
Prepint of a paper appearing in

Journal of Philosophical Logic,

vol. 36 (2007), pp. 367 - 413

Defaults with Priorities

John Horty

Philosophy Department and

Institute for Advanced Computer Studies

University of Maryland

College Park, MD 20742

horty@umiacs.umd.edu

www.umiacs.umd.edu/users/horty



Contents

1 Introduction 1

2 Basic concepts 3

2.1 Default theories and scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Binding defaults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Proper scenarios and extensions 16

3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Discussion 27

4.1 Normal default theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 Controlling order of application . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Some difficult cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Conclusion 49

A Proofs of observations and theorems 51

i



1 Introduction

If we are told only that Tweety is a bird, it is natural to conclude that Tweety is able to fly;

our everyday reasoning seems to be governed by a default according to which birds, as a rule,

can fly. But if we are then told that Tweety is actually unable to fly—information that it

is, after all, consistent with our initial premise—we would withdraw our original conclusion.

Any logic put forth to capture this form of reasoning must therefore exhibit a nonmonotonic

consequence relation, allowing for the possibility that the conclusion set might shrink as the

premise set grows.

The study of nonmonotonic logics began in earnest about twenty-five years ago, with

simultaneous exploration along several different avenues. This paper is concerned with the

consistency-based approach, exemplified by Reiter’s default logic [23], one of the most widely

applied nonmonotonic logics, and arguably the most successful.

The paper focuses on priority relations among default rules, a matter that was not treated

in Reiter’s original theory. To illustrate, suppose we are told that Tweety is a penguin, and

therefore a bird. Then it seems that two conflicting defaults come into play. There is the

default according to which birds can fly, but there is also a default according to which

penguins, as a rule, cannot fly. Still, in spite of these two conflicting defaults, we have no

difficulty arriving at a definite conclusion: since the second of these two defaults is naturally

thought to carry a higher priority than the first, we favor this second default over the first,

and conclude that Tweety is unable to fly.

Priority relations among defaults can have different sources. In this particular case, the

priority of the second default over the first has to do with specificity: a penguin is a specific
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kind of bird, and so information about penguins in particular should take precedence over

information about birds in general. But there are other priority relations that have nothing to

do with specificity. Reliability is another source. Both the weather channel and the arthritis

in my left knee provide reasonably reliable predictions about oncoming precipitation. But

the weather channel is more reliable, so that I favor its predictions in case of conflict. And

if we move to the normative interpretation of defaults, as explored in my [11] and [15],

for example, then authority provides yet another source for priority relations. National

laws typically override state or provincial laws, and more recent court decisions have more

authority than older decisions. Direct orders override standing orders, and orders from the

Colonel override orders from the Major.

My concern here, however, is not with the source of priority relations among default

rules, but instead, with the way in which these priority relations—which I will simply take

as given—are to be accommodated within a logic for default reasoning. This is not a new

topic; there are already several proposals addressing the problem in the literature, some of

which I will return to later on.

The present paper explores the problem from a new angle. One area in which the analysis

of priority relations among default rules has met with considerable success has been in the

theory of nonmonotonic inheritance reasoning, initiated by Touretzky in [26], developed by

Thomason, Touretzky, and myself in a series of papers that includes [17], [27], and [28],

and then systematized, to some extent, in my [12]. From the perspective of nonmonotonic

reasoning more generally, the ideas and techniques introduced in this work have often seemed

to be rather narrow and specialized, and perhaps applicable only to the very restricted

language of inheritance networks. My aim in this paper is to show, to the contrary, that
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these ideas can be generalized to richer languages, and to explore one way of doing so; the

result is a promising account of prioritized default reasoning that compares favorably to

other work in the area.

2 Basic concepts

2.1 Default theories and scenarios

We assume as background an ordinary propositional language, with ⊃, ¬, ∧, and ∨ as the

usual connectives, and with > as a constant representing truth. The turnstile ` indicates

standard logical consequence, and where E is a set of formulas, we define Th(E) = {A : E ` A}

as its logical closure, the set of formulas derivable from E.

Where A and B are formulas from the background language, we then let A → B represent

the default rule that allows us to conclude B, by default, whenever it has been established

that A. It is most useful, I believe, to think of default rules as providing reasons for con-

clusions. If B stands for the statement that Tweety is a bird, and F for the statement that

Tweety can fly, then the particular default B → F tells us that Tweety’s being a bird func-

tions as a reason for concluding that he is able to fly; this particular default can be viewed

as an instance for Tweety of a general default according to which birds, as a rule, are able

to fly.

We assume two functions—Premise and Conclusion—that pick out the premises and

conclusions of default rules. If δ is the default A → B, for example, then Premise(δ) is the

statement A and Conclusion (δ) is the statement B. The second of these functions is lifted

from individual defaults to sets of defaults in the obvious way, so that, where D is a set of
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defaults, we have

Conclusion(D) = {Conclusion(δ) : δ ∈ D}

as the set of their conclusions.

As we have seen, some defaults have higher priority than others; some reasons are better

than others. In order to represent this information, we introduce an ordering relation < on

the set of defaults, with δ < δ′ taken to mean that the default δ′ has a higher priority than δ.

Among the various possible ordering constraints, it is most natural to require only that this

priority relation should be transitive and irreflexive—that is, a strict partial ordering. We

suppose that this priority relation is likewise lifted from individual defaults to sets, so that

D < D′ means that δ < δ′ for each δ in D and δ′ in D′; and for convenience, we abbreviate

{δ} < D′ as δ < D′.

Where D is a set of defaults, and < is a strict partial ordering on D, we let D< stand

for the pair 〈D, <〉, an ordered set of defaults. And finally, where W is some set of formulas

from our background language and D< is an ordered set of defaults, we define an ordered

default theory as a structure of the form 〈W,D<〉. Such a structure—a body of ordinary

information together with an ordered set of defaults—represents the initial data provided to

an agent as a basis for its reasoning.1

The goal of a default logic is to specify the belief sets supported by default theories, where

we adopt the common idealization of a belief set as a logically closed set of formulas. Defaults

are generally though of as rules for extending the conclusions derivable from a set of ordinary

1In an effort to find language that is both gender neutral and unobtrusive, I often assume that the agent

is an impersonal reasoning device, such as a computer, which can appropriately be referred to with the

pronoun ‘it’.
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formulas beyond its classical consequences, and for this reason, the belief sets associated with

default theories are often referred to as extensions. Throughout this paper, however, we will

concentrate in the first instance, not on belief sets themselves, but on scenarios, where a

scenario based on a default theory 〈W,D<〉 is defined simply as a particular subset S of the

set D of defaults contained in the theory; we can then take

Th(W ∪ Conclusion(S))

as the belief set that is generated by such a scenario.

Where S is a scenario based on the default theory 〈W,D<〉, we will say, for convenience,

that a statement A is consistent with, or entailed by, S just in case A is consistent with, or

entailed by, the set W ∪ Conclusion(S); and likewise, that a default D is consistent with or

entailed by S just in case the statement Conclusion(D) is consistent with or entailed by S.

From an intuitive standpoint, a scenario is supposed to represent the set of defaults

that have been accepted by an agent, at some stage of its reasoning process, as providing

sufficient support for their conclusions. Our central task in this paper is to characterize, as

we will say, the proper scenarios—those scenarios that might ultimately be accepted by an

ideal reasoning agent on the basis of the information contained in an ordered default theory.

With this notion in hand, we can then define the extensions of ordered default theories quite

simply, as the belief sets that are generated by their proper scenarios.

2.2 Binding defaults

We begin with the concept of a binding default. If defaults provide reasons, then the binding

defaults represent those that provide good reasons, in the context of a particular scenario.
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This reference to a scenario is not accidental: according to the theory developed here, the

defaults that an agent might take as providing good reasons depends on the set of defaults

it already accepts, the agent’s current scenario.

The concept of a binding default is defined in terms of three preliminary ideas, which we

consider first—triggering, conflict, and defeat.

Defaults provide reasons, but of course, not every reason is applicable in every context,

every scenario: the default that birds fly, for example, provides no support at all for the

conclusion that Tweety flies unless the agent is already committed, by its current scenario,

to the proposition that Tweety is a bird. The defaults that are triggered in a particular

scenario, representing the applicable reasons, are simply those whose premises are entailed

by that scenario.

Definition 1 (Triggered defaults) Where S is a scenario based on the ordered default

theory 〈W,D<〉, the defaults from D that are triggered in S are those belonging to the set

TriggeredW,D<
(S) = {δ ∈ D : W ∪ Conclusion(S) ` Premise(δ)}.

To illustrate, let B, F , and W stand, respectively, for the propositions that Tweety is a

bird, that Tweety flies, and that Tweety has wings; and let δ1 and δ2 stand for the defaults

B → F and F → W , instances for Tweety of the general defaults that birds fly and that

flying animals have wings. Imagine that a reasoning agent is provided with the ordered

default theory 〈W,D<〉 as initial information, where W = {B}, D = {δ1, δ2}, and the

ordering < is empty; and suppose the agent has not yet accepted any of the defaults from D,

so that its initial scenario is simply S0 = ∅. We then have TriggeredW,D<
(S0) = {δ1} so that,

in this initial scenario, the default δ1 provides the agent with a reason for its conclusion,
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the proposition F . Now suppose the agent does in fact accept this reason, and so moves to

the new scenario S1 = {δ1}. Then since TriggeredW,D<
(S1) = {δ1, δ2}, the default δ2 now

provides the agent, in this new scenario, with a reason for the conclusion W .

Triggering is a necessary condition that a default must satisfy in order to be classified as

binding in a scenario, but it is not sufficient. Even if some default is triggered, it might not

be binding, all things considered; two further aspects of the scenario could interfere.

The first is easy to describe. A default will not be classified as binding in a scenario, even

if it happens to be triggered, if that default is conflicted—that is, if the scenario already

entails the negation of its conclusion.

Definition 2 (Conflicted defaults) Where S is a scenario based on the ordered default

theory 〈W,D<〉, the defaults from D that are conflicted in S are those belonging to the set

ConflictedW,D<
(S) = {δ ∈ D : W ∪ Conclusion(S) ` ¬Conclusion(δ)}.

The intuitive force of this restriction can be illustrated through a standard example,

known as the Nixon Diamond (because its depiction as an inheritance network has the

shape of a diamond). Let Q, R, and P stand for the respective propositions that Nixon is a

Quaker, that Nixon is a Republican, and that Nixon is a pacifist; and let δ1 and δ2 represent

the defaults Q → P and R → ¬P , instances of the general rules that Quakers tend to be

pacifists and that Republicans tend not to be pacifists. Imagine that the theory 〈W,D<〉

is provided to the agent as initial information, where W = {Q,R}, D = {δ1, δ2}, and the

ordering < is again empty; and suppose again that the agent has not yet accepted either of

these two defaults, so that its initial scenario is S0 = ∅.
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In this situation, we have TriggeredW,D<
(S0) = {δ1, δ2}; the default δ1 provides a reason

for the conclusion P , and the default δ2 provides a reason for the conclusion ¬P . Although

these two defaults support conflicting conclusions, neither is conflicted in the initial scenario:

ConflictedW,D<
(S0) = ∅. The agent must find some way of dealing with the conflicting

reasons presented by its epistemic state. Now suppose that, on whatever grounds, the agent

decides to favor one of these two defaults—say δ1, with the conclusion P—so that it moves

to the new scenario S1 = {δ1}. In this new scenario, the other default will now be classified

as conflicted: ConflictedW,D<
(S1) = {δ2}. The reason provided by δ2 loses its force, since

the agent has already settled on a contrary conclusion.

The second restriction governing the notion of a binding default holds that, even if it is

triggered, a default cannot be classified as binding if it happens to be defeated. Although, as

we will see, this notion is considerably more complicated to define than that of a conflicted

default, the basic idea is simple enough: an agent should not accept a default in the face of

a stronger default supporting a conflicting conclusion.

This idea can be illustrated by returning to our initial example, which is known as the

Tweety Triangle (because of its triangular shape when depicted as an inheritance network).

