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Abstract

The purpose of this paper is to explore a new deontic operator for

representing what an agent ought to do; the operator is cast against the

background of a modal treatment of action developed by Nuel Belnap

and Michael Perlo�, which itself relies on Arthur Prior's indeterministic

tense logic. The analysis developed here of what an agent ought to do

is based on a dominance ordering adapted from the decision theoretic

study of choice under uncertainty to the present account of action. It

is shown that this analysis gives rise to a normal deontic operator, and

that the result is superior to an analysis that identi�es what an agent

ought to do with what it ought to be that the agent does.
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1 Introduction

The purpose of this paper is to de�ne and explore a new deontic operator for representing

what an agent ought to do, a notion that must be distinguished from that of what ought to

be. This new operator is cast against the background of a modal analysis of agency developed

by Nuel Belnap and Michael Perlo� in a series of papers beginning with [3]. The general

approach to agency set out in these papers|which itself relies on a theory of indeterministic

time due to Arthur Prior|is sometimes described as stit semantics, because it concentrates

on a construction of the form `� (an agent) sees to it that A', usually abbreviated simply

as [� stit: A]. The goal is to provide a precise semantic account of this stit operator within

the overall logical framework of indeterminism.

As it happens, Prior's indeterministic temporal framework allows also for the introduction

of a standard deontic operator 
, meaning `It ought to be that : : : '. It is natural, therefore,

to explore the interactions between this standard deontic operator and the stit operator

representing agency; and it may seem reasonable to propose a logical complex of the form


[� stit: A]|meaning `It ought to be that � sees to it that A'|as an analysis of the notion

that seeing to it that A is something � ought to do. The motive for this analysis, of course,

is a philosophical thesis, advanced by some but disputed by others, according to which what

an agent ought to do can be identi�ed with what it ought to be that the agent does; a

proposal based on this identi�cation was investigated in [14], and defended there against

certain objections found in the literature.

In the present paper, I set out a new and powerful objection to the general idea of

identifying what an agent ought to do with what it ought to be that he does; and driven by

this objection, I propose a new analysis of what an agent ought to do. This new analysis is

based on a loose parallel between action in indeterministic time and choice under uncertainty,

as it is studied in decision theory. Very roughly, a particular preference ordering|a kind of

dominance ordering|is adapted from the study of choice under uncertainty to the present

account of action; it is then proposed that an agent ought to see to it that A whenever the

agent has available some action which guarantees the truth of A, and which is not dominated
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by another action that does not guarantee the truth of A. The primary technical point of

the paper is the demonstration that this new analysis of what an agent ought to do gives

rise to a normal deontic operator.

The paper is organized as follows. Sections 2 �rst reviews the theory of indeterministic

time. Against this background, Section 3 then develops a particularly simple version of

stit semantics, and Section 4 de�nes a standard deontic operator representing what ought

to be. Section 5 combines this standard ought operator with the simple stit operator to

yield a representation of what it ought to be that an agent does, and then sets out the

hypothesis that this notion can be taken as an analysis also of what an agent ought to

do. Section 6 is the heart of the paper: it sets out the objection to this previous analysis,

introduces a relation of dominance among actions, and then uses this dominance relation

to de�ne a deontic operator that captures a new analysis of what an agent ought to do.

Finally, Section 7 describes two ways in which this analysis might be generalized: �rst,

by focusing on strategies of action over time, rather than single actions; and second, by

exploring preference criteria other than the simple dominance ordering considered here.

2 Branching time

The theory of indeterminismunderlying the present work|introduced in Chapter 7 of Prior's

[19], and developed in more detail by Richmond Thomason in [22] and [24]|is based on

a picture of moments as ordered into a treelike structure, with forward branching repre-

senting the openness or indeterminacy of the future and the absence of backward branching

representing the determinacy of the past.

