
Found Phys (2016) 46:1185–1198
DOI 10.1007/s10701-016-0014-y

Black Hole Unitarity and Antipodal Entanglement

Gerard ’t Hooft1

Received: 12 February 2016 / Accepted: 7 April 2016 / Published online: 5 May 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Hawking particles emitted by a black hole are usually found to have thermal
spectra, if not exactly, then by a very good approximation. Here, we argue differently.
It was discovered that spherical partial waves of in-going and out-going matter can
be described by unitary evolution operators independently, which allows for studies
of space-time properties that were not possible before. Unitarity dictates space-time,
as seen by a distant observer, to be topologically non-trivial. Consequently, Hawking
particles are only locally thermal, but globally not: we explain why Hawking particles
emerging from one hemisphere of a black hole must be 100 % entangled with the
Hawking particles emerging from the other hemisphere. This produces exclusively
pure quantum states evolving in a unitary manner, and removes the interior region for
the outside observer, while it still completely agrees locally with the laws of general
relativity. Unitarity is a starting point; no other assumptions aremade. Region I and the
diametrically opposite region I I of the Penrose diagram represent antipodal points
in a PT or CPT relation, as was suggested before. On the horizon itself, antipodal
points are identified. A candidate instanton is proposed to describe the formation and
evaporation of virtual black holes of the type described here.

1 Introduction

According to the classical picture of a black hole, it appears to be a sink that absorbs
all matter aimed at it, without leaving a trace. The earliest descriptions of the quantum
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effects near a black hole, which lead to the marvellous conclusion that, due to vacuum
polarisation, particles are emitted by a black hole [1], still suggested that quantum
mechanics cannot prevent information to disappear. This, however, was quickly put in
doubt [2,3]. Precisely because the laws of thermodynamics apply to black holes [1,4],
black holes must also be constrained to form quantum states with orthonormality and
unitarity conditions.

When this was realised, the author camewith a possible scenario [5]. Particles going
in, do have an effect on the Hawking particles coming out, bymodifying their quantum
states, in spite of the fact that their thermodynamical distribution remains unaffected.
The explanation of this effect is that particles going in interact with the particles going
out. Ordinary, standard model interactions are too weak to determine the quantum
states of the out-going particles in such a way that a unitary evolution operator could
emerge, but the gravitational interactions, paradoxically, are so strong here that they
dominate completely. Indeed, their effects can cause the relation between in- and out-
going states to be unitary. Formally, the evolution operator, also called S-matrix, could
be derived [6], and the way it operates is quite reminiscent to the scattering operators
provided by interactions in (super-)string theories. the black hole horizon then acts as
the world sheet of a closed string.

We stressed that, in spite of the resemblance of this mathematical structure to string
theory, this is not quite string theory, because the string slope parameter would be
purely imaginary instead of real, and the string community paid only little attention.
Yet, the author continues to defend the view that this should be seen as the most
promising alley towards further understanding of nature’s book keeping system. This
is because the picture that emerges only works if matter is considered to be entirely
geometrical (just as in string theories), and thus, the condition that black holes should
be entirely consistent with the laws of quantum mechanics, should be a powerful lead
to guide us to a correct physical theory for all Planckian interactions.

Recently, it was found that the black hole back reaction can be calculated in a
more systematic fashion. We did have a problem, which is that the gravitational force
attributes too much hair to a black hole. This is because the effects of the transverse
gravitational fields could not yet be taken into account. Particles with too high angular
momentawould contributewithout bound, and this is obviously not correct. The search
was for a method to give a transverse cut-off. A cut-off was proposed by Hawking et
al. [7], which is a good starting point, while, being qualitative, it does not yet provide
us with the exact expression for Hawking’s entropy.

There is however an other question that can be answered: how can we separate the
physical degrees of freedom near the horizon, so that each can be followed separately?
This question was not posed until recently, and we found an astonishing answer [8,
9]: we can diagonalise the information retrieval process completely, so that we can
describe in closed form how information literally bounces against the horizon. Where,
in previous calculations, a brick wall had been postulated [2], a brick wall emerges
naturally and inevitably when the diagonalised variables are used.

And there is more.We found that the degrees of freedom in region I I of the Penrose
diagram get mixed with the degrees of freedom in region I . This is an inevitable
element of the theory: gravitational deformations of space-time due to the gravitational
fields of the particles going in and out, cause transitions from one region into the other.
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The question how this can be understood physically was not answered in our pre-
vious paper. Here, this question is answered.