Again, we let P , B, and F stand for the propositions that Tweety is a penguin, that Tweety

is a bird, and that Tweety flies; and let us take δ1 and δ2 as the defaults B → F and

P → ¬F , instances of the general rules that birds fly and that penguins do not. Suppose

the agent is provided with the theory 〈W,D<〉 as its initial information, where W = {P,B},

D = {δ1, δ2}, and now δ1 < δ2; the default about penguins has higher priority than the

default about birds. And suppose again that the agent has not yet accepted either of these

two defaults, so that its initial scenario is S0 = ∅.
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In this situation, we again have TriggeredW,D<
(S0) = {δ1, δ2}; the default δ1 provides a

reason for concluding F , while the default δ2 provides a reason for concluding ¬F . And we

again have ConflictedW,D<
(S0) = ∅; neither of these defaults is itself conflicted. Nevertheless,

it does not seem on intuitive grounds that the agent should be free, as before, to settle this

conflict however it chooses. Here, the default δ1, supporting the conclusion F , seems to

be, in some sense, defeated by δ2, since this default is stronger and supports the conflicting

conclusion ¬F .

Our challenge is to provide a general definition of the concept of defeat at work in cases

like this. Motivated by the Tweety Triangle, it is natural to begin with the proposal that

a default should be defeated in a scenario if that scenario triggers some stronger default

with a conflicting conclusion—or put formally: that the default δ should be defeated in

the scenario S if there is some default δ′ ∈ TriggeredW,D<
(S) such that (1) δ < δ′ and (2)

Conclusion(δ′) ` ¬Conclusion(δ). This simple proposal is nothing but a straightforward

adaptation of the notion of preemption developed for the restricted language of inheritance

hierarchies; but unfortunately, it is too simple in the present, more general setting, and for

two reasons. First, it seems possible for a default to be defeated, not just by a single stronger

default, but by a set of stronger defaults—a defeating set, rather than a single defeater—each

of which may be individually consistent with the original default, but which are inconsistent

with this default when taken together. And second, in determining whether one default, or

set of defaults, conflicts with another, it seems that we can legitimately appeal to certain

facts to which the agent is already committed, through either its initial information or its

current scenario.

Both of these difficulties can be illustrated by an abstract example in which the default
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δ1 is > → (A ⊃ B), δ2 is > → (B ⊃ C), and δ3 is > → ¬C. Consider the theory 〈W,D<〉

where W = {A}, D = {δ1, δ2, δ3}, and we have both δ3 < δ1 and δ3 < δ2; and suppose the

agent has not yet accepted any of the three defaults, so that its current scenario is S0 = ∅.

Here, it seems reasonable to say that the single default δ3 is defeated by the set S1 = {δ1, δ2}.

Why? Because both defaults belonging to S1 are triggered in the current scenario; because

both of these defaults have a higher priority than δ3; and because, when taken together with

the statement A, to which the agent is already committed, the conclusions of these defaults

conflict with the conclusion of δ3.

Generalizing from this example, it may now appear that we reach a proper analysis of

defeat by stipulating that: the default δ is defeated in the scenario S just in case there is a

defeating set D′ ⊆ TriggeredW,D<
(S) such that (1) δ < D′ and (2) W∪Conclusion(S ∪D′) `

¬Conclusion(δ). Let us refer to this proposal as the candidate definition. In fact, this

candidate definition is nearly correct, but requires further refinement in order to handle

certain problems arising when a potential defeating set is inconsistent with the agent’s current

scenario.

The problems can be illustrated by an example that extends the earlier Nixon Diamond

with a weaker but irrelevant default. As before, let Q, R, and P represent the propositions

that Nixon is a Quaker, a Republican, and a pacifist; let δ1 be Q → P and δ2 be R → ¬P .

But this time, let S represent some proposition that is entirely irrelevant to Nixon’s pacifism,

perhaps the proposition that Nixon enjoys the seashore; and let δ3 be the default > → S, an

instance for Nixon of the rule that people in general tend to enjoy the seashore. Suppose the

agent is provided with 〈W,D<〉 as initial information, where W = {Q,R}, D = {δ1, δ2, δ3},

and the ordering tells us that the new default has a lower priority than the previous two:
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δ3 < δ1 and δ3 < δ2. And imagine that, as before, the agent has selected the default δ1 over

the conflicting default δ2, so that its current scenario is S1 = {δ1}.

Now, once the conflict concerning Nixon’s pacifism has been settled, can the agent then

simply accept the additional default δ3 and so conclude S, that Nixon likes the seashore?

The intuitive answer is Yes. The new default provides a reason for this conclusion, and there

is apparently nothing in the vicinity to oppose this reason. Unfortunately, however, the

candidate definition tells us otherwise—that, in the agent’s current scenario, the new default

δ3 is actually defeated. How can this be? Well, taking D′ = {δ2} as a potential defeating set,

it is clear to begin with that D′ ⊆ TriggeredW,D<
(S2). Furthermore, we have (1) δ3 < D′,

and since the set W ∪Conclusion(S1 ∪D′)—that is, W∪{P,¬P}—is inconsistent, entailing

anything at all, we also have (2) W ∪ Conclusion (S1 ∪ D′) ` ¬Conclusion (δ3).

This example might seem to suggest that the candidate definition should be supple-

mented with a restriction according to which the defeating set D′ should be consistent with

the current scenario S. Perhaps the original clause (2) should be replaced with a pair

of clauses requiring both (2a) that W ∪ Conclusion(S ∪ D′) is consistent, and (2b) that

W ∪ Conclusion(S ∪ D′) ` ¬Conclusion(δ). However, this suggestion will not work either,

as we can see by returning to the Tweety Triangle. Suppose, in this example, that the

reasoning agent has mistakenly come to accept δ1—that is, the default B → F , according

to which Tweety flies because he is a bird—so that its current scenario is S1 = {δ1}. From

an intuitive standpoint, we would nevertheless like δ1 to be defeated by δ2—the stronger

default P → ¬F , according to which Tweety does not fly because he is a penguin. But this

defeat relation would no longer hold, since the new clause (2a) requires that a default can

be defeated only by another that is consistent with the agent’s current scenario, and δ2 is
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not consistent with S1.

What I would like to suggest, instead, is that the defeating set D′ should be consistent,

not necessarily with the agent’s current scenario S as it stands, but with the scenario that

results when a certain subset S ′ is retracted from this current scenario, so that the defeating

set can then be consistently accommodated. For convenience, we let

S D′/S′
= (S − S ′) ∪ D′

indicate the result of retracting the defaults belonging to S ′ from the scenario S, and then

supplementing what remains with the defaults from D′—or more simply, as the notation

suggests, replacing S ′ by D′ in S. The suggestion, then, is to require, not that the defeating

set D′ must be consistent with the scenario S, but simply that there should be some appro-

priate set S ′ such that S D′/S′
is consistent. Returning to our variant of the Tweety Triangle,

again taking S1 = {δ1} as the agent’s current scenario, if we now suppose that D′ = {δ2}

and S ′ = {δ1}, then it turns out that S D′/S′

1 = {δ2} is consistent; and since this set entails

¬Conclusion(δ1), the desired defeat relation is restored.

The key to this proposal is that, in order to accommodate a defeating set, we are free

to retract certain defaults to which the agent is already committed. But are there any

constraints on this process of accommodation; can we retract just anything at all from the

agent’s current scenario? No, there are limits. The definition to be presented here is based

on the idea that the set S ′ of retracted defaults and the defeating set D′ are subject to

the constraint that S ′ < D′—the defaults belonging to S ′ must be uniformly weaker than

those belonging to D′. We can retract as many defaults from the agent’s current scenario

as necessary in order to accommodate a defeating set, as long as the defaults we retract are
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themselves lower in priority than those we are attempting to accommodate.

Definition 3 (Defeated defaults) Where S is a scenario based on the ordered default

theory 〈W,D<〉, the defaults from D that are defeated in S are those belonging to the set

DefeatedW,D<
(S) = {δ ∈ D : there is a set D′ ⊆ TriggeredW,D<

(S) such that

(1) δ < D′,

(2) there is a set S ′ ⊆ S with S ′ < D′ such that

(a) W ∪ Conclusion(S D′/S′
) is consistent,

(b) W ∪ Conclusion(S D′/S′
) ` ¬Conclusion(δ)}.

When a default δ is defeated in accord with this definition, with D′ as its defeating set,

we say that S ′ is an accommodating set for D′, a set of defaults whose retraction from the

current scenario S allows the defeating set to be accommodated.

Evidently, this definition of defeat allows an accommodating set to be larger than nec-

essary, in the sense that it might contain defaults that do not actually need to be retracted

from the current scenario in order to accommodate the defeating set. We can, however,

define the stricter notion of a minimal accommodating set, as follows: where some default

is defeated in the scenario S, with D′ as a defeating set, S∗ is a minimal accommodating

set for D′ just in case S∗ is an accommodating set for D′ and, for any proper subset S ′ of

S∗, the set W ∪Conclusion(S D′/S′
) is inconsistent. A minimal accommodating set, then, is

some minimal set of defaults that must be retracted from the current scenario in order to

accommodate a defeating set. And it is easy to see, first of all, that the concept of defeat

remains unchanged if we restrict our attention to minimal accommodating sets, and second,

that any defeating set which is already consistent with the current scenario has the empty
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set as its unique minimal accommodating set.

Observation 1 Where S is a scenario based on the ordered default theory 〈W,D<〉, suppose

δ is defeated in S, with D′ as a defeating set and S ′ as an accommodating set for D′. Then

there is some S∗ ⊆ S ′ such that δ is likewise defeated in S with D′ as a defeating set and S∗

as a minimal accommodating set for D′.

Observation 2 Where S is a scenario based on the ordered default theory 〈W,D<〉, suppose

δ is defeated in S, with D′ as a defeating set. Then S∗ = ∅ is a minimal accommodating set

for D′ if and only if W ∪ Conclusion(S ∪ D′) is consistent.

The reader is invited to verify that our definition of a defeated default yields the correct

defeat relations in the various examples considered here, as well as others of his or her

own devising. Any definition this complicated, however, needs a justification apart from its

application to particular examples, and I offer two.

We have, in the first place, a clear rationale for preferring conclusions based on S D′/S′
—

the new scenario, which results from the original by retracting the accommodating set and

adding the defeating set—to conclusions based on S, the agent’s original scenario. For

there is a precise sense in which the new scenario represents a stronger set of reasons than

the original: setting aside those defaults shared by the two scenarios, it follows from our

definition that each default belonging to the new but not to the original scenario will have

a higher priority than any default belonging to the original scenario but not to the new one.

This observation depends, of course, on our requirement that the defaults belonging to the

defeating set must be uniformly stronger than those belonging to the accommodating set.

Without this requirement, it would be hard to draw any meaningful strength comparisons

14



between the new scenario and the original, and so hard to see why conclusions based on the

new scenario should be preferred.

And second, since what is most distinctive about our definition of defeat is its appeal to

an accommodating set, to be retracted from the agent’s current scenario, it is worth focusing

on the defaults belonging to this set; how can we justify retracting defaults to which the agent

is already committed? As we have already seen, there is no need to justify the retraction

of defaults belonging to arbitrary accommodating sets, possibly containing defaults that do

not actually need to be retracted in order to accommodate some defeating set. It is enough

to limit our attention to defaults from minimal accommodating sets, those whose retraction

is necessary; and in this case, there is no real difficulty justifying the retraction of these

defaults at all, since it turns out that any default belonging to such a set must itself be

defeated.

Observation 3 Where S is a scenario based on the ordered default theory 〈W,D<〉, suppose

δ is defeated in S, with D′ as a defeating set and S∗ as a minimal accommodating set for D′.

Then each default belonging to S∗ is likewise defeated in S, with D′ as a defeating set and

S∗ as a minimal accommodating set for D′.

Once the concept of defeat is in place, we can define the set of defaults that are binding

in a scenario quite simply, as those that are triggered in that scenario, but neither conflicted

nor defeated.

Definition 4 (Binding defaults) Where S is a scenario based on the ordered default the-
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ory 〈W,D<〉, the defaults from D that are binding in S are those belonging to the set

BindingW,D<
(S) = {δ ∈ D : δ ∈ TriggeredW,D<

(S),

δ 6∈ ConflictedW,D<
(S),

δ 6∈ DefeatedW,D<
(S)}.

This definition of a binding default is modeled on, and can usefully be compared with, the

definition from [12] of an inheritable argument path as one that is constructible, but neither

conflicted nor preempted.

3 Proper scenarios and extensions

3.1 Definitions

Since the binding defaults represent those that provide good reasons, in the context of a

particular scenario, it is natural to isolate the concept of a stable scenario as one containing

all and only the defaults that are binding in that very context.

Definition 5 (Stable scenarios) Let 〈W,D<〉 be an ordered default theory and S a sce-

nario. Then S is a stable scenario based on 〈W,D<〉 just in case S = BindingW,D<
(S).

An agent who has accepted a set of defaults that forms a stable scenario is in an enviable

position. Such an agent has already accepted exactly those defaults that it recognizes as

providing good reasons, in the context of the defaults it accepts; the agent, therefore, has

no incentive either to abandon any of the defaults it has already accepted, or to accept any

others.

