Intelligent Diagnosis Systems

Karthik Balakrishnan & Vasant Honavar !
Artificial Intelligence Research Group
Department of Computer Science
[owa State University
Ames, Towa 50011-1040, U.S.A.
balakris@cs.iastate.edu, honavar@cs.iastate.edu
http://www.cs.iastate.edu/~honavar/aigroup.html

! This research was partially supported through grants from the John Deere Foundation and
the National Science Foundation (NSF IRI-9409580) to Vasant Honavar.

Abstract

This paper examines and compares several different approaches to the design of intel-
ligent systems for diagnosis applications. These include expert systems (or knowledge-
based systems), truth (or reason) maintenance systems, case-based reasoning systems,
and inductive approaches like decision trees, artificial neural networks (or connection-
ist systems), and statistical pattern classification systems. Each of these approaches is
demonstrated through the design of a system for a simple automobile fault diagnosis
task. The paper also discusses the domain characteristics and design and performance
requirements that influence the choice of a specific technique (or a combination of tech-
niques) for a given application.

Keywords: Intelligent Diagnosis, Expert Systems, Model-Based Systems Case-
Based Reasoning, Neural Networks, Decision Trees, Knowledge Acquisition

1 INTRODUCTION

The last few decades have seen a proliferation of intelligent systems for diagnosis, ad-
vising, and related applications (Dean et al., 1995; Durkin, 1994; Ginsberg, 1993; Luger
& Stubblefield, 1993; Puppe, 1993; Rich & Knight, 1991; Russell & Norvig, 1995; Ste-
fik, 1995; Tanimoto, 1995; Winston, 1992). Intelligent systems for diagnosis have been
used in a variety of domains: plant disease diagnosis, crop management problem diag-
nosis, credit evaluation and authorization, financial evaluation, identification of software
and hardware problems and integrated circuit failures, troubleshooting of electrical, me-
chanical and electronic equipment, medical diagnosis, fault-detection in nuclear power
systems, oil exploration, prospecting, seismic studies, etc. Despite the great variety of
approaches and technologies used in the design of such systems, they all address the
same pattern classification problem: the task of assigning a given input (e.g., a pattern,
image, set of observations, etc.) to some category (or class). Diagnosis systems classify
the observed symptoms as being caused by some specific problem (diagnosis class) while
advising systems perform such a classification and suggest corrective remedies. Although
this paper focuses on intelligent systems for diagnosis applications, most of the general
principles and observations from the design of such systems apply to other tasks that
involve pattern classification as well.

We begin with some definitions of diagnosis from the Webster’s Dictionary. Diagnosis
is defined as:

1. the act or process of deciding the nature of a disease or a problem by examination of
the symptoms

2. a careful examination and analysis of the facts in an attempt to explain or understand
something [a diagnosis of the economy]

3. a decision or opinion based on such an examination
4. a short scientific description for taxonomic classification

In short, a diagnosis system is one that is capable of identifying the nature of a
problem by examining the observed symptoms. The output of the system is a diagnosis
(and possibly an explanation or justification of the same). In many applications of
interest, it is desirable for the system to not only identify the possible causes of the
problem, but also propose suitable remedies. Such systems are said to be capable of
advising.

Typically a diagnosis system is provided a set of symptoms (observations or mea-
surements encoded in some machine-readable form) as input. The system’s task is
to identify a probable cause that could explain the observed symptoms. In order to
perform this function, a diagnosis system obviously needs adequate knowledge of the
domain. The necessary knowledge may be engineered into the system by its designers or

the system may be endowed with the ability to acquire the necessary domain knowledge
on its own, through experience. The former approach, referred to as knowledge engi-
neering, is typically used in the construction of the diagnostic rules for expert systems
or knowledge-based systems. The latter approach relies on the use of machine learn-
ing techniques for automated knowledge acquisition. Artificial Intelligence (Al) offers a
broad spectrum of approaches to intelligent diagnosis, each with its own strengths and
weaknesses, depending (among other things) on the nature of the diagnosis task, and
the type and amount of domain knowledge that is available. This paper examines and
compares various approaches to the design of intelligent diagnosis systems, emphasising
their strengths and limitations. This analysis also suggests interesting possibilities for
hybrid techniques that combine different approaches fruitfully.

The rest of the paper is organized as follows: section 2 develops a simple example
of a diagnosis problem for the electrical system of an automobile. The purpose of
this example is two-fold. First, it helps clarify the different elements that go into the
formulation of a diagnosis problem. Second, the same example is used to illustrate
several different approaches to diagnosis. Section 3 gives a brief overview of the different
approaches to diagnosis. Sections 4 through 6 examine expert systems, model-based
systems, and case-based approaches to diagnosis. Section 7 presents an overview of
inductive approaches while sections 8 through 10 present decision trees, neural networks,
and statistical approaches in the context of diagnosis. Section 11 concludes with a
summary and discussion of interesting research directions for building hybrid systems.

2 A SAMPLE DIAGNOSIS TASK

Consider a company that manufactures automobiles. In order to provide better customer
service and support, let us assume that the company has set up telephone help lines to
diagnose automobile malfunctions experienced by their customers. For example, the
company might expect to receive a call from a customer complaining that his engine
does not start. The company expects to help the user by diagnosing the cause of the
problem. Suppose the call is answered by a human expert (adept at diagnosing such
automobile problems), who knows through experience or knowledge that automobile
engines will not start if either the ignition, or the battery, or both are faulty. (Note that
we ignore other possible causes like faulty spark-plugs, carburetor, fuel injector, etc., to
keep the discussion simple.) To pinpoint the exact source of the problem, the expert
might use her knowledge that if the battery is faulty the headlights won’t work either.
Then she might ask the user to try turning on his headlights. If she is informed that
they work, by simple elimination she would diagnose the problem as faulty ignition, and
if they don’t, she would suggest that the user might have a faulty battery.

Since human expertise is expensive and often prone to errors (e.g., due to stress,
fatigue, etc.) the company might be interested in an intelligent diagnosis system that

could play the role of the human expert. In order to be useful in practice, such a
system would have to be capable of diagnosing faults with accuracy comparable to that
of a human expert under identical conditions. Let us now formulate a sample diagnosis
problem for automobile electrical system failures. To keep the problem simple, let us
assume that we are only concerned with the possible malfunctions or failures of the
following components:

e Battery

e Bulbs (headlight)
e Wiper Motor
e Ignition

In other words, the system has to identify problems arising from a failure of one
or more of these components. For example, headlights will not work if the bulbs fail.
Hence, if we observe that the headlights don’t work, we might diagnose that the bulbs
are faulty. To keep the example simple, we further assume that the relevant observable
events or symptoms are restricted to the following:

e Headlights work/don’t work
e Engine starts/doesn’t start
e Wipers work/don’t work

We should point out that this specification of the problem assumes that the only
causes of the symptoms are the batteries, bulbs, wiper motor, and ignition. For example,
if the engine does not start we assume that the fault lies either with the battery or the
ignition only; we ignore other possible causes like the improper injection of the fuel-air
mixture, worn-out spark plugs, etc. We also assume that the wipers and headlights are
tested without starting the engine (i.e., they are powered by the battery). This scenario,
albeit contrived, simplifies the discussion that follows. For simplicity, we also assume
that both the headlight bulbs fail, if at all. Given the observed symptoms, the diagnosis
system then has the task of ascribing the symptoms to the failure of one (or more) of the
components. In passing, let us stress that this diagnosis task is overly simplified: real-
world problems can involve hundreds of observable symptoms involving a large number
of components. However, as we shall see, the general principles remain the same.

3 DIAGNOSIS SYSTEMS: AN OVERVIEW OF AP-
PROACHES

Our objective is to build a system that produces accurate diagnosis efficiently. How will
the system come to know of the relationship between the observed symptoms and the
consequent diagnosis? How will the system represent this relationship? How will it use
this representation for diagnosing faults? The different approaches to diagnosis can be
distinguished based on how these questions are addressed. Consider a scenario in which
a model of the domain is available. Such a model explicitly represents the structure of
the system, i.e., its constituent components and their organization (Mozetic, 1992). A
diagnosis problem arises when the system’s observed behavior conflicts with the system’s
expected behavior, and the task is to identify the (faulty) system component(s) that
explain the anomaly. In our diagnosis example, since the automobile was designed and
constructed by a group of engineers, we have available a more or less exact model of
the functioning of the automobile. For example, the automobile was designed and built
with an engine that could be started by turning the ignition. For the engine to start
up, fuel-air mixture must be injected into the combustion chamber and the ignition
must be cranked thereby allowing an electrical current to flow from the battery to the
spark-plugs. The spark-plug produces a spark, igniting the air-fuel mixture and starting
the engine, etc. Now if we have this model of the automobile available to us and the
engine fails to start, we can easily trace the problem to either a faulty ignition system
or a faulty battery (assuming the problem is localized to the electrical system). Based
on further information (e.g., concerning the functioning of the headlights), one could
possibly diagnose the exact cause. This is the principle behind model-based diagnosis
systems (Durkin, 1994; Mozetic, 1992; Puppe, 1993). Reason maintenance systems
(Forbus & de Kleer, 1993) can be used in model-based diagnosis and one such approach
is illustrated in section 5.

In many practical scenarios precise models of the domain may be unavailable. For
example, we do not have a precise model of the response of the human body to various
disease causing agents. Medical diagnosis is therefore typically not model-based, or at
least not entirely. A common practice in such scenarios is to rely on heuristic knowledge
about the domain. Human experts are asked to summarize their knowledge (gained
through experience) in the form of qualitative principles. These principles can then be
codified in a knowledge-based system. Thus the system models the diagnostic reasoning
of human experts. The efficacy of this approach obviously depends on the faithfulness of
the encoding as well as the quality of the experts’ domain experience. Notice that these
principles are as perceived by the expert and the actual system’s behavior (in this case
the automobile’s electrical system) is not explicitly modeled. Hence this approach is of
considerable practical value in domains where a precise model is unavailable. FEzpert
systems are popular examples of such systems and are typically built through a careful,

tedious, and often expensive process of knowledge engineering (Durkin, 1994; Puppe,
1993; Stefik, 1995). Knowledge engineering refers to the task of eliciting and codifying
the knowledge of the domain expert in a form that can be used by the system. Some
difficulties associated with knowledge engineering are: experts are often unable to artic-
ulate their reasoning process sufficiently precisely to be encoded in a form usable by a
machine; different experts often have different ways of approaching the same problem:;
lack of precision, combined with the fact that diagnostic rules of thumb are elicited from
experts at different points in time (and perhaps in different contexts) can often lead to
internal inconsistencies in an evolving knowledge base. Consistency maintenance in large
scale evolving knowledge bases remains an open research problem. A simple example of
an expert system for diagnosis is presented in section 4.

One approach which attempts to circumvent the difficult task of extracting and
codifying the domain knowledge of the expert relies on building a large repository of
sample diagnoses or cases (Kolodner, 1993). When presented with a diagnostic problem
the system attempts to solve it by identifying one or more scenarios with known diagnoses
from its repository of cases. Unlike model-based systems and expert systems, case-
based systems neither model the domain knowledge nor the diagnostic reasoning of
the domain expert. Instead, the knowledge is implicitly represented in the repository of
cases. Clearly, the performance of case-based systems critically depends on the adequacy
as well as organization of the collection of cases and the procedures used for searching
the collection for cases that most closely match a given diagnostic scenario. A simple
case-based diagnosis system is presented in section 6.

