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JOHN F. HORTY 

MORAL DILEMMAS AND NONMONOTONIC LOGIC 

I. INTRODUCTION 

The purpose of this paper is to establish some formal connections 
between deontic and nonmonotonic logics, and to suggest some ways in 
which the techniques developed in the study of nonmonotonic reasoning 
and the issues confronted there might help to illuminate deontic ideas. 
These two subjects have evolved within different disciplines. The field of 
deontic logic was developed by philosophers and legal theorists as a high 
level framework for describing valid patterns of normative reasoning. 
The study of nonmonotonic logic was initiated, much more recently, by 
researchers in artificial intelligence who felt that ordinary logical 
techniques could not be applied properly to a number of practical 
problems arising within that area - most notably, problems involving 
planning and action, such as the frame problem. Even though the two 
subjects come from different disciplines, however, it is not really 
surprising that there should be close connections between them. Both 
are concerned, very broadly, with formalizing certain aspects of 
commonsense reasoning. Both recognize that many of the rules 
governing our commonsense reasoning are prima facie, or defeasible. 
And both must deal, in particular, with clashes among these defeasible 
rules. 

Although I believe that the relations between deontic and non- 
monotonic logic may be extensive, I focus here, narrowly, only on two 
particular theories. The first is the account of obligation sketched by Bas 
van Fraassen [26], which differs from standard deontic logic in allowing 
for moral conflicts; the second is Raymond Reiter's default logic [20], 
one of the first nonmonotonic formalisms, and one of the most widely 
applied. 

These two theories are reviewed in Sections 2 and 3. In Section 4, I 
show that van Fraassen's account of simple (categorical) oughts can be 
interpreted in a natural way using the notion of default consequence 
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introduced by Reiter. This is the primary positive contribution of the 
paper, establishing a concrete correspondence between particular 
theories from the two fields. Section 5 generalizes this correspondence 
to cover also a treatment of conditional oughts based on that sketched 
by van Fraassen; but it turns out that this account of conditional oughts 
is itself problematic. Section 6 describes some of the problems presented 
by conditional oughts, and shows that there are strong analogies 
between these problems and difficulties already studied within the 
framework of default logic. These analogies suggest that the formal 
connection established here between nonmonotonic and deontic logics is 
not just a technical accident, but that it reflects a deeper level of common 
concern. 

2. OUGHTS AND IMPERATIVES 

In standard deontic logic, obligation is interpreted as a kind of necessity, 
which can be modeled using familiar possible worlds techniques.' In the 

simplest deontic models, each possible world or situation is associated 
with a single, nonempty set of deontic alternatives - the set of situations 
in which, relative to the original, things go as they ought to, or in which 
all oughts in force in the original situation are satisfied. Where 0 is the 
connective representing 'It ought to be that ... ,' a statement of the form 

OA is then supposed to be true at a given situation whenever A is true at 
each of its deontic alternatives. The idea behind this valuation rule is that 

OA should be true whenever A is a necessary condition for things 
turning out as they ought. 

Let us say that a situation gives rise to a moral dilemma if it presents 
both of two conflicting propositions as obligatory. We often seem to find 
ourselves in such situations, and there are a number of very vivid 

examples in philosophy and literature; but if standard deontic logic is 
correct, all of this is misleading. Because it assigns to each situation 
only a single set of deontic alternatives (and because this set must be 

nonempty), standard deontic logic rules out the possibility of moral 
dilemmas. No situation can support conflicting oughts; OA and Q-)A 
are not jointly satisfiable. This conclusion follows at once from the 
semantics: if OA is true at a situation, so that A is true at all of its 
deontic alternatives, then -,A cannot be true at any of them. Another 
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way of reaching the same result is to notice that, on the standard 
semantics, OA and OB imply (OA A B),but that O(A A -,A) is 
unsatisfiable. 

There is currently no consensus among moral theorists on the question 
whether an ideal ethical theory could actually be structured in such a way 
that moral dilemmas might arise.2 Still, it can seem like an objectionable 
feature of standard denotic logic that it rules out this possibility. Because 
the question is open, and the possibility of moral dilemmas is a matter 
for substantive ethical discussion, it seems to be inappropriate for a 
position on this issue to be built into the logic of the subject. And even if 
it does turn out, ultimately, that research in ethics is able to exclude the 
possibility of conflicts in a correct moral theory, it may be useful all the 
same to have a logic that allows for conflicting oughts. For one thing, 
the task of actually applying a correct moral theory to each of the ethical 
decisions we face every day would be difficult and time-consuming; and 
it seems unlikely, for most of us, that such a theory could have any more 
bearing upon our day to day ethical reasoning than physics has upon our 
everyday reasoning about objects in the world. Most of our common- 
sense ethical thinking seems to be guided instead, not by the dictates of 
moral theory, but by simple rules of thumb - 'Return what you borrow', 
Don't cause harm' - and it is not hard to generate conflicts among 
these.3 Moreover, practical reasoning more generally is conditioned by a 
number of oughts, many of which are founded in a concern with matters 
other than morality - etiquette, aesthetics, fun - and of course, these 
lead to other conflicts both among themselves and with the oughts of 
morality. Even if we do eventually conclude, then, that there can be no 
clashes among the oughts generated by a correct ethical theory, it still 
seems necessary to allow for conflicting oughts in any logic that aims to 
represent either our everyday moral thinking or our normative reasoning 
more broadly. 

The best known proposal for weakening deontic logic to allow 
conflicts among oughts was set out in van Fraassen [26]. In fact, that 
paper contains two suggestions, the second a refinement of the first. 
Both involve a nonstandard mechanism for evaluating ought state- 
ments. Rather than assigning a truth value to these statements based 
on a primitive relation of deontic alternativeness among situations, 
van Fraassen evaluates them against a set of background imperatives, 
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which are supposed to represent the dictates of various sources of 
obligation. Of course, since a single agent might recognize con- 
flicting sources of obligation, and since even the same source of 
obligation can at times issue conflicting commands, this picture 
must allow for the possibility that an agent might find himself 
constrained by a set of imperatives that cannot all be fulfilled at 
once. 

In presenting van Fraassen's proposal, we will use an exclamation 
point as the imperative operator; the sentence !(-nK), for example, might 
represent the imperative 

Thou shalt not kill. 

Imperatives can be fulfilled or violated; we will say that an 

imperative !(A) if fulfilled in any situation in which A is true, and 
violated otherwise. We will use lowercase Greek letters (a, )3, 7,...) to 

represent the situations, or indices, at which imperatives and other 
formulas are evaluated. Usually in deontic logic, these situations are 
identified with possible worlds. However, because we are not con- 
cerned with iterated oughts, and in order to avoid extraneous 

complications when it comes to default logic, the situations will be 

interpreted here simply as ordinary valuations of the underlying 
language. Finally, the symbol = will stand as usual for the satisfaction 
relation between situations and formulas; and where A is a formula 
and 69 some set of formulas, we will let IA a = {a: a j- A} and 
11 = nl{Al : A E }. 

