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ABSTRACT

Elliot Sober ([2001]) forcefully restates his well-known counterexample to Reichenbach's

principle of the common cause: bread prices in Britain and sea levels in Venice both

rise over time and are, therefore, correlated; yet they are ex hypothesi not causally

connected, which violates the principle of the common cause. The counterexample

employs nonstationary dataÐi.e., data with time-dependent population moments.

Common measures of statistical association do not generally re¯ect probabilistic

dependence among nonstationary data. I demonstrate the inadequacy of the

counterexample and of some previous responses to it, as well as illustrating more

appropriate measures of probabilistic dependence in the nonstationary case.
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5 Probabilistic dependence in nonstationary time series

6 Do Venetian sea levels and British bread prices violate the principle

of the common cause?

1 A challenge to the principle of the common cause

Hans Reichenbach's ([1956]) principle of the common cause and the causal

Markov condition stand at the core of several modern accounts of causality

(e.g., Spirtes, Glymour and Scheines [1993]; Hausman and Woodward [1999]).

Reichenbach ([1956], p. 156) states the principle of the common cause: `If an

improbable coincidence has occurred, there must exist a common cause'

(emphasis in the original). He then goes on to elaborate the conditions

for a common cause in terms of probabilities (pp. 156±67).1 Elliot Sober

1 The causal Markov condition states that any variable, V, in a causal graph, conditional on its
parents, is independent of all other variables that are neither its parents nor its descendants
(Spirtes, Glymour and Scheines [1993], p. 54; Hoover [2001], p. 157).
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(2001, p. 331) restates the principle as:

(P) If events X and Y are correlated, then either X caused Y, Y caused X,

or X and Y are joint effects of a common cause (one that renders X and Y

conditionally probabilistically independent).

Sober ([1994], pp. 161±2) had earlier challenged the principle of the common

cause with a counterexample. In Sober's scenario, bread prices rise mono-

tonically through time in Great Britain, and sea levels rise monotonically in

Venice. Each process is causally independent of the other by assumption, yet,

he asserts, the series are highly correlated. Sober regarded this as a violation of

the principle of the common cause, and a demonstration that the principle fails

in its key role in accounts of causality. Sober ([2001]) reiterates the point and

offers an analysis aimed at showing that various attempts to rescue the prin-

ciple of the common cause from his counterexample fail.

The kind of time series that Sober employs in his counterexample is com-

monplace in macroeconomics. Prices, gross domestic product, consumption,

investment, employment, and wagesÐto name just a few prominent economic

time seriesÐtrend up in the manner of Sober's bread prices and sea levels. In

the past quarter century, statisticians (most notably time-series econometri-

cians) have developed special tools for the analysis of these `nonstationary'

time series. One well-known exposition of some of the issues in time-series

econometrics uses an example analogous to Sober's example, in which the

level of the consumer price index plays the role of bread prices, and cumu-

lative rainfall in the United Kingdom plays that of sea levels (Hendry [1980]).

There are several reasons to believe that the principle of the common cause is

not a successful foundation for causal analysis (see, e.g., Cartwright [1999],

Ch. 5, or Hoover [2001], Ch. 4, x3). Nevertheless, the recent work in time-

series statistics suggests that Sober's counterexample to the principle of the

common cause is defective. If the principle is to be rejected, it must be on

some other grounds.

2 Sober's argument and the attempts to rescue the principle

The principle of the common cause states that any correlation demonstrates a

causal connection between the variables displaying the correlationÐeither

direct or through a third cause. If the connection is through the third cause,

then the third cause will screen off the correlation in the sense that the cor-

relation of X and Y conditional on Z (the third or common cause) will be zero.

Sober's counterexample is, then, simple: Venetian sea levels and British bread

prices are truly correlated and are not causally connected by construction;

therefore, neither causes the other and there can be no common cause. The

assumption that sea levels and bread prices are truly correlated is central to
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Sober's argument, and I will challenge it presently. For the moment, however,

notice that the evidence he offers is crude but commonsensical: `higher than

average sea levels tend to be associated with higher than average bread prices'

(Sober [2001], p. 332). This evidence is born out in a set of arti®cial data that

Sober created to illustrate his counterexample.2 The familiar correlation stat-

istic (i.e., Pearson's correlation coef®cient) for these data is 0.99, a number

typically taken to indicate that the two series are, as Sober concluded on other

grounds, `very strongly correlated' (Sober [2001], p. 332).

Sober considers various attempts to defuse his counterexample, rightly

rejecting some as beside the point. There are two that require further scrutiny.

First, Sober ([2001], pp. 332±3) cites an argument that predates his article,

traceable to Yule ([1926]) and revived in Meek and Glymour ([1994]), to the

effect that the counterexample mixes different causal structures and different

probability distributions. On this argument, his counterexample would be

closely related to Simpson's paradox. Sober rejects this on the grounds that

it is question-begging: `If we only knew the true causal relationships, we would

not need principles like (P) to tell us how to infer causal relationships from

probabilities' (Sober [2001], p. 333). Sober would be completely correct if the

argument required prior causal knowledge in order to dismiss the counter-

example. Yet, as we shall see in Section 4 below, there is an important sense in

which the probabilities in the counterexample are in fact not homogeneous

through time, and there is nothing question-begging about inferring the ab-

sence of homogeneity from the data. In particular, there is no appeal to prior

knowledge of causal structure.

The second attempt to defuse Sober's counterexample notices that, while

the levels of bread prices and the sea may be highly correlated, changes in the

levels need not be correlated (Forster [1988], Papineau [1992], and Hausman

and Woodward [1999]). The situation in which the levels are correlated but the

changes are not is taken to be a hallmark of the lack of causal connection.

Sober argues that this observation does not save the principle of the common

cause as stated in (P); rather it shows that it is false. The bread prices/sea levels

example, he believes, would not defeat a weaker version of the principle:

(P*) If events X and Y are correlated and so are changes in X and changes in

Y, then either X caused Y, Y caused X, or X and Y are joint effects of a

common cause (one that renders X and Y conditionally probabilistically

independent). (Sober [2001], p. 335; emphasis added)

2 The data given in Sober ([2001], p. 334) are:

Period 1 2 3 4 5 6 7 8

Bread Prices 4 5 6 10 14 15 19 20

Sea Levels 22 23 24 25 28 29 30 31
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He then constructs further counterexamples, in which two causally unrelated

processes are nevertheless correlated in both levels and changes and so

violate (P*).

Hoover ([2001], pp. 164±6) also argues against shifting the focus to changes

on different grounds. The critics of Sober's counterexample worry that the

correlation between the levels is causally spurious, and suggest that a true

causal relationship must also show up in changes. I argue that this may throw

the baby out with the bath water: the application of (P*) may overlook a true

causal connection between the levels that does not show up as a correlation

between the changes.

Sober is correct that, take as many differences as one likes, there is some

way to construct a counterexample analogous to the case of bread prices and

sea levels, so that there is no hope in trying to save the principle by weakening

it further. Instead, Sober's counterexample is defective at the top level: ®rst,

because probabilities are nonhomogeneous in a relevant sense; and, second,

because the correlation between levels is not a true correlation in the relevant

sense. The next three sections try to make sense of these claims.