The difficulties associated with knowledge engineering have, in recent years, stimu-
lated a great deal of research in learning systems. A learning system is essentially one
that is capable of improving its performance at a given task (or a set of tasks) through
experience (Honavar, 1994; Langley, 1995; Michalski, 1983; Mitchell, 1997; Simon, 1983;
Uhr, 1973). A wide variety of learning systems are in common use: symbolic artificial
intelligence systems (Buchanan & Wilkins, 1993; Langley, 1995; Mitchell, 1997; Shav-
lik & Dietterich, 1990), artificial neural networks or connectionist networks (Gallant,
1993; Hassoun, 1995; Kung, 1993), statistical pattern classification systems (Duda &
Hart, 1973; Fukunaga, 1990; Ripley, 1996), syntactic pattern classification systems (Fu,
1982; Gonzalez & Thomason, 1978; Miclet, 1986), evolutionary systems (Goldberg, 1989;
Holland, 1992; Koza, 1992; Michalewicz, 1992; Mitchell, 1996), etc. A detailed discus-
sion of the different approaches to machine learning is beyond the scope of this paper.
The interested reader is referred to (Honavar, 1994; Hutchinson, 1994; Langley, 1995;
Mitchell, 1997) for such a discussion. Of particular interest for diagnosis applications
are inductive learning systems. Unlike systems crafted through knowledge engineering,
inductive learning systems have the ability to eztract the domain knowledge from exam-
ples of problem-solving behavior. For example, if we have a case history of user reported
problems and the diagnosis proposed by an expert for each of those cases, we could use
an inductive system to extract the principles that approximately model the relation-

ships between the problems and the corresponding diagnoses. Inductive approaches are
particularly suited for domains in which principles are hard to formalize (weather pre-
diction, medical diagnosis etc.) or where experts are few (space exploration etc.). Some
widely used inductive learning systems include those based on decision trees (Quinlan,
1993) (see section 8), neural networks (Gallant, 1993; Hassoun, 1995) (see section 9),
and statistical pattern classification (Duda & Hart, 1973; Fukunaga, 1990; Ripley, 1996)
(see section 10).

4 EXPERT SYSTEMS

FExpert systems (Durkin, 1994; Puppe, 1993; Stefik, 1995) are programs that model
the expertise (knowledge) and reasoning capabilities of qualified specialists within fairly
narrow domains (e.g., diagnosis of heart diseases, credit evaluation, etc.). Such systems
are typically composed of three essential modules: a knowledge base that captures the
expertise of the specialist, an inference engine that mimics the specialist’s reasoning
process, and a working memory that is used as a scratch pad. In the course of a problem-
solving session, the working memory holds the facts provided by the user (e.g., symptoms
in a diagnosis task) and intermediate conclusions derived by the inference procedure
(Durkin, 1994; Stefik, 1995). A schematic of an expert system is shown in figure 1.

Expert System

Knowledge Base ﬁ

Inference Engine) <—++—=

Working Memory

User

Figure 1: Schematic of an expert system. The knowledge base contains the domain
knowledge encoded in some appropriate form (e.g., rules). In a consultation session
with the user the inference engine generates inferences using the facts provided by the
user and the rules in the knowledge base. The working memory holds user-provided
facts and serves as a store for inferences or conclusions drawn based on the facts.

Critical to the process of expert system design is the task of knowledge engineering.
A knowledge engineer interviews experts to obtain qualitative knowledge from them

and codes it in the knowledge base using some representation scheme. Typical examples
of knowledge representation schemes used in expert systems are: rules, semantic net-
works, frames, logic etc. For example, rules assert the known relations between premises
and conclusions. In our automobile diagnosis example, we could formulate the domain
knowledge about non-functioning Headlights in terms of the following rules:

Rule 1: IF Headlights don’t work
THEN faulty Bulbs or/and Battery

Rule 2: IF faulty Bulbs or/and Battery
AND Engine does not start
THEN faulty Battery

Rule 3: IF faulty Bulbs or/and Battery
AND Engine starts
THEN faulty Bulbs

During a consultation with an expert system the user enters facts regarding a current
problem into the working memory. The system matches these facts with the knowledge
contained in the knowledge base to infer new facts. These new facts are then entered
into the working memory and the process continues till the system completes the task
presented to it or runs into a dead end. For instance in our automobile example, if the
user reports a problem with his headlights while the engine starts just fine, then these
two observations become a part of the initial working memory of the expert system for
that consultation session.

The inference engine mimics the expert’s reasoning process. It works from the facts
in the working memory and uses the domain knowledge contained in the knowledge base
to derive (or infer) new facts. It achieves this by searching through the knowledge base
to find rules whose premises match the facts contained in the working memory. If such
a match is found, it simply adds the conclusion of the matching rule to the working
memory. This process continues until the inference mechanism is unable to match any
rules with the facts in the working memory. In practice, inference process can be further
complicated for a number of reasons. For instance, when multiple rules match the data
in the working memory, mechanisms have to be provided for conflict resolution. Typical
conflict resolution mechanisms are based on specificity of the rules (more specific rules,
i.e., those that require more premises to hold, over more general ones); recency of the
facts matched by the rules (as determined by the time of their entry into the working
memory) etc.

Ideally, the inference procedure used by the system must be both sound and com-
plete. Soundness and completeness are desirable formal properties of reasoning systems.
Loosely speaking, soundness ensures that the conclusions drawn by the system are true

in all the scenarios in which the facts on which they are based are true. Completeness
ensures that the inference procedure is able to derive all true conclusions that follow from
a set of facts and rules (Ginsberg, 1993; Russell & Norvig, 1995). Sometimes soundness
and/or completeness of inference has to be sacrificed for efficiency.

Expert systems can be distinguished based on the inference strategy (forward-chaining
from facts to conclusions, backward-chaining from hypotheses to premises, etc.), problem-
solving strategy (bottom-up as opposed to top-down), knowledge representation (rule-
based, frame-based, case-based etc.), inference techniques (deductive, non-monotonic,
probabilistic, fuzzy, etc.), and their problem-solving paradigm (analysis: as in the case
of diagnosis systems, versus synthesis: as in the case of design systems), etc. Their
detailed treatment is beyond the scope of this paper. The interested reader is referred
to (Durkin, 1994; Puppe, 1993; Stefik, 1995) for details.

As an illustration, let us assume that figure 2 constitutes the complete knowledge
base for our automobile example (we assume that these rules were constructed somehow
through a process of knowledge engineering).

Now, suppose a user reports a problem wherein the Headlights don’t work. The expert
system adds this fact to its working memory and then looks for a rule in the knowledge
base that matches this data. It finds rule 1 and adds the conclusion, namely faulty
Bulbs or/and Battery to the working memory. The inference engine cycles through the
knowledge base again looking for a match for this newly added data in the working
memory. It finds rule 2, but rule 2 requires another premise also to be satisfied, namely
Engine does not start. Hence, the expert system queries the user about the status of
the engine. Now suppose the user responds with the fact that the Engine does not
start, the inference engine uses this new information to match rule 2, thereby adding
the conclusion faulty Battery to the working memory. Further attempts to match this
newly added information with rules in the knowledge base fail. Hence the inference
procedure stops with the conclusion that the user is experiencing problems because of
a faulty Battery. If the user had responded with Engine starts instead, rule 3 would
have matched, leading to a conclusion of faulty Bulbs. This is essentially how an expert
system functions. Notice that in the preceding discussion we have side-stepped issues
like conflict resolution.

Our knowledge base does not support diagnoses involving multiple faulty compo-
nents. Suppose the above diagnostic scenario had access to further information regard-
ing the wipers. For instance, suppose we know in addition that the Wipers work. This
changes the diagnosis completely, since working wipers vouch for a healthy battery. Thus
in this case failure of headlights and engine must be due to faulty Ignition AND faulty
Bulbs rather than a faulty Battery. However, irrespective of the sequence in which the
symptoms become available, this diagnosis cannot be derived from our knowledge base.
This is a common problem in expert system design and care must be taken to make sure
that the rules in the knowledge base adequately cover the domain of interest.

Expert system design is a challenging task for a number of reasons. First, the experts

1. IF Headlights don’t work
THEN faulty Bulbs or/and Battery
2. IF faulty Bulbs or/and Battery
AND Engine does not start
THEN faulty Battery
3. IF faulty Bulbs or/and Battery
AND Engine starts
THEN faulty Bulbs
4. IF Engine does not start
THEN faulty Battery or/and Ignition
5. IF faulty Battery or/and Ignition
AND Headlights work
THEN faulty Ignition
6. IF Wipers don’t work
AND Engine does not start
THEN faulty Battery
7. IF Wipers don’t work
AND Engine starts
THEN faulty Wiper Motor
8. IF Wipers don’t work
AND Headlights work

Figure 2: The knowledge base of an expert system for the automobile diagnosis problem.
Domain knowledge is coded in the form of IF-THEN rules. Inferences are drawn by
matching the IF part of the rules with the known facts in the working memory and
adding the conclusions back to the working memory. These conclusions represent partial
inferences. This procedure is repeated until no further rules match the inferences in the
working memory.

providing the domain knowledge must be able to articulate their expertise. In our auto-
mobile diagnosis example, the expert must be able to put down the relationships between
the different automobile components and their dependencies. Second, the knowledge en-
gineer working with the experts should be able to understand the expert’s knowledge
well enough to choose a good representation scheme to be used in the knowledge base
and must determine an appropriate inference mechanism to work with the representa-
tion chosen. In our example, rules were chosen as the representation scheme. Third,
the design of the knowledge base and the inference mechanism, the conflict resolution
strategies used, and the order in which facts enter working memory can interact in fairly
complex ways making the task of testing and debugging an expert system extremely
difficult in practice.

5 REASON MAINTENANCE SYSTEMS

In contrast to expert systems where the reasoning process of the domain expert is cap-
tured, model-based systems attempt to model the fundamental operating principles of
the domain. Although a complete model of the domain is unavailable or unwieldy to
construct in many practical diagnostic scenarios (e.g., medical diagnosis), this approach
is nevertheless useful in domains where the underlying physical principles are largely
known (e.g., in artificial systems). For instance, automobiles are designed and manu-
factured based on sound engineering principles which in turn are grounded in physics.
This can be used to build a detailed model of the automobile.

A model-based system for diagnosing automobile component failures can be built
by formulating rules to capture the causal, functional knowledge of this domain, i.e.,
rules that relate the components of the automobile to the observable functions that
they manifest. For example, domain knowledge in our automobile diagnosis task might
be represented as causal rules of the form: if OK(Battery) AND OK(lgnition) THEN
Start(Engine). This rules captures the working principle of a starting engine and relates
it to the battery and ignition components of the automobile. Contrast this rule with
the diagnostic rules of the expert system shown in figure 2. Since these rules model
the functioning of the automobile by assuming properly working components, if some
aspect of the automobile does not function properly, for instance, if the engine does not
start, then the probable cause(s) can be easily identified from the rules. In this case it
is a faulty battery or a faulty ignition. Reason maintenance systems (RMS) [also known
as truth maintenance systems (TMS)] can be used to implement model-based diagnosis
systems.

RMS systems typically contain a database of rules that represent the known facts
and the working principles of the domain. Some facts may be known to be true while
others might be assumed to be true. Based on these facts and assumptions, the rules
may be used to draw inferences. However, if certain assumptions which were made
earlier turn out to be false (in light of further evidence), the database must be updated
accordingly. Not only will the truth of the assumptions change, but inferences that were
drawn based on those assumptions must also be retracted or revised. RMS systems
retract assumptions and revise inferences based on the current knowledge of the state
of the world, thereby maintaining the soundness of the inferences in the database. RMS
systems come in many different varieties (Forbus & de Kleer, 1993; Ginsberg, 1993),
distinguished based on how they perform the task of keeping the database contradiction-
free, and the kinds of inferences they support. In what follows, we will describe one
approach to model-based diagnosis using an assumption-based truth maintenance system
(ATMS).

