explore how the framework can be extended to philosophically interesting 
areas. There are at least two worries associated with this. The first one is that, as 
described here, the theory is at risk of trivializing what it is meant to explain. For any 
behaviour, it is possible to find a context in which it can be seen as minimizing 
prediction error (for example, being a drug addict is hardly something that minimises 
prediction error over time, since it often leads to death. But it is easy to explain 
nevertheless: drug addicts predict huge rewards from taking drugs and minimize 
prediction error by searching out dugs at any cost). I think this is close to the truth but 
it is not on its own, without more specific computational and empirical evidence, a 
very good response to the objection. The second, related, worry is that there is no 
direct, easy link from the prediction minimisation framework to philosophical 
problems. If this is ignored, then the application to philosophy becomes too general 
and bland. Some intermediate steps are required in order to make a more substantial 
and hopefully fruitful connection with the philosophical.   
 
My method here is to use a broadly neurophilosophical approach to make contact 
between neuroscience and some philosophically interesting areas. Specifically, I 
consider how a range of empirical studies, which are philosophically relevant, can be 
understood in the light of prediction error minimization. I consider three areas: 
perception, where my case study is binocular rivalry; self-awareness, where my case 
study is rubber hand and full body illusions; and belief, where my case study is 
delusion formation. To make things concrete rather than general, I make most use of 
the three aspects of PEM I noted above: (a) we minimise prediction error, and thereby 
explain away competing hypotheses; (b) PEM is implemented in a cortical hierarchy 
in which there is a trade-off between detail and time scale; (c) agency is crucial to 
PEM, it aids perceptual inference and depends on reliable estimates of the current 
state of the system.  
 
5. Binocular rivalry and explaining away 
Binocular rivalry is an extremely stable visual effect where conscious perception 
alternates between two stimuli, one presented to each eye (Alais and Blake 2005). It is 
especially important philosophically because it is one of the dominant paradigms in 
consciousness science (Frith, Perry et al. 1999; Blake and Logothetis 2002; Hohwy 
2007). It is thus a crucial opportunity for gaining detailed understanding of how 
consciousness is being studied scientifically. It is also, more broadly, an important 
tool for understanding how the brain represents the world, quite apart from the thorny 
issue of consciousness: it is a phenomenon that allows us to understand representation 
by seeing how the system works in unusual situations. 
 
The mechanism behind binocular rivalry is however not known, despite scientific 
research stretching back over centuries. There are now a number of very sophisticated 
and interesting computational models of rivalry (Noest, van Ee et al. 2007; Wilson 
2007; Gigante, Mattia et al. 2009). These models are built with the explicit purpose of 
accounting for the alternation typical of rivalry as well as some of the more detailed 
psychophysical findings associated with the phenomenon. The results are very 
impressive but are not the upshot of a general theory of cortical representation. This 
means that none of them throw much light on why a representational system such as 
the brain should display binocular rivalry. 
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PEM has some promise for providing such a broader perspective on rivalry because 
PEM is the kind of broad theory of how the brain represents. If it can be shown that 
rivalry is a natural upshot of PEM, then not only do we understand something about 
the nature of rivalry, we also support PEM itself. In recent work, we suggested that 
the notion of explaining away indeed does predict binocular rivalry (Hohwy, 
Roepstorff et al. 2008). The basic idea is that PEM works by attenuating the 
incoming, bottom-up signal. This can only happen for the current winner of 
perceptual inference. If the eyes are presented with a house and a face respectively 
and the face model is the winner, only the face input will be attenuated. This results in 
an unusual, “unecological” situation where a very large prediction error is 
unaccounted for but cannot be explained by any good model. This, we speculate, 
destabilises a system which is geared for minimising just such prediction error. This 
could lead to perceptual alternations and also helps explain a wide range of 
psychophysical phenomena observed in rivalry (a mathematical model based on 
explaining away substantiates this, see (Dayan 1998); our research group is currently 
expanding this model and we apply it to a wide range of rivalry data in work in 
preparation). 
 