Now suppose that f is the background set of imperatives 
governing some agent. Van Fraassen's initial suggestion is that a 
statement OA is true with respect to f just in case there is some 

imperative !(B) belonging to f such that IBI C jAI. The idea here is 
that a proposition is obligatory if it is a necessary condition for ful- 
filling some imperative. This initial suggestion really contains the heart 
of the proposal. We can see already how conflicting propositions might 
both be obligatory, even though their conjunction is not. If the back- 

ground imperative set is fl = {!(A), 
!(--A)}, 

for example, then OA and 

O--A will both be true, but O(A A -A) will be false. In addition, it is 
clear that OB will be a consequence of OA whenever B is a consequence 
of A. 
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The initial suggestion runs into difficulties, however, when it comes 
to logical interconnections among imperatives. Suppose that an agent 
is constrained only by two imperatives: 

Fight in the army or perform alternative service, 
Don't fight in the army. 

The first of these might issue from some piece of legislation to which 
the agent is subject; the second from religion or conscience. Let us 
represent this imperative set as A = {!(FV S), !(-F)}. Now it seems 
intuitively that OS should be true with respect to f2; given the 
imperatives governing his action, the agent ought to perform 
alternative service. Yet the initial suggestion does not yield this result, 
since there is no single imperative !(B) belonging to f2 such that 
1BI _ ISj. 

To handle this kind of problem, van Fraassen introduces the 
notion of a situation's score, the set of imperatives it fulfills. 
Formally, where f is the background set of imperatives, we let 

score.(a) 
= {!(A) E f: a j= A}. Using this new notion, he then 

refines his original suggestion in a way that leads to the following 
definition. 

DEFINITION 1. The formula OA is true with respect to the imperative 
set J just in case there is some a E IAI for which there is no/3 I nA 
such that scorej (a) c scorej(0). 

According to this new proposal, a proposition is classified as 
obligatory if it is a necessary condition for fulfilling, not just a single 
imperative, but some maximal set of imperatives - a necessary con- 
dition for achieving some maximal score. The new proposal preserves 
the desired features of the earlier version: conflicts among obligations 
are allowed, without implying an obligation to do the impossible; 
and any consequence of an obligatory proposition is obligatory. 
However, the new proposal adds to the simpler version the idea that, 
whenever it is possible to satisfy more imperatives without violating 
those already fulfilled, it is best to do so. Because of this, for 
example, the formula OS turns out to be true with respect to 2 
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above, since any situation fulfilling both !(Fv S) and !(-iF) must fall 
within ISI.4 

3. DEFAULT LOGIC 

The study of nonmonotonic logics was initiated in the late 1970's, 
and the field solidified in 1980 with the publication of a special issue 
of Artificial Intelligence [1] devoted to the topic.5 These logics have 
found applications in areas as diverse as database theory and 
automated diagnosis; but an important initial motive in their develop- 
ment was the need felt within artificial intelligence for a formalism 
more naturally suited than ordinary logic to model the tentative 
nature of commonsense reasoning. Often, it seems, we want to draw 
conclusions from a given body of data that we are willing to abandon 
when the data is supplemented with further information. To take a 
standard example, if we were told that Tweety is a bird, most of us 
would conclude that Tweety can fly - since we believe that, as a 

general rule, birds can fly. However, we would abandon this conclusion, 
and we would not feel that we had been presented with any kind 
of inconsistency, if we were then told in addition that Tweety cannot 

fly. 
The particular formalism with which we are concerned here - Reiter's 

default logic [20] - models this phenomenon by supplementing ordinary 
logic with new rules of inference, known as default rules. In order to 
characterize the conclusion sets of theories involving these new rules, 
Reiter then modifies the standard, monotonic notion of logical 
consequence. 

An ordinary rule of inference (with a single premise) can be 

depicted simply as a premise-conclusion pair, such as (A/B). This 
rule commits a reasoner to B once A has been established. By contrast, 
a default rule is a triple, such as (A : C/B). Very roughly, this rule 
commits the reasoner to B once A has been established and, in 
addition, C is consistent with the reasoner's conclusion set. The 
formula A is referred to as the prerequisite of this default rule, B as its 

consequent, and C as its justification. A default theory is a pair 
A = (W, .), in which is W is a set of ordinary formulas and 9 is a set of 
default rules. 
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Before going on to set out the new notion of a conclusion set 
defined by Reiter for default theories, let us see how the information 
given above about Tweety might be represented in default logic. The 
first case, in which we are told only that Tweety is a bird, can be 
represented by the default theory A1 = (Wi, i1), where Wli = {Bt} 
and 91 = {(Bt : Ft/Ft)}. Here the default rule says that if we know 
Tweety is a bird, and it is consistent with what we know that Tweety can 
fly, then we should conclude that Tweety can fly. (The generic statement 
'Birds fly' can be taken to mean that, once we learn of some object that it 
is a bird, we should conclude that it flies, unless we happen to known that 
it does not. The default rule can then be thought of as an instantiation 
for Tweety of this generic truth). In this case, because we do know that 
Bt, and there is no reason to think that Ft is inconsistent with what we 
know, the default rule yields Ft as a conclusion. Where Th is a function 
mapping any set of formulas to its logical closure, then, the appropriate 
conclusion set based on A1 seems to be Th[{Bt, Ft}], the logical closure 
of what we are told to begin with together with the conclusions of the 
applicable defaults. In the second case, however, when we are told in 
addition that Tweety does not fly, we move to the default theory 
A2 = (,'2x2), with 22 = 91 and '2 = 1 U {f-Ft}. Here the default 
rule cannot be applied, because its justification is inconsistent with what 
we know. So the appropriate conclusion set based on A2 seems to be 
Th [W2]- 

These two examples illustrate, in some simple and natural cases, the 
kind of conclusion sets desired from given default theories. The task of 
arriving at a general definition of this notion, however, is not trivial; the 
trick is to find a way of capturing the intended meaning of the new 
component - the justification - present in default rules. A default rule is 
supposed to be applicable only if its justification is consistent with the 
conclusion set; but what does consistency mean? Consistency is usually 
defined in terms of logical consequence (a set is consistent if there is no 
explicit contradiction among its consequences), and so there is a danger 
of circularity here. In fact, the very application of a default rule might 
undermine its own justification, or the justification of some other rule 
that has already been applied. As an example, consider the theory 
A3 = (13,-q3), with V3 = {A, B -'C) and 93 = {(A : C/B)}. 
Before any new conclusions are drawn from this information, the rule 
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(A : C/B) seems to be applicable, since its prerequisite belongs already to 
the initial data set #3, and its justification is consistent with this set. The 
effect of applying this rule, though, is to introduce B into the conclusion 
set; just a bit of additional reasoning then shows that the conclusion set 
must contain -IC as well, and so the applicability of the default rule is 
undermined. 

Of course, a chain of reasoning like this showing that some default rule 
is undermined can be arbitrarily long; and so we cannot really be sure 
that a default rule is applicable in some context until we have applied it, 
along with all the other rules that seem applicable, and then surveyed the 
logical closure of the result. Because of this, the conclusion set associated 
with a default theory cannot be defined in the usual iterative way, by 
successively adding to the original data the conclusions of the applicable 
rules of inference, and then taking the limit of this process. 

Instead, Reiter is forced to adopt a fixed point approach in specifying 
the conclusion sets of default theories. He first defines an operator r that 
uses the information from a particular default theory to map formula 
sets into formula sets. 