Consider the following example. Suppose Mr. A has been invited to Ms. B’s birth-
day party. Not a person to go empty handed, A looks around for an appropriate, yet
affordable, gift. He decides to get her a bouquet of flowers. Even in this choice he makes

10

an implicit assumption that B would like flowers and hence would be able to appreciate
his gift. This sounds quite reasonable, since B is a woman, and women normally like
flowers. If however, he suddenly runs into C, a close friend of B, and comes to know
that B is allergic to flowers, he must to retract his assumption regarding B liking flow-
ers, thereby also retracting the conclusion he had reached, namely to buy a bouquet of
flowers as a gift. This done, he makes up his mind to get her a nice pair of earrings. This
is an instance of assumption-based reasoning that can be performed by an ATMS. We
will describe one such ATMS formulation based on Ginsberg (Ginsberg, 1993), and use
it to illustrate the process of model-based diagnosis. But first, some essential details.

Suppose we have a database D of rules describing our domain. Further, suppose the
database is partitioned into a set C of common knowledge (facts and rules) and a set A
of assumptions, as shown in figure 3. Therefore D = C U A. By an explanation for a
sentence p we mean a minimal subset € of A such that £ along with C is sufficient to
entail the conclusion p. Mathematically, € UC = p. (Note that x |= y, read z entails
y, simply means that y is true in every scenario (or world model) in which z is true.)
Loosely speaking, an explanation for a sentence p is simply a minimal set of assumptions
that allow p to be derived using the facts and rules in C. Suppose a new fact g becomes
available. Since the database contains assumptions, some of which may contradict the
new fact ¢, those assumptions (and inferences based on them) will have to be identified
and retracted. Only then can the new fact ¢ be safely added to the database. To do
this, we first find all the explanations for —¢ (the complement of ¢) in D. Call these
explanations &, -+, &,. Next we find a minimal set H such that H N E; # B, for every
&;. Thus, H is the minimal set of assumptions that contradict the new fact ¢. Since
these assumptions have to be retracted, we remove ‘H from A. Once these assumptions
are retracted from the database, we can add the new fact ¢ to D without introducing
any contradictions.

Such a system can be easily adapted for diagnosis (Forbus & de Kleer, 1993). The
database D, in this case, is composed of a set C of facts describing the behavior of the
system being diagnosed in terms of its components, and a set A of assumptions about the
proper functioning of the components. For example, our automobile diagnosis problem,
with sufficient causal knowledge (model knowledge) regarding the automobile, may be
expressed as the database shown in figure 3.

Database entries 1, 2, 3 and 4 correspond to assumptions regarding the components,
while entries 5, 6 and 7 capture the behavioral model of the domain. For example,
entry 5 simply says that if the battery is OK and the ignition is also OK then the
engine will start. Given this initial state, the system automatically infers Starts(Engine),
Works(Headlights) and Works(Wipers) since they follow from the assumptions and the
facts, and asserts them to be true, given the set of assumptions A. In addition, each
of these assertions is also labeled with the assumptions that support it. For example,
Starts(Engine) would be labeled with (1, 4) since assumptions 1 and 4 are sufficient to
derive it using the rules in C.

11

A: Assumptions and Inferences

OK
OK
OK
OK

Battery)
Bulbs)

Wiper Motor)
Ignition)

BN =
N N N N

C: Facts and Rules

5. OK(Battery) A OK(lgnition) — Starts(Engine)
. OK(Battery) A OK(Bulbs) — Works(Headlights)
7. OK(Battery) A OK(Wiper Motor) — Works(Wipers)

(@]

Figure 3: A database of an ATMS system for the automobile diagnosis example. C
contains sentences that are known to be true and rules that model the domain. A
contains assumptions and inferences made based on the assumptions. The inferences
are typically labeled with the assumptions that support their validity. Thus at a later
point if some of the assumptions are retracted, the dependant inferences can also be
identified and retracted.

Now suppose a particular user problem comes to light. Suppose it involves the non-
functioning of the headlights and the engine, while the wipers are known to work. In
our system these correspond to the sentences: ~\Works(Headlights), —Starts(Engine) and
Works(Wipers). Since Works(Wipers) is already asserted in the system, it causes no prob-
lem. However, in order to add —Works(Headlights) and —Starts(Engine) to the database,
we have to find the explanations for Works(Headlights) and Starts(Engine) and retract
a minimal set of assumptions to enable the new sentences to be added without intro-
ducing any contradictions. In our example, the only explanation for Works(Headlights)
is & = {OK(Battery), OK(Bulbs)} and the only explanation for Starts(Engine) is & =
{OK(Battery), OK(Ignition)}. We cannot remove the assumption OK(Battery) from the
explanations since doing so would cause the assertion Works(Wipers) to become false.
Hence we choose H = {OK(Ignition), OK(Bulbs)} as the minimal set of assumptions to
retract in order to support the current input scenario. This corresponds to a diagnosis
of faulty Ignition AND faulty Bulbs. As can be observed, this is an extremely accurate
diagnosis.

Although model-based systems have the ability to produce accurate diagnosis, they
have several drawbacks which make them inapplicable in many real-world contexts.
Their need for an accurate model of the domain may not be possible to satisfy in many
cases. In addition, the computation of all diagnoses for an observed fault is known to be
computationally intractable which makes this procedure impractical for most real-world

12

diagnosis applications. One alternative is to use focusing mechanisms for computing just
a few of the probable diagnoses (Forbus & de Kleer, 1993). Another possibility is to use
known polynomial-time algorithms for computing the first & diagnoses (for a given k)
(Mozetic, 1992). Alternatively, one might use a hybrid approach which refines partial
or incomplete model-based diagnostic knowledge into heuristic diagnosis rules through
inductive learning (see sections 7-10 below). In any event, ATMS is just one of several
model-based approaches to diagnosis.

6 CASE-BASED REASONING SYSTEMS

In case-based reasoning (CBR) systems (Schank & Abelson, 1977; Schank, 1982) knowl-
edge is stored in the form of cases, where a case is defined as a contextualized piece of
knowledge representing an experience that teaches a lesson fundamental to achieving the
goals of the reasoner (Kolodner, 1993). Thus, a case can be thought of as a situation
that was experienced in the past and resulted in some relevant action. The cases are
stored in a library, indexed appropriately to facilitate efficient retrieval of the cases.
Given a current experience or situation, the attributes of the input are used to index
into the case library and retrieve the best matching case (or set of cases) according to
some suitably defined matching criterion. One case is then chosen from among those
retrieved to be the solution and this choice can itself be performed in a number of ways
(the best match, most general match, etc). Since the new situation may not match the
old one exactly, the solution offered by the selected case may be modified to fit the new
situation, a process known as adaptation.

As an example, consider the following simplified formulation of our automobile di-
agnosis problem as a CBR task where each case is a diagnostic situation experienced
earlier. For instance, case 1 in figure 4 indicates an earlier experience where a diagnosis
of faulty Ignition was offered when the engine failed to start and no information was
available regarding the status of the headlights and wipers.

Figure 4 shows the case library organized as a single-level structure, referred to
as flat memory organization in CBR literature. Given this memory organization, the
matching procedure serially examines the cases in the library and retrieves the best
matching case (or cases). Since serial matching can be time consuming for large case
libraries, other schemes based on indexing or hash-table based associative recall are often
used in practice. Alternatively, parallel retrieval using appropriate hardware can also
be used to facilitate efficient retrieval of cases. Case libraries can also be built by using
clustering methods to group together similar cases (where similarity is defined according
to some suitable, possibly domain dependent metric) resulting in a hierarchical memory
organization. Figure 5 shows a possible hierarchical organization of the case library for
the automobile diagnosis example. Such memory organizations can substantially speed
up the retrieval of the best matching case(s).

13

Case 1 Case 2 Case 3
Engine No Engine No Engine -
Headlights - Headlights No HeadlightsYes
Wipers - Wipers Wipers No

faulty faulty faulty

Ignition Battery Wiper Motor

Figure 4: A simple case library for the automobile diagnosis problem. This library
contains three cases corresponding to past diagnoses. In addition to using Yes and No
to denote working and non-working components, the system also uses - to indicate the
unknown status of components and symptoms.

Another important design decision involves the choice of indices. An index is a slot or
field of a case that is used by the matching procedure in determining the degree of match
between the input situation and a stored case. For example, the cases in our automobile
example have three slots corresponding to the status of the engine, headlights, and the
wipers. Indices have to be carefully chosen: The larger the number of indices used,
the larger is the number of slots to be compared, and hence slower the retrieval. If the
indices are fewer than necessary, precision of retrieval deteriorates. In our automobile
example we have chosen all three slots — Engine, Headlights, and Wipers to be indices
used for matching.

The matching (retrieval) procedure is probably the most critical component of a
CBR system since it almost entirely determines what the system does with its stored
knowledge. Expert knowledge about the domain is often used to construct heuristic
matching rules that help the system return sensible matches for that domain. For our
diagnosis problem, we might use a heuristic that unknown conditions (—) produce a
weak match with yes or no values, identical values match strongly, and opposite values
like yes and no do not match at all. This heuristic is demonstrated in table 1 where the
values of 0, 1, and 2 stand for no match, weak, and strong matches respectively.

The entries in the table indicate the degree of match between a slot in the input situ-
ation and the corresponding slot value in a stored case. For example, suppose the input
case has an entry yes corresponding to the slot Engine and we are trying to determine
its match with a case in the library that has an entry no in the corresponding Engine
slot, the degree of match between the two cases for the Engine slot is then a 0. The total
degree of match between two cases can be defined as a simple sum of their degrees of
match for the individual slots.

To clarify this further, suppose the new situation we observe is as shown in figure 6.

This input will match the stored cases to different degrees as shown in table 2.

14

(Engine, Wipers)

(_v NO)
(NO‘ _)
Case 3
(Headlights) Engine -
) (No) HeadlightsYes
Wipers No
Case 1 Case 2 faulty
Wiper Motor
Engine No Engine No
Headlights - Headlights No
Wipers - Wipers
faulty faulty
Ignition Battery

Figure 5: Hierarchical memory organization of the case library. A similarity-based clus-
tering technique leads to a tree organization. The root of the tree performs a similarity
clustering of the cases with like states of Engine and Wipers fields while the left subtree
performs a sub-clustering based on the state of the Headlights. This results in a two-level
hierarchy.

Based on the result of the matching process, case 2 is determined to be the best
match with a degree of match 5. Consequently, a diagnosis of faulty Battery is proposed
for the input situation of figure 6 since case 2 had a diagnosis of faulty Battery.

As it turns out this is an incorrect diagnosis since a faulty battery does not explain
the correct functioning of the wipers. However, this is the best this CBR system can
do as it has never experienced a situation corresponding to a diagnosis of faulty Bulbs.
Allowing the system to adapt using feedback from the system designer or a domain
expert gives it the ability to modify itself and hence produce better diagnoses over time.
For example, suppose the above system obtains feedback from the designer to the effect
that the proposed diagnosis was incorrect and that the right diagnosis in this situation
should have been faulty Bulbs AND faulty Ignition, the system can adapt by incorporating
this new knowledge in its case library though the addition of the case shown in figure 7.
The next time around, this CBR system will be able to diagnose problems concerning
faulty Bulbs. Such a system essentially learns by rote memorization. It should be noted
that dynamic addition of cases to the library, might entail a restructuring of the library
in CBR systems with hierarchically organized memory.