Our account has a couple of further aspects. We add that in addition to the 
destabilisation by the large prediction error from the suppressed stimulus, it is likely 
that the visual system expects change in sensory attributes such that the currently 
dominant model, or attractor, experiences a decreasing prior over time. We explain 
the absence of fusion (when stimuli are clearly different and overlapping in space and 
time) in terms of the low prior probability of the same thing occupying the same 
location in space and time. Thus we have never experienced, and never will, a face 
and a house in the same spatiotemporal location. This means that there is no model for 
the fused percept and there is reason to believe that no obvious revision to existing 
models can allow this (much here depends on stimulus properties, of course, but this 
hypothesis is consistent with the empirical findings in the field). It follows from this 
that two stimuli that can plausibly co-occur spatiotemporally will not lead to rivalry. 
 
There is more to be said about this suggestion regarding rivalry (Hohwy, Roepstorff et 
al. 2008); the suggestion itself has received some support (Song and Yao 2009), and is 
currently being tested both in our lab and elsewhere. The strength of the suggestion is, 
in my view, that it goes beyond the usual models of rivalry. A priori, it is obvious that 
any account of rivalry will have to have, on the one hand, an element of selection 
combined with reciprocal inhibition of the suppressed stimulus, and on the other hand, 
an element of fatigue, such that alternation can ensue. This is in fact not hard to 
achieve and the best models are the ones that can, in addition to reciprocal inhibition 
and fatigue, demonstrate a degree of biological plausibility in terms of cell function 
and small network properties. Our model shows why a representational system as a 
natural upshot has reciprocal inhibition and something like fatigue. It does this in 
what seems to me an attractively surprising way, by turning things around such that 
the suppressed stimulus is in fact associated with increased activity, conceived as 
prediction error. 
 
6. Rubber hand and out of body illusions: explaining away the body 
One of the most striking and exciting illusions is the rubber hand illusion (Botvinick 
and Cohen 1998). The participant’s right hand is concealed from view. A rubber hand 
is placed in a plausible position in front of her. During synchronous tapping or 
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stroking to the concealed hand and the visible rubber hand the participant will 
experience that the touch she can feel is produced on the rubber hand by the hand 
tapping it. In an exciting turn of events this illusion was extended to the whole body. 
With the help of virtual reality goggles, a touch delivered to the body can be felt as if 
produced away from the body, either outside of peripersonal space (Lenggenhager, 
Tadi et al. 2007), or in peripersonal space (Ehrsson 2007). The presence and strength 
of the illusion is gauged by introspective report and by a number of more objective 
measures such as skin conductance response, displacement and other more 
sophisticated psychophysical measures (Lenggenhager, Mouthon et al. 2008; Aspell, 
Lenggenhager et al. 2009). 
 
Work in preparation in our own lab uses a combination of the original rubber hand 
paradigm but augmented with VR goggles (Hohwy and Paton 2010). This allows us to 
strengthen the illusion because there is then no displacement of the concealed hand 
relative to the rubber hand. This means that in creating the illusion of touch to the 
rubber hand, the brain does not have to overcome proprioceptive information. 
 
Aspects of PEM are promising for understanding what goes on in the rubber hand 
illusion. The initial situation is that there is conflicting visual and tactile sensory 
input: vision suggests touch is delivered to a visible foreign arm, tactile sensation 
suggests touch is delivered to a concealed own arm. The brain needs to decide which 
model best accounts for this evidence. The true model is that touch and vision occur 
in different locations. The false model is that touch and vision occur in the same 
location. Something in the situation makes the false model win. One could appeal 
fairly directly to Bayes to explain this but such explanations are not always very 
satisfactory. It is always seems possible to construe a context for application of Bayes 
rule which will give the desired result. In this case it seems that both models account 
equally well for the sensory evidence, so likelihoods are matched. Perhaps one could 
then say that there is a higher prior for touch being where vision suggests it is, based 
on prior learning of this association. The problem is that we could probably find an 
equally plausible Bayesian account of cases where the illusion fails to occur. The 
simple Bayesian suggestion also ignores the obvious fact the participants who 
experience the illusion are very well aware that the arm on which they feel a touch is 
not their real arm, meaning that there is a very low prior for touch being felt there. 
One way to go is a quantitative Bayesian account (Schwabe and Blanke 2008). I 
appeal to some of the other aspects of PEM to suggest why the illusion may occur. 
 