3 Probabilistic dependence

As Sober ([2001], p. 343) notes, there are two steps in applying the principle of

the common cause. First, correlations are inferred from associationsÐthat is,

from actual frequencies in the data. Second, causes are inferred from correla-

tionsÐthat is, from features of the underlying probabilities. The principle of

the common cause relates only to the second step. Sober writes as if the ®rst

step were unproblematic for purposes of his argument. My central claim is

that this assumption is wrong: associations of the bread prices/sea levels type

do not, in general, re¯ect genuine probabilistic dependence and do not imply

true correlations in the sense implicit in the principle of the common cause.

Association is not, in general, correlation (as is clearly understood by both

Reichenbach [1956], p. 157, and Sober [2001], pp. 333, 343). That ®nite draws

from probabilistically unconnected distributions might nevertheless be highly

correlated is one of the standard dif®culties of practical statistics. Calculating

how the expected frequency of such spurious correlations changes as sample

sizes increase is a key aim of statistical theory. Such small-sample problems to

one side, correlations are inferred, not read directly from data (facts of asso-

ciation). What is inferred is a probability model.3 The pattern of inference that

forms the basis for statistics is: the observed facts of association would be

3 Sober ([2001], p. 343) refers to `causal models', but does not explicitly refer to probability models,
despite his recognition that correlations are inferred from observed associations.
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highly probable if the data were realizations from a particular model of the

probability-generating process; therefore, that model is supported by the data.

Although Sober, like other philosophers and applied researchers uses the

term `correlation' as if its meaning were obvious, it is rarely clearly de®ned.

One standard dictionary of statistics de®nes correlation as `[a] general term for

interdependence between pairs of variables. See also association' (Everitt

[1998], p. 80; bold in original). The same dictionary de®nes association as

`[a] general term used to describe the relationship between two variables.

Essentially synonymous with correlation' (Everitt [1998], p. 17). Standard

textbooks generally do not de®ne correlation or association at all, but leave

the notions implicit in de®ning measures of correlation or association. For

example, the correlation coef®cient is de®ned as:

� � cov�x, y���������������������������
var�x�var�y�p � E��xÿ �x��yÿ �y��

�E�xÿ �x�2�yÿ �y�2�1=2

where cov(. . ., . . .) is the covariance, de®ned by the numerator of the right-

hand term; var(. . ., . . .) is the variance, de®ned by the denominator; E(. . .) is

the mathematical expectations operator; and �j is the mean of j ( j� x or y)

(Lindgren [1976], p. 135; Mood, Graybill and Boes [1974], p. 155).

Statisticians, however, clearly distinguish properties of the sample (the

observed data) and properties of the population (the unobserved process that

generates the data). It is useful to distinguish between probability (a popula-

tion property) and frequency (a sample property). Reichenbach's ([1956])

statement of the principle of the common cause refers to facts of probability.

The reference to correlation in Sober's principle (P) also refers to probability.

I shall, therefore, draw a parallel distinction to that between probability and

frequency and not treat `correlation' and `association' as synonyms. Instead,

I shall use correlation to refer to a population property and association to a

sample property. Probabilities are inferred from frequencies, and correlations

are inferred from associations. A central message of this essay is that these

inferences are not always obvious or straightforward. A co-occurrence may be

a mere coincidence and, therefore, not a proper antecedent to the principle of

the common cause.4

Hacking ([1965]), Mellor ([1971]) and Cartwright ([1999], Ch. 7) argue that

probabilities are not robust facts about the world, always there for the asking.

Rather they arise only in special arrangements of parts of the world, in set-ups

that have a propensity to display probabilistic behavior. Cartwright goes too

far, perhaps, in arguing that useful probabilities are almost always generated

in arti®cial set-ups (her term is `nomological machines') and only rarely in

4 Reichenbach ([1956], p. 157) writes: `Chance coincidences, of course, are not impossible [. . .] the
existence of a common cause is therefore in such cases not absolutely certain, but only probable.
This probability is greatly increased if coincidences occur repeatedly.'
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nature. But the key point remains: probabilities are not observable, unme-

diated facts. We can reasonably speak of probabilities only in the context of

particular models of the probability-generating process. Observable frequen-

cies and facts of association are, at best, evidence that support inference to

particular probability models.

Again, the typical pattern of inference runs: the observed facts of associa-

tion would be highly probable if a certain probability model governed the

generation of those facts. Statistics is largely about getting the `right' model

for the facts of association. The possible models vary inter alia in their degree

of speci®city (parametric, semi-parametric, nonparametric), in the degree of

accuracy or approximation claimed for them, and in whether they deal with

discrete or continuous variables (or even some complex combinations).

Although these details are beyond our present purpose, it is useful to note

that most statistical inference and most of our own probabilistic intuitions are

based on stationary probability distributions. There are several concepts of

stationarity, all of which have in common the idea that the probability dis-

tribution is unaffected by the passage of time.

De®nition: A time series (or time-series process or stochastic process) is a

random variable (or vector of variables) whose realizations are time

ordered. (Hamilton [1994], p. 43)

For example, fXtgk
t�ÿj � fXÿj, Xÿj�1, . . . Xÿ1, X0, X1, . . . Xkÿ1, Xkg. Gross

domestic product (GDP) provides a concrete economic illustration of a time

series: for example, GDP1999� $9,301b, GDP2000� $9,704b, GDP2001�
$10,239b.

De®nition: A time series is weakly (or covariance) stationary if, and only if,

its mean and variance are both ®nite and independent of time, and the

covariance between the values of the series at different times depends only

on the temporal distance between them. (Hendry [1995], p. 42).

The last condition means that if, for instance, rainfall is weakly stationary, the

covariance between rainfall in year t and rainfall in year tÿ 2 depends only on

the fact that the observations are two years apart and not on the fact that

t� 1983 or t� 2001.5 The normal or Gaussian distribution is a paradigm of

continuous stationary distributions. Many powerful results in statistics (e.g.,

laws of large numbers or central-limit theorems) require assumptions that

means, variances, or higher moments are constant or, at least, ®nite.

To be absolutely clearÐthough at some risk of being tediousÐlet us

examine such inference in a textbook case. I take the continuous normal

distribution as the paradigm, but the arguments generalize readily. We can

5 Alternative concepts exist. For example: De®nition: A series is strictly stationary if, and only if,
the entire probability distribution function is invariant to time (Hendry [1995], p. 42).

532 Kevin D. Hoover



illustrate the key points for our purposes with a simple example. Consider a

classroom of six-year-olds. Measure their heights (H ) and weights (W ). These

variables are associated in the data. As Sober puts it, above-average heights

are typically found with above-average weights. More precisely, we can cal-

culate the sample means, mX � �1=J�Pj Xj, where X�H or W, and the index

of the pupils is j� 1, 2, 3, . . ., and J is the number of pupils. Similarly, we can

calculate the sample variances, sXX � �1=J ÿ 1�Pj�Xj ÿmX �2, and the sample

covariance sHW � 1=J ÿ 1� �Pj�Hj ÿmH��Wj ÿmw�. As they stand, these

statistics are simply facts of association. To draw probabilistic inferences from

them, we must identify them with the population mean, �x�E(X ), the popula-

tion variances, �XX�E [(Xÿ�X)2], and the population covariance, �HW�
E [(Hÿ�H) (Wÿ�W)]. (For clarity, sample moments are indicated by Latin

letters and population moments by the corresponding Greek letters.) The

bivariate normal distribution is completely de®ned by the two means, the var-

iances, and the covariance.6

The key step in moving from facts of association to probabilities is the

assertion that �X�mX, �XX� sXX and �HW� sHW. The validity of this asser-

tion is not directly testable. It is what econometricians refer to as an `identify-

ing assumption'. It can be supported indirectly by comparing higher sample

moments to the analogous population moments. For example, a standard test

for the normality of a set of data asks whether the third moment (skewness)

and the fourth moment (kurtosis) calculated from the data match the third

and fourth population moments calculated from the normal distribution

parameterized using the sample mean and variance. The usual metric of

closeness is to ask: if the sample had been drawn from a normal distribution,

how probable is it that we would observe data that generate the test statistics

(in the example, the sample third and fourth moments). In the Neyman-

Pearson framework that dominates practical statistical inference, a decision

rule is employed which sets a rejection probability (the size of the test, de®ned

as the probability of observing a test statistic larger than the one calculated

on the assumption that the sample is correctly described by the probability

model). The critical rejection probability is ideally chosen to balance the risks

of type-I error (rejecting the probability model when it is true) against type-II

error (accepting the probability model when it is false).