CBR systems differ significantly from knowledge-based expert systems and the model-
based systems discussed in the previous sections. The diagnostic knowledge is neither
stored as an explicit model of the domain nor in the form of qualitative, heuristic rules;

15

Value of index in stored case

yes | no

Value of | yes| 2 | O
indexin | no | 0 2
1 1

= | =]

input case | —

Table 1: A typical scoring function for matching cases. A value of 2 indicates a strong
match between the corresponding values of the indices, while 1 indicates a weak match.
Mismatched quantities have a score of 0. This matching function is applied to each index
of the stored cases and the input situation.

Input Situation

Engine No
Headlights No

Wipers Yes

?2?7?

Figure 6: A new input situation for the automobile diagnosis problem. This diagnostic
scenario corresponds to the case of non-functioning headlights and a non-starting engine
while the wipers work. The CBR system is expected to produce a diagnosis for this
situation.

rather, the knowledge is implicitly represented by the repository of cases. Problem-
specific knowledge is used to design heuristics to guide the matching procedure (e.g., to
generate the scoring function for matching cases, etc.). CBR systems have the ability
(though limited) to adapt to changes within a domain since such changes simply result
in a change in the stored cases. Note that with hierarchically organized case libraries,
changes to cases might require reorganization of the entire library.

The drawbacks of CBR systems include the high computational cost associated with
the matching procedure and the storage cost associated with the organization of the case
library. One approach to avoiding such costs is to use inductive learning mechanisms (see
section 7 below) to extract general rules that cover most of the cases in the repository.
This can significantly reduce the size of the database of cases to a point where it needs to
store only the known exceptions to the general rules. However, the applicability of such
techniques is very dependent on the nature of the task domain and the representation
of the cases. Alternatively, dedicated parallel hardware, e.g., neural network associative
memories (Chen & Honavar, 1995; Chen & Honavar, 1996) may be used to speed up the

16

H Case in Library ‘ Degree of Match H

1 4
: d
3 1

Table 2: Degrees of match for the input case with each of the stored cases can be
determined by using the scoring function shown in table 1. The degree of match is
a sum of the scores obtained by matching each of the indices in the input and the
corresponding stored case.

Case 4

Engine No
Headlights No

Wipers Yes

faulty Bulbs and
faulty Ignition

Figure 7: Adaptation in CBR systems. Here a new case is added to the case library.
In this particular instance, a new diagnosis category is introduced. If the case library
were organized in a hierarchical fashion, the addition of this new case might require a
reorganization of the library.

similarity-based retrieval of cases.

7 INDUCTIVE LEARNING SYSTEMS

The systems discussed so far require the designer to incorporate the domain knowledge
necessary for diagnosis either in the knowledge base or in the matching/inference process.
Inductive learning systems offer a way to circumvent the difficult, expensive, and time
consuming task of extracting such knowledge. When provided with examples (or pre-
classified samples) of the domain, these systems have the ability to learn an approximate
model of the task domain. In our automobile diagnosis task for example, an inductive
system will be provided with examples of observed symptoms and their corresponding
diagnoses possibly from a collection of past diagnoses performed by domain experts
(like the cases in a case library). However, unlike CBR systems which simply store
the examples, inductive systems use the examples to infer relationships between the
symptoms and the diagnoses. Technically, the system induces an appropriate set of

17

classification rules (Langley, 1995; Mitchell, 1997).

Formally, an example ¢, is an ordered pair ([, C) where i is an instance, repre-
sented using some instance language like vectors of attribute values, strings over a fixed
alphabet, etc. C} is the classification of the instance I and is one of a set of possible
classes C of the classification problem (C; € C). Classes are normally described in
a concept language. A matching predicate M (I, C;) provides a means for testing the
membership of a given instance I; in a class C; (where C; € C). Examples of concept
languages include rules (of the sort used in expert systems), predicate logic formulae,
automata (that accept or reject strings) etc. In the domain of diagnosis, we can think
of instances as some encoding of observed symptoms and classes as representing the
possible diagnoses. The problem of inductive learning is to learn a sufficiently accurate
description of a concept or class Cr € C from a sufficiently representative set of examples
(and possibly counter-examples) of Cr. This essentially reduces to a search problem:
namely, that of identifying a class description C'4 that sufficiently closely approximates
Cp. Various criteria (or search biases) might be used to guide this search through the
concept space corresponding to C. Inductive learning systems differ in terms of their
choice of instance language, concept language, and search bias (among other things).

The set of examples provided by the user which enables the inductive system to
determine a classification rule is called the training set. In our automobile diagnosis
problem the company may have a set of such training examples based on past expert
diagnosis of user reported problems. A sample training set is shown in table 3. (Note
that this is only one of the many possible representations that could be chosen for
encoding the training samples.)

H Engine ‘ Headlights ‘ Wipers H Diagnosis H

Yes No Yes faulty Bulbs

No No No faulty Battery

Yes No No faulty Wiper Motor
No Yes No faulty Ignition

Yes Yes No faulty Wiper Motor
No Yes Yes faulty Ignition

Table 3: Example diagnoses for the automobile diagnosis problem which constitutes the
training set for inductive learning systems. The first three columns represent symptoms,
and the last column indicates the diagnosis offered. Thus, each row of the table repre-
sents one diagnostic situation experienced earlier and successfully diagnosed. In these
examples, Yes indicates working and No indicates non-working components.

For instance, the first entry simply means that there was a recorded case of an

18

automobile electrical problem wherein the headlights failed to work. The engine had no
problem starting and the wipers worked as well. In that particular case, the problem
was diagnosed as faulty Bulbs. Similarly, the second entry says that in an observed case
when the engine, headlights, and the wipers failed to work, the problem was diagnosed
as being due to a faulty Battery, and so on. The entries of table 3 serve as training
examples, and can be used by an inductive learning system to determine an appropriate
classification rule or a set of rules that can assign a given instance of symptoms to one
of the diagnosis classes.

In practice, the success of an inductive learning system depends on several factors.
Perhaps the most important among these is the choice of instance and concept repre-
sentation languages. In the training set shown in table 3, the observed problems are
diagnosed as being caused by a single faulty component. For instance, the third exam-
ple suggests that a failure of wipers and headlights is the result of a faulty wiper motor.
Notice that this diagnosis does not explain the non-working headlights. In this case the
correct diagnosis should have been faulty Wiper Motor AND faulty Bulbs. However, the
concept language chosen is only capable of representing single faulty components. Thus
any inductive procedure that uses the training examples shown in the table 3 cannot be
(and should not be) expected to produce diagnosis involving multiple faulty components.
However, in some cases multiple faults can be identified. For example, suppose an induc-
tive system has been trained to classify the training examples of table 3 correctly. Now,
if the diagnostic scenario corresponding to entry 3 of the training set repeats, the system
will attribute it to a faulty wiper motor. Once the wiper motor is fixed, the diagnostic
scenario would change as the wipers presumably, start working. The new observation
would thus correspond to working engine and wipers and non-working headlights. The
system will diagnose this new situation as due to faulty bulbs, thereby identifying both
the faults in the original scenario. Thus, diagnosis involving multiple faulty components
can be addressed, in some cases, by sequentially isolating single faults. However, this
approach may not work in all cases.

One way to avoid this problem is to use a different concept language. For example,
our diagnosis classes could be represented using a 4-tuple: (BulbStatus, BatteryStatus,
WiperMotorStatus, IgnitionStatus), resulting in the training set shown in table 4.

However, in order to keep the size of the training set manageable and the calculations
from becoming cumbersome, we will use the training set (and hence the concept lan-
guage) of table 3 to illustrate the inductive learning approaches. (The concept language
used in table 4 yields 2* = 16 diagnosis classes. In order to learn reliably in this setting,
we need a fairly large training set or prior knowledge.) One consequence of this choice is
the fact that the learning systems have no way to represent (and hence learn) diagnoses
that correspond to multiple faulty components.

Assuming an adequate choice of instance and concept languages, the success of an
inductive learning algorithm also depends on the examples provided. If the examples
are not representative of the domain of interest, the classification rules learned may not

19

H Engine ‘ Headlights ‘ Wipers H Diagnosis

Yes No Yes (faulty Bulbs, OK Battery, OK Wiper Motor, OK Ignition)
No No No (OK Bulbs, faulty Battery, OK Wiper Motor, OK Ignition)
Yes No No (faulty Bulbs, OK Battery, faulty Wiper Motor, OK Ignition)
No Yes No (OK Bulbs, OK Battery, faulty Wiper Motor, faulty Ignition)
Yes Yes No (OK Bulbs, OK Battery, faulty Wiper Motor, OK Ignition)
No Yes Yes (OK Bulbs, OK Battery, OK Wiper Motor, faulty Ignition)

Table 4: The concept language used here (4-tuples) is capable of representing diagnoses
involving multiple faulty components. For example, the third entry corresponds to a
diagnostic scenario wherein the wiper motor and the headlight bulbs are both faulty.

characterize the domain appropriately. For example, if our training set of table 3 did
not have any examples of diagnoses involving faulty bulbs, then the classification rules
learned by the system cannot be expected to correctly diagnose the problems attributable
to a faulty bulb.

Once the inductive system has been trained, i.e., it has induced the appropriate
classification rules, it can be used to classify instances, including ones that were not
seen while training. The ability of the system to classify previously unseen examples
is referred to as generalization. For example, having trained an inductive system using
examples from the above table, we might test the system with the unseen example shown
in table 5 and expect a reasonable diagnosis like faulty Ignition and/or faulty Bulbs.

H Engine ‘ Headlights ‘ Wipers H
H No ‘ No ‘ Yes H

Table 5: Generalization is the ability of systems to correctly classify instances not seen
while training. For example, a system trained with the entries of table 4 when presented
with this unseen example, might be expected to produce a reasonable diagnoses like -
faulty Ignition

Many factors affect the generalization ability of an inductive system including: the
number and statistical distribution of the training examples, the search bias employed
by the system, the concept language and instance language used, etc. This is a topic of
considerable ongoing theoretical as well as experimental research. A detailed discussion
of this and other related questions is beyond the scope of this paper. The interested
reader is referred to (Buchanan & Wilkins, 1993; Gallant, 1993; Hassoun, 1995; Kung,

20

1993; Langley, 1995; Mitchell, 1997; Natarajan, 1991; Quinlan, 1993; Ripley, 1996; Shav-
lik & Dietterich, 1990) for discussions of theoretical and practical aspects of inductive
learning systems. In what follows, we will restrict ourselves to a few simple examples of
inductive learning systems that are well-suited for diagnosis applications. These are: de-
cision trees, some simple classes of artificial neural networks (or connectionist networks),
and some elementary statistical approaches.

8 DECISION TREES

The ID3 algorithm (Quinlan, 1993) provides a way to learn classification rules repre-
sented in the form of a decision tree. A decision tree consists of leaf nodes that are class
names and internal nodes that represent tests on symptoms (also termed attributes),
with a branch for each possible outcome of the test. For instance, our simple diagnosis
problem might be solved using the decision tree shown in figure 8, where the tree first
tests the headlights and then depending on the result of the test either tests the wipers
next or the engine. A Root

Yes No
faulty faulty w
Bulbs Bulbs
Yes No
faulty faulty faulty faulty
Wiper Motor Ignition Wiper Motor Battery

Figure 8: An example decision tree for the automobile diagnosis problem. A Yes denotes
a working component and No a non-working one. Each node (shown as an ellipse)
represents a test on the attribute serving as its label. Leaves represent faulty components
and hence the diagnosis. A classification of an input situation is performed by starting
at the root of the decision tree and testing the attributes in order until a leaf node
is reached. The leaf node reached signifies the diagnosis (classification) of the input
situation.