A central aspect of the illusion is that the brain overrides the prior knowledge that 
one’s arm is not made of rubber in favour of the model on which one can feel a touch 
on the rubber hand. There may be a number of factors, deriving from PEM, which 
make this happen. The first factor is that synchronous tapping is something that calls 
for explanation: it is very unlikely that seen and felt tapping can be in synchrony by 
coincidence. A good explanation would normally be that vision and touch are have 
co-located effects. An equally good but computationally more demanding solution is 
that the synchrony is explained by a common cause producing effects in different 
locations. The latter explanation would be correct in this case because in fact the 
experimenter is a common cause of the observed effects. It seems likely that there is a 
bias in favour of co-location explanations over common cause explanation, at least in 
the sensory domain. And this bias would be a factor in explaining the illusion. A 
similar bias would be at play in the well-known ventriloquist effect where a common 
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cause, the ventriloquist, is not experienced as the cause, even if she is known to be the 
cause (Körding, Beierholm et al. 2007).  
 
The second factor that may be implicated stems from PEM’s reliance on agency. The 
two competing models differ in respect of unity of self. On the true model there is 
uncertainty about the current state of the body – the self-model (Metzinger 2009) – 
because it is divided between multiple locations. On the false, illusory model, there is 
less uncertainty about it: the model says where the body is, even if it is a weird 
rubbery body. It may be that there is a deep-seated prior in favour of having a unified 
self-model, if at all possible because a unified self-model is what best allows 
computation of the system’s current state such that action can be undertaken. In this 
respect it may be that the brain’s motto, as it were, it that it is better to have a rubber 
hand than a disunified self.  
 
The rubber hand illusion suggests that, at this level of multisensory integration, the 
prior model of one’s actual body – one’s body image – can relatively easily be 
explained away. Prior research on the rubber hand illusion is conflicted on the depth 
of this. Some studies show that it is easy to dispense altogether with the body such 
that touch can be felt on a bare table top or outside peripersonal space (Armel and 
Ramachandran 2003). Other studies show that touch cannot really be felt on non-hand 
rubber objects (Tsakiris and Haggard 2005). With PEM and the notion of explaining 
away in mind, the prediction would be that as the illusion progresses in time, the prior 
body schema would be explained away more and more. Specifically, we would expect 
illusions that incorporate touch on non-body objects, touch without a visible body 
being touched, and touch in empty space. We would in particular expect this in the 
paradigm employed in our lab, where there is overlap in personal space between the 
seen and real arm. Preliminary data suggest that this is indeed the case and we suggest 
a resolution to the previous conflicting data such that non-body objects can indeed be 
incorporated into the illusion but primarily after participants have experienced the 
standard illusion (and possibly also primarily when illusion onset does not have to 
overcome divergent proprioceptive information; Hohwy Paton 2010). 
 
If we step back a bit we can see that the rubber hand illusion arises in multisensory 
integration of touch and vision where vision captures touch on the fake hand. I have 
suggested a number of factors, which go with PEM, that contribute to the occurrence 
of the illusion. However, it is also important that the experimental paradigm restricts 
the opportunity for reality testing: participants are not allowed to move or touch their 
own arm and the real arm remains concealed from them. This contributes to the 
maintenance of the illusion because as soon as they move the arm the illusion breaks 
(unless the rubber hand moves too (Slater, Marcos et al. 2009)). Again, moving the 
arm would introduce more evidence as sensory input, which the false rubber hand 
model cannot explain. The illusion occurs, that is, under restricted reality testing 
conditions.  
 
