Skip to main content
Log in

Information Theories with Adversaries, Intrinsic Information, and Entanglement

  • Published:
Foundations of Physics Aims and scope Submit manuscript

There are aspects of privacy theory that are analogous to quantum theory. In particular one can define distillable key and key cost in parallel to distillable entanglement and entanglement cost. We present here classical privacy theory as a particular case of information theory with adversaries, where similar general laws hold as in entanglement theory. We place the result of Renner and Wolf—that intrinsic information is lower bound for key cost—into this general formalism. Then we show that the question of whether intrinsic information is equal to key cost is equivalent to the question of whether Alice and Bob can create a distribution product with Eve using I M bits of secret key. We also propose a natural analogue of relative entropy of entanglement in privacy theory and show that it is equal to the intrinsic information. We also provide a formula analogous to the entanglement of formation for classical distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gisin and S. Wolf, http://arXiv.org/abs/quant-ph/0005042.

  2. D. Collins S. Popescu (2002) Phys Rev A. 65 032321 Occurrence Handle2002PhRvA..65c2321C

    ADS  Google Scholar 

  3. C.H. Bennett D.P. DiVincenzo J. Smolin W.K. Wootters (1997) Phys Rev. A 54 3824 Occurrence Handle1996PhRvA..54.3824B Occurrence Handle97k:81028

    ADS  MathSciNet  Google Scholar 

  4. C.H. Bennett G. Brassard C. Crepeau R. Jozsa A. Peres W.K. Wootters (1983) Phys Rev Lett. 70 1895 Occurrence Handle1993PhRvL..70.1895B Occurrence Handle94a:81004

    ADS  MathSciNet  Google Scholar 

  5. A. Acin L. Massanes N. Gisin (2003) Phys Rev Lett. 91 167901 Occurrence Handle2003PhRvL..91p7901A

    ADS  Google Scholar 

  6. R. Renner and S. Wolf, Advances in Cryptology – EUROCRYPT ’03, Lecture Notes in Computer Science (Springer, 2003).

  7. I. Devetak and A. Winter, “Distillation of secret key and entanglement from quantum states”, http://arXiv.org/abs/quant-ph/0306078.

  8. A. Acin, I. Cirac, and L. Massanes, http://arXiv.org/abs/quant-ph/0311064.

  9. K. Horodecki M. Horodecki P. Horodecki J. Oppenheim (2005) Phys Rev Lett. 94 160502 Occurrence Handle2005PhRvL..94p0502H Occurrence Handle2146465

    ADS  MathSciNet  Google Scholar 

  10. The term information of formation [6] is sometimes used, while we take the liberty of using the term key cost both for additional clarity and to distinguish it from other usages of this term [34].

  11. P. Hayden M. Horodecki B. Terhal (2001) J Phys A 34 6891 Occurrence Handle10.1088/0305-4470/34/35/314 Occurrence Handle2001JPhA...34.6891H Occurrence Handle2003c:81024

    Article  ADS  MathSciNet  Google Scholar 

  12. Regularization of the function f is given by \(f^\infty(\rho)=\lim_n f(\rho^{\otimes n})/n\) where ρ is quantum or classical state.

  13. C.H. Bennett H. Bernstein S. Popescu B. Schumacher (1996) Phys Rev A 53 2046 Occurrence Handle10.1103/PhysRevA.53.2046 Occurrence Handle1996PhRvA..53.2046B

    Article  ADS  Google Scholar 

  14. A.D. Wyner (1975) IEEE Trans Inf Theory IT-21 163 Occurrence Handle50 #16117

    MathSciNet  Google Scholar 

  15. N.J. Cerf S. Massar S. Schneider (2002) Phys Rev A 66 042309 Occurrence Handle10.1103/PhysRevA.66.042309 Occurrence Handle2002PhRvA..66d2309C

    Article  ADS  Google Scholar 

  16. V. Vedral M.B. Plenio (1998) Phys Rev A 57 1619 Occurrence Handle10.1103/PhysRevA.57.1619 Occurrence Handle1998PhRvA..57.1619V