2 Summary of the Calculation of the Effective Bounce

Thedetails of this calculationwere presented inRefs. [8,9].One begins by representing
all possible forms of matter entering a black hole by their momentum distribution
p−
in(θ, ϕ). A single particle would give here a Dirac delta distribution. It is important

that we must assume here that all characteristics of in-going matter are duly registered
by this distribution of the in-going momentum. Next, one considers the Hawking
particles going out, by giving the out-going distribution p+

out(θ
′, ϕ′). The canonically

associated variables are the positions of the in- and out-going particles, u+
in(θ, ϕ)

and u−
out(θ

′, ϕ′), where u± are the light cone combinations of the Kruskal–Szekeres
coordinates. A single particle wave function would be of the form1

ei(p
−u+ + p+u−). (2.1)

If we have distributions p±(θ, ϕ), then the position operators u± describe two single
shells of matter,

u+
in(θ, ϕ) and u−

out(θ
′, ϕ′) , (2.2)

obeying a simple commutator algebra with the momentum distributions.
In Refs. [5,6], the mechanism that relates ‘out’ to ‘in’ is worked out: gravitational

interactions cause the out-particles to undergo a shift due to the momenta of the in-
going ones, so that2,

u−
out(�) = 8πGR2

∫
d2� f (�,�′)p−

in(�
′) , � ≡ (θ, ϕ), �′ = (θ ′, ϕ′), (2.3)

where R = 2GM is the horizon radius. The Green function f obeys:

�S f (�,�′) = −δ2(�,�′) , �S = �� − 1 = −	(	 + 1) − 1 , (2.4)

Units are chosen such that theRindler limit, R → ∞, (	,m)/R → k̃ gives us ordinary
flat space-time (k̃ is then the transverse component of the wave number).

The new trick is that we expand both the momentum distributions p±(θ, ϕ) and the
position variables u±(θ, ϕ) in terms of partial waves, Y	m(θ, ϕ). In previous versions
of this paper, the dependence on the horizon radius R was not worked out precisely.

1 Note that we use the metric convention (–,+,+,+), so that, here, p+ = 1√
2
(kr + E), p− = 1√

2
(kr − E) ,

while u+ = 1√
2
(r + t), u− = 1√

2
(r − t). For particles going in, we have p− < 0, u+ > 0, while for the

out-going particles, p+ > 0, u− > 0. In Rindler I , we have u± > 0, in Rindler I I, u± < 0.
2 The details are also further explained in Refs. [8,9], where we show how the calculation is done in the
Rindler limit. Here, we keep the finite size for the black hole, resulting in the extra term −1 in Eq. (2.4).
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It turns out to be important to do this well. There is a difference in the u and the p
variables in that the p variable is a distribution, so it has dimension 1/R3. We write
(temporarily3)

u±(x̃) → R u±(�), p±(x̃) → R−3 p±(�) ; (2.5)

δ2(x̃ − x̃ ′) → R−2δ2(�, �′), [u±(�), p∓(�′)] = iδ2(�, �′) ; (2.6)

u±(�) =
∑
	,m

u±
	mY	m(�), p±(�) =

∑
	,m

p±
	mY	m(�). (2.7)

[u±
	m, p∓

	′m′ ] = iδ		′δmm′ . (2.8)

We find that, at every 	 and m, we have a complete set of quantum states that can
be written in the basis |p−

in〉 or |u−
out〉 or |u+

in〉 or |p+
out〉, with each of these variables

running from −∞ to ∞. They obey the relations

u−
out = 8πG/R2

	2 + 	 + 1
p−
in ; u+

in = − 8πG/R2

	2 + 	 + 1
p+
out , (2.9)

Later, Sect. 6, we shall see that we must limit ourselves to odd values of 	 only.
The wave functions (2.1) imply the Fourier relations (omitting the subscripts for

short)

〈u+|p−〉 = 1√
2π

eip
−u+

, 〈u−|p+〉 = 1√
2π

eip
+u−

. (2.10)

For every (	, m) mode, we have these quantum states. For the time being, we now
take 	 and m fixed.