Such a picture leads, formally, to a notion of branching temporal frames as structures of

the form hTree; <i, in which Tree is a nonempty set of moments and < is an ordering on

Tree that is transitive, irre
exive, and that satis�es the treelike property according to which,

for any m1, m2, and m3 in Tree, if m1 < m3 and m2 < m3, then either m1 = m2 or m1 < m2

or m2 < m1. A maximal set of linearly ordered moments from Tree is a history, representing

some complete temporal evolution of the world. If m is a moment and h is a history, then
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Figure 1: Branching time: moments and histories.

the statement that m 2 h can be taken to mean that m occurs at some point in the course

of the history h, or that h passes through m. Of course, because of indeterminism, a single

moment might be contained in several distinct histories: we let Hm = fh : m 2 hg represent

the set of histories passing through m, those histories in which m occurs.

These ideas can be illustrated as in Figure 1, where the upward direction represents the

forward direction of time. This diagram depicts a branching temporal frame containing �ve

histories, h1 through h5. The moments m1 through m4 are highlighted; and we have, for

example, m2 2 h3 and Hm4
= fh4; h5g.

In evaluating formulas against the background of these branching temporal frames, it is

a straightforward matter to de�ne a notion of truth at a moment adequate for the truth

functional connectives, and even for the operator P representing simple past tense: the

de�nitions from standard (linear) tense logic su�ce. Since these frames allow alternative

possible futures, however, it is not so easy to understand the operator F, representing future

tense. Returning again to Figure 1, suppose that, as depicted, the formula A is true at m3

and at m4, but nowhere else. In that case, what truth value should be assigned to FA at

the moment m1?
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On the approach advocated by Prior and Thomason, there is just no way to answer

this question. Evidently, FA is true at m1|A really does lie in the future|if one of the

histories h2, h4 or h5 is realized; but it is false on the histories h1 and h3. And since, at

m1, each of these histories is still open as a possibility, that is simply all we can say about

the situation. In general, in the context of branching time, a moment alone does not seem

to provide enough information for evaluating a statement about the future; and what Prior

and Thomason suggest instead is that a future tensed statement must be evaluated with

respect to a more complicated index consisting of a moment together with a history through

that moment. We let m=h represent such an index: a pair consisting of a moment m and a

history h from Hm.

Since future tensed statements are to be evaluated at moments and histories together,

semantic uniformity suggests that other formulas must be evaluated at these more compli-

cated indices as well. We therefore de�ne branching temporal models as structures of the

form M = hF ; vi, in which F is a branching temporal frame and v is a valuation function

mapping each propositional constant from the background language into the set ofm=h pairs

at which, intuitively, it is thought of as true. Where j= represents, as usual, the relation

between an index belonging to some model and the formulas true at that index, the base

case of the truth de�nition for branching temporal models tells us simply that propositional

constants are true where v says they are:

� M;m=h j= A if and only if m=h 2 v(A) for A a propositional constant.

And the de�nition extends to truth functions, past, and future as follows:

� M;m=h j= A ^ B if and only if M;m=h j= A and M;m=h j= B,

� M;m=h j= :A if and only if M;m=h 6j= A,

� M;m=h j= PA if and only if there is an m0 2 h such that m0 < m and M;m0=h j= A,

� M;m=h j= FA if and only if there is an m0 2 h such that m < m0 and M;m0=h j= A.

As usual, we say that a formula is valid in some class of models if it is true at each index|in

this case, each m=h pair|of every model belonging to that class.
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It is easy to see that, as long as we con�ne ourselves to P, F, and truth functional connec-

tives, the validities generated by this de�nition in branching temporal models coincide with

those of ordinary linear tense logic, for the evaluation rules associated with these operators

never look outside the (linear) history of evaluation. However, the framework of branching

time allows us to supplement the usual temporal operators with an additional concept of

settledness, or historical necessity, along with its dual concept of historical possibility. Here,

2A is taken to mean that A is settled, or historically necessary; 3A, that A is still open as

a possibility. The intuitive idea is that 2A should be true at some moment if A is true at

that moment no matter how the future turns out, and that 3A should be true if there is

still some way the future might evolve that would lead to the truth of A. The evaluation

rule for historical necessity is straightforward:

� M;m=h j= 2A if and only if M;m=h0 j= A for all h0 2 Hm;

and 3A can then be de�ned in the usual way, as :2:A.

It is convenient to incorporate this concept of settledness also into the metalanguage: we

will say that A is settled true at a moment m in a model M just in case M;m=h j= A for

each h in Hm, and that A is settled false at m just in case M;m=h 6j= A for each h in Hm.