The resulting picture we have is then this: Within restricted reality testing conditions a 
unified self-model matters (progressively) more than a specific body-representation. I 
think this gives new insight into the notion of bodily self-awareness, captured well in 
a kindred, and impressive, study of bodily self-location: “[O]nline processing of 
body-related multisensory information in the brain is more like ongoing puzzle 
solving of which the normally experienced embodied self-location is just a fragile and 
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only temporarily stable solution, which is a setting that is naturally suited for the 
Bayesian approach to sensory information processing.” (Schwabe and Blanke 2008). 
 
This account of rubber hand illusions and full body illusions is striking because it 
reveals the flimsiness of a very familiar aspect of our experience, namely our bodily   
self-awareness. To experience the world – to engage in perceptual inference – we do 
not need a firm grasp of a material body. Indeed, once subjects are deep into the 
illusion, many feel that touch can be felt by an invisible hand on an invisible arm, 
when their real arm is touched and they see nothing but an empty table top in the VR 
goggles (Hohwy & Paton 2010). 
 
It is tempting to conclude that the illusions arise when the participant is wholly 
passive and that therefore being able to engage in agency is fundamental to having a 
normal bodily self-awareness, or self-model (Metzinger 2009). From the perspective 
of PEM, this is not quite right. It is true that there is no overt agency, since we 
prohibit movement. But there is active prediction minimisation going on: the 
movement of the finger touching the rubber hand is constantly being predicted; the 
eyes move around, searching the visual field and thus conditioning inference on 
agency (and participants want to move as well – many to the point where they have to 
hold their real arm down with their other hand to prevent it from moving). It seems 
better to say then that there is restricted but not abolished agency, which again 
restricts PEM and maintains the illusion. It is a nice question what would happen if 
agency is altogether abolished such that no perceptual inference is conditioned on 
agency. One intriguing possibility is that all sense of self – the entire self-model – 
would cease.  
 
The illusion presumably arises because in the rubber hand set-up, vision and touch are 
split apart such that an otherwise optimally functioning Bayesian processing 
mechanism spits out the wrong output. It is crucial here that other sensory modalities 
are rendered uninformative because further, independent sources of evidence (such as 
new proprioceptive input) can allow the Bayesian mechanism to correct the inference. 
This is methodologically challenging but involves in part the prohibition on taking off 
the VR goggles or moving the real arm.  
 
From this perspective we can view the unusual experience in the rubber hand illusion 
and full body illusions as (momentarily) subjectively inescapable perceptual 
inference, augmented with explaining away effects. At this rather general level of 
description the illusion is best understood as arising when sensory input is somehow 
‘wrong’ and therefore leads normal Bayesian reality-testing astray. Further, once led 
astray such reality testing can lead to very odd results as the unusual experience feeds 
into additional perceptual inference. The illusion is quite easy to break, by allowing 
further reality-testing. Imagine, however, what things would be like if there were no 
appropriate further avenues of reality-testing. Then the illusion could be more 
permanently inescapable. In this way, the Bayesian approach to bodily self-
awareness, helped on the way by some of the specific aspects of PEM, begins to look 
like a useful way to think about delusions. This is because one account of delusion 
formation is that they begin with inescapable, unusual experiences. 
 