Our goal, we recall, is to characterize the proper scenarios—those that an ideal reasoner

could come to accept as an appropriate basis for its beliefs, when provided with some default
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theory as initial information. Can we, then, simply identify the proper scenarios with the

stable scenarios? The answer is No, as we can see from the following example. Let δ1 be

the default A → A, and consider the theory 〈W,D<〉 in which W = ∅, D = {δ1}, and <

is empty. Here, the set S1 = {δ1} is a stable scenario based on this theory, since the single

default δ1 is triggered in the context of this scenario, but neither conflicted nor defeated.

But S1 should not be classified as a proper scenario. The best way to see this is to note that

Th({A}), the belief set generated by this scenario, contains the formula A. But we would not

want the agent to accept this formula, since it is not, in an intuitive sense, grounded in the

agent’s initial information. We will return shortly to consider this concept of groundedness

in more detail.

As this example shows, a stable scenario can generate too much information, but perhaps

there is a simple solution to the problem. Even though, in the example, S1 is a stable

scenario, it is not a minimal stable scenario. The only minimal stable scenario based on the

agent’s initial information is S0 = ∅, generating the belief set Th(∅), which does seem to be

appropriate. Is it possible, then, to identify the proper scenarios with the minimal stable

scenarios?

No again. Let δ1 be the default A → A, let δ2 be > → ¬A, and consider the theory

〈W,D<〉 in which W = ∅, D = {δ1, δ2}, and < is empty. Here, S1 = {δ1} is again a stable

scenario, containing exactly the defaults that are binding in this scenario; the default δ2 is

not binding, since it is conflicted. In this case, however, the scenario S0 = ∅ is not stable,

since the default δ2 is binding in the context of this scenario, but not included. It follows

that S1 is not only a stable scenario, but a minimal stable scenario. But again, we would

not want to classify S1 as proper; the only proper scenario, in this case, is S3 = {δ2}, which
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generates the belief set Th({¬A}).

Rather than attempting to define the proper scenarios in terms of the notion of stability,

then, we will adapt a quasi-inductive construction of the kind employed by Reiter. We begin

by introducing the notion of an approximating sequence.

Definition 6 (Approximating sequences) Let 〈W,D<〉 be an ordered default theory

and S a scenario. Then S0,S1,S2, . . . is an approximating sequence that is based on the

theory 〈W,D<〉 and constrained by the scenario S just in case

S0 = ∅,

Si+1 = {δ : δ ∈ TriggeredW,D<
(Si),

δ 6∈ ConflictedW,D<
(S),

δ 6∈ DefeatedW,D<
(S)}.

An approximating sequence is supposed to provide an abstract representation of the rea-

soning process carried out by an ideal agent in arriving at some scenario, a set of acceptable

defaults. The sequence depends on two parameters: a base default theory representing the

agent’s initial information, and a constraining scenario against which it checks defaults for

conflict or defeat. The agent begins its reasoning process, at the initial stage S0, without

having accepted any defaults; and then, at each successive stage Si+1, it supplements its cur-

rent stock of defaults with those that have been triggered at the previous stage Si, as long

as they are neither conflicted nor defeated in the constraining set S. It is easy to see that

the scenarios belonging to an approximating sequence are nested, each a subset of the next,

so that the sequence really can be thought of as providing better and better approximations

of some end result. The limit of an approximating sequence—defined as
⋃

i≥0 Si—represents
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this end result, the scenario that the agent will arrive at after carrying out the reasoning

process indefinitely.

We are particularly interested in the special case of an approximating sequence that is

constrained by its own limit—a sequence, that is, representing a reasoning process in which

defaults are evaluated for conflict or defeat with respect to the scenario that the agent will

eventually arrive at after carrying out that very process. A proper scenario can be defined

as the limit of an approximating sequence like this.

Definition 7 (Proper scenarios) Where 〈W,D<〉 is an ordered default theory and S is a

scenario, let S0,S1,S2, . . . be an approximating sequence based on 〈W,D<〉 and constrained

by S. Then S is a proper scenario based on 〈W,D<〉 just in case S =
⋃

i≥0 Si.

Having introduced this notion, we can now, as suggested earlier, define an extension of a

default theory as a belief set that is generated by a proper scenario.

Definition 8 (Extensions) Let 〈W,D<〉 be an ordered default theory and E a set of for-

mulas. Then E is an extension of 〈W,D<〉 just in case E = Th(W ∪ Conclusion(S)) where

S is a proper scenario based on this default theory.

The concept can be illustrated by considering the Tweety Triangle from the previous section.

As the reader can verify, the unique proper scenario based on this default theory is S2 = {δ2},

where δ2 is P → ¬F , so that Conclusion(S2) = {¬F}. The ordinary information contained

in the theory is W = {P,B}. The extension of the theory, therefore, is E = Th({P,B,¬F}).

Let us return, now, to the concept of groundedness. As we have seen, there are stable

scenarios, and even minimal stable scenarios, that are not proper. But it is easy to verify

that each proper scenario is, in fact, stable.
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Theorem 1 Let 〈W,D<〉 be an ordered default theory and S a proper scenario based on

this theory. Then S is also stable.

What the concept of a proper scenario adds to that of a stable scenario, from an intuitive

standpoint, is simply the requirement that the set of defaults accepted by an agent must

be properly grounded in the agent’s initial information. A default can belong to a proper

scenario only if it belongs to some scenario from the approximating sequence, and it can

belong to such a scenario only if it is triggered in the empty scenario, or in some other

scenario that occurs earlier in the sequence.

Membership in an approximating sequence guarantees groundedness by ensuring that the

conclusion of a default rule cannot be appealed to until its premise is actually established—by,

in effect, treating a default as a rule of inference. One way of arriving at a firm understanding

of this concept of groundedness, therefore, is to make the identification between defaults and

rules of inference explicit. We begin by extending the ordinary notion of a propositional

proof to take account of these new rules.

Definition 9 (S-proofs) Where S is a set of defaults and W is a set of formulas, an S-proof

of A from W is a sequence A1, A2, . . . , An such that An is A and, for j ≤ n, each Aj satisfies

one of the following conditions: (1) Aj is an axiom of propositional logic; (2) Aj belongs

to W; (3) Aj follows from previous members of the sequence by modus ponens; (4) there

is some δ ∈ S such that Conclusion(δ) is Aj and Premise(δ) is a previous member of the

sequence.

Evidently, an S-proof is just like an ordinary propositional proof, except that it allows each

default belonging to the set S to function as an additional rule of inference, justifying the
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placement of its conclusion in a proof sequence once its premise has been established. We

let ThS(W) denote the set of formulas that have S-proofs from W.2

Using this, notion, we can now explicate the concept of groundedness by stipulating that

a scenario S is grounded in the agent’s ordinary information W just in case the belief set

generated by S contains only statements that have S-proofs from W.

Definition 10 (Grounded scenarios) Let W be a set of formulas and S a scenario. Then

S is grounded in W just in case Th(W ∪ Conclusion(S)) ⊆ ThS(W).

The concept can be illustrated by returning to the theory 〈W,D<〉 described at the beginning

of this section, with D = {δ1} where δ1 is the default A → A, and with W and < empty.

We noted earlier that the scenario S1 = {δ1} is not, in an intuitive sense, grounded in the

agent’s initial information; and this intuition can now be confirmed by appeal to our formal

definition, since Th(W ∪ Conclusion(S1)) = Th({A}) but ThS1 (W) = ∅.

With this definition of groundedness in place, it can now be verified that the proper

scenarios are grounded.

Theorem 2 Let 〈W,D<〉 be an ordered default theory and S a proper scenario based on

this theory. Then S is also grounded in W.

Together with the preceding Theorem, this result tells us that the proper scenarios are both

stable and grounded. And indeed, the other direction can be established as well, leading to

an alternative characterization of the proper scenarios as the stable, grounded scenarios.

2This concept, couched in slightly different notation, is explored in detail in Section 3.1 of Marek and

Truszczyński [20], and plays a central role in their presentation of default logic. See also Chapter 4 of

Makinson [19] for an analysis of default logic along similar lines.
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Theorem 3 Let 〈W,D<〉 be an ordered default theory. Then S is a proper scenario based

on this theory if and only if S is both a stable scenario based on 〈W,D<〉 and also grounded

in W.

3.2 Remarks

It is easy to see that the extension of an ordered default theory must be consistent as long as

the set of ordinary formulas from that theory is consistent: defaults alone cannot introduce

inconsistency.

Theorem 4 Let 〈W,D<〉 be an ordered default theory with E as an extension. Then E is

consistent if and only if W is consistent.

As with Reiter’s default logic, however, the account presented here defines a relation be-

tween ordered default theories and their extensions that may seem anomalous from a more

conventional logical perspective. Certain default theories may have multiple extensions, and

others may have no extensions at all.

The canonical example of a default theory with multiple extensions is the earlier Nixon

Diamond. This extension supports two proper scenarios, both the scenario S1 = {δ1},

considered earlier, and S2 = {δ2}, where δ1 is Q → P and δ2 is R → ¬P . Since the

ordinary information contained in this default theory is W = {Q,R}, these two scenarios

generate the two extensions E1 = Th({Q,R,P}) and E2 = Th({Q,R,¬P}). In light of these

two extensions, one of which contains P and the other ¬P , what is the agent supposed to

conclude from the original theory: is Nixon a pacifist or not? More generally, when an ordered

default theory leads to more than one extension, how should we define its consequences?
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The question is vexed, and several proposals have been discussed in the literature. I do

not have space to explore the matter in detail here, but will simply describe three options,

in order to illustrate the range of possibilities.

One option is to interpret the different proper scenarios associated with a default theory

simply as different equilibrium states that an ideal reasoner might arrive at on the basis of

its initial information. The agent could then be expected to select, arbitrarily, a particular

one of these scenarios and endorse the conclusions supported by it. In the case of the Nixon

Diamond, for example, the agent could appropriately arrive either at the scenario S1 or at

the scenario S2, endorsing either the conclusion that Nixon is a pacifist, or else the conclusion

that he is not.

This option—now generally described as the credulous, or choice, option—is highly non-

standard from a theoretical perspective, but not, I think, incoherent.3 It involves viewing

the task of a default logic, not as guiding the reasoning agent to a unique set of appropriate

conclusions, but as characterizing different, possibly conflicting conclusion sets as rational

outcomes based on the initial information; default logic could then be seen as analogous to

other fields, such as game theory, for example, that appeal to multiple equilibrium states

in their characterization of rationality. And regardless of its theoretical pedigree, it seems

clear that this credulous option is frequently employed in our everyday reasoning. Given

conflicting defeasible rules, we often simply do adopt some internally coherent point of view

in which these conflicts are resolved in some particular way, regardless of the fact that there

are other coherent points of view in which the conflicts are resolved in different ways.

3This reasoning strategy was first labelled as “credulous” by Touretzky et al. [27], and as the “choice”

option by Makinson (18); it had earlier been characterized as “brave” by McDermott [21].
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A second option is to suppose that each formula that is supported by some proper scenario

must be given some weight, at least. We might, for example, take B(A) to mean that there is

good reason to believe the statement A; and we might suppose that a default theory provides

good reason to believe a statement whenever that statement is included in some extension

of the theory, some internally coherent point of view. In the case of the Nixon Diamond, the

agent could then be expected to endorse both B(P ) and B(¬P )—since each of P and ¬P

is supported by some proper scenario—thus concluding that there is good reason to believe

that Nixon is a pacifist, and also good reason to believe that he is not.

