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Wesley H. Holliday On the Modal Logic of
Subset and Superset:
Tense Logic over
Medvedev Frames

Abstract. Viewing the language of modal logic as a language for describing directed

graphs, a natural type of directed graph to study modally is one where the nodes are

sets and the edge relation is the subset or superset relation. A well-known example from

the literature on intuitionistic logic is the class of Medvedev frames hW,Ri where W is

the set of nonempty subsets of some nonempty finite set S, and xRy i↵ x ◆ y, or more

liberally, where hW,Ri is isomorphic as a directed graph to h}(S) \ {;},◆i. Prucnal

[32] proved that the modal logic of Medvedev frames is not finitely axiomatizable. Here

we continue the study of Medvedev frames with extended modal languages. Our results

concern definability. We show that the class of Medvedev frames is definable by a formula

in the language of tense logic, i.e., with a converse modality for quantifying over supersets

in Medvedev frames, extended with any one of the following standard devices: nominals

(for naming nodes), a di↵erence modality (for quantifying over those y such that x 6= y), or

a complement modality (for quantifying over those y such that x 6◆ y). It follows that either

the logic of Medvedev frames in one of these tense languages is finitely axiomatizable—

which would answer the open question of whether Medvedev’s [31] “logic of finite problems”

is decidable—or else the minimal logics in these languages extended with our defining

formulas are the beginnings of infinite sequences of frame-incomplete logics.

Keywords: Medvedev frames, modal logic, definability, nominal tense logic, di↵erence

modality, complement modality, axiomatizability, Kripke frame incompleteness

1. Introduction

Modal logics have been found to capture properties of many important math-
ematical concepts—for example, the modal logic of topological closure [5],
the modal logic of arithmetic provability [9], the modal logic of set-theoretic
forcing [25], and more. In this paper, we are interested in modal logics
for capturing properties of something very basic: the subset and superset

relations between the nonempty subsets of a finite set.
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By the unimodal language, we mean the language given by the grammar

' ::= p | ¬' | (' ^ ') | ⇤',
where p belongs to a countably infinite set Prop of propositional variables,
the other Boolean connectives are defined as usual, and ⌃' := ¬⇤¬'. We
take as models for the unimodal language tuples M = hW,R, V i based on
frames hW,Ri, where hW,Ri is any directed graph and V : Prop ! }(W ).
We define the truth of a formula ' at a point w 2 W as usual:

• M, w ✏ p i↵ w 2 V (p) for p 2 Prop;

• M, w ✏ ¬' i↵ M, w 2 ';
• M, w ✏ ' ^  i↵ M, w ✏ ' and M, w ✏  ;
• M, w ✏ ⇤' i↵ for all v 2 W : if wRv, then M, v ✏ '.

A formula ' is valid over a frame hW,Ri i↵ ' is true at every point in every
model based on hW,Ri. For a class C of frames, the unimodal logic of C is
the set of all unimodal formulas that are valid over every frame in C.

Viewing a modal language as a language for describing directed graphs
in this way, a natural type of directed graph to study modally is one where
the nodes in W are sets and the edge relation R is the subset or superset

relation. We will focus on a specific class of such structures.

Definition 1.1 (Medvedev Frames). A Medvedev frame [31] is a frame
hW,Ri that is isomorphic, as a directed graph, to h}(S) \ {;},◆i for a
nonempty finite set S. (A Skvortsov frame [37] is defined in the same way
except with S a nonempty set of any cardinality.)

Equivalently, we could think in terms of h}(S) \ {S},✓i, or we could
simply define a Medvedev frame to be a frame hW,Ri that is obtained from
a finite Boolean lattice hW,i by removing the top element. We are following
the literature on intuitionistic logic (see references after Theorem 1.2 below)
by thinking in terms of h}(S)\{;},◆i. Medvedev frames are often defined as
frames h}(S) \ {;},◆i for a nonempty finite set S, but Definition 1.1 will be
more convenient for our purposes, allowing us to speak of “defining the class
of Medvedev frames” rather than always “defining the class of Medvedev
frames up to isomorphism.” Informally, we blur the distinction.

Where M is a model based on a Medvedev frame, we have:

• M, w ✏ ⇤' i↵ for all v ✓ w: M, v ✏ '.1

1In tense logic, the box operator is usually thought of as quantifying over all points
strictly in the future of the current point, which would suggest that we take M, w ✏ ⇤<'

i↵ for all v ( w: M, v ✏ '. Then our ⇤ can be defined by ⇤' := '^⇤<'. As we will see,
we do not need the expressivity of ⇤< for our definability results in §§3-4.
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Now what modal principles are valid over Medvedev frames? We will see
some examples in §2, but we cannot hope for a finite axiomatization.

Theorem 1.2 (Prucnal [32]). The unimodal logic of Medvedev frames is not
finitely axiomatizable.

It is an open question whether the unimodal logic of Medvedev frames is
recursively axiomatizable. An a�rmative answer to this question would also
yield an a�rmative answer to the longstanding open question of whether
the intuitionistic propositional logic of Medvedev frames (see [12, Ch. 2]) is
recursively axiomatizable; for the intuitionistic logic of Medvedev frames—
Medvedev’s [30, 31] “logic of finite problems”—is recursively embedded in
the unimodal logic of Medvedev frames by the Gödel-McKinsey-Tarski trans-
lation of the intuitionistic language into the unimodal language. Maksimova
et al. [29] showed that the intuitionistic logic of Medvedev frames is not
finitely axiomatizable (cf. [14, 15]). As Shehtman [36] observes, that result,
combined with the Blok-Esakia Isomorphism Theorem, gives another proof
of Theorem 1.2.2 Since the class of Medvedev frames is a recursive class of
finite frames, the modal and intuitionistic logics of Medvedev frames are co-
recursively enumerable; so if they are recursively axiomatizable and hence
enumerable, then they are decidable.3 We will return to this issue below.

In addition to its connection with Medvedev’s logic of finite problems,
the unimodal logic of Medvedev frames has recently appeared in the study
of modal logics of set-theoretic forcing for certain forcing classes in [24].

The main topic of the present paper is the modal definability of the class
of Medvedev frames in the following standard sense (see, e.g., [4]).

Definition 1.3 (Relative and Absolute Definability). For classes C and D

of frames and a modal formula ' (of the unimodal language above or any of
the modal languages discussed below), ' defines C relative to D i↵ for every
frame hW,Ri 2 D, hW,Ri 2 C i↵ ' is valid over hW,Ri; and ' defines C

(absolutely) i↵ for every frame hW,Ri, hW,Ri 2 C i↵ ' is valid over hW,Ri.