6 The probability density function for the bivariate normal is:

f �x, y� � �2��X�Y

�������������
1ÿ �2

p
�ÿ1

� exp
ÿ1

2�1ÿ �2�
xÿ �X

�X

� �2

ÿ2�
xÿ �X

�X

� �
yÿ �Y

�Y

� �
� yÿ �Y

�Y

� �2
" #( )

where �X and �Y are the standard deviations of X and Y (i.e.,
������
�X
p

and
������
�Y
p

) and the
population correlation coef®cient is de®ned as � � �XY=�X�Y , which is just another way of
stating the de®nition of � previously given (see Lindgren ([1976], Ch. 10, x2.1).
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While sample moments can always be calculated, no inference beyond the

current sample is warranted without the mediation of the probability model.

Suppose that we wish to use our knowledge of one classroom to extrapolate

the probable distribution of heights and weights in another classroom of six-

year-olds. This can be done only by asserting that the pupils in the second class

are like those in the ®rst class and appealing to the probability model. If we

can actually measure the heights and weights in the second class, the sample

means, variances, and covariances typically will not be identical to those of the

®rst class. Can they be characterized by the same probability model? We can

again follow a testing strategy analogous to the test of normality: on the

assumption that the true probability model is the one parameterized by equat-

ing the sample moments of the ®rst class to the population moments of the

model, how probable are the sample moments calculated in the second class?

If the probability falls below the threshold, we reject the hypothesis that the

same probability model describes both classes.

Originally Simpson's paradox referred to the case in which a positive

association in subpopulations disappeared when the whole population was

considered. I will use the term, however, to refer to any case in which the stat-

istical associations differ systematically between subpopulations and the whole

population (see Hoover [2001], p. 19, esp. note 25 for historical references on

Simpson's paradox). One strategy for dealing with Simpson's paradox is to

insist on the rule: avoid `mixing populations with different causal structures

and different probability distributions' (Sober ([2001], p. 333). Sober objects

to this strategy on the grounds that it saves the principle of the common cause

only by depriving it of its epistemic force (Sober ([2001], p. 333, note 4). Again,

the argument seems to be that we would already have to know that the pop-

ulations were mixed in order to apply the rule, which begs the question.

Surely, this is wrong. The standard statistical strategy just described for

testing the equality of the population moments between the two classrooms

provides evidence for the homogeneity or lack thereof of the probability

distributions. It is not, of course, completely decisive. For example, the sample

moments of the two classes could be wildly different even though the popula-

tion moments were identical because of an atypical draw from the distribu-

tion. Nonetheless, the probability distribution itself provides a measure of the

improbability of such a draw. Such inferences are not free from a priori

assumptionsÐparticularly assumptions about the functional form of the

probability distributionÐyet they are not arbitrary. (The normal distribution

is justi®ed through central-limit theorems.) And they are not special to the

question of homogeneity, Simpson's paradox, or the principle of the common

cause, but are the assumptions that lie behind most statistical inference. What

is more, they are assumptions about the probability distributions and not

about causal structures. The principle of the common cause infers casual
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structure from probability distributions. Any statistical test is fallible. It may

lead to incorrect inference when applied to the principle of the common cause,

just as in every other application. As a result, causal connections may be

incorrectly inferred using principle (P). But the inferential chain is from facts

of association to conclusions about probability models to conclusions about

causal structure. The inferences are one-way. In particular, no causal assump-

tions are used in the inference of probabilities from facts of association. No

questions are begged.

The identi®cation of the population moments with the sample moments

and the use of the sample moments to parameterize the probability model are

justi®ed under stationarity by the fact that the expected value of the sample

moments is, in fact, the corresponding population moment. So, for example,

E�mX � � E
1

J

X
j

Xj

 !
� 1

J

� �X
j

E�Xj� � 1

J

� �
J�X � �X

Analogous proofs exist for the expectations of sample variances and

covariances.

Pearson's correlation coef®cient measures the strength of association

between two series. It is a normalization of the sample covariance bounded

between ÿ1 and �1.7 We can reasonably assume that the sample correlation

coef®cient between height and weight for the pupils (rHW) is positive. Despite

the fact that r is called a correlation coef®cient, it is, according to the termi-

nology that we have adopted, a sample statistic expressing a fact of association

and not a fact of probability. Still, in a stationary world, we can reasonably take

the value of r as an estimate of the corresponding population correlationÐ�.

Given the maintained probability model, the likelihood of a true correlation of

�� 0 generating the observed r 6� 0 can be calculated. This is a measure of

statistical signi®cance. It is reasonable to assume that in a class of six-year-

olds, rHW would be positive and signi®cantly different from zero and that such

a fact of association would provide evidence for the true correlation of height

and weight (�HW).

As with the sample mean, the expected value of the sample correlation

coef®cient is the true population correlation coef®cient (E(r)� �) when the

data are generated by a stationary probability distribution. What is more, as

the sample size increases, the value of the sample mean, the sample variances,

and the sample covariances (and, therefore, the sample correlation coef®cient)

all converge to their true population values in the sense that deviations from

the population value are less and less likely.

Reichenbach's principle of the common cause is de®ned with respect to

the improbability of a coincidental relationship between two events. Sober's

7 It may de®ned as rXY � sXY=
���������������
sXX sYY
p

.
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principle (P) refers to correlation between two variables. Both require a notion

of probabilistic dependence. Probabilistic dependence can be de®ned as the

absence of probabilistic independence.

De®nition: Two variables X and Y are probabilistically independent if

P(XY )�P(X )P(Y ), where P(XY ) is the joint probability of X and Y,

P(X ) is the (marginal) probability of X, and P(Y ) is the (marginal)

probability of Y. (See Everitt [1998], p. 163)

Probabilistic independence implies that the correlation coef®cient �� 0, but

�� 0 does not imply independence.8

Probabilistic dependence means roughly that the probability distribution (or

the likelihood of various draws) of one series is different for different realiza-

tions (or draws) of another series.9 A probabilistically dependent relationship

between two series (X and Y ) can be written:

Y � �0 � �1X � " �1�
where the residuals, ", capture the variability of Y not tracked by varia-

tions in X.