This general approach is particularly attractive when defaults are provided with a prac-

tical, rather than an epistemic, interpretation, so that the default A → B is taken to mean

that A provides a reason for performing the action indicated by B. In that case, the modal

operator wrapped around the conclusions supported by the various proper scenarios associ-

ated with a default theory could naturally be read as the deontic operator ©, representing

what the agent ought to do. And when different proper scenarios support conflicting conclu-

sions, say A and ¬A, we could then expect the reasoning agent to endorse both ©(A) and

©(¬A), thereby facing a normative, but not a logical, conflict. This approach, as it turns

out, leads to an attractive deontic logic.4

A third option is to suppose that the agent should endorse a conclusion just in case it

is supported by every proper scenario based on the original default theory; in the Nixon

Diamond, for example, the agent would then conclude neither that Nixon is a pacifist nor

that he is not, since neither P nor ¬P is supported by both proper scenarios. This option

4The resulting logic generalizes that of van Fraassen [29]. The interpretation of van Fraassen’s account

within default logic was first established in my [11]; a defense of the overall approach can be found in my ([15].
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is generally described as skeptical.5 It is by far the most popular option, and is sometimes

considered to be the only coherent form of reasoning in the presence of multiple proper

scenarios, though I have recently argued that the issue is more complex.6

For an example of an ordered default theory with no extensions at all, let δ1 be the

default > → A and δ2 the default A → ¬A, and consider the theory 〈W,D<〉 in which

W = ∅, D = {δ1, δ2}, and < orders these two defaults so that δ1 < δ2. By our definition,

any extension of this theory would have to be generated by some proper scenario. But we

can verify by enumeration that no subset of D is even a stable scenario, let alone proper:

S0 = ∅ is not stable, since δ1 is binding in the context of this scenario, but not included;

S1 = {δ1} is not stable, since it includes δ1, which is defeated in this context; S2 = {δ2} is

not stable, since it contains δ2, which is not triggered; and S3 = {δ1, δ2} is not stable, since

both of the defaults it includes are conflicted in the context. Since there is no stable scenario

based on this default theory, there can be no proper scenario either, and so the theory has

no extension.

There are several ways of responding to the possibility of default theories without exten-

sions, which I will simply mention. One option is to observe that the problem springs, quite

generally, from the presence of “vicious cycles” among defaults (compressed, in our simple

example, into the single default δ2), and to argue that such vicious cycles renders a default

theory incoherent. It is then natural to attempt to formulate syntactic conditions ruling out

5The label is again due to Touretzky et al. [27]; the same reasoning strategy had earlier been described

as “cautions” by McDermott [21].
6An argument that the skeptical approach, as defined here, presents the only coherent option for epistemic

default reasoning is presented by Pollack [22]; some of my own doubts can be found in [14].
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vicious cycles, which would guarantee coherence and so the existence of extensions. This

line of exploration has a long history in nonmonotonic reasoning, going back to Reiter’s

proof in [23] that extensions are guaranteed for normal default theories, to Touretzky’s proof

in [26] that acyclic inheritance networks must have extensions, and to the initial work on

stratification in logic programs, such as that of Apt et al. [2]. In the present setting, the goal

would be to find the weakest and most plausible syntactic restrictions necessary to guaran-

tee the existence of proper scenarios, and so of extensions, for the ordered default theories

defined here.

From a more general perspective, the strategy behind this first option is similar to Tarski’s

idea of responding to the semantic paradoxes by postulating a stratification of the language,

to rule out vicious cycles. It is also possible, by contrast, to explore the idea of allowing

vicious cycles among defaults, not imposing any syntactic restrictions at all, and then at-

tempting to modify the present theory so as to allow for extensions even when these cycles

are present. An approach along these lines would be similar to more recent work on the

semantic paradoxes, and might well use tools developed in this work.7

Finally, again returning to the view that theories without extensions may be incoherent,

it may be possible simply to live with these theories if one happens to favor the notion of

skeptical consequence. According to this view, as we have seen, the consequences of a theory

7See, for example, Antonelli [1], which adapts ideas from Kripke’s treatment of the paradoxes to modify

Reiter’s original default logic, without priorities, so that existence of extensions is guaranteed. It is reasonable

to hope that Antonelli’s approach might be applicable in the present setting, since it is based, originally, in

a study of nonmonotonic inheritance networks, and draws on many of the ideas and formulations at work

here.
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are the formulas that belong to each of its extensions. Since an incoherent theory has no

extensions, any formula at all would lie in their intersection, and so an incoherent theory

would have exactly the same set of consequences as an inconsistent theory.

4 Discussion

The problem of reasoning with prioritized defaults, as mentioned earlier, is not a new topic

in nonmonotonic reasoning. The previous work in the area has followed several paths.

Brewka [4], as well as Baader and Hollunder [3] and Marek and Truszczyński [20], have

all explored the possibility of using priorities as control information to guide the process of

reasoning with defaults, so that applicable defaults with higher priority must be satisfied

before those of lower priority can be considered; this general idea has recently been devel-

oped in a more sophisticated form by Brewka and Eiter [6]. Delgrande and Schaub, in [7]

and [8], have explored techniques for compiling priority information into ordinary default

rules, revitalizing in a much more general and systematic way an idea that was first hinted

at by Reiter and Criscuolo [24], and developed in a different direction by Etherington and

Reiter [10]. Rintanen [25] explores the idea of ordering extensions on the basis of the de-

faults generating them, with better defaults leading to better outcomes, and then defining

the preferred extensions as those that are maximal in the ordering.

I do not intend to discuss any of this work in detail, particularly since a useful survey and

taxonomy of the different theories in the area has recently appeared in Delgrande et al. [9],

but I would like to make a few comparative remarks. I begin by considering the theory

of normal defaults from Reiter’s original logic, turn next to the idea of using priorities to
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control the order of application of defaults, and finally, to certain cases in which the current

account may appear to yield questionable results. The examples considered in this section

will serve, in addition, to distinguish this account from previous accounts in the literature.

4.1 Normal default theories

The defaults in Reiter’s original theory are rules of the form (A : C /B), with the rough

interpretation: if A belongs to the agent’s stock of beliefs, and C is consistent with these

beliefs, then the agent should believe B as well. A normal default is a default rule in which

the second and third of these elements match—that is, a rule of the form (A : B /B), which

we can write as A → B, thus identifying Reiter’s normal defaults with the default rules

presented here. A normal default theory, in Reiter’s sense, is a pair of the form 〈W,D〉

in which W is a set of ordinary formulas and D is a set of normal default rules. Using

the notation of the current paper, the extensions defined by Reiter for these normal default

theories—which I will refer to here as Reiter extensions—can be characterized as follows.

Definition 11 (Reiter extensions) Let 〈W,D〉 be a normal default theory. Then E is

a Reiter extension of 〈W,D〉 just in case E =
⋃

i≥0 Ei, where the sequence E0, E1, E2, . . . is

defined as

E0 = W,

Ei+1 = Th(Ei) ∪ Conclusion({δ ∈ D : Ei ` Premise(δ),

E 6` ¬Conclusion(δ)}).

Let us say that the normal default theory 〈W,D〉 corresponds to any ordered default

theory of the form 〈W,D<〉, sharing the same set W of ordinary formulas and the same
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set D of defaults. The normal default theory corresponding to an ordered default theory is

arrived at, then, simply by removing all priority information from the ordered theory. What

is the relation between the extensions of an ordered default theory, as defined here, and the

Reiter extensions of its corresponding normal default theory?

The first thing to note is that the current account is a conservative generalization of

Reiter’s account, in the sense that the extensions of an ordered default theory without any

real ordering information coincide with those of the corresponding normal default theory.

Theorem 5 Let 〈W,D<〉 be an ordered default theory in which the ordering < is empty.

Then E is an extension of 〈W,D<〉 if and only if E is a Reiter extension of 〈W,D〉, the

corresponding normal default theory.

But what about the more general case, when the ordering information from an ordered

default theory is not empty? It is often assumed that the extensions of ordered, or prioritized,

default theories should form a subset of the Reiter extensions of the corresponding normal

default theories.8 In fact, this relation does not hold in general for the current account,

as we can see by considering the ordered theory 〈W,D<〉 defined as follows: W is empty;

D contains an infinite number of defaults, where each default δi has the form > → A when

i is an odd integer and the form > → ¬A when i is an even integer; and the defaults are

ordered so that δi < δj whenever i < j. The normal default theory 〈W,D〉 corresponding to

8It is easy to see, for example, that the “PDL-extensions” defined by Brewka [5] for his prioritized default

logic form a subset of the corresponding Reiter extensions, and a similar result is established as by Baader

and Hollunder [3]. Rintanen [25] simply defines his “preferred extensions” as Reiter extensions that satisfy a

complex preferential criterion. Brewka and Eiter [6] likewise build it into their definition of the “prioritized

extensions” that these are a subset of the Reiter extensions, as do Marek and Truszczyński [20].
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this ordered theory allows just two Reiter extensions: E1 = Th({A}) and E2 = Th({¬A}).

But there are three proper scenarios based on the ordered theory itself: both the scenarios

S1 = {δi : i is odd} and S2 = {δi : i is even}, which generate the extensions E1 and E2 above,

but also the scenario S0 = ∅, generating the extension E0 = Th(∅), which is not a Reiter

extension of the corresponding normal theory.

Still, even though it does not hold in general that the extensions of ordered default theo-

ries form a subset of the Reiter extensions of the corresponding normal default theories, this

relation can be established for certain well-behaved ordered default theories, and particu-

larly, for those that contain only a finite set of defaults. The verification of this result relies

on three initial observations, which have some interest on their own. The first, which holds

of ordered default theories in general, not just finite theories, is that, whenever a default

is defeated in the context of a stable scenario, the defeating set for that default must be

consistent with the scenario. The second is that, in the special case of finite theories, any set

that defeats a default in the context of a stable scenario must already be contained within

that scenario. And the third, also restricted to finite theories, is that any default that is

defeated in the context of a stable scenario must be conflicted in that context as well.

Observation 4 Let 〈W,D<〉 be an ordered default theory, and suppose S is a stable scenario

based on this theory. Then if some default δ is defeated in S, with D′ as a defeating set, it

follows that Conclusion(S ∪ D′) is consistent.

Observation 5 Let 〈W,D<〉 be an ordered default theory in which the set D of defaults

is finite, and suppose S is a stable scenario based on this theory. Then if some default δ is

defeated in S, with D′ as a defeating set, it follows that D′ ⊆ S.
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Observation 6 Let 〈W,D<〉 be an ordered default theory in which the set D of defaults

is finite, and suppose S is a stable scenario based on this theory. Then any default that is

defeated in S must also be conflicted in S.

With these observations in place, we can now establish that, at least in the case of ordered

default theories containing only a finite number of defaults, each extension must also be a

Reiter extension of the corresponding normal default theory.

Theorem 6 Let 〈W,D<〉 be an ordered default theory in which the set D of defaults is

finite. Then if E is an extension of 〈W,D<〉, it follows that E is also a Reiter extension of

〈W,D〉, the corresponding normal default theory.

The question remains, however, whether this is a desirable result: do we want the extensions

of default theories with priorities to be limited to a subset of the corresponding Reiter

extensions?

There are certain examples suggesting that this result might be problematic. To under-

stand a simple one, imagine that a naturalist studying the distribution of birds among a

remote chain of islands has identified two new kinds of finches.9 There is, first of all, the

species of Ruffed Finches, whose nests are largely though not entirely confined to Green Is-

land; and second, there is a particular subspecies of the Ruffed Finches, known as the Least

Ruffed Finches, whose nests are distributed almost evenly between Green Island and Sand

Island, with only a few strays found elsewhere. Now consider a particular individual, Frank,

who happens to be a Least Ruffed Finch. What should the naturalist conclude, by default,

about the location of Frank’s nest?

9This example arose in discussion with Bijan Parsia and Michael Morreau.

31



The example can be coded formally by letting R, L, G, and S represent the respective

propositions that Frank is a Ruffed Finch, that he is a Least Ruffed Finch, that his nest

is on Green Island, and that his nest is on Sand Island. If we then suppose that δ1 is the

default R → G and δ2 the default L → G ∨ S, instances of the generalizations that Ruffed

Finches live on Green Island while Least Ruffed Finches are distributed between Green and

Sand Islands, the relevant information can then be captured by the ordered default theory

〈W,D<〉 in which W = {L,L ⊃ R}, D = {δ1, δ2}, and δ1 < δ2. The unique proper scenario

based on this theory is S1 = {δ1, δ2}, generating the extension E1 = Th(W ∪ {G,G ∨ S}),

which is also the unique Reiter extension of the corresponding normal default theory. This

extension supports the conclusion G, that Frank’s nest is on Green Island, since he is a

Ruffed Finch. But that does not seem like the right conclusion at all. From an intuitive

standpoint, it seems that the naturalist should conclude only G ∨ S, that Frank’s nest is on

either Green or Sand Island, because he is a Least Ruffed Finch; the more desirable extension

therefore seems to be E2 = Th(W∪{G∨S}), which is not an extension of the corresponding

normal default theory.