Using only the unimodal language, the class of Medvedev frames is obvi-
ously not definable, since the class is not closed under operations on frames

2In fact, stronger results hold: Maksimova et al. [29] showed that the intuitionistic
logic of Medvedev frames (resp. Skvortsov frames) is not axiomatizable in finitely many
propositional variables, and Shehtman [36] showed the same for the unimodal logic of
Medvedev frames (resp. Skvortsov frames).

3The intuitionistic logic of Skvortsov frames is known to be recursively axiomatizable
[37], but it is unknown whether it is decidable.
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that preserve validity of unimodal formulas (see [8, §3.3]), e.g., taking dis-

joint unions of frames. Even relative to, e.g., the class of finite frames that
are not disjoint unions of other frames, the class of Medvedev frames is not
definable in the unimodal language, because it is not closed under taking
R-generated subframes (though it is closed under taking R [R

�1-generated
subframes). Of course, if we view Medvedev frames as structures for a first-

order language with a relation symbol for R, then the class of Medvedev
frames is not definable by a first-order formula either, given compactness.

None of this forecloses definability in an extended modal language. As
a natural candidate, we first consider the nominal tense language [7] that
extends the unimodal language with nominals and a converse modality, with
which we can name sets and quantify over supersets in Medvedev frames.

Definition 1.4 (Language). Fixing a countably infinite set Nom—the set
of nominals—such that Prop\Nom = ;, the nominal tense language is given
by grammar

' ::= p | i | ¬' | (' ^ ') | ⇤' | ⇤�1
',

where p 2 Prop, i 2 Nom, and ⌃�1
' := ¬⇤�1

¬'. The tense language is the
fragment without nominals in formulas. The nominal modal language is the
fragment without the converse modality ⇤�1 in formulas.

The intended semantics for this language is as follows.

Definition 1.5 (Models, Truth, and Validity). A nominal model is a tuple
M = hW,R, V i where hW,Ri is a frame and V : Prop[Nom ! }(W ) is such
that for all i 2 Nom, V (i) is a singleton set.

The definition of truth of a nominal tense formula at a point w in a
model M is defined in the same way as above, except for the new clauses:

• M, w ✏ i i↵ w 2 V (i) for i 2 Nom;

• M, w ✏ ⇤�1
' i↵ for all v 2 W : if vRw, then M, v ✏ '.

So where M is based on a Medvedev frame:

• M, w ✏ ⇤�1
' i↵ for all v ◆ w: M, v ✏ '.

A formula of the nominal tense language is valid over a frame hW,Ri i↵ it is
true at every point in every nominal model based on hW,Ri. For a class C of
frames, the nominal tense logic of C is the set of all nominal tense formulas
that are valid over every frame in C.
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For the theory of modal languages with nominals, in addition to [7], see,
e.g., [17, 10, 6, 11]. For general results on frame definability in nominal
modal languages, see [7, 17, 10]. Note, however, that since the class of
Medvedev frames is not a first-order definable class of frames, some of the
Goldblatt-Thomason-style definability theorems do not apply.

Since the class of Medvedev frames is not closed under R-generated sub-
frames, it is not definable by a formula of the nominal modal language, for
the validity of such formulas is preserved under R-generated subframes; and
since it is not closed under disjoint unions, it is not definable by a formula of
the tense language. However, we shall see that with their powers combined,
the nominal tense language can define the class of Medvedev frames.

A language with as much frame-defining power as the nominal tense
language is the tense language with a di↵erence modality (see, e.g., [34, 33,
27] and [8, §7.1]), given by the grammar

' ::= p | ¬' | (' ^ ') | ⇤' | ⇤�1
' | [ 6=]'

and the following semantics:

• M, w ✏ [ 6=]' i↵ for all v 2 W : if w 6= v, then M, v ✏ '.
For lack of a better term, we will call this the di↵erential tense language.
The following result follows easily from the proof in §4.1.II of [17] concerning
the unimodal language extended with [ 6=].

Theorem 1.6 (Gargov and Goranko [17]). If a class of frames is definable in
the nominal tense language, it is definable in the di↵erential tense language.

Thus, by our result that the class of Medvedev frames is definable in the
nominal tense language, it is also definable in the di↵erential tense language.

As shown in [17], the converse of Theorem 1.6 holds if we add to the
nominal tense language the universal modality, which is already definable in
the di↵erential language by ⌅' := '^ [ 6=]'. Otherwise the di↵erential tense
language has more frame-defining power. For example, the formula ¬[ 6=]?
defines a class of frames that is not definable in the nominal tense language.

For an alternative route to defining the class of Medvedev frames, we can
extend the unimodal language with not only a modality ⇤�1 for the converse
of R, but also a modality � for the complement of R [2, 26, 19, 18, 21, 20, 3].

Definition 1.7 (Language). The complementary tense language is given by
the grammar

' ::= p | ¬' | (' ^ ') | ⇤' | ⇤�1
' | �',

where p 2 Prop and ⌃�' := ¬�¬'.
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The intended semantics for this language is as follows.

Definition 1.8 (Models, Truth, and Validity). Models for the complemen-
tary tense language are the same as models for the unimodal language. The
truth clause for the � modality is:

• M, w ✏ �' i↵ for all v 2 W : if not wRv, then M, v ✏ '.

So where M is based on a Medvedev frame:

• M, w ✏ �' i↵ for all v 6✓ w: M, v ✏ '.

Validity over frames is defined as in the case of the unimodal language. For
a class C of frames, the complementary tense logic of C is the set of all
complementary tense formulas that are valid over every frame in C.

For general results on frame definability in this language, see [21, §6].
The nominal tense language and complementary tense language are in-

comparable in frame-defining power. For example, the nominal tense formula
i ! ⌃¬i defines the class of frames such that 8x9y(xRy ^ x 6= y); yet this
class is not definable by a formula of the complementary tense language [21,
Lemma 6.3(i)], because the validity of such formulas is preserved under tak-
ing (the tense version of) p-morphic images (see §5), whereas the class is not
closed under that operation. Conversely, the complementary tense formula
⌃�> defines the class of frames such that 8x9y ¬xRy; yet this class is not
definable by a formula of the nominal tense language, because the validity
of such formulas is preserved under taking R[R

�1-generated subframes [7,
p. 62], whereas the class is not closed under that operation.

Given this incomparability in expressive power, it is informative to know
that not only the nominal and di↵erential tense languages but also the com-
plementary tense language can define the class of Medvedev frames.