Equation (1) is a population relationship. Regressions assign values to the

�s using sample data. The regression equation can be written as

Y � b0 � b1X � e �2�
where the bs are chosen in such a way that the mean of the implied residuals, e,

is zero, and the sample covariance between the X and e, which of course

depends on the choice of the bs, is zero.10 Regressions are, therefore, direc-

tional: reversing the roles of X and Y, the bs of the new equation could not be

calculated algebraically from (2), but must take account of the sample var-

iances and covariances of the variables. Equations (1) and (2) nevertheless do

not introduce any causal presuppositions into the notion of probabilistic

dependence. If X and Y are probabilistically dependent, X��X0� �X1Y� "X

and equally Y��Y 0� �Y 1X� "Y. The population analogue of regression

calculates the value of and �X1 � �
�������������������
�XX=�YY

p
and �Y1 � �

�������������������
�YY=�XX

p
.

Each is just a normalization of the correlation coef®cient, and correlation,

unlike causation, is not directional.

8 Assuming, without loss of generality, that the means of X and Y are both zero, cov(X, Y )�
E(X, Y )ÿE(X )E(Y ), so that X and Y independent implies cov(X, Y )� 0 and, therefore, that
�XY� 0. A probability distribution may imply expectations that cancel so that cov(X, Y )� 0 and
�XY� 0 even though P(XY ) 6�P(X)P(Y ). (Lindgren [1976], p. 136, gives the example of a
symmetric, discrete bivariate distribution in which such cancellation occurs.)

9 Before formally de®ning `probabilistic independence' as we have just done, Everitt ([1998], p. 163)
says, `Essentially, two events are said to be independent if knowing the outcome of one tells us
nothing about the other.' This captures the same `rough' idea, although it gives the de®nition an
unnecessarily epistemic cast.

10 It is straightforward to extend regression analysis to three or more variables.
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Statistically signi®cant estimates of b1 provide evidence for probabilistic

dependence. As always, that evidence is evaluated on the maintained hypo-

thesis of a probability model. Typically, that probability model is not main-

tained as a pure act of faith, but because facts of association not used in

assessing probabilistic dependence are, conditional on the model, rendered

likely. Estimates of b1 are facts of association and evidence of probabilistic

dependence, which is itself a fact of probabilityÐa value for �1 or �.

4 Nonstationary time series

The importance of the stationarity assumption can be highlighted through an

extension of the example of the six-year-olds. In that case, when we sought to

apply the probability model parameterized using one classroom's statistics to

another, the comparison was cross-sectional: time was not an issue. We could

also apply the probability model over time.

For example, suppose that we observe a sequence of classes of six-year-olds,

each resident in the same classroom over a number of years. Each year we

measure the heights and weights and calculate the sample statistics. It would

not be surprising if the same probability model with the same parameters

applied to each class in the sequence; that is, it would not be surprising if there

were no statistically signi®cant differences between their sample statistics. In

this case, the time series would be stationary.

We could instead follow the same class as it grew up and advanced to higher

grades. It would be startling if heights and weights did not advance with the

age of the pupils. The same stationary probability model could not describe

a class of six-year-olds and a class of twelve-year-olds, six years later. At a

minimum, the heights and weights would have risen suf®ciently, so that the

difference between the sample means of the class at twelve were statistically

signi®cantly different from the class at six. The data would be nonstationary.

In this case, we nonetheless believe that the heights and weights are probabil-

istically dependent. We shall return to this case in the next section. In the

meantime, what about nonstationary series that are not probabilistically

dependent?

Consider the class of six-year-olds and now measure height and knowledge

of mathematics. It would not be surprising to ®nd that there were no statis-

tically signi®cant correlation between the two. Yet, as years pass, both the

heights and the knowledge of the class should increase. Assume that

the sample correlation coef®cient between height and knowledge among

the twelve-year-olds is also not signi®cantly different from zero. Nevertheless,

if we were to pool the data from the class at six and the class at twelve, we

would surely ®nd that the sample correlation coef®cient (r) was positive.
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Similarly, if for each year from six to twelve, we were to calculate the mean

height and mean knowledge for the class to form two time series, the sample

correlation between the time series would be positive.

The pupils present a version of Simpson's paradox: height and knowledge

are not associated among the six-year-olds nor later among the twelve-year-

olds. But they are highly associated when the data are pooled. And their

means are highly associated over time. But are they correlated in the relevant

sense of probabilistically dependent? That is a question of what probabilistic

process actually generates the data. It can be answered only by determining

what probability model is justi®ed by the facts of association. The data, for

example, could have been generated by a stationary, normal distribution. The

large shifts in the sample means, however, suggest that in that case the data

would have to have been a highly atypical draw with a near zero probability.

They are more likely to have been generated by a nonstationary distributionÐ

that is, one in which the population moments depend on time.

To understand what difference it makes to work with nonstationary data,

let us reconsider the case of the pupils. Suppose that we wanted to use the

probability model with its parameters estimated on a particular sample to

extrapolate ± that is, to guess what value an as-yet unobserved additional

datum would take. In the cross-sectional example of six-year old pupils, the

best guess is that the new observation will take the value of the observed

sample mean. This guess is justi®ed by the fact noted in Section 3 that the

expected value of the sample mean is, in fact, the population mean. Condi-

tional on the probability model, we could use the sample variance to assign

probabilities to the new observation taking values other than the mean.

Time series carry additional structure: the fact that the data are arranged in

a speci®c temporal order. A new observation is generally a later observation.

Now suppose that the data are nonstationary, as for example they could be

if we calculated the means of height, weight, or knowledge from observing the

same group of pupils as they progress through the grades. Again suppose, for

example, that we have observed the class from ages six to twelve and want to

guess what value the mean height will take at age thirteen. The sample average

would be a poor basis for that guess. It is almost certainly too low. The

problem is that the true population meanÐthat is, the expected value of a

realization of the variableÐnow depends on the time. It is no longer related to

the sample mean in the simple way that it was with stationary data.

Two important types of nonstationary time series are the `trend stationary'

and the `integrated' series. To get our ideas clear we begin with the simpler

case.

De®nition. A time series {Xt} is trend stationary if, and only if,

Xtÿ g(t)� "t, where g(t) is a deterministic function of t and {"t} is a weakly

stationary time series with mean zero. (Hamilton [1994], p. 435)
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Whereas a stationary series with a constant variance is concentrated about its

mean, a trend stationary series is concentrated about g(t), where, in general,

g(t) takes different values at different times. In principle, g(t) might be a

complicated function, but typically it is modeled as a simple function.

To illustrate, consider ®rst a simple nonstationary processÐa deterministic

trend without any random elementÐfor example the series Xt� {2, 4, 6, 8, 10,

12, 14, 16, 18, 20} for t� 1, 2, 3, . . ., 10. The sample mean of the series

is mX� 11, but the next value in the sequence is not 11, but 22.

The point generalizes to a trend-stationary process. Let a series be

described by

Xt � 2t� "t �3�
where "t is a mean-zero, stationary random variable. (Here g(t)� 2t.)

Suppose that at time t� � we know the value of "t. What is our best guess

for the next observed datum (i.e., X��1)? Answer: E�(X��1)� 2(� � 1), where

the subscript on the expectations operator indicates that it is based on in-

formation up to and including t� � . The population mean increases with time

and is always greater than the sample mean. This is the sense in which the data

are nonhomogeneous: they are drawn from a distribution whose true popula-

tion mean is different in each period.