I had previously thought that examples like this showed that any theory of prioritized

default reasoning, such as the present theory, that returns only a subset of the corresponding

Reiter extensions must be in error—since in this case, for instance, the intuitively correct

E2 is not a Reiter extension of the corresponding normal default theory.10 I now believe,

however, that these examples do not suggest that the present theory needs to be modified,

10The same point could be made by focusing on the problem of reinstatement, which I have discussed at

length in my [13]; the correct extension of the Microsoft example from that paper, for instance, is not a

Reiter extension of the corresponding normal default theory.
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but only that it needs to be supplemented: we need a way of saying that certain defaults,

even though they may be triggered, are not actually applicable to certain individuals, or

classes of individuals. In this particular case, for example, it is not as if δ1 is defeated by δ2

in the sense of defeat defined here, since there is no conflict between their conclusions: living

on Green Island is certainly consistent with living on either Green Island or Sand Island.

Instead, it seems that the default δ1 is simply not applicable to Least Ruffed Finches. This

idea—that the applicability of defaults must be suspended in certain cases—has been studied

extensively by Pollock, particularly in his [22], as a special kind of defeat, which he describes

as “undercutting” defeat. In my own [16], I show how the idea can instead be incorporated

into the present framework once it has been supplemented with the capability of reasoning

about rule priorities.

4.2 Controlling order of application

A number of researchers, as mentioned, have explored the idea of using information about the

relative priority of defaults to control their order of application. These various approaches

differ in detail, but they fit a common pattern. Extensions are viewed as being constructed

in a series of stages, with the defaults that are active at a stage defined as those that are

triggered at that stage, whose conclusions have not yet been accepted, but which are not

yet conflicted either.11 At each stage, then, one of the most important active defaults is

selected, and its conclusion is added to the agent’s belief set. The set is then closed under

consequence, and the agent moves on to the next stage, continuing in this way until a fixed

point is reached, possibly in the limit.

11This definition of an active default is due to Baader and Hollunder [3].
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The idea behind this construction is that any conflict among a group of defaults is always

resolved in favor of the more important members of the group, since these defaults are applied

first. Once the conclusions of the more important defaults are placed in the agent’s belief

set, the less important defaults are then conflicted; they are therefore no longer active, and

cannot be applied.

This basic idea is simple and attractive, and provides the correct results in several central

cases, but it has been called into question because of its results in a series of abstract

examples. A representative example, which I refer to as the Order Puzzle, is the theory

〈W,D<〉 in which W = {W} and D = {δ1, δ3, δ3}, where δ1 is W → H, δ2 is W → ¬O,

and δ3 is H → O, and in which the ordering places δ1 < δ2 and δ2 < δ3. It is easy

to see that the order of application approach assigns to this theory the unique extension

E1 = Th(W ∪{H,¬O}). At the first stage, only δ1 and δ2 are active; δ3 is not yet triggered.

Since δ2 has higher priority, it must be applied, yielding ¬O. At the second stage, δ1 alone is

active, since δ2 has already been applied and δ3 is not yet triggered. It is therefore applied,

yielding H. By the third stage, then, there are no longer any active defaults, since δ1 and

δ2 have already been applied, and δ3, although now triggered, is conflicted by the previous

application of δ2.

This particular example has a curious history. It was first noted by Brewka [4], who

argued that the extension E1 is correct. Later, Brewka and Eiter [6] rejected E1 in favor

of the extension E2 = Th(W ∪ {H,O}). This is also, as it happens, the unique extension

generated by the present approach: the scenario S2 = {δ1, δ3}, which generates E2, is proper;

but S1 = {δ1, δ2}, which generates E1, is not even stable, since δ2 is defeated in that context

by δ3.
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The argument advanced by Brewka and Eiter against E1 as an extension runs, roughly,

along the following lines: since the original theory assigns δ3 a higher priority than δ2,

any approach that takes priority seriously must prefer an extension generated by a scenario

containing δ3 to one generated by a scenario that is otherwise identical except that it contains

δ2 instead.12 The belief sets E1 and E2 are generated by the scenarios S1 and S2, respectively,

which are otherwise identical except that the first contains δ3 while the second contains δ2.

Therefore, E2 must be preferred over E1, so that E1 cannot lie among the most preferred

belief sets.

Even if one accepts this argument, however, all it actually shows is that E1 should not

be classified as an extension of the original theory, not that E2 should be, which leaves open

a third possibility: perhaps the theory is incoherent, and has no extensions at all. This

possibility is embraced by Delgrande and Schaub, who argue in [7] that the Order Puzzle

itself is meaningless, since the priority ranking of its defaults does not correspond to the

order in which the propositions at work in this example would naturally be established, and

who claim, therefore, that this theory is incoherent, and should have no extensions.13

So what is the correct result in the case of the Order Puzzle? Is it E1, as the order of

application approach would suggest? Is it E2, as suggested by Brewka and Eiter, and by the

present approach? Or is it better to conclude with Delgrande and Schaub that the original

theory is incoherent, and that it has no extensions at all? The problems presented by the

Order Puzzle are problems of coherence and interpretation. To establish that this theory is

even coherent, we need to find a sensible interpretation, suggesting that the theory should

12For a more precise statement of the constraint at work here, see Principle I from Brewka and Eiter [6].

13See Sections 3.1 and 4.2 of Delgrande and Schaub [7] for discussion of this example.
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actually have an extension; the interpretation will then support the present approach only

if the extension it suggests is our E2.

How could we construct such an interpretation? We cannot appeal to the idea that

default priority tracks specificity, as Delgrande and Schaub note; on any view of specificity,

the default δ1 would provide more specific information than δ3, yet in this case, δ3 is assigned

the higher priority. A reliability interpretation is possible, with each default indicating

something like a high conditional probability that its conclusion is satisfied, given that its

premise is satisfied, and with the priority ordering measuring relative strength of these

conditional probabilities. But notice that the extension naturally suggested by such an

interpretation is actually E1, rather than E2. For the default δ2 then tells us that ¬O follows

with high probability, given that W holds. And the potential competing argument has no

force, since δ1 already supports H given W less strongly than δ2 supports ¬O given W . As

a result, even if the conditional support provided by δ3 for O given H is arbitrarily strong,

it still follows that the conditional probability of O given W will be less than that of ¬O

given W .

Is there, then, an interpretation of the Order Puzzle that is intuitively coherent and also

supports E2 as an extension? I believe there is, but the interpretation I supply is not another

epistemic interpretation, in which defaults are taken to extend belief sets. It is, instead, a

normative interpretation of the kind explored in my [11] and [15]. Each default of the form

A → B is taken to represent a conditional command, or imperative, enjoining the agent to

guarantee the truth of B in any situation in which A holds, and the priorities among defaults

are taken to represent the levels of authority associated with these various commands. In

a situation in which A holds, the conditional command A → B is said to be obeyed if the
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truth of B is guaranteed, and disobeyed otherwise. And in selecting a proper scenario, the

agent should now be viewed as choosing an appropriate set of commands to obey, rather

than an appropriate basis for its belief set; an extension represents the result of obeying

these commands.

Suppose, then, that the agent is Corporal O’Reilly, and that he is subject to the com-

mands of three superior officers: a Captain, a Major, and a Colonel. The Captain, who

does not like to be cold, issues a standing order that, during the winter, the heat should be

turned on. The Major, who is concerned about energy conservation, issues an order that,

during the winter, the window should not be opened. And the Colonel, who does not like to

be too warm and does not care about energy conservation, issues an order that, whenever

the heat is on, the window should be opened. If we let W , H, and O stand, respectively,

for the propositions that it is winter, the heat is turned on, and the window is open, then

the defaults δ1, δ2, and δ3 can be taken to represent the respective commands issued by the

Captain, the Major, and the Colonel. And since the Colonel outranks the Major, and the

Major outranks the Captain, we have the desired priority ordering: δ1 < δ2 and δ2 < δ3.

Finally, suppose it is winter. The situation is then exactly as depicted in the Order Puzzle.

Although there are many things wrong with this set of commands (the Colonel’s order is

especially odd), I hope we can agree that it is at least coherent, in the sense that O’Reilly

might, in fact, be subject to a set of commands like these. A thinking soldier could perhaps

grasp the intentions behind the various imperatives and arrive at a plan of action that would

satisfy all three officers. But it is not O’Reilly’s job to think, or to help the officers express

their intentions more effectively by issuing more subtle or carefully qualified commands.

O’Reilly’s job is to obey his orders exactly as they have been issued. If he fails to obey an
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order issued by an officer without an acceptable excuse, he will be court-martialed. And,

let us suppose, there is only one acceptable excuse for disobeying such an order: that, under

the circumstances, he is prevented from obeying the order issued by this officer by having

chosen to obey another order or set of orders issued by other officers of equal or higher rank.

Again, some of us may feel that there must be more to the concept of an acceptable excuse

than this, but I hope we can agree that the present notion is at least coherent, in the sense

that this narrow concept of an excuse may actually be the one at work in some normative

system.

Under the current interpretation, a scenario is supposed to represent an appropriate se-

lection of commands to obey, a way of responding appropriately to the imperatives contained

in that theory, where, in this particular case, an appropriate response is one that allows the

agent to avoid court martial. So given the set of commands that O’Reilly has been issued,

can he, in fact, avoid court martial? Yes, he can, by choosing the scenario S2 = {δ1, δ3},

obeying the orders issued by the Captain and the Colonel, thus guaranteeing H and O, and

so the extension E2. In this scenario, O’Reilly fails to obey the Major’s order, the default

δ2, but he has an excuse: he was prevented from doing so by obeying an order issued by

the Colonel, an officer of higher rank. What if O’Reilly were instead to select the scenario

S1 = {δ1, δ2}, guaranteeing H and ¬O, and so the extension E1? In that case, he would obey

the Captain and the Major, but fail to obey the Colonel, and he would do so, furthermore,

without an acceptable excuse: although O’Reilly is prevented from obeying the Colonel by

complying with an order issued by the Major, that is no excuse, since the Colonel outranks

the Major.

What this normative interpretation offers, then, is an intuitive way of understanding
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why E2, but not E1, should be classified as an extension of the Order Puzzle: the scenario S2,

which generates the extension E2, allows O’Reilly to avoid court martial, while the scenario

S1, which generates E1, does not.

Are there, however, any other options to consider, apart from the two scenarios S1 and

S2? Well, it may seem that O’Reilly could reason in the following way.14 If he obeys the

Captain’s command δ1 to turn the heater on, then he will find himself in a situation in which

he has no choice but to disobey either the Colonel’s command δ3 to open the window or the

Major’s command δ2 to keep the window closed. Both the Colonel and the Major outrank

the Captain. Therefore, it is best to disobey the Captain’s command in order to avoid to

being placed in a situation in which he is then forced to disobey one or the other of two

higher-ranking officers. But of course, if he does disobey the Captain’s command δ1, and the

heater is left off, there can then be no possible justification for failing to obey the Major’s

command δ2, to keep the window closed.

This line of reasoning seems to suggest the scenario S3 = {δ2}, generating the extension

E3 = Th(W ∪ {¬O}). Is S3, then, a desirable scenario; is E3 a desirable extension? Not

according to the current theory, since this scenario fails to contain the default δ1, representing

the Captain’s command, which is triggered in the context but neither conflicted nor defeated;

the scenario is, therefore, not stable. Nor is this scenario one that allows O’Reilly to avoid

court martial. According to the notion at work here, we recall, an agent has an acceptable

excuse for disobeying some command issued by an officer only if, under the circumstances,

the agent is prevented from doing so by obeying other commands issued by officers of equal or

14This line of reasoning was suggested to me by Paul Pietroski.
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higher rank. And in this sense, O’Reilly has no excuse at all for failing to obey the Captain’s

command; the Captain has ordered him to turn on the heater, and he is not prevented from

doing so by obeying the commands of any other officers at all, let alone officers of equal or

higher rank.

Of course, in an effort to justify his actions, O’Reilly might advance an argument along

the lines set out above, explaining how obeying the Captain would inevitably have led to

disobeying either the Major or the Colonel. The argument is interesting, and it would be

interesting to try to develop a version of prioritized default logic that allowed this form of

hypothetical reasoning (no current theory does). It is clear that any such development would

have to involve, on the formal side, entirely different ideas of conflict and defeat, and also

that our informal interpretation would have to reflect a much more liberal conception of

what counts as an excuse. On the current account, as we have seen, O’Reilly can excuse

his actions under a particular scenario only by referring to what he did or did not do in

the situation determined by that very scenario. A more liberal notion would have to allow

him to excuse his actions by appealing to the choices he would have faced, and the actions

he would have been forced to perform, in various hypothetical situations—including, in this

particular case, the situation in which he had chosen to obey the Captain’s command.

There is one further complication worth noting, both because it highlights the ability the

present system to capture an important ambiguity, and also because it may be—I am not

certain—that this ambiguity plays some role in accounting for the attractions of the form of

hypothetical reasoning just discussed. Suppose that what the Colonel actually says in issuing

his command is : “If the heater is on, the window should be open.” This statement could

naturally be interpreted as a conditional command, along the lines of “If the heater is on,
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you have an order to open the window,” formalized here through our δ3, the default H → O.