From our main definability results, a tantalizing disjunction follows: ei-
ther the logic of Medvedev frames in one of the three tense languages is
finitely axiomatizable—which would answer the open question of whether
Medvedev’s logic of finite problems is decidable, as above—or the minimal
logics in the three languages extended with our Medvedev-defining formulas
as axioms are the beginnings of infinite sequences of frame-incomplete logics.
For if the minimal logic with our Medvedev-defining formula as an axiom—
call it L0—is the logic of any class of frames at all, then it is the logic of the
class of Medvedev frames, which is then finitely axiomatizable. Thus, if the
logic of Medvedev frames is not finitely axiomatizable, then not only is L0

frame incomplete, but also there is an infinite sequence L1,L2, . . . of logics
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such that the following holds: Ln+1 extends Ln with a non-theorem of Ln

that is valid over Medvedev frames, which is possible by the hypothesis of
Ln’s incompleteness; then Ln+1 still defines the class of Medvedev frames,
but by its finite axiomatization it is not complete with respect to the class
of Medvedev frames; so Ln+1 is not complete with respect to any class of
frames. By similar reasoning, if the logic of Medvedev frames is not even
recursively axiomatizable, then adding any recursive set of formulas from
the logic of Medvedev frames to L0 will result in a frame-incomplete logic.

In §§2-3, we prove our definability theorem for the nominal tense lan-
guage. It is then a short step in §4 to prove the result for the complementary
tense language. In §§5-6, we draw some morals about the definability and
prospects for axiomatizability of the class of Medvedev frames in di↵erent
languages. In our conclusion in §7, we return to the disjunction above.

2. Nominal Tense Axioms

Let AX1 be the set of the following axioms:

TN i ! ⌃i
4N ⌃⌃i ! ⌃i

AntiN i ! ⇤(⌃i ! i)

SepN ⇤⌃⌃�1
i ! ⌃�1

i

Con�1
N ⌃�1⌃i

UniN (⌃i ^ ⌃j) ! ⌃(⌃i ^ ⌃j ^⇤⌃(⌃�1
i _ ⌃�1

j)).

Although these axioms will not define the class of Medvedev frames abso-
lutely, but only relative to the class of finite frames (Theorem 3.5), we single
them out as a group because they are all pure nominal formulas, i.e., con-
taining no propositional variables, a point to which we will return below.
The TN and 4N axioms are just the pure nominal, diamond versions of the
standard modal axioms T (⇤p ! p) and 4 (⇤p ! ⇤⇤p), respectively.

Dropping the restriction to pure formulas, let AX2 be the set of the
following axioms:

Grz ⇤(⇤(p ! ⇤p) ! p) ! p

Grz�1 ⇤�1(⇤�1(p ! ⇤�1
p) ! p) ! p

SepN ⇤⌃⌃�1
i ! ⌃�1

i

Con�1
N ⌃�1⌃i

Uni (⌃(p1 ^⇤q) ^ ⌃(p2 ^⇤q)) ! ⌃(⌃p1 ^ ⌃p2 ^⇤⌃q).
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One can think of the Grz axiom in AX2 as replacing the TN , 4N , and AntiN
axioms in AX1, based on the semantic Fact 2.2 below. Syntactically, any
normal modal logic that contains the Grz axiom also contains the T axiom
and—much less obviously—the 4 axiom [1].4

Remark 2.1. Let us briefly note some syntactic facts about the Uni axiom.
First, consider the generalizations of Uni for arbitrary n � 2:

(
^

1in

⌃(pi ^⇤q)) ! ⌃(
^

1in

⌃pi ^⇤⌃q).

One can show that for each n � 2, the formula above belongs to the smallest
normal unimodal logic containing Uni and the 4 axiom. Second, the same
can be shown for the formula

(⌃⇤p1 ^ ⌃⇤p2 ^ ⌃⇤p3 ^ ¬⌃((p1 ^ p2) _ (p1 ^ p3) _ (p2 ^ p3))) !

⌃(⌃⇤p1 ^ ⌃⇤p2 ^ ¬⌃⇤p3)

and its generalizations for arbitrary n � 3, which Hamkins et al. [24] note
are valid over Medvedev frames. We prove these facts in the Appendix. In
addition, using results of [13], we show that there are still continuum-many
normal unimodal logics between, on the one hand, the logic axiomatized by
Grz and Uni, and on the other, the unimodal logic of Medvedev frames.

The axioms TN , 4N , AntiN , and Grz/Grz�1 are standard axioms, whose
associated classes of frames are plain to see—except perhaps in the case of
Grz, the Grzegorczyk axiom, one of the famous examples of a modal formula
that defines a non-first-order class of frames (see, e.g., [12, p. 83]).

Fact 2.2 (Frames for the Standard Axioms). For any frame hW,Ri:

1. hW,Ri validates TN i↵ R is reflexive;

2. hW,Ri validates 4N i↵ R is transitive;

3. hW,Ri validates AntiN i↵ R is antisymmetric;

4. hW,Ri validates Grz (resp. Grz�1) i↵ R (resp. R

�1) is a Noetherian

partial order, i.e., a reflexive, transitive, and antisymmetric relation that
contains no infinite ascending chain of distinct elements.

4As usual, a set of unimodal formulas is a normal modal logic i↵ it contains all tau-
tologies of classical propositional logic, contains the formula ⇤(p ! q) ! (⇤p ! ⇤q), and
is closed under modus ponens and the operations of prefixing ⇤ to any formula and of
uniformly substituting formulas for propositional variables in any formula.
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The other axioms are not standard, but their associated classes of frames
are also easy to work out. The term ‘SepN ’ suggests separative; ‘Con�1

N ’
suggests convergence in the R

�1 direction; and ‘Uni’ suggests union, for
reasons that will become clear. The notion of a separative poset comes from
the literature on set-theoretic forcing (see, e.g., [28, p. 4]).

Fact 2.3 (Frames for the New Axioms). For any frame hW,Ri:

1. hW,Ri validates SepN i↵ R is separative, i.e.,

8x8y(8y0(yRy

0
! 9y

00(y0Ry

00
^ xRy

00)) ! xRy); (Sep)

2. hW,Ri validates Con�1
N i↵ every two points have a common predecessor,

i.e.,
8y18y29x(xRy1 ^ xRy2); (Con�1)

3. hW,Ri validates UniN i↵ it validates Uni i↵ R satisfies

8x8y18y2((xRy1 ^ xRy2) !