The sample correlation coef®cient is as misleading as the sample mean as

an indicator of the underlying population correlation. It will not serve as a

reliable guide to the probabilistic dependence needed to invoke the principle

of the common cause. Consider two time series governed by deterministic

trends. One develops as Ut� {1, 2, 3, 4, . . .} plus a stationary random term,

and the other as Vt� {3, 6, 9, 12, . . .} plus a stationary random term. The

random terms are assumed to be mean zero and independent of each other;

for example, they might be drawn from a normal or a uniform distribution

centered on zero.11

Without the random terms, the sample correlation coef®cient for U and V is

r� �1; that is, they would be perfectly positively correlated. With the random

terms and a short sample of, say, ten periods, r could take virtually any

valueÐpositive, negative, high, low. As the sample grows, the nonrandom

components of U and V will come to dominate, and r will approach �1. But

these series are not probabilistically dependent. The probability distribution

of one series is not conditional on the realization of the other. A particular

realization of the random term of U conveys no information about the prob-

ability distribution of V, or vice versa.

It is true, as Sober ([2001]) observes, that knowing the value of U (the

deterministic trend� the random component) does convey information about

11 It is trivial to create such series on Microsoft Excel or some other spreadsheet and to use them to
verify the claims made here for their properties.
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the value of V. But none of this information is probabilistic. It arises only

because the deterministic components of both U and V are functions of time.12

Any well-functioning time piece conveys information about any other. But an

unpredictable stoppage of, say, your mantel clock does not give you reason to

think that your wristwatch has stopped as well. Another way to see this is to

observe that, were one to predict the value of U6 on the basis of information

up to t� 5, the probabilistic accuracy of that prediction would not improve

from knowing V6. It is the hallmark of probabilistic dependence that knowing

the realizations of one series would improve the predictions of the dependent

series. Here it does not.

Notice that nothing whatsoever has been said about causality. The issue is

not whether observed associations sometimes do not warrant causal inferences

according to the principle of the common cause. Rather it is whether observed

associations do not warrant the inference that two series are correlated in the

sense of being probabilistically dependent. When data are nonstationary,

association generally implies neither true correlation nor probabilistic

dependence.

Once again, it is reasonable to view this as a case of Simpson's paradox. The

true population mean at each time is different. Each observation can be seen

as drawn from a different subsample. For example, imagine that time could

be rerun so that we had a million realizations of the processes that generate U

and VÐeach differing according to the different realizations of the stationary

error term. At each time, say t� �1, there would be a million observations of

U�1 and V�1. Given the way in which these data are generated, there is a very

low probability of a statistically signi®cant sample correlation between them.

Similarly, for the data at a different time, say t� �2 6� �1, there would be

another population described by different stationary probability distribution

with a different mean. Again, there is a low probability that U�2 and V�2 have a

statistically signi®cant sample correlation. Because the means are clearly dif-

ferent, the subpopulations are not homogeneous. And yet, if we pool the

subpopulations and calculate the sample correlation between U�1 [ U�2

and V�1 [ V�2, then the sample correlation is likely to be signi®cantÐthe

more likely, the longer the gap between �1 and �2 (that is, the more likely, the

less homogenous the subsamples). This is precisely the form of Simpson's

paradox. And yet, it would not be a good idea to stop with showing that

Simpson's paradox arises in nonstationary data, for the differences between

the subsamples de®ned by the nonstationary data are not arbitrary, but are

structured in a way that may permit avenues of probabilistic dependence

12 One might be tempted to say that time is a common cause of both series. This is a deeply
unattractive suggestion for a variety of reasons that would take us too far a®eld for present
purposes.
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opaque to statistical methods that rely solely on stationary probability

models. I return to this point in the next section.

In the meantime, let us consider the U and V processes somewhat further.

The sample correlation of the ®rst differences of the series (�Ut and �Vt) is

statistically insigni®cantly different from r� 0 in a long sample. Commenting

on the analogous situation with respect to bread prices and sea levels, Sober

([2001], p. 334) argues that such a fact about changes gives no ground to

dismiss the observed correlation in levels because `higher than average bread

prices are correlated with higher than average sea levels' (emphasis in the

original).

Sober's statement equivocates on the word `average'. It is true that higher

than sample-mean bread prices are associated with higher than sample mean

sea levels. But the necessary sense of `average' is population mean, not

sample mean. And, as we have already seen, the two do not coincide for

trend-stationary time series with deterministic trends. In fact, the relationship

of any observed value to the sample mean is not a stable fact in such a

nonstationary case. For example, ignoring the random terms, the sample

mean of the ®rst four observations of Ut is 2.5. One half of the sample

is above the sample mean and one half below. But, if we could observe four

more terms, the sample mean increases to 4.5, and every one of the ®rst four

terms would be below the sample mean. In contrast, with a stationary

distribution, such ¯ip-¯opping of status occurs only randomly and with a

high probability only for values that are closer and closer to the population

mean as sample size increases.

Sober ([2001], p. 334) claims that

Pr[Higher than average sea level in year i & higher than average bread

price in year i]>Pr[Higher than average sea level in year i]Pr[Higher than

average bread price in year i].

He concludes from this that the levels of bread prices and sea levels are pro-

babilistically dependent. Once stated correctly in terms of population means,

the claim is false for trend-stationary data.

This last point is crucial. Sober rejects the principle of the common cause

because two series that are not causally connected ex hypothesi are never-

theless correlated. Yet, the supposed correlation is a sample association. In

the most likely probability model consistent with the dataÐa nonstationary

modelÐsuch sample association does not necessarily correspond to probabil-

istic dependence.

Principle (P) would naturally be applied to the stationary components of a

pair of trend-stationary time series. It will generally be misleading, as in

Sober's example, if applied to series including their nonstationary trends.

Equations (1) and (2) can be applied to stationary time series or to the
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stationary components of trend-stationary time series with two modi®cations.

First, we must account for the time orderÐnotated by time subscripts on the

variables and the residuals. Second, the residuals must be white noise.

De®nition: A series {"t} is (weak) white noise if it is mean zero with a ®nite

variance and cov("t"s)�E("t"s)� 0 for all t 6� s. (Hendry [1995], p. 39)

The de®nition says that residuals are white noise when there are no correla-

tions between residuals at different times.

Sober ([2001], p. 335) also describes a process with a stochastic (i.e., a

random, as opposed to a deterministic) trend. It is useful to look at this case

as well because it prepares the ground for the next section. Sober's example

illustrates the second major type of nonstationary time series, the `integrated'

time series. A series is integrated if its stochastic elements cumulate without

loss over time. For example, in the series Xt�Xtÿ1� "t, where the et are

weakly stationary random shocks, the value k periods in the future can be

written as Xt�k�Xtÿ1� "t� "t�1� "t�2� � � � � "t�k. In such a process, a

shock at t� 1, call it "1, will contribute its full value to Xt, not only at

t� 1, but at t� 100 and t� 100,000, and every period that occurs after

t� 1. As k goes to in®nity, the effect of an individual shock never dwindles

away. Similarly, the initial condition, Xtÿ1, fully contributes to the value of

Xt� k at every period. An integrated time series `remembers' its past. While one

can always calculate the sample mean of an integrated series, the series does

not tend to revert to its sample mean, but instead drifts about, depending on

the particular realizations of the es.

In contrast, consider the time series Xt� 0.5Xtÿ1� "t. The value k periods

in the future can be written as Xt�k� 0.5kXtÿ1� 0.5kÿ1"t� 0.5kÿ2"t�1�
0.5kÿ3"t�2� � � � � 0.5"t�kÿ1� "t�k. A shock at t� 1 will contribute its full value

to Xt only at t� 1. At t� 100, it contributes only 0.599"1� (1.58� 10ÿ 30)"1,

and, as k goes to in®nity, the effect of an individual shock dwindles away

rapidly. Similarly, the contribution of the initial condition dwindles rapidly as

k increases. Such a series is stationary, even though values of X close together

in time may be correlated (i.e., {Xt} is not white noise}. A stationary time

series `forgets' its past. And, while over a short enough sample it may display

systematic deviation from its sample mean, over long samples it displays mean

reversion.