But it is also possible to interpret the same statement, not as a conditional command, but

as an unconditional, or categorical, command whose content happens to be a conditional,

along the lines of “You have an order to open the window if the heater is on.” On this

latter interpretation, the Colonel’s command could best be represented, not through δ3, but

through δ4, the new default > → (H ⊃ O).

Now imagine that the Colonel’s order is interpreted in this way, as a command of a

conditional, rather than a conditional command. Imagine, that is, that δ4 is substituted for

δ3 in our original description of the order puzzle, so that W remains unchanged, but the set

D now contains δ1, δ2, and δ4, with δ1 < δ2 and δ2 < δ4. In that case, the unique proper

scenario associated with this default theory would be S4 = {δ2, δ4}, generating the extension

E4 = Th(W ∪ {¬O,H ⊃ O}), which of course contains the statement ¬H.

The two interpretations of the Colonel’s command, then, lead to strikingly different

results. If the Colonel is interpreted as issuing a conditional command, then, as we have

seen, what O’Reilly ought to do is obey the Colonel and the Captain, turning the heater

on and opening the window, while disobeying the Major’s command to keep the window

closed. If the Colonel is interpreted as commanding a conditional, then what O’Reilly ought

to do is obey the Colonel and the Major, keeping the window closed but making sure the

heater is off, while disobeying the Captain’s command to turn the heater on. In both the

scenario S4 associated with the latter interpretation and the scenario S3, suggested by the

process of hypothetical reasoning, O’Reilly obeys the Major and does not necessarily obey the

Captain; and it may be—though again, I am not sure—that S3 gains whatever plausibility

is has simply by running together the two distinct ways of interpreting the Colonel’s order,
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as a conditional command or a command of a conditional.

4.3 Some difficult cases

Having studied a number of situations in which the current theory seems to yield desirable

results, or at least results for which some justification can be found, I want to conclude by

considering two kinds of situations that raise more difficult issues.

The first can be illustrated with the theory 〈W,D<〉 in which W = {¬(A ∧ B)} and

D = {δ1, δ2, δ3}, where δ1 is > → A, δ2 is > → B, and δ3 is A → ¬B, and in which δ1 < δ2

and δ2 < δ3. Again, this theory can usefully be interpreted as a set of commands issued

to O’Reilly by the officers, where δ1 represents the Captain’s command to see to it that

A, δ2 represents the Major’s command to see to it that B, and δ3 represents the Colonel’s

command, conditional on the truth of A, to see to it that ¬B. Once more, the Colonel’s

command is peculiar, since the background information from W already tells us that A and

B are incompatible, but there is nothing to prevent the Colonel from issuing a peculiar

command.

On the present approach, this theory supports two proper scenarios. The first is the

entirely reasonable S1 = {δ2}, generating the extension E1 = Th(W∪{B}). On this scenario,

O’Reilly obeys the Major’s command δ2; he disobeys the Captain’s command δ1, but has an

excuse, since he is prevented from obeying the Captain by obeying the Major, who outranks

the Captain. The Colonel’s command δ3 does not come into play, since it is conditional

on the truth of A. There is also, however, a second scenario S2 = {δ1, δ3}, generating the

extension E2 = Th(W ∪{A,¬B}). On this scenario, O’Reilly obeys the Captain’s command

δ1 and the Colonel’s command δ3; he disobeys the Major’s command δ2, but has an excuse,
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since he is prevented from obeying the Major by instead obeying the Colonel, who outranks

the Major.

Now, although this second scenario S2 is supported by the theory, and it does, in fact,

allow O’Reilly to avoid court martial, there is something anomalous about the scenario all the

same. From an intuitive standpoint, it seems almost as if the defaults have been considered in

the wrong order. The initial conflict, one wants to say, lies between the Captain’s command δ1

and the Major’s command δ2. This conflict should of course be resolved in favor of the Major,

in which case the Colonel’s command δ3 is never even triggered, as in the scenario S1. In

the case of S2, by contrast, it is as if O’Reilly has made the wrong initial decision, favoring

the Captain over the Major, but is absolved from his error by the fact that this incorrect

decision triggers the Colonel’s command, which provides, in our technical sense, an excuse

for his earlier decision to disobey the Major. Once he arrives at the scenario S2, then,

O’Reilly has reached a sort of equilibrium state—the scenario is proper, there is no risk of

court martial—but it is not a state he would have arrived at if his reasoning had followed

the correct path to begin with.

Let us now turn to another example illustrating the same point, but one that is more

disturbing.15 Since the example is somewhat complicated, we rely on mnemonic abbrevia-

tions, focusing on a particular individual, Susan, and letting RC , RN , CC , CU , and VU

represent the respective propositions that Susan is a resident of Cuba, a resident of North

America, a citizen of Cuba, a citizen of the United States, and a person with voting rights

in the United States. We consider the default theory 〈W,D<〉 in which W contains the

15This example is drawn from my [13].
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statements RC , RC ⊃ RN , ¬(CC ∧CU ), and ¬(CC ∧VU ); in which D contains δ1, δ2, δ3,

where δ1 is RN → CU , δ2 is RC → CC , and δ3 is RC → CC ; and in which the defaults are

ordered so that δ1 < δ2 and δ1 < δ3.

The strict information from W tells us that Susan is a resident of Cuba, and contains

instances for Susan of the general facts that residents of Cuba are residents of North America

(since Cuba is part of North America), and that citizens of Cuba can neither be citizens of

nor have voting rights in the United States. The set D contains instances for Susan of three

general defaults. First, there is a weak default—with some statistical justification—according

to which residents of North America tend to be citizens of the United States. Second, there

is a stronger default according to which residents of Cuba tend to be citizens of Cuba. And

third, there is a very strong default—stronger than any of the others, and violated only by a

few select groups, such as convicted felons—according to which citizens of the United States

tend to have voting rights in the United States.

Now, given this information, what are we to conclude about Susan? Well, on the present

approach, the theory supports two proper scenarios. The first is S1 = {δ2}, generating the

extension E1 = Th(W ∪ {CC}), according to which Susan is a citizen of Cuba, rather than

the United States, and has no voting rights in the United States; the default δ1, supporting

the proposition that Susan is a citizen of the United States, is defeated by the stronger

default δ2, and the default δ3, supporting Susan’s claim to voting rights, is not triggered.

This is, I feel, a reasonable scenario, leading to an intuitively acceptable set of conclusions.

Again, however, there is also a second proper scenario, S2 = {δ1, δ3}, generating the

extension E1 = Th(W ∪ {CU ,VU }), according to which Susan is a citizen of the United

States, rather than Cuba, and has voting rights; the default δ2 is now defeated by the stronger
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default δ3. This second scenario is less reasonable, and yields conclusions that seem to be

clearly incorrect. And again, I would offer the same diagnosis: from an intuitive standpoint,

it seems that the defaults are being considered in the wrong order. The initial conflict lies

between the defaults δ1, suggesting that Susan is a citizen of the United States, and δ2,

suggesting that she is a citizen of Cuba. This conflict should be resolved in favor of δ2, the

stronger of the two defaults, in which case δ3 is not even triggered, as in the reasonable

scenario S1. In the case of the less reasonable S2, it is as if we have made the wrong initial

decision, favoring δ2 over δ1, but as a result, the very strong default δ3 is now triggered,

which then defeats δ1 and provides a sort of justification for the original decision.

What these two examples both illustrate is the need for defining an appropriate order on

defaults so that, by considering defaults in that order, we will avoid unintuitive scenarios or

extensions, like the scenarios S2 in each of these theories, and the extensions E2. This is, as

far as I know, an open problem in prioritized default reasoning, and the lack of a solution

affects a number of the most promising approaches, as well as this one; for instance, the

theory of Brewka and Eiter [6] generates both the correct extension E1 and the incorrect E2

in both of our examples.16

The second difficulty I consider raises a different sort of issue, concerning our strength

ordering on sets of defaults, according to which one set of defaults D′ is stronger than another

set D just in case D < D′—that is, just in case δ < δ′ for each δ in D and δ′ in D′.

A possible problem for this definition is posed by examples such as 〈W,D<〉 in which

16In Horty et al. [17], a “degree” ordering is defined on the defaults present in the very simple language of

defeasible inheritance networks, and the correct results are generated when defaults are considered in order

of their degree; but this notion of degree has not been successfully extended to richer languages.
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W is empty and D = {δ1, δ2, δ3, δ4}, where δ1 is > → A, δ2 is > → ¬A, δ3 is > → A, and

δ4 is > → ¬A, with the defaults ordered so that δ1 < δ2 and δ3 < δ4. It is useful to think

of this theory as representing a set of commands issued to the agent by officials belonging

to two separate systems of authority—say, military and ecclesiastical. Let us imagine that

δ1 represents the Captain’s command to see to it that A and δ2 represents the Colonel’s

command to see to it that ¬A, while δ3 likewise represents the Priest’s command to see to it

that A and δ4 represents the Bishop’s command to see to it that ¬A. The Colonel outranks

the Captain and the Bishop outranks the Priest, but the military and ecclesiastical ranks

are incomparable.

On the present approach, this theory again supports two perfect scenarios. The first is

the reasonable S1 = {δ2, δ4}, in which the agent obeys the commands of the higher-ranking

officials from each of the two systems of authority, the Colonel and the Bishop. The second

is the apparently less reasonable S2 = {δ1, δ3}, in which the agent obeys the lower-ranking

officials, the Captain and the Priest.

It is worth pausing at this point to note why S2 should count even as a stable scenario,

let alone perfect. Why is the default δ1, for instance, not defeated in the context of S2 by the

stronger δ2, or at least by the defeating set D′ = {δ2, δ4}? The reason is that, as we recall

from our earlier discussion, a defeating set D′ must be consistent with the set that results

when some accommodating set S ′ is removed from the current scenario—that is, S D′/S′

2 must

be consistent—where we require in addition that the defeating set D′ must be stronger than

the accommodating set S ′. In this case, the only possible accommodating set S ′ is, in fact,

S2 itself; and of course, S D′/S2
2 is consistent. But it turns out that D′ is not stronger than S2

according to our current strength ordering. We do not have S2 < D′, since it is not the case
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that every default from D′ is stronger than every default from S2; the Colonel’s command δ2

is not stronger than the Priest’s command δ3, and the Bishop’s command δ4 is not stronger

than the Captain’s command δ1.

There are two possible reactions to S2 as a perfect scenario supported by the theory

under consideration. It is, first of all, conceivable to imagine that, although this scenario is

apparently less reasonable than S1, the difficulties are only apparent, and the scenario should

indeed be accepted as a legitimate outcome of the theory. Consider, for example, our earlier

idea that an agent has an acceptable excuse for disobeying an officer if that agent is forced to

do so by obeying other officers of equal or higher rank. This idea works well in the military

setting, where the system of ranks forms a total order, but how could it be generalized to

apply more broadly? One natural proposal is that an agent should then have an acceptable

excuse for disobeying an official if that agent is forced to do so by obeying other officials

whose ranks are at least not lower. And in this sense, the agent who adopts the scenario

S2 is, in fact, able to provide acceptable excuses for the neglected commands. The agent is

prevented from obeying the Bishop’s command δ4 by instead obeying the command δ1 issued

by the Captain, whose rank is not lower than that of the Bishop; and the agent is prevented

from obeying the Colonel’s command δ2 by instead obeying the command δ3 issued by the

Priest, whose rank, again, is not lower than that of the Colonel.

This line of reasoning, of course, supports the current account exactly as it stands, since

this account does generate S2 as an acceptable scenario, along with S1. Another reaction,

however, is simply to reject S2 as a legitimate outcome. One can imagine the Colonel saying,

when δ3 is offered as an excuse for disobeying δ2, something along the lines of: “And don’t
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bring up that odd command issued by your Priest—even your Bishop thinks he’s wrong.”17

And surely, from an external perspective, it is hard not share the intuition that S1 is, in

some sense, a better scenario than S2.

What this second reaction suggests is that the current strength ordering on sets of defaults

must be modified to reflect this intuition. Our current definition of strength through the <

ordering on sets—according to which one set of defaults is stronger than a second only if

every member of the first is stronger than every member of the second—is extremely severe.

The question is not whether it can be weakened, but which of the various weakenings leads

to an acceptable overall theory.

This is, of course, a question that can be answered only after detailed experimentation.