9u(xRu^uRy1^uRy2^8v(uRv ! 9w(vRw^(y1Rw_y2Rw))))). (Uni)

Proof. Part 1, part 2, and the right-to-left direction of part 3 are straight-
forward. For the left-to-right direction of part 3 in the case of Uni, suppose
hW,Ri does not satisfy (Uni), so

9x9y19y2((xRy1 ^ xRy2)^

8u((xRu^uRy1^uRy2) ! 9v(uRv^8w(vRw ! ¬(y1Rw_y2Rw))))). (I)

Define a model M = hW,R, V i such that V (p1) = {y1}, V (p2) = {y2}, and
V (q) = {z 2 W | y1Rz or y2Rz}. Thus, from xRy1 and xRy2, we have
M, x ✏ ⌃(p1 ^ ⇤q) ^ ⌃(p2 ^ ⇤q). Now suppose for reductio that M, x ✏
⌃(⌃p1 ^⌃p2 ^⇤⌃q), so there is a u with xRu and M, u ✏ ⌃p1 ^⌃p2 ^⇤⌃q.
Since M, u ✏ ⌃p1 ^ ⌃p2, we have uRy1 and uRy2, so there is a v as in
(I). Since for all w with vRw, we have neither y1Rw nor y2Rw, it follows
that M, v 2 ⌃q, which with uRv implies M, u 2 ⇤⌃q, which contradicts the
description of u. Thus, M, x 2 ⌃(⌃p1^⌃p2^⇤⌃q), so M, x falsifies Uni.

Remark 2.4. We can now see semantically or syntactically that the Uni
axiom is a modal version of the superintuitionistic Kreisel-Putnam axiom
kp := (¬a ! (b _ c)) ! ((¬a ! b) _ (¬a ! c)), which belongs to
Medvedev’s logic of finite problems [12, p. 54]. Semantically, the condi-
tion (Uni) is necessary and su�cient for a poset hW,Ri to validate kp ac-
cording to intuitionistic Kripke semantics [12, Exercise 2.10] (thanks to an
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anonymous referee for pointing out this correspondence). Syntactically, if we
take the Gödel translation [12, §3.9] of kp, contrapose the main conditional,
drive negations in, and rearrange some subformulas, we obtain the formula
kpm := ⇤((⌃(⌃¬b ^⇤⌃¬a) ^ ⌃(⌃¬c ^⇤⌃¬a)) ! ⌃(⌃¬b ^ ⌃¬c ^⇤⌃¬a));
and it is easy to see that if a normal modal logic contains the 4 and T axioms,
then it contains kpm i↵ it contains the simpler Uni axiom.

All Skvortsov frames satisfy the properties corresponding to the axioms
of AX1, and all Medvedev frames satisfy those corresponding to the axioms
of AX2. (Sep) reflects extensionality and the nonemptiness of our sets:
contrapositively, if x 6◆ y, then there is an s 2 y \ x, so there is a y

0 = {s}

such that y ◆ y

0 but for all y00 with y

0
◆ y

00 (i.e., y

0 = y

00 since y

0 is a
singleton and y

00
6= ;), we have x 6◆ y

00. For (Con�1), take x to be the union
of the sets y1 and y2. For (Uni), take u to be the union of the sets y1 and y2.

Fact 2.5 (Soundness). The formulas of AX1 are valid over all Skvortsov
frames. The formulas of AX2 are valid over all Medvedev frames.

For completeness, we can start with the nominal tense logic of all frames,
which can be axiomatized in various ways (see, e.g., [7, 17, 10]) and then
add the axioms of AX1 or AX2 (closing under rules). For AX1, the result
will be a logic that is complete with respect to the class of frames defined by
the conjunction of the axioms in AX1. This follows from the fact that AX1

contains only pure nominal formulas. As in the case of Sahlqvist axioms [8,
§3], so too in the case of pure axioms, there is an automatic completeness
theorem.5 To apply this theorem, which is usually stated for an arbitrary
nominal multimodal language, note that we may freely switch between in-
terpreting the nominal tense language in frames hW,Ri and interpreting it
in birelational frames hW,R1, R2i where ⇤ is the box modality for R1, ⇤�1

is the box modality for R2, and R2 = R

�1
1 (cf. the notion of a polymodal

base in [20, 21]). Within the class of birelational frames, the class of frames
with R2 = R

�1
1 is defined by the pure axioms i ! ⇤⌃�1

i and i ! ⇤�1⌃i.
Thus, the following result for arbitrary nominal multimodal logics gives us
automatic completeness results for nominal tense logics as well.

Theorem 2.6 (Gargov and Goranko [17]). If a class C of multirelational
frames is defined by a set ⌃ of pure nominal multimodal formulas, then the
nominal multimodal logic of C is obtained by adding to the minimal nominal
multimodal logic the formulas of ⌃ as axioms (and closing under rules).

5It is also worth noting that in the case of nominal tense logic, for every Sahlqvist
axiom there is a pure axiom that defines the same class of frames [23].
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In the case of AX2, which has non-pure axioms, the question of com-
pleteness does not have such an easy answer. We will return to it in §6.

3. Definability of Medvedev Frames

In this section, we show that AX1 defines the class of Medvedev frames
relative to the class of finite frames (Theorem 3.5), and AX2 defines the
class of Medvedev frames absolutely (Theorem 3.6). Our helpers in this
task are the endpoints in Medvedev frames, representing singleton sets.

Definition 3.1 (Endpoints and McKinsey Frames). Given a frame hW,Ri,
an endpoint is a w 2 W such that for all v 2 W , if wRv, then w = v.6 Let
endhW,Ri be the set of all endpoints in hW,Ri, and for w 2 W , let end(w)
be the set of all endpoints v 2 W such that wRv.

A McKinsey frame [12, p. 82] is a frame hW,Ri such that for every
w 2 W , end(w) 6= ;.7

Note that any finite poset and any Noetherian poset is a McKinsey frame.
The reason we call attention to McKinsey frames is that it is worthwhile to
clearly separate which parts of the argument to follow depend on finiteness

and which parts depend on the weaker McKinsey property that holds not
only of Medvedev frames but also of Skvortsov frames.

The argument involves three lemmas, the first of which is easy to check.

Lemma 3.2 (McKinsey and Separativity). For any frame hW,Ri:

1. if hW,Ri is a transitive frame, then for all w, v 2 W , wRv implies
end(w) ◆ end(v);

2. if hW,Ri is a separative and transitive McKinsey frame, then for all
w, v 2 W , end(w) ◆ end(v) implies wRv;

3. if hW,Ri is such that for all w, v 2 W , end(w) ◆ end(v) implies wRv,
then hW,Ri is separative.