7. Delusion formation 
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Delusions have become a dominant theme in interdisciplinary philosophy of 
psychiatry (Bortolotti 2009). A delusion is a false belief that the patient holds on to 
tenaciously, and in the face of counterevidence from carers and family. Models of 
delusion formation assume delusions arise when normal belief formation breaks down 
in specific ways and can in that way provide insights into the normal case too. Much 
of the discussion focuses on how unusual experiences could play a role in the 
formation of some types of delusions including what is sometime known as 
‘monothematic’ delusions. Patients with these delusions do not need to have other 
pathological beliefs, and it is often the case that these delusions are relatively 
circumscribed without much impact on other domains of belief and behaviour. They 
include for example Capgras delusion where subjects believe loved ones are 
impostors (they might claim “my wife is an impostor”). This delusion is not 
uncommon and is often seen after stroke and in dementia. Another delusion in this 
class is delusions of alien control, which is mostly seen in schizophrenia (where 
patients might say “the force moved my lips. I began to speak. The words were made 
for me”, “I felt like an automaton, guided by a female spirit who had entered me 
[when I moved my arm]” (Spence 1997; Frith, Blakemore et al. 2000). It belongs only 
uneasily to the monothematic delusions as they mostly occur in a larger symptomatic 
context). I will focus on these two types of delusions here (for a longer list, see 
(Davies and Coltheart 2000).  
 
Delusions of alien control can be seen as the upshot of faulty prediction error 
minimisation (Hohwy and Rosenberg 2005; Fletcher and Frith 2009). The idea is that 
the motor system compares actual and predicted re-afferent sensory input as part of 
motor planning and execution of motor commands. Roughly speaking, my brain 
compares the predicted and real sensory consequences of my arm movement to make 
sure that the movement is the right one for the purpose and that it can be corrected as 
the movement is executed. The computational problem is analogous to the problem of 
perception: given a goal state there is an indefinite number of ways in which all the 
different muscles in one’s body could be manipulated to achieve that goal. Rather 
than trying to figure out a direct solution to this problem, the brain assumes a certain 
series of motor commands will work and predicts the consequences of that series: if 
they are predicted to lead to the goal state, and if they actually fit the sensory input 
then it is a useful movement to perform. Crucially for delusion formation, good 
predictions of sensory re-afferents lead to attenuation of the actually incoming 
sensory input, which is just a form of prediction error minimisation. The prediction 
error itself can be used as a signal: if there is little, then I was probably the one who 
initiated this movement – since I could predict it with great precision (down to 100s 
of milliseconds (Blakemore, Wolpert et al. 1998)). On the other hand, if there is much 
then I was probably not the one who initiated the movement – when I cannot predict 
how my body is moving someone else must have moved it.  
 
This is the key thought in the PEM account of delusions of alien control: when 
comparison of predicted and actual reafference goes wrong, the system may receive a 
signal that is the same as when someone pushes the patient even though she was in 
fact the one who initiated the movement (Hohwy and Rosenberg 2005; Fletcher and 
Frith 2009). This constitutes an unusual experience which higher level models 
concerning agents in the environment must try to account for. The idea is that the 
patient knows she had the intention to move, that she acted on the intention, probably 
she also knows that no-one physically pushed her around, and she knows how her 
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body actually moved. The best explanation of the unusual experience, under these 
circumstances, is that some supernatural force, like a demon, initiated the movement. 
And this is then adopted as belief. 
 
There are at least three things that an account of delusion formation, such as the one 
just sketched, needs to explain: why is the wrong, supernatural higher-level model of 
the world prioritised, why is it elevated to belief, and why is the belief impervious to 
the counterevidence offered by carers and family? 
 
We have earlier proposed a one-factor account of delusion formation on which 
delusions arise as a rational response to the unusual experience (Hohwy and 
Rosenberg 2005). This account is similar to that proposed by Maher (Maher 1974) but 
works out the detail for particular delusions and incorporates the PEM account as well 
as various neuroscience and neurological evidence. The main tasks for a one-factor 
account is to answer the three questions and to show how it is plausible that subjects 
endowed with normal rationality will also develop such delusions were they to have 
these unusual experiences. The account must also demonstrate in some way that 
subjects who report having the unusual experiences without having the delusions are 
not in fact counterexamples to the account. The main alternative to one-factor theories 
is two-factor theories, which posit a further role for biases or malfunctions of 
rationality. These accounts must explain why patients do not seem to develop 
delusions in response to all kinds of unusual experiences (Coltheart 2007; Aimola 
Davies and Davies 2009). 
 