DEFINITION 2. Where A = (#, 9) is a default theory and Y is some 
set of formulas, ra'(y) is the minimal set satisfying the following three 
conditions: 

i. * cr,& (r), 2. Th[FA (Y)] = ra(Y), 
3. for each (A: B/C) E 9, if A E a(S) and -,B V 9, 

then C E rA(F). 

The first two conditions in this definition tell us simply that lA(.9() 
contains the information provided by the original theory, and that 
it is closed under logical consequence; the third condition tells us that 
it contains the conclusions of the default rules applicable in 9'; and 
the minimality constraint prevents unwarranted conclusions from 

creeping in. 
Where A = (r', 9) is a default theory, the operator ra maps any 

formula set 9 into the minimal superset of *# that is closed under 
both ordinary logical consequence and the default rules from 9 that 
are applicable in .9. The appropriate conclusion sets of default 
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theories - known as extensions - are then defined as the fixed points of 
this operator. 

DEFINITION 3. The set d' is an extension of the default theory A if and 
only if &A(4) = i. 

As the reader can verify, the default theories A1 and A2 above have the 
advertised conclusion sets as their extensions. In addition, it should be 
clear that the notion of an extension defined here is a conservative 
generalization of the corresponding notion of a conclusion set from 
ordinary logic: the extension of a default theory (#', 9) in which 9 is 
empty is simply Th["]. 

In contrast to the situation in ordinary logic, however, not every 
default theory leads to a single set of appropriate conclusions. Some 
default theories, such as A3 above, have no extensions; these theories are 
often viewed as incoherent. More interesting, for our purposes, some 
lead to multiple extensions. A standard example arises when we try to 
encode as a default theory the following set of facts: 

Nixon is a Quaker, 
Nixon is a republican, 
Quakers tend to be pacifists, 
Republicans tend not to be pacifists. 

If we instantiate for Nixon the general statements expressed here about 

Quakers and republicans, the resulting theory is A4 = (* 4, 94), with 
*4 = {Qn, Rn} and 94 = {(Qn : Pn/Pn), (Rn : -Pn/ Pn)}. This theory 
allows both Th['4 U {Pn}] and Th[#F4 U {-(Pn}j as extensions. Initially, 
before we draw any new conclusions, both of the default rules from 
94 are applicable, but once we adopt the conclusion of either, the 

applicability of the other is blocked. 
In cases like this, when a default theory leads to more than one 

extension, it is difficult to decide what conclusions a reasoner should 
actually draw from the information contained in the theory. One option 
discussed in the literature is to suppose that the reasoner should 
arbitrarily select one of the theory's several extensions and endorse 
the conclusions contained in it; another option is to suppose that the 
reasoner should endorse only those conclusions contained in the 
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intersection of these extensions. For the purpose of modeling common- 
sense reasoning, the multiple extensions associated with default 
theories can sometimes seem like an embarrassment: what we really want 
is a unique conclusion set, and so we are forced either to select non- 
deterministically from among these various extensions, or else to 
combine them somehow into a unique set. As we shall see, however, 
the multiple extensions provided by default logic are no longer 
embarrassing when it comes to interpreting deontic ideas; they give us 
exactly what we need. 

4. IMPERATIVES AS DEFAULTS 

Often, and in all of our examples so far, default rules seem to represent 
something like commonsense probabilistic generalizations. The defaults 
concerning birds or Quakers, for instance, seem to mean simply that a 
large majority of birds can fly, or that a large majority of Quakers are 

pacifists. The connection between defaults and generalizations of this 
kind has suggested to many that default reasoning can best be under- 
stood as a kind of qualitative probabilistic reasoning, a view that is most 

thoroughly developed by Judea Pearl [19]. 
There are, however, some important examples of default reasoning 

that do not seem to fit so naturally into the probabilistic framework. In 
driving along a narrow country road, for instance, it is best, whenever 
one approaches the crest of a hill, to adopt the default that there will be 
traffic in the oncoming lane, even if the road is deserted and the actual 
likelihood of traffic is low. Again, the presumption of innocence in 
a legal system is a kind of default that overrides probabilistic con- 
siderations: even if the most salient reference class to which an individual 

belongs is one among which the proportion of criminals is very high, we 
are to presume that he has committed no crime unless there is conclusive 
evidence to the contrary.6 

Those who favor a probabilistic understanding of defaults can attempt 
to account for discrepancies like these between defaults and common- 
sense generalizations by supposing that default rules might reflect, in 
addition, information concerning utilities of the outcomes. (For 
example, it could be argued that the default concerning oncoming traffic 
is reasonable, even though the likelihood is low, because the cost of a 
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false negative in this case is potentially so high.) But there is also 
another explanation of the differences here between defaults and 
commonsense probabilistic generalizations. What these examples 
suggest is that default rules can be used to represent norms quite 
generally. When the norms involved have a probabilistic basis, it 
is natural to expect default reasoning to resemble probabilistic 
reasoning. But default rules can be used also, it seems, to represent 
other kinds of norms - such as legal or ethical norms - and in 
that case, any relation with probabilistic reasoning will be more 
distant. 

It is this reading of defaults, as representing norms in general, that 
motivates the connections developed here between default and deontic 
logics, and in particular the central observation of this paper: if the 
norms generated by imperatives are represented through default rules, 
then van Fraassen's theory of oughts can be interpreted in Reiter's 
default logic. 

Formally, the interpretation is straightforward: with each imperative 
set J we associate a default theory A = (I, 9), where W" = 0 and 
9 = {(: A/A) : !(A) E f}. (A default rule written without a visible 
prerequisite should be taken to have as its prerequisite the universally 
true sentence T.) It then turns out that the formula OA is true with 
respect to J just in case A belongs to some extension of A. 

In the course of establishing this result, we will appeal to two back- 
ground facts about default logic. The first is simply that a default theory 
('%, 9) in which *'# is itself consistent has only consistent extensions. 
This is well known, and was established in [20]. The second fact is more 
complicated, and we need some notation to state it. Where 9P is some 
formula set and A = 

(-W, ) is a default theory, we can define the 
generating defaults for 9' with respect to A as 

GD(Y, A) = {(A : B/C) E 9 : A E and -nB x Y}. 

(This definition is due to Reiter, although he restricts it to the case in 
which 9 is an extension of A.) Next, where 9 is some set of defaults, 
we let 

Con[i] = {C: (A : B/C) E } 
stand for the consequents of !?. 
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Now, using these concepts, Reiter shows in [20] that any extension of a 
default theory can be characterized as the logical closure of the initial 
information from the theory together with the consequents of the 
generating defaults for the extension. More formally, what he shows is 
that, whenever I is an extension of A, we then have 

(*) e = Th[# U Con[GD(g, A)]]. 
Unfortunately, the converse of this result does not hold in general: there 
are cases in which of and A might satisfy (*) even though o is not an 
extension of A.7 Although the converse does not hold in general, 
however, it can be shown to hold for a special class of default 
theories - those theories in which the prerequisite of each default rule is 
entailed by the initial information contained in the theory. This is our 
second background fact, which we record explicitly as a lemma. 