The second lemma is an alternative characterization of Medvedev frames.

6Note that this is not the same as the notion of an atom/coatom in a poset, since an
atom/coatom is required to be a non-minimum/maximum element. Nonetheless, what we
call ‘McKinsey frames’ are sometimes called ‘atomic frames’.

7As is well known, the class of transitive McKinsey frames is definable by the con-
junction of the 4 axiom ⇤p ! ⇤⇤p and the McKinsey axiom ⇤⌃p ! ⌃⇤p. Blackburn
[7, p. 64f] shows that no purely nominal formula defines the class of transitive McKinsey
frames. His proof also shows that no such formula defines the Noetherian posets.
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Lemma 3.3 (Characterization of Medvedev Frames). For any frame hW,Ri,
the following are equivalent:

1. hW,Ri is a finite separative poset such that

8y1, y2 2 W 9u 2 W : end(u) = end(y1) [ end(y2); ([)

2. hW,Ri is finite and isomorphic as a frame to h}(endhW,Ri) \ {;},◆i;

3. hW,Ri is a Medvedev frame.

Proof. From 1 to 2, the isomorphism f : W ! }(endhW,Ri)\{;} is defined
by f(w) = end(w). Since hW,Ri is a finite poset, it is McKinsey, so for all
w 2 W , end(w) 6= ;, which means that f is indeed a function from W to
}(endhW,Ri) \ {;}. To see that f is injective: if end(w) = end(v), then
since hW,Ri is separative, transitive, and McKinsey, we have wRv and vRw

by Lemma 3.2.2, so w = v since hW,Ri is antisymmetric. To see that f is
surjective: if Y 2 }(endhW,Ri) \ {;}, so Y is a nonempty set of endpoints,
then since R is reflexive, for all y 2 Y , end(y) = {y}. Hence

Y =
[

y2Y
end(y).

Then since W is finite, by ([) there is a u 2 W such that end(u) = Y , so
f(u) = Y . Finally, since hW,Ri is separative, transitive, and McKinsey, by
Lemma 3.2.1-2 we have wRv i↵ f(w) ◆ f(v). Thus, f is an isomorphism.

From 2 to 3, since W 6= ;, if hW,Ri is isomorphic to h}(endhW,Ri) \
{;},◆i, then }(endhW,Ri) \ {;} 6= ;, so endhW,Ri 6= ;. Then hW,Ri is a
Medvedev frame as in Definition 1.1 with S = endhW,Ri.

From 3 to 1, observe that 1 holds whenever hW,Ri = h}(S)\{;},◆i for a
nonempty finite S, and 1 is preserved under directed graph isomorphism.

The third lemma relates the property (Uni) from Fact 2.3 with the prop-
erty ([) from Lemma 3.3. Recall that (Uni) is 8x8y18y2((xRy1 ^ xRy2) !
9u(xRu ^ uRy1 ^ uRy2 ^ 8v(uRv ! 9w(vRw ^ (y1Rw _ y2Rw))))).

Lemma 3.4 (Relating (Uni) and ([)). For any frame hW,Ri:

1. if hW,Ri is a separative and transitive McKinsey frame satisfying ([),
then hW,Ri satisfies (Uni);

2. if hW,Ri is a transitive frame satisfying (Con�1) and (Uni), then hW,Ri

satisfies ([).
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Proof. For part 1, suppose hW,Ri is a separative and transitive McKinsey
frame satisfying ([). To show (Uni), suppose xRy1 and xRy2. Then by ([),
there is a u with (i) end(u) = end(y1) [ end(y2). Since xRy1 and xRy2, we
have end(x) ◆ end(y1) and end(x) ◆ end(y2) by Lemma 3.2.1, so end(x) ◆
end(u) and hence xRu by Lemma 3.2.2. Since end(u) ◆ end(y1) and end(u) ◆
end(y2), we also have uRy1 and uRy2 by Lemma 3.2.2. Consider any v such
that uRv. Since hW,Ri is a McKinsey frame, there is a w 2 end(v). By
Lemma 3.2.1, uRv implies end(u) ◆ end(v), so end(y1) [ end(y2) ◆ end(v)
by (i). Then since w 2 end(v), we have either w 2 end(y1), in which case
y1Rw, or w 2 end(y2), in which case y2Rw. Hence hW,Ri satisfies (Uni).

For part 2, suppose hW,Ri is a transitive frame satisfying (Con�1). Then
to prove the implication from (Uni) to ([), suppose that hW,Ri does not
satisfy ([), so there are y1, y2 2 W such that (ii) for all u 2 W , end(u) 6=
end(y1) [ end(y2). By (Con�1), there is an x such that xRy1 and xRy2.
Now suppose for reductio that hW,Ri satisfies (Uni). Then since xRy1 and
xRy2, there is a u as in (Uni). Thus, uRy1 and uRy2, which with Lemma
3.2.1 implies end(u) ◆ end(y1) [ end(y2), which with (ii) implies end(u) 6✓

end(y1)[end(y2). Take a v 2 end(u)\(end(y1)[end(y2)), so uRv but it is not
the case that y1Rv or y2Rv. Then since v is an endpoint, we have that for
all w with vRw, it is not the case that y1Rw or y2Rw. But this contradicts
the fact that u is as in (Uni). Thus, hW,Ri does not satisfy (Uni).

We are now ready to put everything together for AX1.

Theorem 3.5 (Relative Definability of Medvedev Frames). For any frame
hW,Ri, the following are equivalent:

1. hW,Ri is a finite frame validating AX1;

2. hW,Ri is a Medvedev frame.

Proof. From 2 to 1, as noted with Fact 2.5, the formulas of AX1 are valid
over all Skvortsov frames and hence all Medvedev frames.

From 1 to 2, if hW,Ri validates AX1, then by Facts 2.2-2.3, hW,Ri

is a separative poset satisfying (Con�1) and (Uni), which by Lemma 3.4.2
implies that it is a separative poset satisfying ([), which by Lemma 3.3 and
the finiteness of W implies that hW,Ri is a Medvedev frame.

It is worth noting that the nominal tense language can define any single
finite frame up to isomorphism [7, §2] [17, §4.2] (cf. [21, p. 96] on the
complementary tense language). In the case of “the” Medvedev frame hW,Ri

with |W | = n, once we have a set of axioms like AX1 that defines the class of
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Medvedev frames relative to the class of finite frames, one can add two simple
axioms constraining numbers of successors in order to define the frame.

For the axiom set AX2, we have the following stronger result.