Here, I briefly appeal to aspects of PEM, and a few related sources, to provide a fuller 
understanding of delusion formation. This approach turns out to sit well with a one-
factor account. 
 
The initial situation I will consider goes like this. The unusual experience in the case 
of delusions of control stems from an unexpected prediction error. That is, the sensory 
consequences of own action is, due to a comparator fault, not attenuated and so is 
propagated upwards in the cortical system as a prediction error. A model must now be 
found that can account for this prediction error. Consider two models: the Spirit 
model that the movement was initiated by an invisible spirit, and the Brain model that 
the movement was the patient’s own and the sense of other-initiation is caused by 
brain illness. The delusion arises because the Spirit model wins. The task is to explain 
why it wins. 
 
Prioritising 
The first problem is why the Spirit model is even prioritised as a credible candidate 
model. It is plausible that the content of the unusual experience triggers this kind of 
model, even in patients that would not normally subscribe to supernatural hypotheses. 
In causal reasoning, inference is often guided by what is known as property 
transmission: in trying to figure out the causes of a certain effect we tend to look for 
similarities in the properties of the effect and the cause. For example, if the effect is 
an indentation in some clay with a certain shape, then we expect the causal object to 
have the same shape (White 2009). There are of course many situations where this 
principle does not hold (e.g., the cause of death was the faulty breaks), so property 
transmission can easily lead causal inference astray. Nevertheless it seems to be a 
heuristic, which operates especially under conditions of uncertainty. If we are 
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relatively uncertain about the causes of an event then it is not unreasonable to at least 
begin causal inference with considering property transmission. In the case of the 
unusual experience that triggers delusions of control there is a high degree of 
uncertainty because it feels like someone else initiated the movement and yet there is 
no obvious candidate initiator. Movement initiation is an agent-based property so 
property transmission predicts that the patient will prioritise agent-based causes. 
Given that no-one visible is there the Spirit model seems appropriate. This appeal to 
property transmission is not specific to PEM but it does sit well with a Bayesian 
approach where prior probabilities are extracted from prior learned associations. 
 
If this is right, then a prediction is that healthy individuals should also prioritise 
supernatural models when they have unusual experiences involving agency. We find 
this too in a version of the rubber hand illusion where subjects feel a touch but see a 
finger waving about some distance from the rubber hand. Participants freely explain 
the experience in terms of black magic, ESP, force fields or invisible extensions of the 
finger (Hohwy & Paton 2010). 
 
One question now concerns the Brain model. It is possible that it too is prioritised, as 
would be natural at least for patients seen in clinic where the context very much is that 
something is wrong with one’s brain. It is plausible therefore to expect competition 
between the Spirit and Brain models. 
 
Believing 
Assuming then that the Brain and Spirit models are in competition as accounts of the 
predictions error, why does the Spirit model win? 
 
First I appeal to the temporal characteristics of the cortical hierarchy, mentioned as an 
aspect of PEM above (Kiebel, Daunizeau et al. 2008). The prediction error concerns 
causal interactions at relatively fast time scales (100s of milliseconds to seconds as 
appropriate for movement related predictions). The Brain model may be at a 
disadvantage in predicting brain dynamics at that time scale because that model does 
not seem to have the requisite fineness of temporal grain. It is very difficult to see 
how the rather general hypothesis that one’s brain is sick can generate predictions 
about prediction error at such fast time scales. In contrast, the Spirit model is agent 
based and thus taps into stored knowledge of how other agents can interfere with 
movement. This is a more likely candidate for minimising the prediction error. 
 
If we assume that there are only these two candidate models, and that the winner is 
whichever model best minimises prediction error, then it is plausible that the Spirit 
model could win and thus that the patient could believe that the movement was 
initiated by a demon. 
 