Once the standard temporal operators are augmented with these concepts of historical

necessity and possibility, the framework of branching time poses some technical challenges

not associated with standard tense logics, but it is also directly applicable to a number of

the philosophical presented by indeterminism. Details concerning both the technical issues

surrounding branching time and its philosophical applications can be found in Thomason

[24]; a more recent discussion of indeterminism occurs in Belnap and Green [2].

3 Agency

We now turn to the treatment of agency within this framework of branching time. Although

we follow Belnap and Perlo� [3] in its general approach, the particular account set out here

di�ers in detail, resulting in a stit operator that is simpler than that of Belnap and Perlo�
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and for certain purposes more natural. The present account derives most immediately from

[14].

Agents and choices

The idea that an agent � sees to it that A is taken to mean that the truth of the proposition

A is guaranteed by an action or choice of �. In order to represent this idea, then, we must

be able to speak of individual agents, and also of their actions or choices; and so the basic

framework of branching time is supplemented with two additional primitives, both drawn

from [3].

The �rst is simply a set Agent of agents, individuals thought of as making choices, or

acting, in time.

Now what is it for one of these agents to act, or choose, in this way? We idealize by

ignoring any intentional components involved in the concept of action, by ignoring vagueness

and probability, and also by treating actions as instantaneous. In this rare�ed environment,

the idea of acting or choosing can be thought of simply as constraining the course of events

to lie within some de�nite subset of the possible histories still available. When Jones butters

the toast, for example, the nature of his action, on this view, is to constrain the history to

be realized so that it must lie among those in which the toast is buttered. Of course, such

an action still leaves room for a good deal of variation in the future course of events, and

so cannot determine a unique history; but it does rule out all those histories in which the

toast is not buttered.

Our second additional primitive, then, is a device for representing the constraints that an

agent is able to exercise upon the course of history at a given moment, the actions or choices

open to him at that moment. Formally, these constraints are encoded through a choice

function, mapping each agent � and moment m into a partition Choicem� of the histories

Hm through m; and the idea is that, by acting at m, the agent � is able to determine a

particular one of the equivalence classes from Choicem� within which the future course of

history must then lie, but that this is the extent of his in
uence. Of course, in order for this

choice information to make any sense, we must require that any two histories in Hm that
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Figure 2: An agent's choices.

have not yet divided at m must lie within the same choice partition; the choices available to

an agent at m should not allow a distinction between two histories that do not divide until

some later moment.

If K is an equivalence class belonging to Choicem� , we speak of K as one of the actions, or

choices, available to � at m; and we let Choicem� (h) (de�ned only when h 2 Hm) represent

the particular action or choice from Choicem� that contains the history h. If K is one of the

actions available to � at m, we say that that � performs the action K at the index m=h just

in case h is a history belonging to K. It is important to notice that, as in the evaluation of

the future tense, all of the information provided by a full index is required in determining

whether an agent performs an action: it makes no sense to say that an agent performs an

action at a moment, but only at a moment/history pair. Finally, we speak of the histories

belonging to an action K as the possible outcomes that might result from performing this

action.

These concepts relating to choice functions can be illustrated as in Figure 2, which de-
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picts a frame containing six histories, and in which the actions available to the agent � at

three moments are highlighted. The cells at the highlighted moments represent the actions

available to � at those moments. For example, there are three actions available to � at

m1|Choicem1� = fK1;K2;K3g, with K1 = fh1; h2g, K2 = fh3g, and K3 = fh4; h5; h6g.

Because h1 and h2 are still undivided at m1, these two histories must fall within the same

partition there, and likewise for h4 and h5. The particular choice partition containing h5,

for example, is K3, and so we have Choicem1� (h5) = K3.

The agent � faces two choices at m2, but at at m3 he e�ectively has no choice: histories

divide, but there is nothing � can do to constrain the outcome. (It may be that the outcome

can be in
uenced by some other agent whose choices are not depicted here; or perhaps it

is something that just happens, one of nature's choices.) At such a moment, it would be

possible to treat the choice function as unde�ned for �; but it is easier to treat it as de�ned

but vacuous, placing the entire set of histories through the moment in a single equivalence

class.