But just to hint at the direction in which such a weakening might lead, I display one option

that is at least prima facie plausible. Suppose we define a new strength ordering ≺ on sets

of defaults so that D ≺ D′ just in case: (1) for all δ from D there is a δ′ from D′ such that

δ < δ′; and (2) for all δ′ in D′ there is a δ in D such that δ < δ′; and (3) there is no δ from D

and δ′ from D′ such that δ′ < δ. Then, returning to the scenarios generated by our example,

we can see that S2 ≺ S1, as desired; the set of orders issues by the Colonel and the Bishop

is preferred to that issued by the Priest and the Captain. And as the reader can verify, with

the new ≺ relation substituted for the previous < in our definition of defeat, the example

now supports only S1, no longer S2, as a perfect scenario.

17A response suggested by Jörg Hansen.
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5 Conclusion

This paper presents a new approach to prioritized default logic, based on a generalization of

previous work on nonmonotonic inheritance reasoning. Although I have not carried out any

detailed evaluation, I believe this approach compares favorably to other theories in the area.

A number of problems remain to be explored, dividing into three broad categories.

The first category of problems is largely technical. Some of these have already been

mentioned. Can we define an appropriately weak notion of stratification, or acyclicity, for

which it can then be shown that acyclic ordered default theories must have extensions?

Or alternatively, can we generalize the present account, perhaps borrowing techniques from

logics of partiality or recent work on the paradoxes, so as to assign natural extensions even

to cyclic default theories? Other problems involve defeasible arguments. Although the

motivating work on nonmonotonic inheritance reasoning defines extensions as sets containing

argument paths, the extensions defined here contain only formulas. What would the present

account look if extensions were defined as containing defeasible arguments, a generalization

of argument paths, rather than formulas? Could we then, as in the theory of nonmonotonic

inheritance, define a directly skeptical consequence relation? Finally, there are questions

concerning the efficient computation of extensions; and here our focus on scenarios may hold

some real benefits, for unlike extensions, which are logically closed belief sets, scenarios will

typically be syntactically limited, and in many natural cases, finite.

The second category of problems is more broadly conceptual. As we have seen, the theory

developed here still faces certain difficulties, concerning both the order in which defaults are

considered and the definition of a preference relation among sets of defaults. I know of no
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way to address these problems except through experimentation—formulating precise and

well-motivated theories of default reasoning, testing them against examples, isolating issues,

refining our intuitions.

Finally, there are philosophical issues, centering around the metaphor, frequently ap-

pealed to here, of defaults as reasons. Can this identification be developed beyond the level

of metaphor? Can the simple prioritized default logic presented here be developed into a

more robust and general theory of the way in which reasons support conclusions? I believe

so, but there is work to be done in a number of areas, of which I mention only three. First,

the priorities among defaults are, in this paper, simply taken as given. But one of the things

we reason about, and reason about defeasibly, is the priorities among the very defaults that

guide our defeasible reasoning. Second, the notion of defeat defined here captures only one

form of defeat, sometimes called “rebutting” defeat, in which a stronger reason defeats a

weaker reason by contradicting its conclusion. There is at least one other form, sometimes

called “undercutting” defeat, in which one reason defeats another, not by contradicting its

conclusion, but by undermining its applicability as a reason. And third—an issue perhaps

related to the first two—our practical reasoning often seems to involve an appeal to various

kinds of “higher-order” reasons, explicitly concerned with the first-order reasons that we

should attend to in particular situations. In order for the simple default logic presented here

to serve as a basis for a more general theory of practical reasoning, it must be developed to

account for these phenomena, and others like them.
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A Proofs of observations and theorems

Observation 1 Where S is a scenario based on the ordered default theory 〈W,D<〉, suppose

δ is defeated in S, with D′ as a defeating set and S ′ as an accommodating set for D′. Then

there is some S∗ ⊆ S ′ such that δ is likewise defeated in S with D′ as a defeating set and S∗

as a minimal accommodating set for D′.

Proof Using standard techniques, define S ′′ as a maximal subset of S ′ such that

Conclusion(S ′′) is consistent with W∪Conclusion ((S −S ′)∪D′). Then set S∗ = S ′−S ′′.

Observation 2 Where S is a scenario based on the ordered default theory 〈W,D<〉, suppose

δ is defeated in S, with D′ as a defeating set. Then S∗ = ∅ is a minimal accommodating set

for D′ if and only if W ∪ Conclusion(S ∪ D′) is consistent.

Proof First, suppose S∗ = ∅, where S∗ is a minimal accommodating set for D′. Then

since S∗ is an accommodating set for D′, it follows that W ∪ Conclusion((S − S∗) ∪ D′)

is consistent. So W ∪ Conclusion(S ∪ D′) is consistent, since S∗ = ∅. Next, suppose

W ∪Conclusion(S ∪D′) is consistent. Then S∗ = ∅ is an accommodating set for D′, and so

a minimal accommodating set, since it has no proper subsets.

Observation 3 Where S is a scenario based on the ordered default theory 〈W,D<〉, suppose

δ is defeated in S, with D′ as a defeating set and S∗ as a minimal accommodating set for D′.

Then each default belonging to S∗ is likewise defeated in S, with D′ as a defeating set and

S∗ as a minimal accommodating set for D′.

Proof If S∗ is empty, the result is trivial, so suppose otherwise, and pick some δ∗ belong-

ing to S∗. We show that δ∗ is likewise defeated as follows. Since S∗ is an accommodating set
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for D′, we know that S∗ < D′ by hypothesis, so that (1) δ∗ < D′, since δ∗ belongs to S∗. We

know that (2a) W∪Conclusion ((S−S∗)∪D′) is consistent, also by hypothesis. And since S∗

is a minimal accommodating set for D′, we know that W∪Conclusion((S−(S∗−{δ∗}))∪D′)—

that is, W ∪ Conclusion((S − S∗) ∪ D′ ∪ {δ∗})—is inconsistent, from which it follows that

(2b) W ∪ Conclusion((S − S∗) ∪ D′) ` ¬Conclusion(δ∗).

Theorem 1 Let 〈W,D<〉 be an ordered default theory and S a proper scenario based on

this theory. Then S is also stable.

Proof Assuming that S is a proper scenario, so that S is the limit of a approximating

sequence constrained by S, we need to show that S = BindingW,D<
(S).

So suppose, first, that δ ∈ S. Then there is some Si+1 from the approximating se-

quence for S such that δ ∈ Si+1. From the definition of an approximating sequence,

we know, therefore, that δ ∈ TriggeredW,D<
(Si), that δ 6∈ ConflictedW,D<

(S), and that

δ 6∈ DefeatedW,D<
(S). Because the triggering function is monotonic in its argument, it fol-

lows that that δ ∈ TriggeredW,D<
(S) as well, since Si ⊆ S. Hence the conditions are satisfied

to have δ ∈ BindingW,D<
(S).

Next, suppose δ ∈ BindingW,D<
(S), so that we know from the definition of a binding de-

fault that δ ∈ TriggeredW,D<
(S), that δ 6∈ ConflictedW,D<

(S), and that δ 6∈ DefeatedW,D<
(S).

Because δ ∈ TriggeredW,D<
(S), we have W ∪ Conclusion(S) ` Premise(δ), from which it

follows by compactness, along with the fact that the members of the approximating sequence

are nested, that W∪Conclusion(Si) ` Premise(δ) for some Si from the sequence. Therefore,

δ ∈ TriggeredW,D<
(Si). The conditions are thus satisfied to have δ ∈ Si+1, and so δ ∈ S.
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Theorem 2 Let 〈W,D<〉 be an ordered default theory and S a proper scenario based on

this theory. Then S is also grounded in W.

Proof Assuming that S is a proper scenario, so that S is the limit of a approximating

sequence constrained by S, we need to show that Th(W ∪ Conclusion(S)) ⊆ ThS(W).

To establish this, we show by induction that Th(W ∪ Conclusion (Si)) ⊆ ThS(W) for

each i, from which it follows that Th(W ∪ Conclusion(S)) ⊆ ThS(W) by compactness,

along with the fact that the members of the approximating sequence are nested. The base

of the induction is obvious, since S0 = ∅. So suppose as inductive hypothesis that Th(W ∪

Conclusion(Si)) ⊆ ThS(W), and consider some formula A ∈ Th(W ∪ Conclusion (Si+1)).

It then follows that there must be an ordinary proof of A from W ∪ Conclusion(Si+1)—

that is, a sequence of formulas A1, A2, . . . , An such that An is A and, for j ≤ n, each Aj either

satisfies one of the conditions (1), (2), or (3) from Definition 9, or else the following new

condition: (∗) Aj belongs to Conclusion(Si+1). In order to demonstrate that A ∈ ThS(W),

we show how this ordinary proof can be transformed into an S-proof of A from W. Since

the conditions (1), (2), and (3) are already S-proof conditions, we consider only the case in

which Aj is justified by the new condition (∗).

In that case, we know there is some δ ∈ Si+1 such that Aj is Conclusion(δ). By the

definition of the approximating sequence, we then know that δ ∈ TriggeredW,D<
(Si), and

by the definition of triggering, that W ∪ Conclusion(Si) ` Premise(δ), or put another way,

that Premise(δ) ∈ Th(W∪Conclusion(Si)). Our inductive hypothesis therefore tells us that

Premise(δ) ∈ ThS(W), so that there is an S-proof B1, B2, . . . , Bm of Premise(δ) from W.

This new proof can then be inserted directly ahead of Aj in the original sequence, and Aj
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can now be justified by appeal to condition (4) from Definition 9.

Since each appeal to the new condition (∗) can be eliminated in this way in favor of

an appeal to condition (4), our original proof of A from W ∪ Conclusion(Si+1) can be

transformed into an S-proof of A from W. We therefore have A ∈ ThS(W) and the induction

is complete.

Theorem 3 Let 〈W,D<〉 be an ordered default theory. Then S is a proper scenario based

on this theory if and only if S is both a stable scenario based on 〈W,D<〉 and also grounded

in W.

Proof It follows from Theorems 1 and 2 that S is stable and grounded if it is proper, and

so we need only establish the other direction. Assume, then, that the scenario S is stable and

grounded—that is, that S = BindingW,D<
(S) and Th(W∪Conclusion (S)) ⊆ ThS(W)—and

let S0,S1,S2, . . . be an approximating sequence constrained by S. In order to show that S

is proper, we verify that S =
⋃

i≥0 Si.

For the inclusion from right to left, we show by induction that Si ⊆ S for each i, from

which it follows that
⋃

i≥0 Si ⊆ S. The base case is obvious, since S0 = ∅. So suppose

as inductive hypothesis that Si ⊆ S, and consider some default δ ∈ Si+1. From our

definition of the approximating sequence, we know that δ ∈ TriggeredW,D<
(Si), so that

δ ∈ TriggeredW,D<
(S) by inductive hypothesis together with the monotonicity of trigger-

ing. From the definition of the sequence, again, we also have δ 6∈ ConflictedW,D<
(S) and

δ 6∈ DefeatedW,D<
(S), so that, all together, we now have δ ∈ BindingW,D<

(S). Given our

initial assumption that S = BindingW,D<
(S), we can conclude from this that δ ∈ S, and the

induction is complete.
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For inclusion from left to right, suppose δ ∈ S. Since S = BindingW,D<
(S), we know that

δ ∈ TriggeredW,D<
(S), that δ 6∈ ConflictedW,D<

(S), and that δ 6∈ DefeatedW,D<
(S). Given

our definition of the approximating sequence, then, we need only show that there is some i

such that δ ∈ TriggeredW,D<
(Si) in order to establish that δ ∈ Si+1—from which it will then

follow that δ ∈ ⋃
i≥0 Si

Since δ ∈ TriggeredW,D<
(S), we know that W ∪ Conclusion(S) ` Premise(δ), or put

another way, that Premise(δ) ∈ Th(W ∪ Conclusion(S)). Given our assumption that

Th(W ∪ Conclusion(S)) ⊆ ThS(W), we therefore have Premise(δ) ∈ ThS(W). But we

can now show that (∗) for any formula A, if A ∈ ThS(W), there is some i such that

A ∈ Th(W ∪ Conclusion(Si)). Since we have Premise(δ) ∈ ThS(W), this allows us to con-

clude in particular that there is some i such that Premise(δ) ∈ Th(W ∪ Conclusion(Si)),

or put another way, that W ∪ Conclusion(S) ` Premise(δ). From this, we get the desired

result that there is some i such that Premise(δ) ∈ TriggeredW,D<
(Si), completing the proof.