Theorem 3.6 (Absolute Definability of Medvedev Frames). For any frame
hW,Ri, the following are equivalent:

1. hW,Ri validates AX2;

2. hW,Ri is a Medvedev frame.

Proof. Assume hW,Ri validates AX2. Then hW,Ri validates AX1, so if we
can show that hW,Ri is finite, it is Medvedev frame by Theorem 3.5. Since
hW,Ri validates SepN and Grz, by Facts 2.2-2.3 it is a separative McKinsey
poset. Thus, as in the proof of Lemma 3.3, the f : W ! }(endhW,Ri) \ {;}
defined by f(w) = end(w) is injective. So if we suppose for reductio that
W is infinite, then endhW,Ri is also infinite. Since hW,Ri validates Con�1

N
and Uni, it satisfies (Con�1) and (Uni) by Fact 2.3, so it satisfies ([) by
Lemma 3.4.2. Now we will define an infinite sequence x1, x2, . . . of distinct
points from W such that end(xi) ✓ end(xi+1) and end(xi+1) is finite. Take
x1 to be any element of endhW,Ri. Having picked xn, since end(xn) is
finite and endhW,Ri infinite, we can pick a y 2 endhW,Ri \ end(xn). Then
by ([), there is an xn+1 such that end(xn+1) = end(xn) [ end(y). Since
end(y) = {y} and y 62 end(xn), it follows that xn+1 is distinct from xn. Since
end(xi) ✓ end(xi+1) and hW,Ri is a separative McKinsey poset, it follows
by Lemma 3.2.2 that xiR

�1
xi+1. Thus, we have an infinite R

�1-chain of
distinct points, which contradicts the assumption that Grz�1 is valid on
hW,Ri, by Fact 2.2.4. Hence hW,Ri is finite, which completes the proof.

By Theorems 3.6 and 1.6, the class of Medvedev frames is also definable
in the di↵erential tense language. In particular, the axioms

⇤⌃⌃�1(p ^ [ 6=]¬p) ! ⌃�1(p ^ [ 6=]¬p) and (p _ ¬[ 6=]¬p) ! ⌃�1⌃p

correspond to (Sep) and (Con�1), respectively.

4. Complementary Tense Axioms

It is evident from §3 that it is now su�cient for proving that some other
extended tense language can define the class of Medvedev frames that we
show it can define the properties (Sep) and (Con�1). For the complementary
tense language discussed in §1, this is done with the following axioms.
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Fact 4.1 (Complementary Axioms). For any frame hW,Ri:

1. (⌃�p ^�q) ! ⌃�(p ^ ⌃⇤q) is valid over hW,Ri i↵ R satisfies (Sep);8

2. (⌃p _ ⌃�p) ! ⌃�1⌃p is valid over hW,Ri i↵ R satisfies (Con�1).9

Proof. For part 1, from right to left, suppose hW,Ri satisfies (Sep) and for
some model M = hW,R, V i and x 2 W , M, x ✏ ⌃�p^�q, so there is a y such
that M, y ✏ p and not xRy, and (i) for all z such that not xRz, M, z ✏ q.
Since hW,Ri satisfies (Sep), it follows from not xRy that there is a y

0 with
yRy

0 such that for all y00 with y

0
Ry

00, not xRy

00, so M, y

00 ✏ q by (i). Thus,
M, y ✏ p^⌃⇤q, which with not xRy implies M, x ✏ ⌃�(p^⌃⇤q). From left
to right, suppose hW,Ri does not satisfy (Sep), so there are x, y such that not
xRy, but (ii) for all y0 with yRy

0 there is a y

00 with y

0
Ry

00 and xRy

00. Define a
modelM = hW,R, V i such that V (p) = {y} and V (q) = {z 2 W | not xRz}.
Then clearly M, x ✏ ⌃�p ^�q but M, x 2 ⌃�(p ^ ⌃⇤q) given (ii).

Part 2 is also straightforward.

Let us call the formulas in Fact 4.1 ‘SepC ’ and ‘Con�1
C ’, respectively. By

the same reasoning as in the proofs of Theorems 3.5 and 3.6, but now using
Fact 4.1 in place of Fact 2.3, we have the following.

Theorem 4.2 (Absolute Definability of Medvedev Frames). For any frame
hW,Ri, the following are equivalent:

1. hW,Ri validates Grz, Grz�1, Uni, SepC , and Con�1
C ;

2. hW,Ri is a Medvedev frame.

5. On Separativity

In several ways, the property (Sep) is more di�cult to handle than the prop-
erty (Con�1). For example, (Con�1) can be captured in the tense language
extended with only the universal modality ⌅ with the truth clause:

• M, w ✏ ⌅' i↵ for all v 2 W : M, v ✏ '.
As usual, define the existential modality by ⌥' := ¬⌅¬'.

Fact 5.1 (Definability with the Universal Modality). For any frame hW,Ri,
⌥p ! ⌃�1⌃p is valid over hW,Ri i↵ R satisfies (Con�1).

8With a modality ��1 for the complement of the converse of R instead of the comple-
ment of R itself, the defining formula can be simplified to ⌃��1

r ! ⌃⇤⌃��1
r.

9For definability relative to the class of reflexive frames, the defining formula can be
simplified to ⌃�p ! ⌃�1⌃p.
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However, (Sep) eludes the power of the universal modality. To see this,
recall that a p-morphism from a frame hW,Ri to a frame hW

0
, R

0
i is a func-

tion f : W ! W

0 such that for all x, y 2 W and y

0
2 W

0:

• if xRy, then f(x)R0
f(y) (homomorphism condition);

• if f(x)R0
y

0, then 9y 2 W : xRy and f(y) = y

0 (back condition).

Let us say that a tense morphism from hW,Ri to hW

0
, R

0
i is a function

f : W ! W

0 that is both a p-morphism from hW,Ri to hW

0
, R

0
i and a p-

morphism from hW,R

�1
i to hW

0
, R

0�1
i. As usual, hW 0

, R

0
i is a p-morphic

image of hW,Ri i↵ there is a surjective p-morphism from hW,Ri to hW

0
, R

0
i.

Similarly, let us say that hW 0
, R

0
i is a tense-morphic image of hW,Ri i↵ there

is a surjective tense morphism from hW,Ri to hW

0
, R

0
i.

Fact 5.2 (Separative Frames). The class of separative frames as in (Sep) is
closed under disjoint unions and R-generated subframes. However, it is not
closed under p-morphic images or even tense-morphic images.