Consider the time dependence, writing τ = t/4GM . The variables p−
in(t) and

u−
out(t) increase in time as eτ , while u+

in(t) and p+
out(t) decrease as e−τ . Because of

this exponential behaviour, it is better to turn to familiar grounds by looking at the
logarithms of u± and p±. Then, however, their signs α = ± and β = ± become
separate variables. Write (for given values of 	 and m):

u+
	,m ≡ α e
 , u−

	,m ≡ β eω , (2.11)

We then have the time dependence


(τ) = 
(0) − τ , ω(τ) = ω(0) + τ. (2.12)

These “shells” of matter bounce against the horizon, and the bounce is now generated
by the wave equations (2.10). Note, however, that, in these equations, u± and p± will
take both signs!

3 This algebra will be slightly modified in Eqs. (6.3)–(6.7).
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In Refs. [8,9], the wave functions are found to obey (in a slightly different notation)

ψout(β, ω) = 1√
2π

∑
α=±

∫ ∞

−∞
e
1
2 (
 + ω) d
 e−αβ ie
 +ω

ψin(α, 
 + log λ) ,

λ = 8πG/R2

	2 + 	 + 1
. (2.13)

Note that, since h̄ and c are put equal to one in this work, G is the Planck length
squared, so that λ is dimensionless. Next, the wave functions are expanded in plane
waves in the tortoise coordinates 
 and ω:

ψin(α, 
) = e−iκ
 ψin(α) , ψout(β, ω) = eiκω ψout(β) , (2.14)

to find the Fourier transform of Eq. (2.13):

ψout(β) =
∑
α=±

A(αβ, κ)ψin(α) , (2.15)

with

A(γ, κ) = 1√
2π

�( 12 − iκ) e−γ iπ
4 − γ κ π

2 , (2.16)

where γ = ±1. Thus, we find that the waves scatter with scattering matrix4

A =
(
A(+, κ) A(−, κ)

A(−, κ) A(+, κ)

)
, (2.17)

and since

|�( 12 − iκ)|2 = π

cosh πκ
, (2.18)

we find this matrix to be unitary:

A A† = I. (2.19)

The diagonal elements, γ = +1 show how waves interact when they stay in the same
sector of the Penrose diagram. The off-diagonal elements switch from region I to I I
and back. Notice that the matrix elements keeping the particles in the same sector are
actually suppressed. Indeed, in the classical limit, κ → +∞, we see that particles
close to the horizon always drag the out-going particles towards the other sector.

4 Use was made of:
∫ ∞
0

dz√
z
e∓i z z−iκ = �( 12 − iκ)e∓

iπ
4 ∓ π

2 κ .
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δu

δu

δu

in

out

out
III

u+u−

Fig. 1 Penrose diagram for Schwarzschild black hole, showing regions I and I I , a particle going in in
region # I , and particles going out in region I and region I I . The shift caused by the in-particle is the same
in both cases, but in region I I the particle seems to go backwards in time. Since, in region I I , the particle
is shifted away from the event horizon, region I I experiences the same particle as a negative energy one,
or an annihilated particle

In Refs. [8,9], it is found that this scattering matrix gives the correct entropy of the
horizon only if a cut-off is introduced in the angular partial waves:

	 ≤ 	max(M). (2.20)

Concerning the present approach, Mersini [10] suggests that the cutoff in the angular
momentumquantumnumber 	 can be argued using a “quantumZeno effect”.However,
her cut-off is a smooth one in the form of an exponent; for counting quantum states,
this author considers a sharp cut-off more likely.

3 The Domains in the Penrose Diagram

Let us recapitulate what the findings reported about in the previous section mean
physically.We presented in-going matter as a momentum distribution p−

in(θ, ϕ) across
the horizon, or equivalently, a cloud separated from the horizon by a distance function
u+
in(θ, ϕ). They obey the commutator algebra (2.6), where u+ and p− refer to the

in-states, while u− and p+ refer to the out-states.
In performing the angular wave expansion of these functions, one clearly cannot

avoid that both signs for the momentum and position amplitudes participate. This is
because in the original wave functions, (2.10), one cannot avoid that all signs for u±
and p± contribute. One clearly must conclude that the scattering is only unitary if
both signs for the position operator for the in-going and out-going shells of matter are
included. The situation is illustrated in Fig. 1. Matter may enter in region I or in region
I I of the Penrose diagram. If the matter entering, or leaving, in region I I would have
been omitted, the evolution would not have been unitary.