The stochastic process Xt�Xtÿ1� "t is one example of a nonstationary

process. There are other processes that cumulate stochastic shocks in different

patterns. These can be categorized by their order of integration. De®ne the

difference operator: �Xt�XtÿXtÿ1. The difference operator transforms le-

vels of variables into changes and can be applied to a series that has already

been differenced, so that �(�Xt)��2Xt. More generally �dXt indicates that
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the series has been differenced d times.

De®nition: Consider a time series {Xt} that is neither stationary nor trend

stationary. Let d be the minimum integer such that {�dXt} is weakly

stationary. Then {Xt} is said to be integrated of order d, which is notated

I(d ). (By convention, a stationary time series is notated as I(0).)

An integrated series is not weakly stationary. Weak stationarity can be

tested using standard statistical procedures that amount to tests of subsample

homogeneity. Most macroeconomic time series appear to be I(1)Ðthat is, they

are not stationary, but their ®rst differences are. The series Xt�Xtÿ 1� "t is

I(1). Some appear to be I(2). An example of an I(2) process is:

Xt�Xtÿ1��Xtÿ1� "t. And only a very few appear to be I(0)Ðthat is, their

levels are stationary.

Sober's particular example is a (possibly asymmetric) two-state, discrete

Markov process. We look instead at a more tractable, but closely related,

continuous process. We have already seen a typical example of an I(1) non-

stationary process:

Xt � Xtÿ1 � "t �4�
where "t is a draw from a weakly stationary stochastic process. Notice that the

population meanÐas we should expect in a nonstationary seriesÐis not con-

stant: E(Xt)�Xtÿ1. In fact, the series describes the famous `random walk' in

which the best expectation of today's value is yesterday's value.

Time order introduces considerable mathematical complexity into the char-

acterization of the probability distributions of integrated time series, involving

such notions as Wiener processes (Brownian motion) and functional central-

limit theorems.13 One critically important result of this analysis is relevant to

the bread prices/sea levels example. Suppose that we have two series, {Yt} and

{Zt}, each fully described by an equation like (4) in which the two stationary

time series of errors (the et) are probabilistically independent. One realization

of each series assigns random values to each eYt and eZt and generates each

Yt and Zt according to an equation like (4). We could, of course, generate

many such realizations with different random values for the es, and different

Ys and Zs. What happens if we calculate the sample correlation coef®cient,

r, for each realization? If the process had been stationary, the frequency

distribution of r would tend to center on the population correlation coef®-

cient, �, and would tend to become more concentrated on � (i.e., to have a

smaller variance around it) as the number of realizations and the length of

each sample realization became larger.

13 Key articles in this literature include Dickey and Fuller ([1979]), Phillips ([1986]) and ([1987]),
and Engle and Granger ([1987]). Textbook treatments are now available in, for example,
Hamilton ([1994]) and Hendry ([1995]).
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In contrast, with nonstationary series the sample correlation coef®cient (r)

between the two series does not get closer and closer to the population cor-

relation (�). In the case of time series such as Y and Z, which are both I(1), the

distribution of values of r is close to uniform over the interval ÿ1 to �1 (see

Hendry [1995], p. 128). This means that every value of r will show up with

about the same probability in different realizations of the two processes, even

though there is no connection whatsoever between them.

In general, unlike the case of stationary time series, the frequency distribu-

tion of the sample statistics of nonstationary time series does not center on a

single population value, but displays a stable distribution of values. To take

another example, if both series are I(2), the weight of the distribution of r is

heavily concentrated in the tails, so that there is a very high and nearly equal

probability of ®nding r to be near either ÿ1 or �1 and a low probability of

®nding any value in between.

Despite the apparent correlation, there is once again no probabilistic

dependence in these cases. The distribution of one series is not conditional

on a realization of the other series. A striking result underscores the lack of

probabilistic dependence. As the sample sizes grow, the variance of the dif-

ference between the two series approaches in®nity. This last result says that,

even though the series appear to be highly correlated, they do not tend toward

parallel paths; indeed, they may drift in®nitely far apart.

5 Probabilistic dependence in nonstationary time series

The strategy of concentrating on the changes, rather than the levels, of non-

stationary time series might seem to gain considerable support from the

analysis of the last section. The ®rst difference of the integrated series Xt

in (4) is �Xt�XtÿXtÿ1� "t, a stationary random process in which sample

moments provide evidence for their straightforwardly analogous population

moments. Similarly, the ®rst differences of the trend-stationary series U and V

would be two independent random terms. A lack of a statistically signi®cant

r statistic would provide evidence that �U and �V were not correlated in the

population. But, as mentioned in Section 2, this application of (P*) may throw

the baby out with the bathwater.

Recall the case of measuring the heights and weights of a class as it pro-

gressed from ages six to twelve. The connection between height and weight

among the pupils at a particular time (i.e., in the cross-section) is likely to be

genuine. Equally, the connection between the time series of the average heights

and weights is also likely to be genuine. Yet, it does not follow from this last

connection that there will be a close connection between the change in height

and the change in weight. For example, suppose that the probabilistic process
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governing them is:

�W t � !t �5�

�Ht � ÿ
�Htÿ1 ÿW tÿ1� � �t �6�
where ! and � are independent, stationary random variables and 0<
< 1.

Both W and H are I(1). W is a random walk. Its population mean drifts

aimlessly about like a drunk wandering away from the tavern. Unlike (5),

which describes the mean of �Wt as zero, (6) is like a random walk, but one

with a mean that shifts in a particular deterministic manner. If Htÿ1>Wtÿ1,

then ÿ 
(Htÿ1ÿWtÿ1) is negative, so that the negative realizations of �Ht

become more common; while if Htÿ1<Wtÿ1, positive realizations become

more common. The gap between Ht and Wt tends probabilistically to be

closedÐthe faster, the larger 
 is. Hence, ÿ
(Htÿ1ÿWtÿ1) is often called

an error-correction mechanism. While both series are I(1), the shifting mean

implies that, unlike the general case mentioned in the last section in which the

variance of the difference between two integrated series approaches in®nity as

the sample size grows, the variance of the difference between H and W is ®nite.

So, as W wanders aimlessly like a drunk, H tends to follow like a faithful

friend who does not want to lose sight of his inebriated companion. H and W

are probabilistically dependent.

Nevertheless, �Ht and �Wt are not probabilistically dependent: condi-

tional on the information available at tÿ 1, the realization of �Wt conveys

no information about the distribution of �Ht or vice versa.

Of course, it is also possible for series to be dependent in both changes and

levels. For example, replace (5) with

�Wt � ��Ht � !t �7�
Now �H and �W are also probabilistically dependent.

Notice that in (6), if we could condition Ht on Wt, all that is left over is

stationary.14 We would have, in effect, decomposed (6) into a stationary and a

nonstationary component. The nonstationary component represents the gen-

uine relationship of probabilistic dependence between the levels of H and W

known as `cointegration'.

De®nition: Two time series {Xt} and {Yt} are cointegrated if, and only if,

each is I(1) and a linear combination {Xtÿ�0ÿ�1Yt}, where �1 6� 0, is

I(0). (Hamilton [1994], p. 571)

In general, linear combinations of I(1) time series are also I(1). Cointegra-

tion is a particular feature not displayed between arbitrary pairs of time series.