Proof. Closure under taking disjoint unions is obvious and closure underR-
generated subframes is easy to check. For the failure of closure under tense-
morphic images, simply take the reflexive closure of the “forking” frame
h{x1, y1, y2}, {hx1, y1i, hx1, y2i}i, which is a separative frame, the reflexive
closure of the non-forking frame h{x, y}, {hx, yi}i, which is not separative,
and the surjective tense morphism {hx1, xi, hy1, yi, hy2, yi}.

Since the validity of formulas in the tense language with the universal
modality is preserved under taking tense-morphic images of frames (see [22]
for the analogous result for the unimodal language extended with the uni-
versal modality), Fact 5.2 implies the following.

Fact 5.3 (Undefinability of Separativity). The class of separative frames is
not definable in the tense language with the universal modality.

This is why we went beyond adding the universal modality and added the
complement modality �, with which the universal modality can be expressed
by ⇤'^�'. Unfortunately, adding the complement modality � to capture
separativity makes completeness proofs trickier, as explained in §6.

6. Considerations on Completeness

The cost of adding modalities like � is well-known [20, 21], but worth re-
peating in our story here. It becomes clear when we think of our languages
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as interpreted in models with di↵erent relations for the modalities. Suppose
we have a trimodal language with operators ⇤1, ⇤2, and ⇤3 interpreted in
trirelational models hW,R1, R2, R3, V i using the usual truth clauses:

• M, w ✏ ⇤i' i↵ for all v 2 W : if wRiv, then M, v ✏ '.
Suppose we want to construct for a logic a canonical model in which R2 is
the converse of R1, while R3 is the complement of R1. (Here we assume
familiarity with the theory of canonical models, as in [8, §4].) As is well
known, the converse part is no problem. The class of trirelational frames in
which R2 = R

�1
1 is defined by the conjunction of the axioms p ! ⇤1⌃2p and

p ! ⇤2⌃1p. Since these are Sahlqvist formulas, they are canonical, so the
canonical frames for logics with these axioms will be such that R2 = R

�1
1 .

By contrast, the complement part presents di�culties. Since the validity
of trimodal formulas is preserved under taking disjoint unions of trirelational
frames, we cannot define the class of frames in which R3 is the complement
of R1. We can define the class of frames in which R1 [R3 is an equivalence
relation, using the S5 axioms for the modality ⇤1,3 defined by ⇤1,3' :=
⇤1'^⇤3'. Since those axioms are Sahlqvist, the canonical frames for logics
with those axioms will be such that R1 [R3 is an equivalence relation; then
taking the submodel of the canonical model generated by a point w will give
us a model based on a frame in which R1 [R3 is the universal relation, R1,
R2, and R3 retain properties preserved under generated subframes—such as
R2 = R

�1
1 , (Sep), (Uni), and (Con�1)—and w satisfies the same formulas as

before.10 However, delicate work is required to not only make R1 [ R3 the
universal relation, but also make R1 \ R3 = ;, as required for R3 to be the
complement of R1, all the while preserving desired properties of the relations.
A “copying method” was developed by Vakarelov [38, 19] and generalized
by Goranko [20] in order to achieve this purpose while preserving many
standard first-order properties of the relations. But the situation becomes
more complicated when we add further requirements on the relations, such
as (Sep), (Uni), and (Con�1), not to mention second-order requirements on
R1 and R2 such as those imposed by the axioms Grz and Grz�1.

In light of these considerations, the nominal tense language may seem
to o↵er a simpler path. When the minimal nominal tense or modal logic is
formulated with a Gabbay-style rule, one can construct canonical models in
which every maximally consistent set contains a nominal [17, §5.2], which

10To be clear: the property (Con�1) of frames hW,Ri is not preserved under R-generated
subframes, though it is preserved under R[R

�1-generated subframes. In the trirelational
setting, we are thinking of (Con�1) as 8y8y

0
9x(yR2x ^ y

0
R2x). This property is indeed

preserved by generated (i.e., R1 [R2 [R3-generated) subframes of trirelational frames.
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allows pure axioms such as those in AX1 to enforce first-order properties on
the canonical frame. (Without the Gabbay-style rule, more work is required,
such as bulldozing the canonical model [7, §4].) However, since the axiom
set AX2 is only valid over finite frames, matters are not so simple. One may
think of AX2 as essentially AX1 plus the axioms Grz and Grz�1. As noted
in §2, by themselves the axioms of AX1 are no problem: by the general
completeness result for logics with pure axioms (Theorem 2.6), the minimal
nominal tense logic extended with AX1 is complete with respect to its class
of frames. By themselves the axioms Grz and Grz�1 in AX2 are also not a
problem: by a general completeness result of ten Cate [10, Thm. 8.2.13] and
known facts about these axioms, the minimal nominal tense logic extended
with Grz and Grz�1 is also complete with respect to its class of frames. The
question is if one can repeat these success stories for the whole of AX2.

7. Conclusion

There is a theme running through Theorems 3.6 and 4.2 and other examples
of the impressive expressive power of the tense language extended with nom-
inals or the complement modality—for example, that these languages can
define the order structure of the natural numbers up to isomorphism (see
[7, p. 61] and [21, p. 98]). The theme is that the nominals or complement
modality are used only to express certain first-order properties of the rela-
tion R that are inexpressible in the tense language, while the second-order
heavy lifting is done by formulas in the basic tense language, such as the
Grzegorczyk or Löb axioms. Of course, there are many simple first-order
properties of directed graphs that the tense languages with nominals or the
complement modality cannot express, so success is not a foregone conclu-
sion. But in a number of important cases, these languages can express the
first-order properties we need. For Theorems 3.6 and 4.2, the first-order
properties we need are just that R is separative and that any two points
have a common R-predecessor. The basic tense language does the rest.

Our results raise a number of related questions. We have focused on the
issue of definability with extended modal languages of the class of Medvedev
frames. What about the class of Skvortsov frames? And what if we consider
frames that do not contain all nonempty subsets of a set S, but only those
subsets of cardinality greater than some fixed   |S|, as in [35]?