LEMMA 1. Let A = (#', 9) be a default theory such that A E Th[#j] for 
each default rule (A : B/C) E E. Then 6 is an extension of A if and only if 
6 = Th[ r U Con[GD(6, A)]]. 

This lemma will not be proved here; it follows almost immediately from 
the very helpful characterization of extensions found in Marek and 

Truszczyfiski [17]. What it tells us is that, whenever A is a theory 
belonging to this restricted class, we might as well define the extensions of 
A as those sets 6i satisfying (*). The result is useful for our present 
purposes, of course, because the default theories associated with 

imperative sets meet the restrictions of the lemma. 
At this point, we can establish the connection between deontic and 

default logic. We move through three additional lemmas, leading up to 
the main theorem. Throughout, we assume that # is some imperative set, 
and that A is the associated default theory. In addition, we define 

scoreA(a) = {(: A/A) E :a a A}. Where A is the default theory 
associated with f, this notion of default-score obviously carries the same 
information as the notion of imperative-score from Definition 1, and 
could just as easily have been used there instead. 

The first of these additional lemmas shows that whenever a valuation 
falls within the model class of some extension, the score of that valuation 
is equivalent to the generating default set of that extension. The second 
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shows that a valuation whose score is never exceeded must fall within the 
model class of some extension. The third shows that a valuation falling 
within the model class of some extension cannot be exceeded or matched 
in score by a valuation falling outside of that model class. 

LEMMA 2. Let a e E'1 for some extension o of A. Then 

scoreA(a) = GD(9, A). 
Proof. Suppose (: A/A) E scoreA(a), so that (: A/A) E and a l= A. 

Since a E 4I|, it then follows at once that -nA 4; for otherwise, we 
would have a l= -'A. Hence (: A/A) E GD(o, A). Next, suppose 
(: A/A) E GD(4, A). Since i is an extension of A, we know from 
Lemma 1 that o = Th[Con[GD(e, A)]], so that A E . Therefore a l= A, 
and so (: A/A) E scoreA(a). I 

LEMMA 3. Let a be an interpretation such that there is no 3 for which 

scoreA(a) C scorea(,3). Then a E jIo for some extension 4 of A. 
Proof. Where a is as described, define e = Th[Con[scoreA(a)]]. Of 

course, a E dIl. We prove that 4 = Th[Con[GD(4, A)]], from which it 
follows by Lemma 1 that i is an extension of A. 

To show that 4 C Th[Con[GD(4, A)]], it is enough to show that 

scoreA(a) C GD(t, A). So suppose (: A/A) E scoreA(a). Then 
A E Con[scoreA(a)]. Of course Con[score,(a)] is consistent (since it has 
a as a model), and so 0 is consistent. Therefore -'A B 4, and so 
(:A/A) E GD(, 9A). 

To show that Th[Con[GD(S, A)]] C 4, it is enough to show that 
GD(e, A) C scorea(a). So suppose (: A/A) E GD(o, A), but 
(: A/A) 0 scoreA(a). Since (: A/A) E GD(r, A), we know that 
-A x Th[Con[scorea(a)]]. Therefore, Con[scorea(a)] U {A} is con- 
sistent, and so there must be some interpretation / such that 

/3 i Con[scoreA(a)] U {A}. In that case, however, since 
(: A/A) 0 scores(a), we would have scorea(a) c scoreA(3), contrary to 
the conditions of the lemma. I 

LEMMA 4. Let i be an extension of A with a E 1'j. Then there is no 
interpretation 3 0 I'I4 such that scorea(a) C scoreA((0). 

Proof. Suppose 3 Idj but scoreA(ca) C scoreA(/3). Since 3 4 1',1, 
there must be some formula A E 4' such that /3 - A. Now since 4' is an 
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extension of A, Lemma 1 tells us that ' = Th[Con[GD(9, A)]], and 
then since a E 1 1, Lemma 2 tells us that 6 = Th[Con[scorea(a)]]. 
Therefore, A E Th[Con[scorea(a)]]. But given the assumption that 

scoreA(a) C scoreA(3), we can conclude also that 
A E Th[Con[scoreA(fl)]]. So P J A, contrary to hypothesis. I 

With these lemmas in hand, the proof of the main theorem is 

straightforward. 

THEOREM 1. Where A is the default theory associated with the 

imperative set f, the formula OA is true with respect to J if and only if 
A E 9'for some extension 6 of A. 

Proof. First, suppose A E 6', where d' is an extension of A. Then of 
course [6l c_ (AI. Now pick any a E I 'i (there has to be one since 
extensions are consistent). Lemma 4 tells us that there is no 3 Vj 1l such 
that scorea(a) C_ scorea(f). Since It ' (Aj, however, we can conclude 
that there is no E Ax 

-A such that scoreA(a) C scorea(,), and so OA is 
true with respect to J. 

Next, suppose OA is true with respect to J: there is some a E lAl 
for which there is no E E I-AI such that scorea(a) C scorea(0). Now 

pick some interpretation 7 whose score contains that of a and is 
also maximal - that is, a ^y such that scoreA(a) C scorea(y) and for 
which there is no 6 such that scorea(7) C scoreA(6). (It is clear that 
there must be such an interpretation. Let 2 be the set of defaults from 
A. Standard techniques allow us to extend Con [scoreA(a)] to a 
maximal consistent subset of Con[91, and then any interpretation rf 
satisfying this extended set will meet the conditions.) By Lemma 3, 
there is some extension d of A such that -ye 1'. It is easy to see 
that l'e C IAl. For suppose otherwise, that there is some 6 E I 1 - IAl. 
By Lemma 2, we would have scorea (y) = scores(6), but this 
contradicts the assumption that OA is true with respect to J, 
since we know scorea(a) C scorea('y), and so we would have 

scorea(a) C scoret(6). Therefore 4' 1 _AI, and so A E d since 6' is 

logically closed. I 

I close this section with two points relating the ideas discussed here to 
some of the other literature in the area. 
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The first point concerns nonmonotonic reasoning. Although this 
paper concentrates on the application of ideas from nonmonotonic 
reasoning to deontic logic, there is at least some flow in the opposite 
direction. Among the various interpretations of nonmonotonic reason- 
ing, one of the most intriguing is that suggested by Jon Doyle, who 
understands the process in terms of an agent's criteria for choosing 
mental states based on default information. Interpreting mental states as 
formula sets, Doyle finds a natural way of treating individual defaults as 
preferences among mental states; and he shows in [5] and [6] that the 
appropriate mental states, or extensions, can then be characterized as 
those satisfying a requirement of Pareto optimality based on these 
preferences. This interpretation is conceptually very similar to van 
Fraassen's treatment of obligation; and Theorem 1 shows that, at least 
for a simple class of defaults, the match is exact. In more recent work, 
Doyle and Michael Wellman [7] have developed this interpretation by 
applying results from group decision theory to the study of nonmono- 
tonic reasoning. The connection suggested here between Doyle's 
understanding of default reasoning and a previously existing deontic 
logic seems to buttress the interpretation, and to indicate another 
direction in which it might be developed. 