Once the decision tree is constructed, it can be used to classify input examples. To
do so, we start at the root of the tree, evaluate the test specified there on the example
to be classified and then take the branch corresponding to the appropriate outcome.
We proceed with this evaluate-branch process until a leaf-node is encountered, at which
point, the example is assigned to the class represented by that leaf-node. Consider the

21

instance shown in table 5. To classify this instance (diagnose the cause of this problem),
we first perform the test represented by the root of the tree, i.e., check whether Headlights
work or not. Since in this instance, the headlights don’t work, we follow the right branch
of the tree and test if the Wipers work. Since in this instance they do, we branch left
and reach a leaf node. Since this leaf node corresponds to a diagnosis of faulty Bulbs, we
diagnose the problem as due to faulty Bulbs. Note that this decision tree requires two
or more tests to classify examples. Since this decision tree was constructed somewhat
arbitrarily, it may require more tests than necessary. As we will see later, ID3 constructs
a more compact decision tree.

As long as the training set does not have contradictory examples (e.g., two training
samples with exactly the same values for each of their attributes but assigned to two
different classes), it is always possible to construct a decision tree that classifies all
the training examples correctly. Usually there are many such decision trees that are
consistent with a given set of examples and the object of induction is to somehow
determine a decision tree that not only classifies the training examples correctly, but
also has a high generalization accuracy. Quinlan’s ID3 algorithm is based on an idea
which is generally attributed to the English philosopher William of Ockham. This
idea, known as Occam’s razor can be roughly paraphrased as follows: given a set of
observations that need to be explained, one must choose the simplest theory or model
that adequately explains the observations. In decision tree construction, it simply means
that given a set of examples the procedure should construct, in some reasonable sense
of the term, the simplest decision tree that correctly classifies the training set. For
example, we might choose a relatively small decision tree as opposed to a larger one
so long as both trees correctly classify the training set. In addition to their greater
likelihood of generalization, small decision trees require fewer attribute tests on average,
leading to reduced computational cost of classification. The general idea behind the 1D3
(Quinlan, 1993) algorithm is to recursively select attributes that yields the maximum
possible amount of information (in the technical sense of the term used by Shannon in
his development of information theory) on the average, for unambiguously classifying
the training examples.

We will explain the main ideas by focusing on a two category classification problem.
However, this approach can be extended naturally to multiple classes as will be demon-
strated using the automobile diagnosis example. ID3 computes the expected information
(number of yes/no questions that need to be asked) required to classify the examples in
the training set, which can be shown to be (refer (Shannon, 1948) for details):

I(ny,ny) = — S log, < el) L T log, (e) (1)

n1 + na ny + na ny + na ny + na

where n; and ny are the number of examples in the training set that belong to class 1
and class 2 respectively.
Now, if attribute A of the input takes on values {A;, As, .., A,} and is to be used as

22

the root of the decision tree, then the expected information required for the tree with A
as the root, i.e., the expected information needed after choosing A as the root, is defined

as:
v

B(A) =Y T

ot

x I(ny,ny) (2)

where ni and n} are the number of examples of the training set that belong to class 1
and class 2, and that have a value of A; for their attribute A. The information gained
by testing the value of attribute A is therefore:

gain(A) = I(n1,n2) — E(A) (3)

At each step in the tree construction process ID3 computes the information gain for
all untested attributes and chooses the attribute with the maximum information gain as
the test for that particular node of the tree. Equivalently, we could choose the attribute
with the minimum £.

To clarify this procedure, consider our automobile diagnosis problem. Here we are
provided with training examples from table 3. This problem has three attributes: the
functional status of the Engine, Headlights, and the Wipers. In addition, this problem has
four output classes: faulty Bulbs, faulty Battery, faulty Wiper Motor, and faulty Ignition,
which we label 1, 2, 3, and 4 respectively. We can easily determine the number of
examples belonging to each class, for example, there is one example belonging to class
1 (Bulbs), one belonging to class 2 (Battery), while two examples each for classes 3 and
4 (Wiper Motor and lIgnition). Therefore the expected information needed to classify the
training examples using Eq. (1) is:

1 1 1 1 2 2 2 2
I(ny,ny,m3,n4) = 5 X log, (6) 6 X log, <g> 6 X log, <€) % x log; (6)

Which gives us:
I(1,1,2,2) = 1.9183

Now let us calculate the expected information of the three attributes — Engine,
Headlights, and Wipers using Eq. (2) to enable us to choose the root of the tree.

: 0+14042 1 1 2 2
B(Engine) = ——5—— | ~gloss (5] — 5lous (5) } +

Engine does not start

Lt (0 e ()
6 3'992\3) 7 37992 \3

Engine starts

23

Using Eq. (3) we can calculate the gain as:
gain(Engine) = I(1,1,2,2) — E(Engine) = 1.9183 — 0.9183 = 1.0
Similarly we can determine
gain(Headlights) = 1.9183 — 1.2516 = 0.6667
and
gain(Wipers) = 1.9183 — 1.3333 = 0.5850

Since the rule of thumb is to maximize the information gain, we choose Engine as the
test for the root node. We then repeat this process by partitioning the training examples
into two disjoint sets corresponding to the left and right subtrees of the decision tree
constructed so far, i.e., one set of examples with a starting engine and the other with a
non-starting one. Now the procedure is repeated for the two branches each with their
own set of examples. This leads us to the decision tree shown in figure 9, which can
be seen to be more compact than the tree in figure 8. However, note that this tree
produces a diagnosis of faulty Battery on the input situation of table 5, unlike the more
appropriate diagnosis of faulty Bulbs of the earlier decision tree. Since working wipers
vouch for a working battery, this diagnosis is incorrect. However, such generalization
errors are not uncommon when the training set is not sufficiently representative of the
domain of interest.

Yes /
faulty faulty faulty faulty
Bulbs Wiper Motor Ignition Battery

Figure 9: Decision tree determined by 1D3. The information-theoretic approach of 1D3
results in a more compact decision tree. This tree only requires two attribute tests in
all cases while the one before required either two or three.

An obvious advantage of the decision tree approach to inductive learning is that
it is extremely straightforward to transform the resulting tree into a set of equivalent
IF-THEN rules of the sort used in expert systems. This makes it possible to use ID3-
like algorithms to circumvent the need for difficult, tedious, and expensive knowledge
engineering in the design of expert systems. For example, the right branches of the tree
give us the following rule:

24

IF Engine does not start AND Headlights don’t work
THEN faulty Battery

The decision-tree approach is fairly robust and can tolerate noisy and incomplete data
within reasonable limits. Compared to other inference procedures (deduction and ab-
duction systems), decision trees are much faster to execute. Some drawbacks associated
with the use of decision tree construction algorithms such as ID3 and some possible reme-
dies are documented in (Quinlan, 1993). Decision trees have been extended to handle
continuous attribute ranges in the form of discretized, multi-valued intervals. Relatively
straightforward extensions to decision-tree construction algorithms which seek to mini-
mize the cost or risk associated with the task of diagnosis (e.g., when all tests are not
equally expensive or risky as is often the case in medical diagnosis) can be formulated
and are worth exploring.

9 ARTIFICIAL NEURAL NETWORKS OR CON-
NECTIONIST NETWORKS

Connectionist networks or artificial neural networks are massively parallel, shallowly
serial, highly interconnected networks of relatively simple computing elements or neurons
(Gallant, 1993; Hassoun, 1995; Honavar, 1994; Kung, 1993; Ripley, 1996). Much of the
attraction of connectionist networks stems from their massive parallelism, ability to
adapt through a modification of their computational structure, and their potential for
reliable performance in the presence of noise or failure of components.

The input to an n-input neuron is typically represented by a pattern vector X €
R"™ or in the case of binary patterns, by a binary vector X € [0,1]". Each neuron
computes a relatively simple function of its inputs and transmits outputs to other neurons
to which it is connected via its output links. A variety of neuron functions are used
in practice, the most common ones being linear, threshold, sigmoid, and radial-basis
functions. Each neuron has associated with it a set of modifiable parameters which are
adapted through learning. Commonly used parameters are the so-called weights, that
represent the strength of the synapses between the neurons. Additionally, each neuron
is also assumed to be connected to a constant source (41 or -1) and the weight on
this link is called the bias or threshold of the neuron. The weights associated with an
n-input neuron 7 is typically represented by an n-dimensional weight vector W; € R”.
By popular convention, the first element of the weight vector is usually the bias. The
input activation of a neuron ¢, denoted A;, in response to a pattern X on its input links
is given by the vector dot product: W, - X. The output of the neuron, O;, a function of
the input activation. For example, the threshold function produces O; =1 if W;- X >0
and O; = —1 otherwise.

A variety of connectionist networks have been studied in the literature. In contrast

25

with feed-forward networks (where their connectivity graph does not contain any di-
rected cycles), networks can contain feedback loops and such networks are referred to
as recurrent. In addition, networks can be single-layered or multi-layered; sparsely con-
nected or completely connected; strictly layered or arbitrarily connected; homogeneous
or heterogeneous, etc. The computational capabilities (and hence pattern classifica-
tion abilities) of a neural network depend on its architecture (connectivity), functions
computed by the individual neurons, and the setting of parameters or weights used.
Hence, designing a neural network for a particular pattern classification task involves
determination of the network architecture (number of neurons, their connectivity, etc.),
the types of neurons (e.g., linear, sigmoid, threshold, etc.), as well as the parameter or
weight values. This is typically accomplished through a combination of design (using a-
priori knowledge or guesswork) and learning (which may be used to modify the weights,
network architecture, learning algorithm itself, etc.) (Gallant, 1993; Honavar & Uhr,
1993; Honavar, 1994; Parekh et al., 1997).

Much of the research on neural network learning/training has focused on algorithms
that modify the weights within an otherwise fixed network architecture. This essentially
entails a search for a setting of weights that enable the network to classify all (or most
of) the samples in the training set correctly. Since this is fundamentally an optimization
problem, a variety of optimization methods (gradient-descent, simulated annealing, etc.)
can be used to determine the weights. Most of the popular learning algorithms use some
form of error-guided search (e.g., changing each modifiable parameter in the direction of
the negative gradient of a suitably defined error measure with respect to the parameter
of interest). For examples of such algorithms the reader is referred to (Gallant, 1993;
Kung, 1993; Hassoun, 1995; Ripley, 1996).

We will illustrate the connectionist approach to our automobile diagnosis example
by using a rather simple single-layer network. The following figure shows a neural
network for our automobile diagnosis example. For the moment, let us assume that some
procedure has generated the weights of the network (we will describe such a procedure
later).