Sowhat does the contribution from region I I mean?This questionwas not answered
in Refs. [8,9] or [10]. We note that unitarity is restored provided that Schwarzschild
time t is used as the causal time parameter, so that, in region I I , motion seems to go
backward in the Penrose coordinates. Now, since we would like to refer to a single
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black hole here, we see only one clear option: region I I represents an other part of
the same black hole. Therefore, we must identify a Z2 mapping of the horizon onto
itself, to represent both regions of the Penrose diagram.

There is one natural candidate: the antipodal mapping. This mapping has been
proposed by Sanchez [11,12] in 1986. One identifies

(u+, u−, θ, ϕ) with (−u+, −u−, π − θ, π + ϕ). (3.1)

For the description of classical particles, this identification has no observable con-
sequences. We see in Fig. 1 that, a classical particle entering in region I does not
correspond to a classical particle, or antiparticle, or even the annihilation of an (anti-)
particle in region I I . Region I I is not reached at all, since also the signs of both u+
and u− are switched. However, for quantum mechanics, this does make a difference.
Wave functions have an extended support here, so a wave function in region I may
have tails in region I I .

It is important to observe that the two points (3.1) never come close together, so
that no singularity is generated.

4 Entangled Hawking Particles

Most significant is the effect this identification has for the Hawking particles. Sanchez
and Whiting [11,12] state that Fock space cannot be used in their setting. We can
however still use Fock space locally (although our description of in- and out-going
matter to describe back reaction, indeed does not allow the use of Fock space). Assume
now that we leave the black hole undisturbed for a while. When we then calculate the
spectrum of Hawking particles, we see how these arise from vacuum fluctuations,
and we can compute the distribution of particles as they would be seen by observers
outside. In the author’s reproduction of this calculation [6], one finds that, if there is a
vacuum as seen by the local observer at the origin of the u± frame, this vacuum is an
entangled state for the distant observer,

|ψ〉 =
∑
E

e− 1
2βH E |E, n〉I |E, n〉I I . (4.1)

Here, the states |E, n〉I describe the states with energy E and possible other quantum
numbers n in region I , and we have the same in region I I . Eq. (4.1) means that, if an
observer observes a particle with energy E and quantum numbers n emerging from
a point (θ, ϕ), (s)he will see exactly the same particle, with the same energy E and
quantum numbers n emerging at the antipodal point (π − θ, π + ϕ). The Hawking
particles emerging from one hemisphere of the black holes, are maximally entangled
with the particles emerging from the other hemisphere.

An interesting question is now: what is the Hawking entropy of such a black hole?
Locally, all Hawking particles are indistinguishable from what they were in the stan-
dard black hole picture, Ref. [1], but now, one could argue that a rotation over an angle
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π in Euclidean space would bring us back to the original state, even though we trav-
elled to the antipodes. This would suggest that we should multiply the temperature by
two and divide the entropy by two. We did have such a raise in temperature in a theory
suggested by the author long ago [13], where region I I was identified with the bra
states. We now claim however that any observer who would not check the correlations
between antipodal points, would only observe the standard Hawking temperature.
Upon closer inspection, however, noticing the entanglement, the observer would con-
clude that temperature and entropy would be ill-defined concepts for a black hole. All
its quantum states are now pure states.

The entanglement would be disrupted if we throw something into the black hole.
As we see in the Penrose diagram, the pattern of Hawking particles would be shifted
about, in opposite directions in the two regions.

We do emphasise that the new quantum states (4.1) of the Hawking particles do
form a pure state, so, consequently, the information problem is completely resolved
in the scenario suggested.

5 A Gravitational Instanton

The gravitational instanton that is strongly related to what was discussed above, is not
the one studied most, which was elegantly derived by Eguchi and Hansen [14]. Let us
momentarily consider a Euclidean metric of the form

ds2 = dr2 + a2(r)

(
dη2 + (sin η)2 dϑ2 + (sin η)2(sin ϑ)2 dϕ2

)
, (5.1)

which has SO(4) rotational symmetry and is positive. The choice a(r) = r would give
a four-dimensional flat Euclidean space-time.