The second point concerns deontic logic. Most attempts by deontic 
logicians to accommodate the phenomenon of moral conflict remain 
within the traditional modal framework, but simply rely on weaker, 
non-normal modal logics. For example, Brian Chellas [2, Sections 6.5, 
10.2] recommends the logic D, which results from supplementing 
ordinary classical logic with the rule schema 

ADB 

OA D OB 
and the axiom 

-'0' 
(where I stands for the universally false proposition). In fact, as van 
Fraassen points out, the system D provides a sound and complete 
axiomatization for the first of his two proposals concerning the 
evaluation of ought statements, described here in Section 2 as his initial 
suggestion. The relationship can be stated precisely as follows: where 
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J is a set of imperatives each of which is itself consistent, and B is an 
O-free formula, then OB is true with respect to J according to the 

initial suggestion if and only if OB can be derived in the logic D from the 
set {OA : !(A) E J}.8 

What this result shows is that, in a sense, the initial suggestion does not 
really move beyond what can be accomplished using familiar modal 
techniques: the background imperatives could just as easily be coded as 

ought statements, and then the other oughts generated by these 

imperatives derived in a well-defined modal logic. It is now necessary 
to ask whether van Fraassen's refined proposal, presented here in 

Definition 1, can likewise be subsumed using ordinary modal techniques. 
Is there some axiomatizable modal logic in which, when a set of back- 

ground imperatives is coded into ought statements, exactly the oughts 
generated by the refined proposal can then be derived? 

The answer to this question appears to be No - for according to 
the refined proposal, it is possible for a recursive set of imperatives 
to generate a set of ought statements that is not even recursively 
enumerable. Perhaps the simplest example of this results if we imagine 
a neurotic agent who feels that everything is imperative; his imperative 
set is thus J = {!(A) : A E }, where Y is his background language, 
which we can take as recursive. This imperative set maps into the 
default theory A = (0, {(: A/A) : A E x), which has as its extensions 

exactly the maximal consistent sets of Y-sentences. A formula B 

belongs to some extension of A, therefore, just in case B is a con- 
sistent f-sentence; and so it follows from Theorem 1 that a state- 
ment OB will be true with respect to f just in case B is consistent. But 
of course, if Y is a sufficiently rich language, such as that of first- 
order logic, the set of its consistent sentences will not be recursively 
enumerable.9 

As we recall, van Fraassen's initial suggestion for accommodating 
moral dilemmas, which can be case naturally as a modal logic, 
yields unintuitive results in certain cases. The refined proposal, which 

appears to be correct, can be interpreted in a natural way within 
default logic - a particular nonmonotonic formalism - but not, it seems, 
within modal logic. What this suggests, most generally, is that certain 

techniques developed within the field of nonmonotonic reasoning can 
be used to provide a theoretical framework superior in some ways to 
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the usual modal framework for studying the logic of conflicting 
obligations. 

5. CONDITIONAL OUGHTS 

So far we have been concerned only with simple (categorical) oughts. 
According to van Fraassen's theory, these are engendered by simple 
imperatives, interpreted here as prerequisite-free default rules. In this 
section, we turn our attention to conditional oughts. 

Unfortunately, van Fraassen does not actually present in [26] a 
finished account of conditional oughts. As we have seen, he sets out 
in his paper two accounts of simple oughts - a preliminary version 
that grounds these oughts in imperatives, and then a refined version 
incorporating the idea that it is best to satisfy as many imperatives as 
possible. Only the preliminary version is actually generalized to the more 
complicated topic of conditional oughts; these are now supposed to be 
founded on conditional (or hypothetical) imperatives. Nevertheless, by 
analogy with the treatment of simple oughts, we can see how this 
preliminary account of conditional oughts can be refined to include the 
idea of satisfying maximal sets of conditional imperatives; and it turns 
out that the refined theory is again interpretable within default logic, 
with conditional imperatives taken as default rules containing non-trivial 
prerequisites. 

Conditional oughts will be represented here in the standard way; a 
statement of the form 'It ought to be that A, given B' is symbolized 
O(A/B). We use analogous notation to represent conditional 
imperatives; for example, the imperative 

If you go to the Everglades, watch out for alligators 

might be represented as !(WIE). A conditional imperative of this kind 
can be fulfilled or violated only in those situations in which its antecedent 
is satisfied; if its antecedent is satisfied, the imperative is said to be 
fulfilled if its consequent is also satisfied, and to be violated otherwise. 

Now according to the preliminary treatment of simple oughts, as we 
recall, a proposition is obligatory if it is a necessary condition for 
satisfying some single imperative: where J is the background imperative 
set, OA is supposed to be true with respect to f if there is some 



52 JOHN F. HORTY 

imperative !(B) in f for which I BIJ c JA. In generalizing this treatment 
to the conditional case, van Fraassen allows the imperative set f to 
contain conditional as well as simple imperatives, and he defines a for- 
mula O(A/C) to be true with respect to J just in case there is some 
imperative !(B/C) belonging to f such that ICI n JBI C IAl. The idea 
behind these modifications is this: in evaluating a conditional ought 
statement, we restrict our attention to those situations satisfying its 
antecedent; the statement is then true whenever, within this restricted 

range of situations, satisfying the consequent of the ought is a necessary 
condition for fulfilling some imperative whose antecedent matches that 
of the ought. Notice that, if we interpret both simple oughts and simple 
imperatives as themselves conditional upon the universally true T, this 

preliminary account of conditional oughts absorbs the preliminary ac- 
count of simple oughts as a special case. 

It is important to emphasize that according to this treatment, when we 
evaluate conditional oughts, we are supposed to consider only those 

imperatives governed by identical conditions, in evaluating an ought of 
the form O(A/C) we are supposed to consider only those imperatives of 
the form !(B/C). The aim of this restriction, evidently, is to bring into 

play exactly the right set of background imperatives, allowing us to avoid 
false conflicts. For example, suppose that an agent is subject to the im- 

peratives 

Don't eat with your fingers, 
If you are served asparagus, eat it with your fingers.10 

We represent these here through the imperative set 

f3 = {!(--F),!(F/A)}. According to the theory as it stands, only the 
second of these imperatives is considered in evaluating an ought condi- 
tional on the assumption that the agent is served asparagus; the first is 

ignored. Because of this, O(F/A) is true with respect to f3, but 

O(--F/A) 
is false. If we were to relax this restriction and consider the 

entire imperative set, both of these formulas would be true; these 

imperatives would then lead to a conflict under the assumption that the 

agent is served asparagus. 
Let us see how to arrive at a refined version of the preliminary treat- 

ment presented so far of conditional oughts. In the case of simple oughts, 
van Fraassen refines his preliminary account by introducing the notion 
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of score - the set of imperatives fulfilled in some situation - and then 
classifying a proposition as obligatory if it is a necessary condition for 
achieving some maximal score. Since in evaluating a conditional ought 
we are supposed to be concerned only with those imperatives governed 
by the same condition, this concept of score must be modified. The new 
notion is 

scorej,a(a) = {!(A/C) E J: ICI = IBI and a 
= 

A}, 

which gives the score of a situation a relative to (the proposition ex- 
pressed by) a condition B. Using this new notion of score, the valuation 
rule for conditional oughts can be presented as follows. 

DEFINITION 4. The formula O(A/B) is true with respect to the 
imperative set f if and only if either IBI = 0 or there is some 
a E IBI n IAI for which there is no / E IBI n f-AI such that 
scoreJf,B(a) C score1, B(). 