I think there could be a deep-seated bias in favour of the Spirit model, which further 
boosts its chances of winning. This relates to the importance of agency-driven 
predictions in PEM. The Brain model says that the agent responsible for the 
movement was a spirit, so not the patient herself. The Brain model says that the agent 
responsible was the patient herself but it doesn’t offer any clue to how the agent 
caused the movement. This difference suggests that the current state of the patient’s 
movement control is under a cloud of uncertainty. Perhaps this makes the Brain model 
less attractive since it would render future agency-based predictions uncertain too. 
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This could thus be a factor that biases in favour of the Spirit model. The motto here 
could be that it is better to relinquish control than to have control uncertainty. 
 
Imperviousness 
Even if the Spirit model wins as the best prediction error minimiser, the question is 
why it is not dismissed when family and carers, as well as perhaps the patient’s own 
background knowledge, begins to challenge the Spirit model by pointing out, for 
example, that there is no independent evidence of movement interfering Spirits. Why 
is the Spirit model impervious to counterevidence? 
 
In terms of PEM, the question is why other models, which contradict the Spirit model, 
are not able to explain it away. The first thing to notice is that as long as the Spirit 
model is best able to minimise the prediction error it will not be explained away. 
Above I gave some reasons why that model is in fact better than the Brain model, 
which doesn’t work well as a control parameter for fast time scale processing, it 
doesn’t offer itself easily for property transmission, and it doesn’t make it easy to 
construct a unified current state for agency-based inference. It is also possible that the 
Spirit model could be amended to deal with some types of counterevidence. If carers 
insist they cannot see any Spirits, the model can be revised to add that the Spirits are 
sinister and are hiding themselves from other people. 
 
Even so, it is likely that the counterevidence would accumulate and yet it doesn’t 
conquer the Spirit model. The question is therefore what it would take for a true high-
level model like the Brain model, to be control parameter for fast time-scale dynamics 
at lower levels? Put like this it is really a question about what it would take for the 
more domain general model, according to which there are no spirits, to cognitively 
penetrate down into more domain specific areas and modulate sensory processing 
there. This is of course a core concern in cognitive science (Fodor 1983). I will not 
here try to tackle this massive issue head on. I will just indicate how the story about 
cognitive penetration might go on a PEM account and note that this supports 
imperviousness for delusional belief. 
 
So, with PEM in mind, the issue of cognitive penetration is how prediction error 
minimisation can occur from high-levels to low levels. We have already noted that 
high-level models cannot be expected to predict low-level dynamics so this in itself 
seems to prevent much cognitive penetrability, the high-level model simply cannot 
“catch” the low-level bottom-up signal. I think the best hope for a notion of cognitive 
penetrability is one on which prediction error minimisation occurs by exploiting 
prediction error noise or ambiguities in the low-level signal. If the low-level signal is 
very noisy then it is not so important to exactly match the temporal dynamics – 
prediction error need only be predicted to expected levels of noise. In such a situation 
it would perhaps be easier for a high-level model to modulate low-level activity (i.e., 
to minimise low-level prediction error). 
 
We found some evidence for this in our rubber hand study, mentioned earlier. If a 
stationary toy spider is placed on the visible rubber hand and movement is felt on the 
real hand, participants do not modulate the visual input in a top-down fashion to 
actually see the spider moving. But participants very often exploit noise and 
ambiguity to modulate their experience. They say, for example, that the spider’s 
partially obscured far legs are moving, or that it breathes or have moving baby spiders 
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on its belly (unpublished data). In this case, though, the ‘high-level” model is not very 
high: there is temporally fine-grained tactile information about how the spider should 
be moving. This kind of detail is still missing from most types of counterevidence to 
the Spirit model and it is therefore not easy to see how the Spirit model could 
cognitively penetrate even by exploiting noise and ambiguity. 
 