    Article  ADS  Google Scholar 

  17. M. Horodecki (2001) Quantum Inform Comp. 1 3 Occurrence Handle2003c:81026

    MathSciNet  Google Scholar 

  18. G. Vidal (2000) J Mod Opt. 47 355 Occurrence Handle2000JMOp...47..355V Occurrence Handle2001f:81031

    ADS  MathSciNet  Google Scholar 

  19. M. Horodecki P. Horodecki R. Horodecki (2000) Phys Rev Lett. 84 2014 Occurrence Handle2000PhRvL..84.2014H Occurrence Handle2000m:81023

    ADS  MathSciNet  Google Scholar 

  20. M. Donald M. Horodecki O. Rudolph (2002) J Math Phys. 43 4252 Occurrence Handle10.1063/1.1495917 Occurrence Handle2002JMP....43.4252D Occurrence Handle2003h:81029

    Article  ADS  MathSciNet  Google Scholar 

  21. M. Horodecki K. Horodecki P. Horodecki R. Horodecki J. Oppenheim A. Sen(De) U. Sen (2003) Phys Rev Lett. 90 100402 Occurrence Handle2003PhRvL..90j0402H Occurrence Handle2004g:81018

    ADS  MathSciNet  Google Scholar 

  22. M. Horodecki P. Horodecki J. Oppenheim (2003) Phys Rev A 67 062104 Occurrence Handle2003PhRvA..67f2104H Occurrence Handle2004h:81028

    ADS  MathSciNet  Google Scholar 

  23. Cover T.M., Thomas J.A. Elements of Information Theory (Wiley, 1991).

  24. U. Maurer S. Wolf (2000) Lecture Notes Comput Sci 1807 351 Occurrence Handle1772027

    MathSciNet  Google Scholar 

  25. I. Csiszar J. Korner (1978) IEEE Trans Inform Theory 24 339 Occurrence Handle10.1109/TIT.1978.1055892 Occurrence Handle80i:94013

    Article  MathSciNet  Google Scholar 

  26. M. Horodecki (1998) Phys Rev A 57 3364 Occurrence Handle10.1103/PhysRevA.57.3364 Occurrence Handle1998PhRvA..57.3364H

    Article  ADS  Google Scholar 

  27. A. Winter, http://arXiv.org/abs/quant-ph/0208131.

  28. W. Dur G. Vidal I. Cirac (2001) Phys Rev A 64 022308 Occurrence Handle2001PhRvA..64b2308D

    ADS  Google Scholar 

  29. Similar scenario was independently considered by M. Christandl and R. Renner (in preparation).

  30. M. A. Nielsen, Phys. Rev. A 61, 064301 (2000).

    Google Scholar 

  31. R. Alicki and M. Fannes, J. Phys. A 37,(2003).

  32. M. Christandl and A. Winter, http://arXiv.org/abs/quant-ph/0308088.

  33. V. Vedral M.B. Plenio M.A. Rippin P.L. Knight (1997) Phys Rev Lett 78 2275 Occurrence Handle10.1103/PhysRevLett.78.2275 Occurrence Handle1997PhRvL..78.2275V Occurrence Handle98d:81006

    Article  ADS  MathSciNet  Google Scholar 

  34. J. Oppenheim M. Horodecki R. Horodecki (2003) Phys Rev Lett. 90 010404 Occurrence Handle10.1103/PhysRevLett.90.010404 Occurrence Handle2003PhRvL..90a0404O Occurrence Handle2003m:81013

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michał Horodecki.

Additional information

It is our pleasure to dedicate this paper to Asher Peres on the occasion of his seventieth birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horodecki, K., Horodecki, M., Horodecki, P. et al. Information Theories with Adversaries, Intrinsic Information, and Entanglement. Found Phys 35, 2027–2040 (2005). https://doi.org/10.1007/s10701-005-8660-5

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-005-8660-5

Keywords

Navigation