The idea here is that a conditional ought is true just in case either the 
antecedent is impossible, or assuming the antecedent to be true, the 
consequent is a necessary condition for achieving an antecedent-relative 
maximal score. Again, if we imagine that simple oughts and imperatives 
are themselves conditional on T, this definition yields the earlier 
Definition I as a special case. 

As with simple oughts, the interpretation of this refined theory 
into default logic is straightforward. We first associate with each 
imperative set J a default theory A = (V, 3), where W" = 0 
and . = {(B: A/A) : !(A/B) E f}. So far this is only a slight 
generalization of the earlier interpretation of simple imperatives, treating 
the antecedents of conditional imperatives as prerequisites of the 
associated default rules. It is also necessary, however, to accommodate 
the fact that, in evaluating a conditional ought of the form O(A/B), we 
are supposed to look only at those situations in which B is true, and we 
are supposed to consider only those imperatives themselves conditional 
upon B. What this suggests is that we should relate such a conditional 
ought, not directly to the extensions of A, but instead to extensions 
of the theory A[B] = (W4[B], [B]), where W'[B] = U {fB} and 
![B] = {(C: A/A) E : ICI = IBI}. The formula B is true in each 
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extension of A[B], and these extensions are sensitive only to those default 
rules whose prerequisites are equivalent to B. 

The relation between default logic and the account in Definition 4 of 
conditional oughts can now be stated. 

THEOREM 2. Where A is the default theory associated with the 
imperative set f, the formula O(A/B) is true with respect to f if and 
only if A E for some extension o of A[B]. 

The proof of this theorem is just a slightly more complicated version of 
the argument behind Theorem 1, and it will not be given here. The only 
important fact to note in developing the argument is that, like the 

prerequisite-free default theories considered earlier, theories of the form 

A[B] also satisfy the restrictions of Lemma 1, and so their extensions can 
be characterized as explained there. 

6. PROBLEMS WITH CONDITIONAL OUGHTS 

Although Theorem 2 establishes the relevant correspondence between 
default logic and the refined theory of conditional oughts suggested by 
van Fraassen's paper, this result has, I feel, less interest than the 
earlier Theorem 1. The reason for this is that, while the analysis of 

simple oughts underlying the earlier theorem appears to be sound, its 

generalization to conditional oughts is problematic. 
It is easy to see the problem. As we recall, in evaluating a conditional 

ought of the form O(A/B), we are supposed to consider only those 

imperatives themselves conditional upon B. The point of this restriction 
is to avoid false conflicts: in the asparagus example, 

3 = {!(--F), !(F/A)} above, the restriction allowed us to avoid con- 

cluding O(-iF/A) along with the desired O(F/A). It turns out, however, 
that the restriction is too severe, as we can see by supplementing our 

simple etiquette with one additional imperative: 

Put your napkin on your lap. 

Let us take 4 = f3 U {!(N)} as the new imperative set. Intuitively, we 
would want an agent to conclude from these imperatives that he should 

put his napkin on his lap even when he is eating asparagus. But the 
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theory does not give us this result; O(N/A) is false with respect to 14. 
Because the new imperative !(N) is not itself explicitly conditional upon 
A, it disappears from consideration as soon as we assume that the agent 
is served asparagus. 

This problem can be seen as an instance of a general dilemma involved 
in evaluating a conditional ought on the basis of imperatives. If we 
consider only those imperatives explicitly triggered by the special con- 
ditions of the ought, then we lose track of the more general imperatives 
that should apply even under these special conditions. On the other 
hand, we cannot evaluate a conditional ought against the entire set of 
background imperatives considered uniformly, because we want those 
imperatives explicitly triggered by its special conditions to override more 
general imperatives in case of conflict. 

It is worth pointing out that this problem appears to be very general, 
and not dependent upon the particular mechanisms used here for 
relating imperatives to conditional oughts. In fact, the problem does not 
even depend upon the idea that oughts are grounded in imperatives, but 
can be stated entirely in the language of a dyadic deontic logic. 

To see this, we can code the imperatives from A4 into statements 
of conditional obligation; representing unconditional imperatives as 
oughts explicitly conditional upon T, this gives us as premises the three 
formulas 

O (-,F/T), 
0 (F/A), 

0 (N/IT). 
From these premises, we wish to derive the statement O(N/A), but 
not the statement O(-,F/A). It seems that the only way to derive 
O(N/A) is by strengthening the antecedent of the third premise; any 
theory that simply rules out this kind of strengthening - such as the kind 
of logics surveyed in Lewis [16], for example - will not allow us to derive 
this conclusion. On the other hand, a system that admits a rule of the 
form 

O(P/Q) 
O(P/Q A R), 
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allowing unrestricted strengthening in the antecedent, will incorrectly 
yield O(-'F/A) from the first premise. What is needed, apparently, is a 
certain amount of strengthening, but not too much: we want to allow 
oughts formulated explicitly only for general circumstances to apply also 
by default in more specific situations, unless they are overridden in those 
situations. As far as I know, there is no standard philosophical logic that 
exhibits this behavior."1 

Let us turn now to look at the dilemma concerning conditional oughts 
that we have been considering from the standpoint of default logic; as we 
will see, problems of this kind have already been confronted within that 
framework. 

We begin by formulating the default theory associated with the 

imperative set J4; this theory is A7 = 
("x7, 

97), where #* = 0 and 

-7 = {(: 
-,F/-,F), 

(A : F/F), (: N/N)}. Now according to the analysis 
underlying Theorem 2, an ought statement conditional upon A is 

supposed to be true against the background of this theory if the conse- 

quent of that statement belongs to some extension of A7[A] = 
({A}, 

{(A : F/F)}) - the default theory arrived at from A7 by assuming A true, 
and then attending only to those default rules that are themselves 
conditional upon A. This conditioned theory A7 [A] has Th[{A, F}] as its 

only extension. So if we adopt this approach, there is no conflict between 
the statements O(F/A) and O(--F/A); only the first is true, since we 

ignore the default rule that would have given rise to the second. How- 
ever, we also ignore the default rule that would have supported O(N/A), 
and the statement is false. This choice corresponds to the first branch of 
our dilemma. 

To see the second branch, suppose that we decide to modify A7 
somewhat differently in evaluating statements conditional upon A. 
Instead of assuming A true and then trimming off the default rules 
without A as prerequisite, we assume A true and leave the set of 
default rules unchanged, considering them all uniformly. This leads to 
the theory ({A}, 7), which has two extensions: Th[{A, F, N}] and 

Th[{A, --,F, N}]. Since N belongs to some extension of this theory (both 
of them, in fact), we are now able to conclude that O(N/A) is true. 

However, we are also forced to conclude that both O(F/A) and 

O(-F/A) hold, since F and -F are each true in some extension; the false 
conflict is reintroduced. 
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Apparently, what is needed in order to resolve this dilemma is a way of 
representing and attending to all the background imperatives at once, 
while still allowing some to override others. As it turns out, a similar 
problem arose early on in the use of default logic for representing 
ordinary defeasible information. The problem, which was first noticed 
by Reiter and Criscuolo [21], grew out of the attempt to provide a 
reasonable formalization within default logic of knowledge bases such as 
the following: 

Tom is a bat, 
All bats are mammals, 
Bats usually can fly, 
Mammals usually can't fly. 