This approach does however suggest that the chance of cognitive penetrability and 
thereby susceptibility to counterevidence would, everything else being equal, be best 
when uncertainty is high. This predicts that the Brain model would have its best 
chance at being the winning model very early on, while the Spirit model have not 
been able to suppress prediction error and comprehensively explain away its 
competitors. There is indeed some evidence that early intervention in the form of both 
medication and at first psychosis onset is more efficient than intervention later on, as 
the illness and the delusions have solidified and progressively explained away true 
competing models. 
 
It remains to address the issue of cases of successful cognitive penetration, that is, 
reports of unusual experiences but without the subject developing the delusion 
(Davies, Coltheart et al. 2001). This may be subjects who report a degree of alienation 
or dissociation from their movements instead of the delusion of alien control, or report 
a certain strangeness in their experience of loved ones instead of the delusion that the 
loved one is an impostor. These are the kinds of cases that motivate a two-factor 
account on which a deficit to the second factor, domain general rationality, is needed 
to generate the delusions. 
 
I think there is hope that these cases can be explained within the PEM framework, and 
that they can thus be amenable to a one-factor treatment. Specifically I think there are 
three ways in which there can be something like the unusual experience without the 
delusion. First, it is possible that though the experience is unusual its character is 
somewhat different than the one that leads to the delusion. It may be for example that 
the prediction error is somewhat less than in the cases that generate the delusion. 
There may then still be a feeling of strangeness but the prediction error may be so 
close to expected levels of noise that a higher level model is not needed to account for 
it. Second, there may be individual differences in levels of expected noise such that 
the same level of prediction error, generated by faulty comparisons of predicted and 
actual input, is processed differently in different individuals (Fletcher and Frith 2009). 
People with high levels of expected noise will not need to engage in prediction error 
minimisation to the same degree as those with low levels of expected noise. Third, 
there may be individual differences in how the property transmission heuristic is 
engaged. It may be that some people are less inclined to adopt this heuristic, and 
quick to abandon it. Such people may be less susceptible to the delusion even though 
they can have the unusual experience. This third suggestion is getting close to a two-
factor account inasmuch as it focuses on individual biases in reasoning patterns. 
 
There is therefore some reason to think that a one-factor account of delusion 
formation, based on PEM, can work. That is to say, a second factor does not seem 
necessary for the account even though of course there may be cases where a second 
factor is involved, such as a bias or perhaps high-level anatomical damage. 
 
8. Concluding remarks 
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In this paper I have first given a brief presentation of an approach to brain functioning 
that is gaining more influence. This is the idea that the brain is basically involved in 
prediction error minimisation. It does this by using generative models to predict what 
the next sensory input will be and then comparing these predictions with the actual 
input. The difference between predicted and actual input is the prediction error, which 
is a quantity that can be used to gauge how good the model is. If the prediction error 
is large, then the model parameters are updated such that better predictions can be 
generated. I noted how this approach comes with a notion of explaining away of 
competing models, how it comes with a notion of temporally characterised cortical 
hierarchy, and how it incorporates agency as a central component in perceptual 
inference.  
 
I then applied this framework to three philosophically interesting domains: vision via 
binocular rivalry, self via the rubber hand illusion, and belief via delusion formation. 
In each case the prediction error minimisation framework seems able to provide new 
insights. Binocular rivalry can be understood as the natural upshot of a cognitive 
system based on prediction error minimisation, rather than merely a matter of 
reciprocal inhibition and fatigue. Bodily self-awareness can be understood in terms of 
Bayesian multisensory integration with a basis in agency, such that the role of the 
body-image for the sense of self is surprisingly fragile. The prediction error 
minimisation scheme can be used to strengthen a one-factor account of delusion 
formation; this happens by suggesting a way to understand the notion of cognitive 
penetrability in terms of the dynamics of prediction error minimisation between 
cortical levels and across different processing time scales. 
 
I think this discussion has helped show the attractiveness of the prediction error 
minimisation idea and also that it outlines interesting lines of research for those three 
areas of philosophical interest. 
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