Skip to main content
Log in

Pattern Recognition in Non-Kolmogorovian Structures

  • Published:
Foundations of Science Aims and scope Submit manuscript

Abstract

We present a generalization of the problem of pattern recognition to arbitrary probabilistic models. This version deals with the problem of recognizing an individual pattern among a family of different species or classes of objects which obey probabilistic laws which do not comply with Kolmogorov’s axioms. We show that such a scenario accommodates many important examples, and in particular, we provide a rigorous definition of the classical and the quantum pattern recognition problems, respectively. Our framework allows for the introduction of non-trivial correlations (as entanglement or discord) between the different species involved, opening the door to a new way of harnessing these physical resources for solving pattern recognition problems. Finally, we present some examples and discuss the computational complexity of the quantum pattern recognition problem, showing that the most important quantum computation algorithms can be described as non-Kolmogorovian pattern recognition problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. An orthomodular lattice \({\mathcal{L}}\), is an orthocomplemented lattice satisfying that for any a, b and c, if \(a\le c\), then \(a\vee (a^{\bot }\wedge c)=c\). We refer the reader to Kalmbach (1983) for a detailed exposition.

  2. In the Hilbert space case, projection operators are in one to one correspondence to closed subspaces (thus, these notions are interchangeable). Representing “\(\vee\)” by the closure of the sum of two subspaces, “\(\wedge\)” by its intersection, “\((\ldots )^{\bot }\)” by taking the orthogonal complement of a given subspace and “\(\le\)” by subspace inclusion, it is possible to show that subspaces (and thus, projections) possess an orthomodular lattice structure.

  3. Notice that these operators could be quantum effects without loss of generality.

  4. In practical implementations, these states and the discrimination problem, could be restricted to a concrete space-time region.

References

  • Aaronson, S., & Ambainis, A. (2014). The need for structure in quantum speedups. Theory of Computing, 10(6), 133–166.

    Article  Google Scholar 

  • Abramsky, S. (2013). Relational databases and Bell’s theorem. In V. Tannen, L. Wong, L. Libkin, W. Fan, W.-C. Tan, & M. Fourman (Eds.), In search of elegance in the theory and practice of computation essays dedicated to Peter Bunema. Lecture notes in computer science (Vol. 8000). London: Springer.

    Google Scholar 

  • Aerts, D. (2002). Reality and probability: introducing a new type of probability calculus. In D. Aerts, T. Durt, & M. Czachor (Eds.), Probing the structure of quantum & mechanics: Nonlinearity, nonlocality, computation and axiomatics. Singapore: World Scientific Publishing Co. Pte. Ltd.

    Chapter  Google Scholar 

  • Aerts, D., & Sassoli de Bianchi, M. (2015). The unreasonable success of quantum probability I: Quantum measurements as uniform fluctuations. Journal of Mathematical Psychology, 67, 51–75.

    Article  Google Scholar 

  • Aerts, D., Sozzo, S., & Veloz, T. (2015). New fundamental evidence of non-classical structure in the combination of natural concepts. Philosophical Transactions of the Royal Society A, 374, 20150095.

    Article  Google Scholar 

  • Aïmeur, E., Brassard, G., & Gambs, S. (2006). Machine learning in a quantum world. In L. Lamontagne & M. Marchand (Eds.), Canadian AI 2006, LNAI 4013 (pp. 431–442). Berlin: Springer.

    Google Scholar 

  • Al-Adilee, A. M., & Nánásiová, O. (2009). Copula and s-map on a quantum logic. Information Sciences, 179, 4199–4207.

    Article  Google Scholar 

  • Barnum, H., & Wilce, A. (2011). Information processing in convex operational theories. Electronic Notes in Theoretical Computer Science, 270(1), 3–15.

    Article  Google Scholar 

  • Barnum, H., Barret, J., Leifer, M., & Wilce, A. (2007). A generalized no-broadcasting theorem. Physical Review Letters, 99, 240501.

    Article  Google Scholar 

  • Barnum, H., Duncan, R., & Wilce, A. (2013). Symmetry, compact closure and dagger compactness for categories of convex operational models. Journal of Philosophical Logic, 42, 501–523.

    Article  Google Scholar 

  • Beltrametti, E. G., & Cassinelli, G. (1981). The logic of quantum mechanics. Reading: Addison-Wesley.

    Google Scholar 

  • Bengtsson, I., & Zyczkowski, K. (2006). Geometry of quantum states: An introduction to quantum entanglement. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Bishop, C. (2006). Pattern recognition and machine learning. Simgapore: Springer.

    Google Scholar 

  • Bosyk, G. M., Zozor, S., Holik, F., Portesi, M., & Lamberti, P. W. (2016). A family of generalized quantum entropies: Definition and properties. Quantum Information Processing, 15(8), 3393–3420.

    Article  Google Scholar 

  • Bratteli, O., & Robinson, D. W. (1997). Operator algebras and quantum statistical mechanics (Vol. 1). Berlin: Springer.

    Book  Google Scholar 

  • Buhagiar, D., Chetcuti, E., & Dvurečenskij, A. (2009). On Gleason’s Theorem without Gleason. Foundations of Physics, 39, 550–558.

    Article  Google Scholar 

  • Chen, T. L., & Chen, F. Y. (2016). An intelligent pattern recognition model for supporting investment decisions in stock market. Information Sciences, 346, 261–274.

    Article  Google Scholar 

  • Clifton, R., & Halvorson, H. (2001). Entanglement and open systems in algebraic quantum field theory. Studies in History and Philosophy of Modern Physics, 32(1), 1–31.

    Article  Google Scholar 

  • Dalla Chiara, M. L., Giuntini, R., & Greechie, R. (2004). Reasoning in quantum theory. Dordrecht: Kluwer Academic Publishers.