Let us finally return to the “tantalizing disjunction” at the end of §1. Lo-
gicians of the Sofia school, the Amsterdam school, and others have developed
a set of techniques for proving the frame completeness (or incompleteness)
of modal logics with nominals [7, 17, 10], the di↵erence modality [33], or
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the complement modality [19, 18, 20]. In addition, techniques for proving
completeness and filtration for the logic Grz are well known [9],11 and even
the nominal extension of Grz has been studied [6]. Could some of these
techniques be used to prove the frame completeness of a logic extending
the minimal nominal, di↵erential, or complementary tense logics with our
Medvedev-defining axioms, perhaps adding some recursive set of Medvedev-
valid axioms? And what about the logic of Medvedev frames in the basic
tense language without extra devices—is it finitely or at least recursively ax-
iomatizable? We leave these questions as open problems for future research.
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Appendix

In this appendix, we prove the claims made in Remark 2.1. As usual, K4

is the smallest normal unimodal logic containing the 4 axiom, ⇤p ! ⇤⇤p.
Let K4Uni be the smallest normal unimodal logic containing 4 and

(⌃(p1 ^⇤q) ^ ⌃(p2 ^⇤q)) ! ⌃(⌃p1 ^ ⌃p2 ^⇤⌃q). (Uni)

We claim that for each n � 2, the following is a theorem of K4Uni:

(
^

1in

⌃(pi ^⇤q)) ! ⌃(
^

1in

⌃pi ^⇤⌃q). (II)

For induction, assuming we can derive (II), we will show that we can derive

(
^

1in+1

⌃(pi ^⇤q)) ! ⌃(
^

1in+1

⌃pi ^⇤⌃q). (III)

Let ' :=
V

1in
⌃pi,  := ⌃q, and  0 :=  _ q. Then (II) becomes

(
^

1in

⌃(pi ^⇤qi)) ! ⌃(' ^⇤ ). (IV)

11Moreover, as an anonymous referee pointed out, we can see that GrzUni, the smallest
normal unimodal logic containing both the Grz and Uni axioms, is characterized by a class
of finite frames as follows. First, by Remark 2.4, GrzUni is equal to the least normal
extension of Grz with the Gödel translation of the superintuitionistic Kreisel-Putnam
axiom. This implies that GrzUni is the greatest modal companion of the Kreisel-Putnam
logic [12, Corollary 9.64]. Second, the Kreisel-Putnam logic is characterized by a class
of finite frames [16], and this property transfers from any superintuitionistic logic to its
greatest modal companion [12, p. 328]. (Incidentally, it was also claimed in [16] that
Medvedev’s logic is decidable, but the argument contains a mistake explained in [37].)
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As a substitution instance of (Uni), we have

(⌃(' ^⇤ 0) ^ ⌃(pn+1 ^⇤ 0)) ! ⌃(⌃' ^ ⌃pn+1 ^⇤⌃ 0)). (V)

The antecedent of (V) is clearly derivable from that of (III) using (IV). Thus,
to show that (III) is derivable, it su�ces to establish the derivability of

⌃(⌃' ^ ⌃pn+1 ^⇤⌃ 0) ! ⌃(
^

1in+1

⌃pi ^⇤⌃q). (VI)

Unpacking ' and  0, (VI) works out to

⌃(⌃(
^

1in

⌃pi) ^ ⌃pn+1 ^⇤⌃(⌃q _ q)) ! ⌃(
^

1in+1

⌃pi ^⇤⌃q),

which is easily seen to be a theorem of K4.
For the second part of Remark 2.1, we claim that for each m � 3, the

following formula is a theorem of K4Uni:

�
(

^

1im

⌃⇤ri)^¬⌃(
_

1im�1

(ri ^ rm)
�
! ⌃(

^

1im�1

⌃⇤ri ^¬⌃⇤rm). (VII)

First, observe that the following is a theorem of K4:

�
(

^

1im

⌃⇤ri)^¬⌃(
_

1im�1

(ri ^ rm)
�
!

� ^

1im�1

⌃(⇤ri ^⇤¬rm)
�
. (VIII)

Next, observe that as an instance of (II) for n = m� 1, substituting ⇤ri for
pi and ¬rm for q, we have:

� ^

1im�1

⌃(⇤ri ^⇤¬rm)
�
! ⌃(

^

1im�1

⌃⇤ri ^⇤⌃¬rm). (IX)

Putting together (VIII), (IX), and ⇤⌃¬rm ! ¬⌃⇤rm, we can derive (VII).
From here it is not di�cult to show that for 1 < k  m, we can also derive

�
(

^

1im

⌃⇤ri) ^ ¬⌃(
_

1i,jm, i 6=j

(ri ^ rj)
�
! ⌃(

^

1ik�1

⌃⇤ri ^
^

kjm

¬⌃⇤rj).

Finally, let GrzUni be the smallest normal unimodal logic containing
Grz and Uni, and let Medv be the unimodal logic of Medvedev frames.

Proposition 7.1. There are continuum-many normal unimodal logics be-
tween GrzUni and Medv.
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The following proof combines observations of Matthew Harrison-Trainor
and James Walsh (personal communication) together with the well-known
results of Fine [13]. We will assume that the reader has Fine’s paper at
hand, so we will not repeat his definitions.

Proof. Consider the frames F0, F1, etc. in [13]. Let us show that for
each Fn and Medvedev frame G, there is no p-morphism from G onto Fn.
Suppose for reductio that there is such a p-morphism f . Let us treat G as
h}(S)\{;},◆i, and let Rn be the edge relation in Fn. Since f is onto, for the
endpoints 1 and 2 in Fn there are x, y 2 G such that f(x) = 1 and f(y) = 2.
Then we can pick {a} ✓ x and {b} ✓ y in G, and we must have f({a}) = 1
and f({b}) = 2 by the homomorphism condition on f . In addition, {a, b} is
in G, and {a, b} ◆ {a} and {a, b} ◆ {b}, so f({a, b})Rn1 and f({a, b})Rn2.
It follows by the definition of Fn that either f({a, b}) = 0 or f({a, b}) � 5.
In either case, f({a, b})Rn3 or f({a, b})Rn4. Where k 2 {3, 4}, suppose
f({a, b})Rnk. Then by the back condition on f , there is a z 2 G such that
{a, b} ◆ z and f(z) = k. But the only candidates for z are {a, b}, {a}, and
{b}, and f does not map any of these sets to k, so we have a contradiction.

Since there is no p-morphism from a Medvedev frame onto Fn, and the
class of Medvedev frames is closed under taking point-generated subframes,
it follows by Lemma 1 of [13, §2] that the frame-formula AFn is unsatisfiable
over any Medvedev frame. Thus, ¬AFn 2 Medv for each n 2 N. For X ✓ N,
let GrzUniX be the least normal unimodal extension of GrzUni containing
¬AFn for each n 2 X, so GrzUniX ✓ Medv.

Finally, it is easy to see that each Fn validates GrzUni, by virtue of
being a finite poset that satisfies the first-order correspondent for Uni given
in Fact 2.3.3. Thus, by the same argument as in Theorem 1 of [13], for any
distinct X,Y ✓ N, we have GrzUniX 6= GrzUniY.
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