The most straightforward representation of this information gives us 
As = 

(Wxs, 98), with 
x8 

= {Bt, Vx(Bx D Mx)} and 98 = {(Bt : Ft/Fl), 
(Mt : 

-,Ft/-,Ft)}. 
This theory uses normal default rules - rules whose 

justifications and consequents match - to represent the instantiations for 
Tom of the generic truths that bats can fly and that mammals cannot. 
Since the normal representation places the two conflicting defaults on a 
par, the theory leads to two extensions: Th[#8 U {Ft}] and Th[W8aU 
{-nFt}]. But this result is intuitively undesirable; only the second of these 
two extensions is legitimate. In contrast to the earlier Nixon example, 
there seems to be a reason here for preferring one of these two defaults 
over the other. Since bats are a particular kind of mammal, it seems that 
default information about bats should override conflicting default infor- 
mation about mammals in general. 

In order to avoid unwanted extensions like these, Reiter and Criscuolo 
began to study some more general techniques for representing generic 
statements within default logic, without restricting themselves only to 
normal default rules. One of their most interesting proposals, applied to 
the example at hand, would involve replacing the rule (Mt : -Ft/-Ft) 
in the theory A8 with the new default (Mt : [-Ft A --Bt]/-Ft). This 
new rule belongs to the class of semi-normal defaults - those whose 
justifications entail their consequents. The replacement does have the 
effect of eliminating the unwanted extension; the new default is no 
longer applicable, since its justification is inconsistent with any set 
including '#'. However, the new, semi-normal default no longer seems 
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like an instantiation for Tom of the generic statement that mammals 
usually cannot fly, but instead, of a statement like 

Mammals usually can't fly, unless they're bats, 

which explicitly mentions a class of exceptions. 
This idea of avoiding unwanted extensions by coding exceptions 

explicitly into semi-normal default rules can be applied also in the present 
domain, where the default rules are supposed to represent imperatives. 
Returning to our example, let us take q' as the set of defaults resulting 
from q7 when the normal rule (: -iF/-nF) is replaced with the semi-normal 
rule (: [-IF A -nA]/- F), which represents an imperative like 

Don't eat with your fingers, unless you're served 

asparagus; 

and let us take A' = 
(-7, q') as the default theory associated with the 

imperative set A4. We now get the right conditional oughts from this 
default theory by following the second branch of the dilemma set out 
above. To see if an ought statement conditional upon A is true with 

respect to A', we see if its consequent belongs to any extension of 

({A}, 9) - the theory that results from A', by assuming A true but 

attending to all of the defaults in .9'. This theory has Th[{A, F, N}] as 
its only extension; and so O(F/A) and O(N/A) are both true as desired, 
but O(-nF/A) is false. 

When default rules are taken to represent imperatives, in fact, the 

strategy of incorporating exceptions explicitly into these rules is 
reminiscent of some ideas found in the early work of R. M. Hare. In 
Section 4.3 of [13], for example, Hare presents a picture according to 
which we are supposed to be guided in much of our action, moral and 

otherwise, by principles analogous to the imperatives discussed here; 
but he imagines that these principles would be heavily laden with 

qualifications. Much of the process of learning to act properly is 

supposed to involve getting the qualifications right. Initially, we learn 

very general principles, such as 

Signal before you stop or turn the car. 

But as our range of activity becomes more varied and sophisticated, 
these initial principles are supposed to be modified in a way that yields 
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more complex precepts like 

Signal before you stop or turn the car, except in an 
emergency. 

On Hare's view, we become competent actors in a given domain 
(becoming a good driver is the example he uses) once we have picked up 
the appropriately modified set of principles and practice them habitually. 

It seems, then, that the problem of deriving the right conditional 
oughts from a set of background imperatives might be solvable if we 
were able to require that the imperatives should be properly qualified to 
account for exceptional circumstances; and this strategy for achieving a 
solution has historical precedents elsewhere in moral theory. Is it the 
right strategy? 

We can shed some light on this question by focusing again on the 

problem of exceptions to defeasible generalizations as it arises in 
knowledge representation. Here, the strategy of endcoding these 
exceptions explicitly into semi-normal defaults has been subject to 
serious criticism - most notably by David Touretzky [22]. He objects to 
the idea for two reasons. First, any working knowledge representation 
system must have the ability to accommodate updates in some simple 
way. However, if exceptions to generic statements were to be listed 
explicitly in defaults, then as new information is added to a knowledge 
base, the default rules themselves would have to be continually modified 
in order to reflect the new exceptions introduced; and this would make 
the update operation far too difficult. Second, the number of exceptions 
to most generic truths is substantial, and so the resulting defaults would 
be unwieldy. 

These objections of Touretzky's are powerful, and for the most part 
they have been accepted by researchers in the field in knowledge repre- 
sentation and nonmonotonic reasoning. However, the objections do rest 
on a framework of critical assumptions appropriate for work in artificial 
intelligence: they are grounded in the idea that a logical formalization is 
to be evaluated, ultimately, by its prospects for helping us to construct, 
or at least understand, a workable implementation. Since it is not 
obvious that work in deontic logic should be judged by these same 
standards, it is hard to see exactly how Touretzky's objections to the 
explicit exceptions approach in knowledge representation might bear 
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upon the analogous proposal in normative theory. Perhaps we should 
agree with the early Hare that the imperatives guiding our action in any 
realistic range of situations must be extensively qualified. And it is per- 
haps too much to expect that the process of incorporating a new moral 
principle into our background imperative set should be as simple as 

updating a knowledge base. 
Nevertheless, it does not seem that these objections of Touretzky's 

can simply be dismissed in the case of imperatives. As for the first 
criticism concerning updates, this leads to other problems even when 
implementational issues are put aside. The idea that the formalization of 
some particular imperative might have to be modified as new imperatives 
are introduced, so that its proper rendering would vary depending on 
the imperative set in which it is embedded, suggests a holistic represen- 
tational strategy that at least some people find objectionable.12 And as 
for the second objection, concerning the complexity of the default rules 

resulting from the explicit exceptions approach, there are, in fact, good 
reasons for thinking that the moral principles guiding our everyday 
actions should be simple. Some of these reasons are brought out, 
surprisingly, in Hare's own later work, such as Chapter 2 of [14]. There, a 
distinction is drawn between the intuitive or everyday level of moral 

thinking and a more critical or reflective level. Hare allows that moral 

principles operating at the critical level can be of unlimited complexity, 
but he argues that the intuitive principles governing our everyday moral 
life must be relatively straightforward and free of qualification. The most 

persuasive of his arguments are based on psychological considerations 
about the limitations on our ability to learn extremely complicated moral 

principles, or to apply them effectively in the kind of situations that call 
for everyday moral decisions. 