Now assume that, in stead of the usual condition r ≥ 0 , a(0) = 0, we take

− ∞ < r < ∞ , a(r) ≈
√
r2 + μ2. (5.2)

This space-time has two asymptotically flat regions, r � 0 and r � 0, unlike ordinary
space-times. We correct for that by the antipodal identification of the points

(r, η, ϑ, ϕ) ↔ (−r, π − η, π − θ, π + ϕ). (5.3)

Since the S3 sphere with the coordinates (η, ϑ, ϕ) never gets a radius smaller than
the parameter μ, such an identification does not lead to any singularity anywhere. On
the sphere r = 0, the antipodal points on the S3 sphere are identified. The metric
can easiest be characterised by saying that, in ordinary Euclidean 4-space, we excise
a sphere with radius μ, and postulate that geodesics crossing that sphere continue
outside the sphere at the antipodal point. Points inside the sphere are removed.

Naturally, one would ask which set of field equations allow for a solution with such
a topology. In pure gravity one finds that the ansatz (5.1) would necessarily send a(r)
to zero somewhere, so that we have no solution resembling (5.2). One might expect
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that matter fields could allow for solutions with this topology, but we can prove that
ordinary scalar fields cannot do this job. Scalars with matter Lagrangian

Ls(φ) = − 1
2
√
g(gμν∂μ φ∂νφ + V (φ)) , (5.4)

would lead to the equation

2a′′ + a(V (φ) + 2φ′2) = 0 , (5.5)

whereφ′ stands for ∂φ/∂r . Since the vacuumstate is the statewhereV (φ) is lowest, and
it must vanish at infinity, this enforces ∂2a/∂r2 < 0, which would not allow the topol-
ogy of (5.2). In principle, adding a conformal term λRϕ2 to the Lagrangian, or adding
other types of matter fields, could produce such instantons, this we could not exclude.

The point we wish to make in this chapter is that the instanton (5.2) with the iden-
tification (5.3) would represent the formation and subsequent evaporation of a virtual
black hole with antipodal identifications as in Eq. (3.1) in Sect. 3. Since, at infinity,
this instanton’s metric approaches the flat metric faster than the Schwarzschild metric
does, there is no external gravitational field noticeable at infinity. This, we interpret
by saying that the total energy of the associated instanton tunnelling event vanishes.

6 On the Condition that � is Odd

When we say that region I I is to be identified with the antipode of region I , we say
that the u variables as well as the p variables all obey

u (θ, ϕ) = −u (π − θ, π + ϕ). (6.1)

Writing (π − θ, π + ϕ) ≡ −� if (θ, ϕ) = �, the spherical harmonics Y	,m obey

Y	,m(−�) = (−1)	 Y	,m(�) , (6.2)

and therefore, only the odd values of 	 can contribute.
The algebra described by Eqs. (2.6)–(2.8) is now replaced by:

u±(−�) = −u±(�) , p±(−�) = −p±(�) ; (6.3)

[u±(�), p∓(�′)] = iδ2(�, �′) − iδ2(�, −�′) , (6.4)

u±(�) = 1√
2

∑
	=odd, −	 ≤m ≤ 	

u±
	mY	m(�) , (6.5)

p±(�) = 1√
2

∑
	=odd, −	 ≤m ≤ 	

p±
	mY	m(�) , (6.6)

[u±
	m, p∓

	′m′ ] =
{
iδ		′δmm′ if 	 = odd
0 if 	 = even.

(6.7)

where we keep the � integrals over the entire sphere.
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What happens to a ‘spherical dust shell’? [15] It would be a spherical wave with
	 = 0. The answer is that such a shell is not allowed in our formalism. The black
hole horizon is covered with small domains (whose surface areas are of the order of
the Planck size), with a sign function defined on each of these domains. The sign
determines whether there is an object on (θ, ϕ) or on (π − θ, π + ϕ). It cannot be
on both. A spherical dust shell would have positive u+ variables at all angles, which
is not allowed. Instead, to mimic a dust shell, we should generate a density function,
rather than a wave function, built from very many large (and odd) 	-values. These
would represent the particles, each on their tiny Planckian surface area, but, where
one particle enters, an other particle cannot enter at its antipodal point. Only such dust
shells, consisting of very many particles, would have a unitary evolution operator.

Our algebra (2.5)–(2.9), nowmodified into (6.3)–(6.7), is an inevitable consequence
of the gravitational back reaction, and we showed that it connects regions I and I I
in a way that must be novel. In any case, it invalidates proposals to use both regions,
I and I I to describe the same physics [16,17]. u± and p± each must have a single
value according to the algebra, which can be positive or negative, and switch sign due
to the gravitational back reaction, while the proposal to fold up the Penrose diagram
so that region I would be equal to region I I would force them to have two opposite
signs at the same time. This would cause an unacceptable singularity at the centre of
the Penrose diagram. Choosing these regions to describe points far separated in the
θ and ϕ values avoids such a singularity. All this becomes manifest when doing the
partial wave expansion as was shown in this paper.