Returning to the moment m1, we can say that � performs the action K1 at the index

m1=h2, for example, that he performs the action K2 at m1=h3, and that he performs the ac-

tion K3 at m1=h6. Again: since the agent performs di�erent actions along di�erent histories

through the momentm1, it makes no sense to ask what action he performs at that moment.

Finally, we can speak of h4, h5, and h6 as the outcomes that might result from performing

the action K3, for example.

When the basic framework of branching time is supplemented with these additional prim-

itives, the result is a stit frame of the form

hTree; <;Agent ;Choicei;

with Tree and < as before; and we can de�ne a stit model as a structure of the form

M = hF ; vi, in which F is a stit frame and v a valuation mapping each propositional

constant, as before, into a set of m=h pairs. It is these structures that provide the backdrop

for the current treatment of agency; the claim is that the structures are not just mathematical

curiosities, but describe|up to a legitimate idealization|the world in which agents act.
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The Chellas stit

The particular stit operator to be employed in this paper is described in [14] as the \Chellas

stit"|and represented there as cstit|because it is an analog in the present framework of

the agency operator �rst studied in Brian Chellas's [5].

The idea behind this cstit operator is simple: the statement [� cstit: A] is to hold at an

index m=h just in case � performs an action at m=h that guarantees the truth of A; the

action might result in a variety of possible outcomes, but the statement A must be true in

each of them. This idea leads to a particularly straightforward evaluation rule:

� M;m=h j= [� cstit: A] if and only if M;m=h0 j= A for all h0 2 Choicem� (h).

The rule is illustrated in Figure 3.1 Here, the statement [� cstit : A] is true at m=h1,

because the truth of A is guaranteed by the action that � performs at that index: A holds

at each m=h0 for each h0 belonging to Choicem� (h1). But [� cstit: A] is not true at m=h4, for

example. Even though the statement A itself happens to hold at this index, the action that

1A convention for interpreting �gures: when a formula is written next to some history emanating from

a moment, the formula should be taken as true at that moment/history pair. Thus, A should be taken as

true at m=h1 in Figure 3, for example, and :A as true at m=h3.
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� performs at m=h4 does not guarantee the truth of A.

In fact, this cstit operator is not the primary focus of [14]. Instead, that paper con-

centrates on another operator known as the \deliberative stit," represented as dstit, and

de�nable through the equivalence

[� dstit: A] � [� cstit: A] ^ :2A:

The dstit operator has certain advantages over the cstit operator in the treatment of agency;

for example, as shown in [14], it allows for an attractive analysis of the notion of refraining

from an action. Nevertheless, the cstit operator is simpler and more transparent, and it will

be best to concentrate on this operator in the present paper. To illustrate its simplicity, we

note that the cstit operator supports the principles

RE: A � B = [� cstit: A] � [� cstit: B];

N: [� cstit: >];

M: [� cstit: A ^B] � [� cstit: A] ^ [� cstit: B];

C: [� cstit: A] ^ [� cstit: B] � [� cstit: A ^B];

T: [� stit: A] � A;

5: :[� cstit: :A] � [� cstit: :[� cstit: :A]];

and is thus an S5 modal operator.2 By contrast, the dstit operator does not even satisfy the

analogue to M , let alone 5.

Ability

One bene�t of employing either the cstit or the dstit operator in the analysis of agency is

that, in either case, a natural treatment of ability lies close at hand. We can assume in

either case that an agent's ability (personal can-do) can be represented through a simple

combination of ordinary historical possibility (impersonal can) together with the appropriate

stit operator (personal to-do). In the present context, the result is an analysis according to

which the formula

3[� cstit: A]

2The labels for these principles are drawn from Chellas [6].

10



can be taken to expresses the claim that � is able to see to it that A.

This style of analysis runs contrary to a well-known thesis of Anthony Kenny's, who

argues in [15] and [16] that the logic of ability cannot be formalized using the techniques of

modal logic. Kenny follows G. H. von Wright in describing the `can' of ability as a dynamic

modality, and puts the point as follows: \ability is not any kind of possibility; : : :dynamic

modality is not a modality" [16, p. 226].