The network has three input neurons, one each for the status of Engine, Headlights,
and Wipers, with the understanding that if a component works, the corresponding input
neuron is provided a value of 1, and a -1 otherwise. The four output neurons of the
network each correspond to a diagnosis category — faulty Bulbs, faulty Battery, faulty
Wiper Motor, and faulty Ignition. The output neurons compete and the neuron with the
highest activation is declared the winner. The winning neuron produces an output of
1, while the rest produce a -1. This scheme is called the winner-take-all strategy in
connectionist literature, and it ensures that the network only diagnoses single faults (as
stipulated by the concept language of table 3). If the output of the neuron labeled faulty
Bulbs is a 1, it is interpreted to mean that the connectionist network has diagnosed that
the problem is due to faulty bulbs. An output of -1 means that the particular component
is not at fault. The numbers inside the output units represent the strength of the bias,

26

faulty
Bulbs

faulty
Battery

faulty
Wiper
Motor

-~ C T O

(7]

faulty
Ignition

Figure 10: An example connectionist network for the automobile diagnosis problem
constructed using perceptron learning. The network contains three input units and four
output units that compete for domination. The unit with the maximum activation is
declared the winner and it produces an output of 1. The other units produce an output
of -1. The numbers inside the output units represent the additive bias. Input units
receive a value of 1 if the corresponding component works and a -1 when it does not.
A 1 at an output unit indicates that the corresponding component is faulty, while a -1
indicates a healthy component.

which in our example, is assumed to be connected to a constant source of +1.

Consider the performance of this neural network diagnosis system on a problem
shown in table 5, which involves the observations that the engine and headlights don’t
work while the wipers do. The corresponding input to the network will be (-1, -1, 1) at
the corresponding neurons for Engine, Headlights, and Wipers. Applying these inputs to
the network in figure 10, we obtain the following:

Afautgiuts = (2,3, =2,1).(1,=1,=1,1) =2x 1 4+3x -1+ —2x -1+ 1 x1=2

Note that in this calculation, the first component of the weight and input vectors
corresponds to the bias of the unit. Similarly, we can determine the activations at the
other output neurons.

AfaultyBattery = 4
AfaultyWiperI\/Iotor = -2
Afaultylgnition = 0

Since the unit corresponding to faulty Battery has the strongest activation, it is de-
clared the winner. Thus the network diagnoses that the battery is faulty. As we men-
tioned in the context of decision trees, this diagnosis is not really accurate since it does
not explain the proper functioning of the wipers. This generalization error is an artifact
of the limited number of training examples in our diagnosis example.

In this example we used a variant of Rosenblatt’s perceptron learning rule (Gallant,
1993; Hassoun, 1995) to obtain the weights of the network. Starting with random ini-

27

tial weights, this procedure presents examples from the training set either randomly or
sequentially, and updates the weights if the network’s output differs from the one de-
sired. The weight modification rule used in such circumstances, is given by the following
equation:

where W; is the weight vector associated with neuron ¢, ¢ indicates the time step. D;
and O; represent the desired and currently obtained outputs of neuron z. X; is the vector
representing the input values of neuron 7 and 7 is the learning rate (typically chosen to
be 1). Suppose Wiaityguibs(t) = (0,1,0,—1) and the first example of the training set
is being presented. This example corresponds to Xeaunygubs = (1,1, —1,1). (Remember
that the first component of the weight vector represents the bias and the corresponding
component in the input vector is the source of +1.) Now, the output unit corresponding
to faulty Bulbs will produce an activation: Afayitygubs = 0X1+1x14+0x —14(=1)x1 = 0.
Suppose that in this case some other output unit is the winner. Thus, OfauiyBuibs = —1,
contrary to the desired output Dgyiysubs = 1. The weight update rule of Eq. (4) is used
to update the weight vector as follows:

WfaultyBuIbs(t) = (07 1707 _1) + 1 x (1 - (—1)) X (1, 1, —1, 1)
= (2,3,-2,1)

Similarly, the weights of the neuron that won wrongly are also updated using the per-
ceptron rule.

Figure 11 shows another network for the same diagnosis problem. However, in this
case, the weights were determined by another learning algorithm known as Hebbian
learning (Hebb, 1949; Hassoun, 1995; Kung, 1993). Hebbian learning is a simple, asso-
ciative procedure given by Eq. (5).

p

W= X % D] 5
p=1

where W, is the weight vector of output unit z and P is the number of training patterns

available to the system. X is the input vector of the i¢th unit when presented with

the pth training example, and D? is the desired output of neuron 7 for the pth training

example. For example, the weights of the output neuron corresponding to faulty Bulbs

can be determined as follows:

WfaultyBuIbs = (1717_171) x 1 + (17_17_17_1) X (_1) + (1717_17_1) X (_1)

+(1,—-1,1,=1) x (=) 4+ (1, 1,1, —1) x (=1) 4+ (1, =1,1,1) x (=1)
= (—4,2,-2,4)

Similar calculations lead to the network in figure 11.
Notice that Hebbian learning is one-shot, i.e., the weights of the network can be
determined by considering the training patterns just once, unlike perceptron learning

28

faulty
Bulbs

faulty
Battery

faulty
Wiper
Motor

- C T S

2]

faulty
Ignition

Figure 11: A connectionist network constructed using Hebbian learning.

which might require multiple passes to be made over the training set. It is interesting
to observe the response of the Hebbian network to the input (-1, -1, 1). The activations
produced are (0, 0, -8, 0). Since there is no clear winner, we could either randomly
break the tie, or suggest that the user might have faulty Bulbs, or faulty Battery, or a
faulty Ignition. Observe that this diagnosis is quite different from the ones produced by
the diagnosis systems introduced earlier. This illustrates the fact that different learning
systems, when presented with the same training data, can learn different classification
rules. This is attributable to the different inductive and representational biases implicit
in the design of the learning algorithms.

In summary, neural networks offer a powertul set of tools for inductive learning of di-
agnostic knowledge from examples (provided a representative set of examples is available
or can be obtained). Their potential advantages include their ability to tolerate limited
amounts of noise in their input, their ability to handle missing values, etc. For example,
the connectionist networks could be provided with a representation of missing values
with 0 denoting the unknowns. A main drawback of connectionist systems is that unlike
expert systems and decision trees, their behavior can be hard to understand because of
their reliance on numerical computation involving a large number of weights. However,
techniques for extracting the knowledge learned by a neural network in rule-like form are
becoming available (Gallant, 1993; Shavlik, 1994). Techniques for incorporating prior
(possibly domain specific or heuristic) knowledge into connectionist networks are also
being developed. Such knowledge can take a variety of forms. A number of researchers
have investigated techniques of initializing a network with knowledge available in the
form of propositional rules (Gallant, 1993; Shavlik, 1994). This opens up the possibility
of a variety of hybrid schemes using combinations of expert systems and neural networks.

29

10 STATISTICAL PATTERN CLASSIFICATION
SYSTEMS

Traditional Al systems have been limited in their applicability to many real world diagno-
sis problems because of their reliance on a closed world assumption. In such logic-based
systems, a sentence s (which represents some fact concerning the world) is known to
be either true or false at any given point in time, i.e., with probability 1 we know it
to be true or false. However, in many practical scenarios, we may be hard-pressed to
determine with absolute certainty the truth value of the sentence s. One approach to
reasoning in such circumstances is to assume a truth value (either true or false) and
proceed, as in the case of ATMS systems presented in section 5 with the possibility of
retracting the assumption (and any inferences that relied on the assumption) in the light
of subsequent evidence to the contrary. Probabilistic inference procedures offer a differ-
ent approach to this problem by using probabilities to model uncertainty. For instance,
we may know that sentence s has been true in 70% of the situations in the past. We
can then characterize our belief in the truth value of s through the use of probabilities,
i.e., P(s) = 0.7 (with probability 0.7 sentence s is true).

Statistical pattern classification systems (Duda & Hart, 1973; Fukunaga, 1990; Rip-
ley, 1996) use probabilistic inference procedures that perform classification by making
use of the statistical distribution of the attribute values of the patterns in each of the
classes. Once this distribution has been estimated using the training examples, the at-
tribute values of the instance to be classified can be used to compute the beliefs in the
different classes, given the instance. The class with the strongest belief is then chosen as
the classification of the instance. Technically, the chosen class is the most likely given the
attribute values comprising the instance. The approach we will describe in this paper
is based on an application of Bayes rule (Duda & Hart, 1973; Fukunaga, 1990; Ripley,
1996).

Consider a diagnosis scenario wherein inputs correspond to a set of observations
(symptoms), represented by a vector of random variables X = (A}, s, ---,A,). For
example, in our automobile diagnosis task, &, Xy, and X3 might represent the observed
status of the headlights, engine, and the wipers. Each of these symptoms take on specific
values: X takes on the value x1, X; takes on the value x4, etc., with certain probabilities.
For example, one can examine the training set shown in table 3 and determine the
fraction of instances in which which the engine starts, thereby obtaining the probability
with which the variable corresponding to the engine, X, takes on the value starts. Let
X = (@1,22, -, x,) represent a particular instance of the random variable X that is
observed, which corresponds to a diagnostic scenario. That is, the observed values of
the random variables A7, --- &), are xq, - - - x, respectively. To avoid unnecessary clutter
in the notation, we will use P(X) to denote the probability that the random variable
X takes the value X. Similarly, we will use P(z;) to denote the probability that the

30

random variable X; takes the value z;. The diagnosis system has the task of assigning
the observed input X to one of m diagnosis categories, Cy,C5,---.C,,. For instance,
in our automobile diagnosis problem, classes C, (5, C5, and C4 might correspond to
faulty Bulbs, faulty Battery, faulty Wiper Motor, and faulty Ignition respectively. Given a
particular input instance X, Bayes rule allows us to calculate the likelihood of occurrence
of each of the categories by using Eq. (6).

P(X|C;) x P(Ci)
P(X) ’ (6)

Vie (l,m), P(Ci|X)=

where -

P(X) =3_ P(X|C;) x P(C3) (7)
=1

Once the probability of occurrence of the diagnosis classes C; conditioned by the
occurrence of X have been computed using Eq. (6), the classification of X can be
performed by choosing the class Cj that produces the maximum likelihood, i.e., Vj #
k. P(CiIX) > P(CX).

Thus, Bayes rule can be used in diagnosis applications as long as we can calculate,
either using domain knowledge or estimation procedures, the quantities on the right
hand side of the expression in Eq. (6). Consider a scenario wherein the inputs are
characterized by the random variables X7, X3, and X3 (as might be the case in our
automobile diagnosis example). If the attributes are observed to take on values 1, x,
and z3, Eq. (6) can be represented as follows:

P(CZ'|:C1,:C2,SC3) = (r17$27$3|) () (8)

P(:cl, T, fC3)

In order to use Eq. (8) for diagnosing the cause of symptoms x1, x5, and z3, we
must calculate the conditional and unconditional joint probabilities: P(x1,xq, x3|C})
and P(xy1,xy,x3) respectively. Estimating the joint probabilities is a difficult task in
general, since it requires the evaluation to be made for all combinations of the attributes
(observations), which is exponential in the number of attributes. Hence this procedure
becomes intractable for problems involving a large number of attributes. By making
simplifying assumptions regarding the independence of causal relationships, the calcu-
lation of the joint probabilities can be reduced significantly in number. For instance,
conditional independence of the observations (symptoms) given that a particular diagno-
sis category is observed, is often assumed to hold. For example, P(z1|C;, z3) = P(x1|C;)
implying that the symptoms z; and x, are independent given that class C; is observed
(or suspected) (Russell & Norvig, 1995). With such assumptions, Bayes rule for an m
category problem involving 3 observations can be reduced to the expression in Eq. (9).

B P(x1|C;) x P(22]C;) x P(x3]C;) x P(Cy)
PlGlwns e 2) = o B0 % POy % PlwlC) = POy)

31

Let us illustrate this approach with our automobile diagnosis example. Consider
the training examples of table 3. It is easy to determine the frequency distribution of
the diagnosis classes. For instance, we can observe that é of the user problems were
attributed to faulty Bulbs, é to a faulty Battery, % to a faulty Wiper Motor, and finally,
% to faulty Ignition. These represent the prior probability of occurrence of each of the
diagnosis classes.