Theremay seem to be a problem. If themomentum variable p−(θ, ϕ)would always
be equal to−p− (π −θ, π +ϕ), would this not mean that there is a complete pairwise
cancellation among the momenta of the particles going in? And would this not be at
odds with our freedom to choose the initial state without any antipodal symmetry? The
answer to this is no. p− does not at all represent themomenta of the in-goingparticlesas
seen by the outside observer. First of all, it isweighedwith a factor e−τ with τ = t/4M ,
so themomenta of late in-particles can be neutralised by exponentially tiny corrections
for the momenta of particles going in much earlier, at the same spot. Secondly, a
Bogolyubov transformation is required to project out the positive u values for region
I , and the negative u values for region I I . The wave function is a superposition of
these two projections, that themselves need not to be correlated at all. So, in spite
of the entanglement of the Hawking particles, the in-states at (θ, ϕ) are in no way
restricted by the in-states at (π − θ, π + ϕ).

7 Discussion

The central issue in our report is that the matrix (2.17) must be unitary, while it mixes
the two regions of the Penrose diagram, so we have to conclude that region I I also
represents part of physical space-time. The only reasonable choice appears to be to
identify region I I with the antipodes.

In our theory, something happens that has never been explicitly noticed: The arrow
of time, in both regions, at all points near the horizon, must be taken to be the same
as the external, Schwarzschild time, τ = t/4GM . This is contrary to standard prac-
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tice [18] and also contrary to the author’s own earlier expectation. However, in order
to keep unitarity, this is exactly what was done in the calculations reported about in
this paper, and nowwe claim that calculations have to be done this way. It implies that,
in terms of the Penrose coordinates, the identification involves a PT transformation5:
time in region I I goes backwards. The gravitational shift effects that we incorporate,
bring us from region I into region I I and back, and we would not have unitarity if
we used the time coordinate employed by local observers. Indeed, using the τ coordi-
nate, we get the desired feature that our identification procedure commutes with time
translations.

Note that, within our formalism, the ‘interior region’ of a black hole disappears
altogether, so that no problems with firewalls can arise.

Objections were raised by noting that a trapped region may emerge already in flat
space-time, before the actual collapse takes place. So, the causal order of events will
not be agreed upon by the different observers. This is true, but our priority goes to
the construction of a unitary, causal evolution matrix for the black hole. If different
observers, who cannot communicate anyway, disagree about causality, this will be an
interesting discussion point but it will not invalidate our procedures. This does imply
a change of mind w.r.t. our earlier theories and suggestions.

8 Conclusion

An elegant way to phrase the new proposed theory, is to say that, when the first
trapped region opens up, we can regard it as a very tiny black hole, coming into
existence via a very tiny gravitational instanton. The fact that this tiny instanton has
antipodal identifications is a minute modification of space-time structure inside the
trapped region; then, when the region opens up wide, the new configuration grows
together with it. A local observer near the horizon, sees both Penrose’s regions I and
I I , not realising that region I I is a (C)PT image of the antipodal part of the hole,
since the same laws of physics apply there. This is why we say we do not violate
general relativity with our identifications.

We observed that antipodal identification of points on the horizon is inevitable if we
want a unitary evolution operator. Formally, from themoment that a trapped space-time
region forms, we must already identify antipodal points on the crossing point of future
and past event horizons. Our point is that this remains invisible for ‘experiments’, until
one waits to see the quantum effects of a decaying and vanishing black hole. Even if
our procedure seems to be quite natural, our familiar notions of space and time will
have to be thoroughly revised. The advantage of our procedure of splitting things up
in partial wave expansions, is that different partial waves are completely uncoupled,
so that we are left with very simple, finite-dimensional quantum mechanics for each
wave, where one can exactly see what is going on.

The partial wave decomposition employed here should be distinguished from the
usual partial wave decompositions in first- or second-quantized particle theories. We

5 Presumably, this should be PCT , but in our formalism the notion of antiparticles was not yet introduced;
including electromagnetism in our formalism may well clarify this point.
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are forced to treat particles not as being point-like, but as forming a finite set of
membranes that each take the shape of a partial wave. So, introducing a cut-off in 	

would not restrict total angularmomenta of all particles anyway.Although these partial
waves have a classical appearance, we insist that they form legitimate representations
of our operator algebra. They can be interpreted as a reformulation of the coordinates
of all particles entering and leaving the black hole, a number that is roughly equal to
R2 (in Planck units) [19]. The partial waves are then nothing but a band-limited mode
decomposition as was described in Ref [20].