14 In practical statistics, such a conditioning is accomplished through regression. The residual
errors from the regression of Ht on Wt is the stationary component of Ht.
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If two time series are cointegrated, then the cointegrating vector ([�1]) is unique

(see the Appendix for a proof in a special case).15

It is easy to see heuristically that H and W are cointegrated in (5) and (6).

(A formal demonstration that H and W are cointegrated is relegated to the

Appendix.) W in (5) is clearly I(1). The error-correction mechanism in (6)

(i.e., ÿ
(Htÿ1ÿWtÿ1) ensures that, in the long run, H follows W. So, if W is

I(1), H must also be I(1). The gap between the two series cannot diverge in the

long run. The error-correction mechanism also ensures that the bigger the gap

between Htÿ1 and Wtÿ1, the faster H and W approach each other. Only I(0)

realizations of �t can drive H and W apart. Since the variance of �t is ®nite,

there is a vanishingly small probability of a string of realizations of �t large

enough to overcome the error-correction mechanism.16 Thus, while H and W

may each have in®nite variance, the variance of their difference is ®nite.

Like the correlation coef®cient, cointegration is a symmetrical relationship.

If X and Y are cointegrated with a linear combination as in the de®nition

above, they are also cointegrated with another linear combination in which the

roles of X and Y are reversed. There is a further analogy with the correlation

coef®cient. Notice that the cointegrating relationship in the de®nition has the

same form as (1). Just as the regression equation (2) chooses the weights for

this linear combination such that a pair of stationary series is reduced to a

series of residual error terms uncorrelated with the right-hand side variables, a

regression equation

Xt � b0 � b1Yt � et �8�

chooses the weights of the cointegrating vector in such a way that a pair of

nonstationary variables is reduced to a series of stationary residuals (et). Now,

however, even if the underlying random error terms (e.g., ! and � in (5) and

(6)) are normal, the distribution of the estimated coef®cients will not be

normal, so that common test statistics used to check statistical signi®cance

(e.g., Student's t-test of whether b1 is statistically signi®cantly different from

zero) no longer have the distributions familiar from stationary data. Deter-

mining valid distributions and appropriate test statistics is an important ele-

ment in recent research on nonstationary time series.

The correspondence between facts of association based on familiar sample

statistics (including `eye-ball' measures) and the facts of probability implicit in

15 Called a vector because in a multivariate case (see below) in which the linear combination
involves more than two I(1) time series, there are additional coef®cients for each additional
time series. So, for j cointegrated I(1) time series the vector would be [�1 �2 . . . �jÿ1].

16 It would be tedious to try to avoid terms such as `correction mechanism', `ensure', and `drive
apart' which might appear to be causal. In fact, we are appealing here only to descriptions of the
nonstationary probability distributions and, with loss of economy, could avoid causally loaded
language. No questions are begged.
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Sober's counterexample fail in nonstationary settings. Yet evidence of coin-

tegration does provide evidence of probabilistic dependence. In (5) and (6),

H and W are cointegrated. The distribution of H differs with different realiza-

tions of the random terms !t in the W process and, hence, with the values of

W. In contrast to the case of U and V in the last section, knowing Wt gives

information about the likely values of Ht not derivable from knowing the

H process alone. The joint probability distribution of H and W does not

factor: P(HtWt) 6�P(Ht)P(Wt). This is the natural meaning of probabilistic

dependence. It is also the sense needed to make sense of principle (P) and the

sense implicit in correlation in Reichenbach's ([1956]) usage.

So far, we have considered pairwise cointegration, but two time series may

not be cointegrated as a pair but, nonetheless, may be elements of a set of three

or more I(1) variables for which there is a linear combination (e.g.,

{Xtÿ �0ÿ�1Ytÿ �2Zt}) that is I(0). The statistical analysis generalizes from

the pairwise to the multivariate case in straightforward ways. The multivariate

case points up a disanalogy between cointegration and correlation when

applied to the causal Markov condition or the principle of the common cause.

If two I(0) series are not correlated (�� 0), then, except in special cases, they

are not directly causally connected.17 But if two I(1) series are not pairwise

cointegrated, they may still be directly causally connected, since it may require

a linear combination with one, two, or more additional I(1) variables to reduce

the I(1) processes to I(0). This could, of course, affect practical causal invest-

igations. With stationary series, one can start small with pairwise relationships

and work out to more complex systems. With nonstationary series, one must

start with a system and run the risk that it is not adequately large for the

problem at hand.

6 Do Venetian sea levels and British bread prices violate the
principle of the common cause?

Are Venetian sea levels and British bread prices a valid counterexample to the

principle of the common cause?

It is worth recalling Reichenbach's ([1956], p. 156) original formulation of

the principle quoted at the outset of this paper: `If an improbable coincidence

has occurred, there must exist a common cause.' The antecedent presumes

that coincidences can be either probable or improbable. As already noted,

Reichenbach rules out mere coincidences as examples of the kind of improb-

ability he has in mind. (It is in some sense highly unlikely that the space shuttle

Challenger should have blown up on the day my daughter was born. It was a

mere coincidence.) To apply Reichenbach's principle, the probability models

17 See Spirtes et al. ([1993], p. 95) and Hoover ([2001], pp. 168±70).
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that describe the stochastic occurrence of each event separately must place a

small probability on their co-occurrence; and yet they do in fact co-occur. In

that case, the common cause justi®es a wider probability model which makes

their co-occurrence follow as a matter of course.

Bread prices in England and the sea levels in Venice do not have a common

cause ex hypothesi. But to establish that they violate the principle, the fact of

their observable positive association would have to be interpretable as a true

correlation and, therefore, as an improbable coincidence in Reichenbach's

sense. As described in Sober's counterexample, the two time series are clearly

nonstationaryÐeither trend-stationary or integrated. The positive sample

association between such nonstationary series is not improbable. Indeed, such

observed associations between time series that lack any probabilistic depend-

ence are the mathematical implication of nonstationary stochastic processes.

They are highly predictable, and yet are mere coincidences. As a result, when,

given the data, the most likely probability model is nonstationary, it is wrong

to infer probabilistic dependence from Pearson's correlation coef®cient or

other formal or informal measures of association that would have provided

good evidence for it in the stationary case. The time series are associated but

not correlated in the sense required for the principle of the common cause.

This is enough to justify the conclusion that Venetian sea levels and British

bread prices do not provide a valid counterexample to the principle of the

common cause.

Not all nonstationary time series are as probabilistically independent as sea

levels and bread prices. Cointegration is the probabilistic dependence between

the levels of nonstationary time series. The term `correlation' in the sense

relevant to Reichenbach's principle of the common cause encompasses coin-

tegration. Far from needing to weaken (P*) to cope with Sober's counter-

example, our analysis shows that principle (P) is ®ne as it is.

This conclusion may be thought to employ too elastic a de®nition of

`correlation'Ðone that does violence to common usage. Sober's counter-

example might reasonably be held to highlight a need to clarify key terms.