P(~Bu) = 0.167, P(-Ba) = 0.167, P(=Wm) = 0.333, P(=I)=0.333

where we denote Bulbs by Bu, Battery by Ba, Wiper Motor by Wm, and Ignition by 1.
Further, the prefix — applied to a symbol indicates that the particular component is
faulty.

As mentioned earlier, for Bayesian inference to work, we also need the class con-
ditional probabilities, i.e., P(xz;|C;) of each of the observations z;. In the automobile
diagnosis example, we might have access to some amount of causal knowledge of the
kind: if the battery is faulty the headlights won’t work, i.e., P(=H|-Ba) = 1. Similarly,
we can determine the other required class conditional probabilities from causal knowl-
edge, where applicable. In many cases, there is no direct causal relationship between the
fault and the symptom. For instance, faulty bulbs do not directly affect the functioning
of the engine. In this case, how do we compute the conditional P(=E|-Bu)? In many
real world scenarios, the absence of direct causal relationship between a fault and a
symptom implies that they are independent. For example, in the automobile model we
have assumed, the functioning of the bulbs is independent of the engine and vice versa.
Thus we can compute the class-conditioned probability as: P(—=E/-Bu) = P(-F), by
assuming independence of =K and —Bu. Further, given the training examples, we can
easily estimate the unconditional (or prior) probabilities of the observations, i.e., P(—F)
can be estimated from the examples. Hence P(=E/=Bu) = P(-E) = 2 = 0.5. This

approach leads to the following class-conditioned probabilities:

P(~H/-Bu)=1 P(=E/-~Bu) =05 P(=W/-Bu) = 0.6667

P(~H/-~Ba)=1 P(~E/-Ba)=1 P(-W/-Ba)=1

P(~H/-Wm) =05 P(~E/~-Wm)=05 P(=W/-Wm)=1
P(-H/-1)=05 P(~E/~I)=1 P(~W/~I) = 0.6667

Once these quantities are determined the system is ready for diagnosing problems.
For example, consider the familiar user problem wherein the wipers work (W), but the
headlights don’t work (—H), and the engine does not start (-=£). Using Bayes rule of
Eq. (9), the system can diagnose the problem as follows:

P(~Bu) x P(~H[~Bu) x P(~E/~Bu) x P(W/-Bu)

Yi=BuBawm,1 P(71) X P(mH/[=i) x P(=E[=i) X P(W/ﬁzo)

P(~Bu/-H,-E,W) =

32

which becomes:

0.167 x 1 x 0.5 x 0.3333
P(~Bu/~H.-E.W) = — 0.3341 11
(mBu/~H, =B, W) = G T0+04+0.0554 (1)

Similarly one arrives at the following:

P(~Ba/-H,~E,W) =0 (12)
P(~-Wm/-H,~E,W) =0 (13)
P(~1/-H,~E,W) = 0.6659 (14)

As Eq. (14) has the maximum P(Diagnosis/—H,—~F, W) value, the system diag-
noses the input observations as due to a faulty Ignition. Notice that the input also has a
non-zero likelihood of being an outcome of faulty bulbs.

A number of issues need to be dealt with to make use of probabilistic inference
systems in practice. The primary problem with these systems is the determination of
the conditional joint distributions which are exponential in the number of attributes.
Algorithms for approximate computation of the conditional probabilities work quite
well in practice (Dean et al., 1995; Pearl, 1988). One such tool for efficient probabilistic
reasoning is the belief network (Dean et al., 1995; Pearl, 1988; Russell & Norvig, 1995).
Belief networks (also called probabilistic networks or Bayesian networks) are structures
that concisely represent the joint probability distributions of random variables. They
contain nodes representing sets of random variables and directed links between nodes
that capture the influences between them. Each node is equipped with a conditional
probability table that quantifies the effect of parents of the node. A detailed exposition
of belief networks is beyond the scope of this paper and the interested reader is referred
to (Pearl, 1988; Russell & Norvig, 1995) for further details.

In summary, statistical approaches such as the probabilistic reasoning system out-
lined above rely on the availability of the necessary class-conditional probabilities (or a
representative set of samples from which such probabilities can be estimated) and the
prior-probability distributions. They constitute a powerful approach to diagnosis espe-
cially in noisy domains or in applications in which partial domain knowledge is available
to establish an initial structure for Bayesian networks which can then be further refined
using training data.

Other, not necessarily statistical, techniques for reasoning under uncertainty in-
clude Dempster-Schafer calculus, fuzzy logic, and related methods (Tanimoto, 1995).
Dempster-Schafer theory is designed to deal with the distinction between uncertainty
and ignorance. It is used to calculate the probability that the evidence (or observation)
supports a conclusion, rather than the probability of the conclusion itself. It differs from
probabilistic reasoning systems in this important regard. A belief function is used to
measure the degree of belief in a particular state. This allows a system to hold beliefs

33

regarding the state of the world, for example the state of an automobile component,
without the beliefs necessarily being constrained to add up to 1 (unlike probabilistic
systems). Dempster-Shafer theory provides a complete computational model for gener-
ating belief functions and updating them by combining new evidence (Dempster, 1968;
Shafer, 1976).

Fuzzy logic captures the notion of vagueness by using fuzzy sets to denote how well an
object or a situation satisfies a vague description. Rather than true/false values, fuzzy
predicates take on truth values between 0 and 1. These systems thus model the fuzziness
of class boundaries rather than the uncertainty in the probabilistic sense (Zadeh, 1965;
Zimmermann, 1991). Like in classical logic which supports only two truth values, in
probability theory, assertions about the world can be either true or false. However, each
assertion is true or false with a certain probability. Fuzzy logic, on the other hand, allows
one to associate a real-valued degree of truth with each assertion thereby supporting an
infinite number of truth values.

11 SUMMARY AND DISCUSSION

The Al literature offers a wide variety of approaches to the design of intelligent diagnosis
systems. In order to keep this paper concise and in some regards focused, we have chosen
to limit the bulk of the discussion to only approaches that have been widely used in the
design of intelligent diagnosis systems, or appear to hold considerable promise. We have
illustrated each of the approaches by outlining the construction of a diagnosis system
for identifying simple faults in an automobile electrical system.

Intelligent diagnosis, like any other task requiring intelligence, needs sufficient knowl-
edge of the domain of interest. The choice of a particular design for an intelligent diag-
nosis system is therefore influenced greatly by the form, amount, or sources of knowledge
that are available. If adequately complete and precise knowledge of the operating prin-
ciples of the domain is available, it can be used to develop causal models which can
support a model-based approach to diagnosis (Forbus & de Kleer, 1993). In the absence
of such a causal model, if the knowledge necessary for diagnosis can be acquired from
human experts, it would be possible, at least in principle, to build a knowledge-based
system or an expert system for diagnosis (Durkin, 1994; Puppe, 1993; Stefik, 1995). In
practice, such knowledge engineering can be expensive and time consuming.

In many practical scenarios, knowledge elicitation from experts may not be feasible.
However, it might be possible to obtain a large sample of diagnoses performed by domain
experts. These may be stored in a case library and used by case-based reasoning (CBR)
systems (Kolodner, 1993). One can view such a system as performing a form of rote
learning or memorization.

In recent years, much Al research has focused on automating the knowledge ac-
quisition process by using machine learning techniques (Gallant, 1993; Hassoun, 1995;

34

Honavar, 1994; Langley, 1995; Mitchell, 1997; Ripley, 1996). A broad range of learning
systems have been developed over the years. Our discussion of such systems in this pa-
per has focused mostly on inductive learning systems that learn from examples. Unlike
rote learning, inductive learning systems extract, in a relatively compact form (e.g., a
few simple classification rules), knowledge that is implicitly provided by a large num-
ber of examples. Although different learning algorithms use different mechanisms for
limiting the complexity of the concept description learned, they almost always contain
a strong bias towards simple concept descriptions. This is necessary to avoid overly
detailed descriptions that essentially amount to memorization of the training data (with
the resulting problem of poor generalization).

Decision tree learning algorithms like ID3, induce classification rules and represent
them conveniently as trees. Several decision tree learning algorithms are available in
the literature (Quinlan, 1993). They are particularly well-suited for domains in which
instances can be described using a finite number of attributes, each of which takes on one
of a finite set of values. Extensions that can handle continuous-valued attributes have
recently become available. Most decision tree algorithms incorporate a strong search
bias in favor of simple trees.

Artificial neural networks (Gallant, 1993; Hassoun, 1995; Ripley, 1996) are particu-
larly well suited for domains in which instances are naturally described using numeric
attributes (continuous as well as discrete), or when classification requires consideration
of highly nonlinear interactions among several attributes. They are also relatively re-
sistant to attribute noise (noise in the input attributes), as well as classification noise
(wrongly classified training examples).

Statistical approaches offer mathematically well-founded techniques for dealing with
domains in which knowledge is best represented probabilistically because of uncertainty
due to incomplete knowledge, lack of data, or both. Powerful practical algorithms for
constructing probabilistic belief networks have begun to appear in the literature (Pearl,
1988; Russell & Norvig, 1995).

Our discussion of inductive learning algorithms has not addressed a number of impor-
tant theoretical and practical issues that arise in the design and use of such algorithms.
The feasibility of inductive learning is determined by various factors including: the size
or complexity of the hypothesis space (defined by the concept language), the amount,
quality, and form of domain knowledge and training data that is available and the model
of learning (e.g., whether examples are chosen randomly or purposefully by the teacher,
whether the learning algorithm is allowed to pose queries to the teacher or actively select
examples, whether learning has to be done on line while the system is being used to per-
form classification or it can learn off line, etc.). Detailed exploration of these and related
issues is part of much ongoing research in machine learning (Langley, 1995; Mitchell,
1997).

Besides the inductive approaches discussed in this paper, a number of other in-
ductive learning paradigms exist, which we have not examined in this paper because

35

of space constraints. These include: inductive logic programming (Lavrac & Dzeroski,
1994) (wherein knowledge is represented the form of logic programs), automata induction
(Parekh & Honavar, 1997) (wherein knowledge is represented in the form of finite-state
automata), etc. In addition, evolutionary algorithms (Goldberg, 1989; Holland, 1992;
Mitchell, 1996) can be used to search for target concepts in appropriately expressed
concept spaces (e.g., decision trees, neural networks, LISP programs, etc.). Examples
of evolutionary induction of LISP programs appear in (Koza, 1992), while induction of
neural networks is discussed in (Patel & Honavar, 1997).

Apart from inductive learning, deductive or analytical learning algorithms (Langley,
1995; Mitchell, 1997) are also of interest. Essentially, these are knowledge compilation
techniques which abstract (or generalize) and store the results of computationally ex-
pensive deductive inferences used in solving specific instances of a problem. Once this
is done, other similar problems can be solved more efficiently in the future.

All the approaches we have discussed, including automated knowledge acquisition
through learning, have assumed that all the attributes used to describe the instances are
relevant to the diagnosis task at hand. Practical problems often present an abundance
of irrelevant or redundant attributes. In such cases, the learning algorithm has to select
a relevant or useful subset of the attributes to use in concept induction. An example of
such a scenario which is of significant practical interest is the task of selecting a subset
of clinical tests (each with different financial cost, diagnostic value, and associated risk)
to be performed as part of a medical diagnosis task. Although several approaches to
attribute selection have been developed in the literature, most of them work well only
with linear classifiers but not with nonlinear classifiers (e.g., neural networks) (Ripley,
1996). In addition, these techniques fail to deal with multiple selection criteria (e.g.,
classification accuracy, feature measurement cost, etc.) which might be desirable in
many applications (e.g., the medical diagnosis). A recent approach to the attribute-
selection problem uses evolutionary algorithms to select a relevant subset of attributes
under a variety of cost and performance constraints (Yang & Honavar, 1997).