Also, one should not expect amajority of Hawking particles to emergewith 	 values
close to the Planck limit. To the contrary, as was emphasised by Dvali [21], Hawking
radiation in practice is dominated by S-waves, with small tails in higher 	 modes,
which are strongly suppressed by their Boltzmann factors. It is the micro-states that
we arrange according to their (	, m) values.

Our result can be characterised by saying that indeed black holes have hair, and
using our procedures we can understand all its details:

– Black holes have hair: one strand, on the average, for every Planckian surface
elements of the horizon. Hair associated with the dynamical variable u−

out(θ, ϕ),
sits on the expanding tortoise coordinate, so it grows exponentially. Hair associated
to the variable u+

in(θ, ϕ) shrinks exponentially in time.
– And then we have the sign variables α(θ, ϕ), and β(θ, ϕ). They have the features
of a fermionic field on the scalp of the black hole, that is, they do not grow or
shrink. As long as nothing falls into the black hole, the sign variable α does not
change with time, so it can be regarded as a conserved charge [7]. The sign variable
β, associated to the out-going particles, is also conserved, in principle, but it does
not commute with α. For all practical purposes, α and β may be identified with
the black hole micro-states, but remember that also the dynamical variables u±
contribute to the total entropy.

Let us emphasise, once again, that each partial wave decouples from all other partial
waves, and this fact should be seen as a major discovery. It enables us to form a very
simple picture of the structure of space-time at or near the Planck scale, without
having to take our refuge in functional variables and integrals, which often obscure
things. One finds that space and time have exciting features. The most important
problem has always been that, at the black hole horizon, the local observer must allow
for unlimited Lorentz boosts. These cause gravitational back reactions that are also
unlimited. We now have a handle to cope with that situation: it was discovered that
in-going particles exchange position operators with momentum operators, to turn into
out-going particles.

Let us also emphasise that hardly any ‘approximation’ has been made. Authors of
other publications often belittle our results by claiming that it is merely a ‘classical
approximation’ or something like that. To the contrary, the algebra on which it is based
is very compelling, having been derived from impeccable physical arguments. Indeed,
the physics is very accurate6 as soon as we look at 	 values well below the maximal

6 We did ignore non-gravitational interactions near the horizon. These should become significant only as
particles move away from the horizon.
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limit (at the Planck scale). How exactly to perform the cut-off at the maximal values
of 	 is not precisely understood today, but the Planckian regime has not yet been well
understood by anybody.

We believe that our results may lead to a superior view of the structure of space
and time at the Planck scale. When a black hole is just about to be formed, a trapped
region opens up, and as soon as that happens, the distant observer will be obliged to
pairwise identify points on its boundary, in a PT invariant manner.7 Consequently,
for the outside observer, the internal region disappears. Particles that enter the interior
region, arranged in partial waves of energy and momentum, immediately re-emerge,
with positions and momenta interchanged, as well as a switch in the arrow of time,
while, most importantly, their quantum states remain pure, both for the inside observer
as for the outside observer. The different partial waves do not mix.

There are many problems still wide open. One is the infinite black hole / Rindler
limit. Where is the antipodal point in Rindler space? Does Rindler space have to be
compactified just as the black hole horizon? On dimensional grounds, we do need a
C-number R as in Eqs. (2.5), (2.9) and (2.13).

Another problem is the fact that we were forced to treat the u variable here as the
coordinate of a single ‘particle’. Although this is actually something more like a dust
shell, one would still have expected that u± should emerge as the coordinates of a
second-quantised theory. This, emphatically, is not possible here (unitarity would get
lost). What can be done in principle, is to treat the real number parameters u± and p±
as sequences of binary digits instead. As the time parameter τ increases by an amount
log b, where b is the base of the digital system used (for instance, b = 2), the digits
all move one step to the left or to the right, exactly as in a second quantised theory of
fermions. We need a procedure of this sort in order to make contact with the Standard
Model of the sub-atomic particles, but we would prefer a more elegant mathematical
scheme.
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