So, even though I argue that Sober's counterexample does not need to be

replaced by any weaker principle, it might be clearer to restate (P) more

expansively (with the clarifying phrases in italics):

(P**) If events X and Y are each stationary or trend-stationary and are

correlated with each other or are each integrated and cointegrated with each

other, then either X caused Y, Y caused X, or X and Y are joint effects of a

common cause (one that renders X and Y probabilistically independent).18

18 Cointegration was de®ned in Section 4 as a linear combination that reduces an I(1) series to an
I(0) series. But the notion generalizes to a linear combination that reduces an I(k) series to an
I(kÿ 1) series. Such a generalization is adequate to defuse Sober's [(2001), Section 3) new
counterexamples. These work through the construction of two time series that are not
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Venetian sea levels and British bread prices are nonstationary, and they are

not cointegrated. They fail to ful®ll the antecedent of (P**), and so are not a

counterexample to the principle of the common cause.19

The principle of the common cause may be open to valid criticism on many

grounds. What we have shown here is that the case of Venetian sea levels and

British bread prices is not among those grounds.
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Appendix: Proof that the W and H in (5) and (6) are cointegrated

First, some useful facts: (i) linear combinations of I(0) series are themselves

I(0); (ii) linear combinations of an I(1) series and an I(0) series are I(1).

Without further discussion, we start with the fact established informally in

the text that W and H are I(1). The salient question, then, is whether there is a

linear combination of W and H that is I(0). We prove that (HtÿWt) is in fact

I(0). Rewrite (5) and (6) as

W t �W tÿ1 � !t �50�

Ht � �1ÿ 
�Htÿ1 � 
W tÿ1 � �t �60�
Subtracting (50) from (60) yields

�Ht ÿWt� � �1ÿ 
��Htÿ1 ÿWtÿ1� � �t ÿ !t �9�
causally connected ex hypothesi but in which both the levels and the changes of the series are
correlated in sample in violation of (P*). Such series are not cointegrated, so that they do not
violate (P**).

19 Sober's ([2001]) arti®cial data (see note 2 above) conform to these claims. The levels trend up
over time, which is re¯ected in r� 0.99. The changes are trendless and uncorrelated: r� 0.47 with
a t-statistic� 1.19 (it would have to be greater than 2.57 to be signi®cant at the conventional
5 percent level). Unfortunately, the two series are too short for most formal tests of cointegration.
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Lagging (9) and repeatedly substituting out the lagged term k times yields

�Ht ÿWt� � �1ÿ 
�k�Htÿk ÿWtÿk� �
Xkÿ1

j�0

�1ÿ 
�j��tÿj ÿ !tÿj� �10�

Since 
 < 1, as k ! 1, the ®rst term on the right-hand side vanishes. The

summation places weights that decline over time on a linear combination of

I(0) error terms. The further a shock to W (i.e., !) or to H (i.e., �) lies in the

past, the less it matters to the current value of (HtÿWt). This is the hallmark

of an I(0) process. Since HtÿWt is I(0), H and W are cointegrated.

We can also prove that the cointegrating vector is unique. Let (5) and (6)

describe the relationship between H and W. Now compute, an arbitrary linear

combination

�Ht ÿ �W t� � �1ÿ 
�Htÿ1 � 
W tÿ1 � �t ÿ �W tÿ1 ÿ �!t

� �Htÿ1 ÿ �W tÿ1� ÿ 
�Htÿ1 ÿW tÿ1� � �t ÿ �!t �11�
If �� 1, then (11) collapses to (9) and (Htÿ�Wt) is I(0). If � 6� 1, notice that

(11) takes the form Xt�Xtÿ 1� I(0) terms, which is an I(1) process. To see this

another way, ask what happens if we repeatedly lag (Htÿ�Wt) and substitute

out the lagged values in (11) as we did in moving from (9) to (10). This process

yields

�Ht ÿ �Wt� � �Htÿk ÿ �Wtÿk� �
Xkÿ1

j�0

�ÿ
�Htÿj ÿWtÿj� � ��tÿj ÿ �!tÿj��

�12�
Unlike in (10), as k!1, the ®rst term on the right-hand side does not vanish

and the weights on the terms in the summation of I(0) terms do not decline.

The process `remembers' its initial conditions and the full value of every past

shock, which is the hallmark of an I(1) process.

Since �� 1 implies that (Htÿ�Wt) is I(0) and � 6� 1 implies that (Htÿ�Wt)

is I(1), the cointegrating vector [�] is unique.

References

Cartwright, N. [1999]: The Dappled World, Cambridge: Cambridge University Press.

Dickey, D. A. and Fuller, W. A. [1979]: `Distributions of the Estimators for

Autoregressive Time Series with a Unit Root', Journal of the American Statistical

Association, 74, pp. 427±31.

Engle, R. F. and Granger, C. W. J. [1987]: `Cointegration and Error Correction:

Representation, Estimation and Testing', Econometrica, 55, pp. 251±76.

Everitt, B. S. [1998]: The Cambridge Dictionary of Statistics, Cambridge: Cambridge

University Press.

550 Kevin D. Hoover



Forster, M. [1988]: `Sober's Principle of the Common Cause and the Problem of

Comparing Incomplete Hypotheses', The British Journal for the Philosophy of

Science, 55, pp. 538±59.

Hacking, I. [1965]: The Logic of Statistical Inference, Cambridge: Cambridge University

Press.

Hamilton, J. D. [1994]: Time Series Analysis, Princeton: Princeton University Press.

Hausman, D. M. and Woodward, J. [1999]: `Independence, Invariance, and the Causal

Markov Condition', The British Journal for the Philosophy of Science, 50, pp. 521±83.

Hendry, D. F. [1980]: `Econometrics: Alchemy or Science?' Economica, 47, pp. 387±406.

Hendry, D. F. [1995]: Dynamic Econometrics, Oxford: Oxford University Press.

Hoover, K. D. [2001]: Causality in Macroeconomics, Cambridge: Cambridge University

Press.

Lindgren, B. [1976]: Statistical Theory, 3rd edn, New York: Macmillan.

Meek, C. and Glymour, C. [1994]: `Conditioning and Intervening', The British Journal

for the Philosophy of Science, 45, pp. 1001±21.

Mellor, D. H. [1971]: The Matter of Chance, Cambridge: Cambridge University Press.

Mood, A. M., Graybill, F. A. and Boes, D. C. [1974]: Introduction to the Theory of

Statistics, 3rd edn, New York: McGraw-Hill.

Papineau, D. [1992]: `Can We Reduce Causal Direction to Probabilities', in D. Hull and

K. Okruhlik (eds), 1992, PSA 1992, Vol. 2, East Lansing, MI: Philosophy of Science

Association, pp. 238±52.

Phillips, P. C. B. [1986]: `Understanding Spurious Regressions in Econometrics',

Journal of Econometrics, 33, pp. 311±40.

Phillips, P. C. B. [1987]: `Time Series Regression with a Unit Root', Econometrica, 55,

pp. 277±301.

Reichenbach, H. [1956]: The Direction of Time, Berkeley: University of California Press.

Sober, E. [1994]: `The Principle of the Common Cause', in From a Biological Point of

View, Cambridge: Cambridge University Press, pp. 158±74.

Sober, E. [2001]: `Venetian Sea Levels, British Bread Prices, and the Principle of the

Common Cause', The British Journal for the Philosophy of Science, 52, pp. 331±46.

Spirtes, P., Glymour, C. and Scheines, P. [1993]: Causation, Prediction, and Search, New

York: Springer Verlag.

Yule, G. U. [1926]: `Why Do We Sometimes Get Nonsense Correlations Between Time

Series? A Study of Sampling and the Nature of Time Series' (with discussion), Journal

of the Royal Statistical Society, 89, pp. 1±64.

Cointegration and Casuality 551