    Book  Google Scholar 

  • D’Espagnat, D. (1976). Conceptual foundations of quantum mechanics. Reading, MA: Benjaming.

    Google Scholar 

  • Döring, A. (2005). Kochen–Specker theorem for von Neumann algebras. International Journal of Theoretical Physics, 44(2), 139–160.

    Article  Google Scholar 

  • Gleason, A. (1957). Measures on the closed subspaces of a Hilbert space. Journal of Mathematics Mechanics, 6, 885–893.

    Google Scholar 

  • Gudder, S. P. (1979). Stochastic methods in quantum mechanics. New York: Elsevier North Holland.

    Google Scholar 

  • Guţă, M., & Kotlowski, W. (2010). Quantum learning: Asymptotically optimal classification of qubit states. New Journal of Physics, 12, 12303.

    Google Scholar 

  • Haag, R. (1996). Local quantum physics fields, particles, algebras. Book texts and monographs in physics. Berlin: Springer.

    Google Scholar 

  • Halvorson, H., & Müger, M. (2006). Algebraic quantum field theory. In J. B. Butterfield & J. E. Earman (Eds.), Philosophy of physics (pp. 731–922). Amsterdam: Elsevier.

    Google Scholar 

  • Hamhalter, J. (2003). Quantum measure thoery. Berlin: Springer.

    Book  Google Scholar 

  • Holik, F., Bosyk, G., & Bellomo, G. (2015). Quantum information as a non-Kolmogorovian generalization of Shannon’s theory. Entropy, 17, 7349–7373.

    Article  Google Scholar 

  • Holik, F., Plastino, A., & Saenz, M. (2016). Natural information measures in Cox’ approach for contextual probabilistic theories. Quantum Information & Computation, 16(1 & 2), 0115–0133.

    Google Scholar 

  • Horn, D., & Assaf, G. (2002). Algorithm for data clustering in pattern recognition problems based on quantum mechanics. Physical Review Letters, 88(1), 018702.

    Article  Google Scholar 

  • Kalmbach, G. (1983). Orthomodular lattices. San Diego: Academic Press.

    Google Scholar 

  • Kochen, S., & Specker, E. (1967). On the problem of hidden variables in quantum mechanics. Journal of Mathematics and Mechanics, 17, 59–87.

    Google Scholar 

  • Kolmogorov, A. N. (1933). Foundations of probability theory. Berlin: Springer.

    Google Scholar 

  • Ledda, A., & Sergioli, G. (2010). Towards quantum computational logics. International Journal of Theoretical Physics, 49(12), 3158–3165.

    Article  Google Scholar 

  • Monràs, A., Sentís, G., & Wittek, P. (2016). Inductive quantum learning: Why you are doing it almost right. arXiv:1605.07541v1

  • Nielsen, M. A., & Chuang, I. L. (2010). Quantum computation and quantum information. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Rédei, M. (1998). Quantum logic in algebraic approach. Dordrecht: Kluwer Academic Publishers.

    Book  Google Scholar 

  • Rédei, M., & Summers, S. (2007). Quantum probability theory. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 38(2), 390–417.

    Article  Google Scholar 

  • Sasaki, M., & Carlini, A. (2002). Quantum learning and universal quantum matching machine. Physical Review A, 66, 022303.

    Article  Google Scholar 

  • Sasaki, M., Carlini, A., & Jozsa, R. (2001). Quantum template matching. Physical Review A, 64, 022317.

    Article  Google Scholar 

  • Schuld, M., Sinayskiyab, I., & Petruccione, F. (2014). An introduction to quantum machine learning. Contemporary Physics, 56(2), 172–185.

    Article  Google Scholar 

  • Schützhold, R. (2003). Pattern recognition on a quantum computer. Physical Review A, 67, 062311.

    Article  Google Scholar 

  • Sentís, G., Guţă, M., & Adesso, G. (2015). Quantum learning of coherent states. EPJ Quantum Technology, 2, 17.

    Article  Google Scholar 

  • Sergioli, G., Santucci, E., Didaci, L., Miszczak, J., & Giuntini, R. A quantum-inspired version of the nearest mean classifier. Soft Computing.

  • Svozil, K. (2009). Quantum scholasticism: On quantum contexts, counterfactuals, and the absurdities of quantum omniscience. Information Sciences, 179, 535–541.

    Article  Google Scholar 

  • Trugenberger, C. A. (2002). Quantum pattern recognition. Quantum Information Processing, 1(6), 471–493.

    Article  Google Scholar 

  • von Neumann, J. (1996). Mathematical foundations of quantum mechanics (12th ed.). Princeton: Princeton University Press.

    Google Scholar 

  • Yang, Y. G., Tian, J., Lei, H., Zhou, Y. H., & Shi, W. M. (2016). Novel quantum image encryption using one-dimensional quantum cellular automata. Information Sciences, 345, 257–270.

    Article  Google Scholar 

  • Yngvason, J. (2005). The role of type III factors in quantum field theory. Reports on Mathematical Physics, 55, 135–147.

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by CONICET and UNLP (Argentina), the Project “Computational quantum structures at the service of pattern recognition: modeling uncertainty” (CRP-59872) funded by Regione Autonoma della Sardegna, L.R. 7/2007, Bando 2012 and the FIRB project Structures and Dynamics of Knowledge and Cognition, Cagliari: F21J12000140001, founded by Italian Ministery of Education. The authors thank anonymous reviewers for useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Holik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holik, F., Sergioli, G., Freytes, H. et al. Pattern Recognition in Non-Kolmogorovian Structures. Found Sci 23, 119–132 (2018). https://doi.org/10.1007/s10699-017-9520-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10699-017-9520-4

Keywords

Navigation