Although the issues involved are complicated, I feel that Touretzky's 
objections to the idea of encoding exceptions explicitly into defaults 
are sufficiently compelling - even when those defaults are supposed 
to represent imperatives - that we should seek another strategy for 

resolving the dilemma described here concerning conditional oughts. 
Fortunately, a good deal of research within the field of nonmonotonic 

reasoning has recently been devoted to the project of developing 
alternatives to the idea of encoding exceptions explicitly within 
defaults.'" The work is diverse, and it is dangerous to generalize; but 
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very roughly, the aim of this research is to articulate broadly applicable 
principles on the basis of which one default should override another. It is 
hoped that these principles might somehow be incorporated into the 
logic, allowing individual defaults to be represented more simply. 

Because of the positive correspondence established in this paper 
between deontic and nonmonotonic logics, and because of the similar 
problems faced by each in the treatment of exceptional information, it 
seems reasonable to expect that some of the general techniques for 
handling exceptions currently being explored within nonmonotonic 
reasoning might apply also to the analogous problems in deontic 
logic - allowing us, for example, to derive the right conditional oughts 
from a set of background imperatives, while keeping the representation 
of imperatives simple. In this way, nonmonotonic logics may provide a 
new set of tools for understanding the logical aspects of prima facie 
obligation. 

7. CONCLUSION 

From a philosophical standpoint, the work presented here is based on 
van Fraassen [26]. The bulk of that paper is organized around a series of 
arguments against the assumption, built into standard deontic logic, that 
moral dilemmas are impossible; and van Fraassen only briefly sketches 
his alternative approach. His paper ends with the conclusion that "the 
problem of possibly irresolvable moral conflict reveals serious flaws in 
the philosophical and semantic foundations of 'orthodox' deontic logic, 
but also suggests a rich set of new problems and methods for such logic." 
My goal has been to suggest that some of these methods might be found 
in current research on nonmonotonic reasoning, and that some of the 
problems may have been confronted there as well. 

I have shown that nonmonotonic logics provide a natural framework 
for reasoning about moral dilemmas, perhaps even more useful than 
the ordinary modal framework, and that the issues surrounding the 
treatment of exceptional information within these logics run parallel to 
some of the problems posed by conditional oughts. However, there is 
also another way in which deontic logic might benefit from a connection 
to nonmonotonic reasoning. A familiar criticism among ethicists of work 
in deontic logic is that it is too abstract, and too far removed from the 
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kind of problems confronted by real agents in moral deliberation. It 
must be said that similar criticisms of abstraction and irrelevance 
are often lodged against work in nonmonotonic reasoning by more 
practically minded researchers in artificial intelligence; but here, at least, 
the criticisms are taken seriously. Nonmonotonic logic aims at a 

qualitative account of commonsense reasoning, which can be used to 
relate planning and action to defeasible goals and beliefs; and at least 
some of the theories developed in this area have been tested in realistic 
situations. By linking the subject of deontic logic to this research, it may 
be possible also to relate the idealized study of moral reasoning typical of 
the field to a more robust treatment of practical deliberation. 
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NOTES 

I Standard deontic logic is discussed from a historical perspective in Follesdal and Hilpinen 
[10]; it is presented from a more analytic point of view as the system KD in Chellas [2]. 
2 There is now a large literature on this topic, but a good sample of the conflicting positions 
can be found in Williams [27] and Donagan [4]. 
1 The relation between moral theory and the rules of thumb that guide everyday ethical 
decisions has recently been discussed by Dennett [3). 
4 The new proposal differs from the preliminary version also in its treatment of some 

pathological imperative sets. If the background imperative set happens to contain an 
inconsistent imperative, such as !(A A --A), then everything is obligatory according to the 

preliminary version, but on the refined analysis, this imperative has no effect on the agent's 
obligations. If the background imperative set is empty, then nothing is obligatory according 
to the preliminary version, but on the refined analysis the logical truths at least are 
obligatory. 
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s Many of the papers from this issue are reprinted in Ginsberg [ 11]. This collection contains 
also much of the most important work on nonmonotonic reasoning through 1987 and 
together with Etherington [8] currently serves as the best introduction to the field. 
6 The notion of presumption is discussed in detail by Ullman-Margalit [25], who argues 
that specific presumptions are justified by a mixture of probabilistic and "value-related" 
considerations, and cites the presumption of innocence as one in whose justification the 
value-related considerations seem to outweigh those of probability. 
7 As an example, let As = (* ',25), where 5'# = 0 and q5 = {(A : A/A)}, and let 
I = Th[{A}]. Then 4 and As satisfy (*), but the only extension of A5 is Th[0]. Interestingly, 
extensions cannot be characterized even as the minimal sets satisfying (*). To see this, take 
A6 = (*n, -6), where 6 = 0 and -4 = 95 U {(: -nA/A)}. Now 8 = Th[{A}] is a minimal 
set satisfying (*), but it is not an extension of A6; this theory has no extensions. 
8 The restriction of B to an O-free formula is necessary because truth with respect to 
imperatives does not allow nested oughts. The restriction that the individual imperatives of 
f must themselves be satisfiable can be dropped if we relate the initial proposal not to D 
but instead to the system EM, which results when the axiom -~O I is dropped from D. 
9 This argument shows that the relation set out in Definition 1 between imperatives and the 
ought statements they support cannot correspond to the consequence relation of an 
axiomatizable modal logic; but it is still conceivable that this relation between imperatives 
and their supported oughts might correspond to some modal consequence relation that can 
be defined only using semantic techniques. In fact, given the variety of semantically 
definable modal consequence relations, and the unlimited syntactic possibilities for coding 
imperatives using modal operators, I can think of no general reason why this should not be 
possible. However, the simple idea of coding each imperative of the form !(A) into a ought 
statement of the form OA will not work, at least in a logic whose consequence relation 
extends the classical consequence relation. In any such logic, the formula O(A A --A) 
would have to be a semantic consequence of O(A A 

--A), 
of course; but according to van 

Fraassen's refined proposal, the ought statement O(A A -nA) is not supported by any 
imperative set, even if it contains !(A A -A). 
'0 See Martin [18, p. 143]. 
1 It would seem to follow, for example, that the consequence relation associated with any 
such theory would have to be nonmonotonic. Suppose the formula O(F/A) were deleted 
from our premise set above. In that case, since the general injunction against eating with 
one's fingers is not explicitly overridden in the particular situation in which asparagus is 
served, it should apply here by default also; and so we would want to derive O(-nF/A). But 
with O(F/A) present as a premise, the general injunction is overridden; and so Q(-"F/A) is 
no longer acceptable as a conclusion. 
12 The strategy is holistic because individual default rules could not then be said to 
represent individual imperatives; at best, these default rules could be said to represent the 
meaning of an imperative only within a particular imperative set. The relation between the 
strategy of encoding exceptions explicitly into semi-normal defaults and holism about 
meaning is discussed more thoroughly in Horty [15]. 
13 Much of the research on this broad topic has been focused on two particular problems. 
The first is the task of reasoning with the kind of interacting generic statements found in 
defeasible inheritance hierarchies. This problem was first studied systematically by 
Etherington and Reiter [9] and by Touretzky [23]; recent surveys can be found in Touretzky 
et al. [24] and Horty [15]. The second problem, of more long-run importance, is the task of 
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resolving the kinds of difficulties first pointed out by Hanks and McDermott [12] about 
temporal projection and the frame problem. Several papers on this topic can be found in 
Section 5.3 of [11 ]. 
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