Skip to main content
Log in

A Laver-like indestructibility for hypermeasurable cardinals

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

We show that if \(\kappa \) is \(H(\mu )\)-hypermeasurable for some cardinal \(\mu \) with \(\kappa < \mathrm {cf}(\mu ) \le \mu \) and GCH holds, then we can extend the universe by a cofinality-preserving forcing to obtain a model \(V^*\) in which the \(H(\mu )\)-hypermeasurability of \(\kappa \) is indestructible by the Cohen forcing at \(\kappa \) of any length up to \(\mu \) (in particular \(\kappa \) is \(H(\mu )\)-hypermeasurable in \(V^*\)). The preservation of hypermeasurability (in contrast to preservation of mere measurability) is useful for subsequent arguments (such as the definition of Radin forcing). The construction of \(V^*\) is based on the ideas of Woodin (unpublished) and Cummings (Trans Am Math Soc 329(1):1–39, 1992) for preservation of measurability, but suitably generalised and simplified to achieve a more general result. Unlike the Laver preparation (Isr J Math 29(4):385–388, 1978) for a supercompact cardinal, our preparation non-trivially increases the value of \(2^{\kappa ^+}\), which is equal to \(\mu \) in \(V^*\) (but \(2^\kappa =\kappa ^+\) is still true in \(V^*\) if we start with GCH).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abraham, U.: Aronszajn trees on \(\aleph_2\) and \(\aleph_3\). Ann. Pure Appl. Log. 24(3), 213–230 (1983)

    Article  MATH  Google Scholar 

  2. Apter, A.W.: Strong cardinals can be fully Laver indestructible. Math. Log. Q. 48, 499–507 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cummings, J.: A model in which GCH holds at successors but fails at limits. Trans. Am. Math. Soc. 329(1), 1–39 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cummings, J.: Iterated forcing and elementary embeddings. In: Foreman, M., Kanamori, A. (eds.) Handbook of Set Theory, vol. 2. Springer, Dordrecht (2010)

    Google Scholar 

  5. Cummings, J., Foreman, M.: The tree property. Adv. Math. 133(1), 1–32 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Friedman, S.D., Honzik, R.: The tree property at the \(\aleph_{2n}\)’s and the failure of the SCH at \(\aleph_\omega \). Ann. Pure Appl. Log. 166(4), 526–552 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Friedman, S.D., Honzik, R., Stejskalová, S.: The tree property at \(\aleph_{\omega +2}\) with a finite gap. Submitted (2017)

  8. Friedman, S.D., Honzik, R., Zdomskyy, L.: Fusion and large cardinal preservation. Ann. Pure Appl. Log. 164, 1247–1273 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Friedman, S.D., Thompson, K.: Perfect trees and elementary embeddings. J. Symb. Log. 73(3), 906–918 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gitik, M.: The negation of singular cardinal hypothesis from \(o(\kappa ) = \kappa ^{++}\). Ann. Pure Appl. Log. 43, 209–234 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gitik, M., Merimovich, C.: Possible values for \(2^{\aleph_n}\) and \(2^{\aleph_\omega }\). Ann. Pure Appl. Log. 90(1–3), 193–241 (1997)

    Article  MATH  Google Scholar 

  12. Gitik, M., Shelah, S.: On certain indestructibility of strong cardinals and a question of Hajnal. Arch. Math. Log. 28, 35–42 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  13. Golshani, M.: Tree property at all regular even cardinals. Preprint (2017)

  14. Hamkins, J.D.: The lottery preparation. Ann. Pure Appl. Log. 101, 103–146 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Honzik, R., Verner, J.: A lifting argument for the generalized Grigorieff forcing. Notre Dame J. Form. Log. 57(2), 221–231 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Johnstone, T.S.: Strongly unfoldable cardinals made indestructible. J. Symb. Log. 73(4), 1215–1248 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kanamori, A.: Perfect-set forcing for uncountable cardinals. Ann. Math. Log. 19, 97–114 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  18. Laver, R.: Making the supercompactness of \(\kappa \) indestructible under \(\kappa \) directed closed forcing. Isr. J. Math. 29(4), 385–388 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  19. Merimovich, C.: A power function with a fixed finite gap everywhere. J. Symb. Log. 72(2), 361–417 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mitchell, W.J.: Aronszajn trees and the independence of the transfer property. Ann. Math. Log. 5(1), 21–46 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  21. Shalom, Y.B.: On the Woodin construction of failure of GCH at a measurable cardinal. Appeared on arXiv on 25.6.2017

Download references

Acknowledgements

The author wishes to thank to Sy Friedman and Š. Stejskalová for helpful discussions regarding this paper. In particular, the proof of Lemma 2.3(ii) was suggested by Sy Friedman.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radek Honzik.

Additional information

The author was supported by FWF/GAČR Grant I 1921-N25.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Honzik, R. A Laver-like indestructibility for hypermeasurable cardinals. Arch. Math. Logic 58, 275–287 (2019). https://doi.org/10.1007/s00153-018-0637-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-018-0637-0

Keywords

Mathematics Subject Classification

Navigation