Our verification of (∗) proceeds by induction on length of S-proofs. We show that for

any S-proof which establishes that some formula belongs to ThS(W), there is some i such

that the very same proof sequence is an ordinary proof establishing that the same formula

belongs to Th(W ∪ Conclusion(Si)). In the base case, where the S-proof is of length 1, the

result is obvious, since the single formula belonging to the proof must be either an axiom or a

member of W. So suppose as inductive hypothesis that, for each S-proof of length less than

or equal to j establishing that some formula belongs to ThS(W), there is some i such that

the same sequence counts as an ordinary proof establishing that the same formula belongs

to Th(W ∪ Conclusion(Si)).

Now consider some S-proof A1, . . . , Aj, Aj+1 establishing that Aj+1 belongs to ThS(W),
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with length j + 1. By hypothesis, there is some i such that the sequence A1, . . . , Aj is an

ordinary proof establishing that Aj belongs to Th(W∪Conclusion(Si)). If the formula Aj+1 is

justified by condition (1), (2), or (3) of Definition 9, then of course A1, . . . , Aj, Aj+1 is likewise

an ordinary proof showing that Aj+1 belongs to Th(W ∪ Conclusion(Si)). So suppose Aj+1

is justified by condition (4)—that is, that there is some δ from S such that Conclusion(δ) is

Aj+1 and Premise(δ) is a previous member of the sequence. Again, the inductive hypothesis

allows us to conclude that Premise(δ) belongs to Th(W ∪ Conclusion(Si)), so that δ ∈

TriggeredW,D<
(Si). Since δ 6∈ ConflictedW,D<

(S) and δ 6∈ DefeatedW,D<
(S), the definition

of the sequence tells us that δ ∈ Si+1, so that Aj+1 ∈ Conclusion(Si+1). This allows us to

conclude that A1, . . . , Aj, Aj+1 is an ordinary proof showing that Aj+1 belongs to Th(W ∪

Conclusion(Si+1)), and so the induction is complete.

Theorem 4 Let 〈W,D<〉 be an ordered default theory with E as an extension. Then E is

consistent if and only if W is consistent.

Proof Since E is an extension, we have E = Th(W ∪ Conclusion(S)), where S is some

proper scenario based on 〈W,D<〉. If W is inconsistent, E must be inconsistent as well,

since W ⊆ E. If E is inconsistent, then the set W ∪ Conclusion(S) entails every for-

mula. Therefore, ConflictedW,D<
(S) = D—every default from D is conflicted in S—and

so BindingW,D<
(S) = ∅. It follows that S = ∅ as well, since S is a stable scenario, so that

Conclusion(S) = ∅, of course. We thus have E = Th(W), so that W must be inconsistent.

Theorem 5 Let 〈W,D<〉 be an ordered default theory in which the ordering < is empty.

Then E is an extension of 〈W,D<〉 if and only if E is a Reiter extension of 〈W,D〉, the
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corresponding normal default theory.

Proof (sketch) Left to right. Suppose E is an extension of 〈W,D<〉. Then E = Th(W∪

Conclusion(S)), where S is a proper scenario based on 〈W,D<〉—that is, S =
⋃

i≥0 Si,

where S0,S1,S2, . . . is an approximating sequence constrained by S. Define the sequence

E0, E1, E2, . . . by putting

E0 = W,

Ei+1 = Th(Ei) ∪ Conclusion(Si+1),

and let E ′ =
⋃

i≥0 Ei. It is easy to see that E ′ = E. Hence, it is necessary only to show that E ′

is a Reiter extension, by verifying that the Ei sequence meets the conditions of Definition 11.

We begin by noting that (∗) Th(Ei) = Th(W ∪ Conclusion(Si)) for each i, and also

that (∗∗) Th(E) = Th(W ∪ Conclusion(S)). The first of these results can be established

by induction. The base case, with i = 0, is evident from the definition of the Ei sequence.

As inductive hypothesis, suppose that Th(Ei) = Th(W ∪ Conclusion (Si)) for some i. The

inductive step can then be established through the chain of reasoning

Th(Ei+1) = Th(Th(Ei) ∪ Conclusion(Si+1))

= Th(Th(W ∪ Conclusion(Si)) ∪ Conclusion(Si+1))

= Th(Th(W) ∪ Conclusion(Si+1))

= Th(W ∪ Conclusion(Si+1)),

in which the first equation follows from the definition of the Ei sequence, the second from

the inductive hypothesis, the third from the fact that Si ⊆ Si+1, and the fourth from general

properties of the Th operator.
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The second result can be established by reasoning as follows

Th(E) = Th(
⋃

i≥0 Ei)

=
⋃

i≥0(Th(Ei))

=
⋃

i≥0(Th(W ∪ Conclusion(Si)))

= Th(W ∪ Conclusion(
⋃

i≥0 Si))

= Th(W ∪ Conclusion(S)),

where the first equation holds because E =
⋃

i≥0 Ei, the second by compactness and because

the Ei sequence is nested, the third due to the previous (∗), the fourth by compactness and

because the Si sequence is nested, and the fifth because S =
⋃

i≥0 Si.

In order to verify that the Ei sequence meets the conditions of Definition 11, it is enough

to verify the equation

Si+1 = {δ ∈ D : Ei ` Premise(δ),

E 6` ¬Conclusion (δ)}.

Because the < ordering is empty, no default can be defeated in any scenario. Hence, by

the definition of the Si sequence, δ ∈ Si+1 just in case δ ∈ TriggeredW,D<
(Si) and δ 6∈

ConflictedW,D<
(S). By definition, δ ∈ TriggeredW,D<

(Si) just in case W ∪Conclusion(Si) `

Premise(δ), which is equivalent by (∗) to the condition that Ei ` Premise(δ). And δ 6∈

ConflictedW,D<
(S) just in case W ∪ Conclusion(S) 6` ¬Conclusion (δ), which is equivalent

by (∗∗) to the condition that E 6` ¬Conclusion(δ). The equation is therefore established.

Right to left (sketch). Suppose E is a Reiter extension of 〈W,D〉. Then E =
⋃

i≥0 Ei, with

the sequence E0, E1, E2, . . . specified as in Definition 11. Define the sequence S0,S1,S2, . . . by
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putting

S0 = ∅,

Si+1 = {δ ∈ D : Ei ` Premise(δ),

E 6` ¬Conclusion (δ)};

let S =
⋃

i≥0 Si, and let E ′ = Th(W ∪ Conclusion(S)). The result can then be verified by

showing that E ′ = E, and that the Si sequence is an approximating sequence constrained by

the scenario S.

Observation 4 Let 〈W,D<〉 be an ordered default theory, and suppose S is a stable scenario

based on this theory. Then if some default δ is defeated in S, with D′ as a defeating set, it

follows that Conclusion(S ∪ D′) is consistent.

Proof Assume that the default δ is defeated in the scenario S with D′ as a defeating

set and S ′ as an accommodating set for D′. By Observation 1, it follows that there is some

S∗ ⊆ S ′—so that S∗ ⊆ S, of course—such that δ is likewise defeated with D′ as a defeating

set and S∗ as a minimal accommodating set for D′. Now suppose Conclusion(S ∪D′) is not

consistent. By Observation 2, it follows that S∗ is nonempty, and by Observation 3, that

each default belonging to S∗ is itself defeated in S. But this is impossible, since S∗ ⊆ S,

and, because S = BindingW,D<
(S), no default belonging to S can be defeated.

Observation 5 Let 〈W,D<〉 be an ordered default theory in which the set D of defaults

is finite, and suppose S is a stable scenario based on this theory. Then if some default δ is

defeated in S, with D′ as a defeating set, it follows that D′ ⊆ S.

Proof Since D is finite, we can define the degree of a default δ—written, degree(δ)—as
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follows: if there is no δ′ such that δ < δ′, then degree(δ) = 0, and otherwise,

degree(δ) = 1 + maximum({degree(δ′) : δ < δ′}).

The result can then be established by induction on the degree of the defeated default. The

base case, with degree(δ) = 0, is trivial, since defaults can be defeated only by other defaults

having higher priority. But if degree(δ) = 0, then δ has a maximal priority, and so can never

be defeated.

As inductive hypothesis, suppose we know that, for any default whose degree is less

than n, whenever that default is defeated in some scenario S, any defeating set for the default

must be a subset of that scenario. And where δ is a particular default with degree(δ) = n,

suppose that δ is defeated in the scenario S with defeating set D′.

From the definition of defeat—and also from Observation 4, which tells us that

Conclusion(S ∪ D′) is itself consistent, so that the accommodating set can be empty—

we know that D′ is a subset of TriggeredW,D<
(S), and also that (1) δ < D′, that (2a) W ∪

Conclusion(S ∪D′) is consistent, and that (2b) W ∪Conclusion (S ∪D′) ` ¬Conclusion(δ).

In order to show that D′ is a subset of S, pick some default δ′ from D′. We know that

D′ is triggered in the scenario S, and also, from (2a), that it is not conflicted. Because

S = BindingW,D<
(S), therefore, δ must belong to S unless it is defeated.

Assume, then, that δ′ is defeated in S, with D′′ as a defeating set. Then from the definition

of defeat and Observation 4, again, we know that D′′ is also a subset of TriggeredW,D<
(S), and

as before, that (1′) δ′ < D′′, that (2a′) W ∪Conclusion(S ∪D′′) is consistent, and that (2b′)

W∪Conclusion(S ∪D′′) ` ¬Conclusion(δ′). From the fact that degree(δ) = n, as well as (1)

above, we know that degree(δ′) < n. Our inductive hypothesis therefore tells us that D′′ ⊆ S,
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which together with (2b′) allows us to conclude that W∪Conclusion(S) ` ¬Conclusion(δ′).

Since δ′ belongs to D′, however, this contradicts the previous (2a), and so the assumption

that δ′ is defeated fails.

Therefore δ′ belongs to S, and the proof is complete.

Observation 6 Let 〈W,D<〉 be an ordered default theory in which the set D of defaults

is finite, and suppose S is a stable scenario based on this theory. Then any default that is

defeated in S must also be conflicted in S.

Proof Suppose δ is defeated in S, with D′ as a defeating set. Then by the definition

of defeat, we know, among other things, that W ∪ Conclusion(S ∪ D′) ` ¬Conclusion(δ).

Observation 5 tells us that D′ ⊆ S. Therefore W∪Conclusion(S) ` ¬Conclusion(δ) as well,

so that δ is conflicted in S.

Theorem 6 Let 〈W,D<〉 be an ordered default theory in which the set D of defaults is

finite. Then if E is an extension of 〈W,D<〉, it follows that E is also an extension of 〈W,D〉,

the corresponding normal default theory.

Proof The proof follows the pattern of the first half of the proof of the earlier Theorem 5.

We begin, as before, by noting that E = Th(W ∪ Conclusion(S)) where S is a proper

scenario—that is, S =
⋃

i≥0 Si, where S0,S1,S2, . . . is an approximating sequence constrained

by S. As before, we define the sequence E0, E1, E2, . . . by putting

E0 = W,

Ei+1 = Th(Ei) ∪ Conclusion(Si+1).
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Setting E ′ =
⋃

i≥0 Ei, it is again easy to see that E ′ = E. Hence, it remains only to show

that E ′ is a Reiter extension, by verifying that the Ei sequence meets the conditions of

Definition 11, which we can accomplish, as before, by showing that

Si+1 = {δ ∈ D : Ei ` Premise(δ),

E 6` ¬Conclusion (δ)}.

By definition of the Si sequence, we have δ ∈ Si+1 just in case δ ∈ TriggeredW,D<
(Si),

and δ 6∈ ConflictedW,D<
(S), and δ 6∈ DefeatedW,D<

(S). It is again possible to estab-

lish the earlier (∗) and (∗∗), and then to use these preliminary facts to verify that

δ ∈ TriggeredW,D<
(Si) if and only if Ei ` Premise(δ), and that δ 6∈ ConflictedW,D<

(S) if

and only if E 6` ¬Conclusion (δ). The right hand side of the equation therefore contains

those defaults that are triggered in Si and not conflicted in S, exactly as before.

In this new case, however, since the priority ordering < is no longer empty, it is now

possible for a default to be defeated in S, and as we have seen, the membership conditions for

Si+1 specify that δ 6∈ DefeatedW,D<
(S). Since defaults that are defeated in S cannot belong

to the left hand side of the equation, we must be able to show that they cannot belong to

the right hand side either. Fortunately, Observation 6 allows us to conclude that any default

that is defeated in S is also conflicted—that DefeatedW,D<
(S) ⊆ ConflictedW,D<

(S). By

ruling out conflicted defaults, the right hand side therefore rules out defeated defaults as

well, and the result is established.
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