Our discussion of knowledge acquisition in this paper has assumed that the necessary
knowledge and data are available in highly structured formats defined by the instance
representation languages used by the individual learning algorithms. The advent of the
world wide web and advances in internet technology present scenarios wherein knowl-
edge acquisition might involve knowledge extraction and refinement from a large number
of heterogeneous (and possibly geographically distributed) data and knowledge sources.
Such sources of diagnostic knowledge might include case repositories residing in mul-
tiple databases, textual data (e.g., technical manuals, dictionaries, encyclopedia, etc.),
multimedia data (pictures, sounds, etc.), etc. Automated knowledge acquisition from
heterogeneous data and knowledge sources is largely an open research problem although
some work is currently underway in this area (Fayyad et al., 1996; Honavar & Miller,
1997).

As the preceding discussion indicates, no single Al paradigm adequately meets the

36

diverse design and performance requirements that may need to be met in a broad range
of diagnosis applications. This suggests that it might be advantageous to design hybrid
systems that build on the strengths of multiple AT approaches (Gallant, 1993; Goonati-
lake & Khebbal, 1995; Honavar & Uhr, 1994; Medsker, 1994; Sun & Bookman, 1994).

For instance, the different Al techniques presented in this paper differ from each
other in their choice of search bias, concept representation used (or learned), etc., which
results in possibly different classifications of the same input situation. By using a collec-
tion of different systems (analogous to multiple experts) and a majority voting scheme
to produce the resulting diagnosis, we may hope to perform better than any of the
approaches individually (Gallant, 1993; Langley, 1995; Mitchell, 1997; Ripley, 1996).

One might also consider systems that use prior knowledge (e.g., in the form of a
model of the domain or diagnostic rules) when available, and use inductive learning to
refine and extend the knowledge base. For instance, knowledge available in the form of a
decision tree or a set of rules can be encoded into a neural network for further refinement
through learning from examples. An example of this approach is offered by (Shavlik,
1994). This approach allows the rules of expert systems to be mapped into neural
network architectures, thereby permitting the system to cope with changes in diagnostic
knowledge. An added benefit of such a mapping to neural networks (or other suitable
parallel computational structures) is the speed-up obtained in producing diagnoses for
time-critical applications. Similarly, inductive procedures can be used to succinctly
capture large bodies of causal knowledge used in model-based diagnosis. A variety of
additional possibilities e.g., new approaches to automated knowledge acquisition from
heterogeneous data and knowledge sources, remain to be explored.

References

Buchanan, B. G., & Wilkins, D. C. (eds). (1993). Readings in Knowledge Acquisition.
Palo Alto, CA: Morgan Kaufmann.

Chen, C-H., & Honavar, V. (1995). A Neural Memory Architecture for Content as Well
as Address-Based Storage and Recall. Connection Science, 7, 293-312.

Chen, C-H., & Honavar, V. (1996). A Neural Architecture for High-Speed Database
Query Processing. Microcomputer Applications, 15, 7-13.

Dean, T., Allen, J., & Aloimonos, Y. (1995). Artificial Intelligence - Theory and Practice.
Redwood City, CA: Benjamin/Cummings.

Dempster, A. (1968). A Generalization of Bayesian Inference. Journal of the Royal
Statistical Society, 30 (Series B), 205-247.

37

Duda, R. O., & Hart, P. E. (1973). Pattern Classification and Scene Analysis. New
York: John Wiley.

Durkin, J. (1994). Ezpert Systems — Design and Development. New York, NY: Macmillan
Publishing Company.

Fayyad, U., Piatetsky-Shapiro, G., Smyth, P., & Uthurusamy, R. (eds). (1996). Advances
in Knowledge Discovery and Data Mining. Cambridge, MA. To appear: MIT Press.

Forbus, K. D., & de Kleer, J. (1993). Building Problem Solvers. Cambridge, MA: The
MIT Press.

Fu, K. S. (1982). Syntactic Pattern Recognition and Applications. Englewood Cliffs, NJ:
Prentice-Hall.

Fukunaga, K. (1990). Introduction to Statistical Pattern Recognition. New York: Aca-
demic Press.

Gallant, S. (1993). Neural Network Learning and Expert Systems. Cambridge, MA: MIT

Press.

Ginsberg, M. (1993). FEssentials of Artificial Intelligence. San Mateo, CA: Morgan

Kaufmann Publishers, Inc.

Goldberg, D. E. (1989). Algorithms in Search, Optimization and Machine Learning.
New York, NY: Addison-Wesley.

Gonzalez, R. C., & Thomason, M. G. (1978). Syntactic Pattern Recognition: An Intro-
duction. Reading, MA: Addison Wesley.

Goonatilake, S., & Khebbal, S. (eds). (1995). Intelligent Hybrid Systems. West Sussex:
John Wiley.

Hassoun, M. H. (1995). Fundamentals of Artificial Neural Networks. Boston, MA: MIT

Press.
Hebb, D. O. (1949). The Organization of Behavior. New York: Wiley.

Holland, J. (1992). Adaptation in Natural and Artificial Systems. Cambridge, MA: MIT

Press.

Honavar, V. (1994). Toward Learning Systems That Integrate Different Strategies and
Representations. Pages 561-580 of: Honavar, V., & Uhr, L. (eds), Artificial Intel-
ligence and Neural Networks: Steps Toward Principled Integration. San Diego, CA:
Academic Press.

38

Honavar, V., & Miller, L. (1997). Automated Knowledge Acquisition from Heterogeneous
Distributed Data and Knowledge Sources. To appear.

Honavar, V., & Uhr, L. (1993). Generative Learning Structures and Processes for Gen-
eralized Connectionist Networks. Information Sciences, 70, 75-108.

Honavar, V., & Uhr, L. (eds). (1994). Artificial Intelligence and Neural Networks — Steps
toward Principled Integration. San Diego, CA: Academic Press.

Hutchinson, A. (1994). Algorithmic Learning. New York, NY: Oxford University Press.

Kolodner, J. (1993). Case-Based Reasoning. San Mateo, CA: Morgan Kaufmann Pub-

lishers, Inc.
Koza, J. (1992). Genetic Programming. Cambridge, MA: MIT Press.
Kung, S. Y. (1993). Digital Neural Networks. New York: Prentice-Hall.
Langley, P. (1995). Elements of Machine Learning. San Mateo, CA: Morgan Kauffman.

Lavrac, N., & Dzeroski, S. (1994). Inductive Logic Programming Techniques and Appli-
cations. New York: Ellis Horwood.

Luger, G. F., & Stubblefield, W. A. (1993). Artificial Intelligence. New York, NY:

Benjamin/Cummings.
Medsker, L. (1994). Hybrid Neural Network and Fxpert Systems. New York: Kluwer.

Michalewicz, Z. (1992). Genetic Algorithms + Data Structures = Evolution Programs.
Berlin: Springer-Verlag.

Michalski, R. S. (1983). Theory and Methodology of Inductive Learning. In: Michalski,
R. S., Carbonell, J. G., & Mitchell, T. M. (eds), Machine Learning — An Artificial
Intelligence Approach. Palo Alto, CA: Tioga.

Miclet, L. (1986). Structural methods in pattern recognition. New York, NY: Springer-
Verlag.

Mitchell, M. (1996). An Introduction to Genetic Algorithms. Cambridge, MA: MIT

Press.
Mitchell, T. (1997). Machine Learning. McGraw Hill. (forthcoming).

Mozetic, 1. (1992). Model-Based Diagnosis: An Overview. Pages 419-430 of: Marik,
V., Stepankova., O., & Trappl, R. (eds), Advanced Topics in Artificial Intelligence.
Springer-Verlag.

39

Natarajan, B. (1991). Machine Learning: A Theoretical Approach. Palo Alto, CA:

Morgan Kaufmann.

Parekh, R.G., & Honavar, V. (1997). Automata Induction, Grammar Inference, and
Language Acquisition. In: Dale, Moisl, & Somers (eds), Handbook of Natural Lan-
guage Processing. New York, To appear.: Marcel Dekker.

Parekh, R.G., Yang, J., & Honavar, V. (1997). Multi-Category Constructive Neural Net-
work Learning Algorithms for Real-Valued Pattern Classification. Ames, lowa: Tech.
Rep. ISU-CS-TR 97-01, Department of Computer Science, lowa State University.

Patel, M., & Honavar, V. (eds). (1997). FEvolutionary Synthesis of Neural Systems.
Cambridge, MA. To appear.: MIT Press.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. San Mateo, CA: Morgan Kaufmann.

Puppe, F. (1993). Systematic Introduction to Expert Systems — Knowledge Representa-
tions and Problem Solving Methods. Berlin: Springer-Verlag.

Quinlan, R. (1993). C4.5: Programs for Machine Learning. San Mateo, CA: Morgan

Kaufmann.
Rich, E., & Knight, K. (1991). Aritificial Intelligence. New York, NY: McGraw-Hill.
Ripley, B. (1996). Pattern Recognition and Neural Networks. New York, NY: Cambridge

University Press.

Russell, S., & Norvig, P. (1995). Artificial Intelligence - A Modern Approach. Englewood
Cliffs, NJ: Prentice-Hall.

Schank, R. (1982). Dynamic Memory: A theory of learning in computers and people.
New York, NY: Cambridge University Press.

Schank, R., & Abelson, R. (1977). Scripts, plans, goals and understanding. Northvale,
NJ: Erlbaum.

Shafer, G. (1976). A Mathematical Theory of Evidence. Princeton, NJ: Princeton Uni-

versity Press.

Shannon, C. (1948). A Mathematical Theory of Communication. Bell System Technical
Journal, 27(July and October), 379423, 623-656.

Shavlik, J. (1994). A Framework for Combining Symbolic and Neural Learning. Pages
561-580 of: Honavar, V., & Uhr, L. (eds), Artificial Intelligence and Neural Net-
works: Steps Toward Principled Integration. San Diego, CA: Academic Press.

40

Shavlik, J., & Dietterich, T. (eds). (1990). Readings in Machine Learning. Palo Alto,
CA: Morgan Kaufmann.

Simon, H. A. (1983). Why should machineslearn? In: Michalski, R. S., Carbonell, J. G.,
& Mitchell, T. M. (eds), Machine Learning — An Artificial Intelligence Approach.
Palo Alto, CA: Tioga.

Stefik, M. (1995). Introduction to Knowledge Systems. Palo Alto, CA: Morgan Kauf-

manil.

Sun, R., & Bookman, L. (eds). (1994). Computational Architectures Integrating Symbolic
and Neural Processes. New York: Kluwer.

Tanimoto, S. L. (1995). Elements of Artificial Intelligence Using Common Lisp. New
York: Computer Science Press.

Uhr, L. (1973). Pattern Recognition, Learning and Thought. Englewood Cliffs, NJ:
Prentice-Hall.

Winston, P. (1992). Artificial Intelligence. New York, NY: Addison-Wesley.

Yang, J., & Honavar, V. (1997). Feature Subset Selection Using a Genetic Algorithm.
To appear.

Zadeh, L. (1965). Fuzzy Sets. Information and Control, 8, 338-353.

Zimmermann, H. (1991). Fuzzy Set Theory — And Its Applications. Second edn. Dor-
drecht, The Netherlands: Kluwer.

41