The central thrust of Kenny's argument is directed against attempts to represent the

`can' of ability as a possibility operator in a modal system with the usual style of possible

worlds semantics. Kenny claims that attempts along these lines are doomed to failure: any

natural possibility operator, he says, must satisfy the two schemata

T3: A � 3A;

C3: 3(A _ B) � :3A _ 3B;

and he argues persuasively that the `can' of ability does not satisfy either of these. As a

counterexample to the �rst, Kenny considers the case in which a poor darts player throws

a dart and actually happens, by chance, to hit the bull's eye; although this shows that it is

possible for the darts player to hit the bull's eye, it does not seem to establish his ability to

do so. As a counterexample to the second, Kenny imagines a card player who, because he

is able simply to draw a card, and all the cards are red or black, is able to draw either a red

or a black card; it does not follow that he is able to draw a red card, or that he is able to

draw a black card.

Our present analysis of ability escapes from this objection of Kenny's. The notion of

historical possibility involved in our analysis, as an S5 operator, does satisfy both T3 and

C3. However, it is not this possibility operator alone that is taken to represent ability, but

rather a combination of historical possibility and a stit operator; and the combination fails

to satisfy the analogous schemata: both

A � 3[� cstit: A];

3[� cstit: A _B] � :3[� cstit: A] _3[� cstit: B];

are invalid. We provide a countermodel only to the �rst, based on Kenny's darts example,

and depicted in Figure 4. Here, m is the moment at which � throws the dart; the cells

11
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belonging to Choicem� represent the possible actions or choices available to � at m; and the

formula A means that the dart will hit the bull's eye. Evidently, if the player throws the

dart and things evolve along the history h1, then the dart will hit the bull's eye, but this is

not a proposition whose truth the player has the ability to guarantee: although A is true at

m=h1, the formula 3[� cstit: A] is not.3

4 Oughts in branching time

Standard deontic frames

We begin our treatment of deontic logic by considering a standard way of incorporating the

deontic operator 
, representing `It ought to be that : : : ', into the framework of branching

time.4 Typically in deontic logic, this ought operator is interpreted against a background

3Another response to Kenny's argument from the point of view of modal logic is found in Brown [4]; the

relation between the present proposal and Brown's is discussed in [14].
4Our presentation follows the approach of Thomason [23]. Work along similar lines, but against the

background of a slightly di�erent temporal framework, had previously been carried out by Chellas [5],

Montague [18], and Scott [21]; historical details can be found in Thomason [24].
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set of possibilities, usually possible worlds. A number of these possibilities are classi�ed as

ideal, those in which things turn out as they ought to; and a sentence
A is then thought of

as true just in case A holds in each of these ideal possibilities|just in case A is a necessary

condition for things turning out as they ought to. In the context of branching time, the set

of possibilities at a momentm is identi�ed with Hm, the set of histories still available at m;

and a nonempty subset of these is taken to represent the ideal histories. A sentence of the

form 
A is then de�ned as true at an index m=h just in case A is true at m=h0 for each

history h0 from Hm that is classi�ed as ideal.

This picture can be captured formally by supplementing the stit frames described earlier

with a function Ought mapping each momentm into a nonempty subset Ought (m) of Hm;

the result is a standard deontic stit frame, a structure of the form

hTree; <;Agent ;Choice ;Ought i;

with Tree, <, Agent , and Choice as before. Where M is a standard deontic stit model|a

model that results from interpreting our background language against a standard deontic

stit frame|the evaluation rule for ought statements can be set out as follows:

� M;m=h j=
A if and only if M;m=h0 j= A for each h0 2 Ought (m).

Several logical features of the ought operator developed in this standard way are imme-

diately apparent from the structure of its evaluation rule. First, it is clear that this ought

is a normal modal operator|that is, an operator satisfying the principles

RE
 : A � B = 
A � 
B;

N 
 : 
>;

M 
 : 
(A ^B) � :
A ^
B;

C
 : 
A ^
B � 
(A ^B):

Second, because the set Ought (m) is nonempty, it is easy to see that the formula
A � 3A

is valid; this formula expresses one version of the characteristic deontic idea that ought

imples can|in this case: if it ought to be that A, then it can be that A. Finally, statements

of the form 
A, like statements of the form 2A, are always either settled true or settled

false.
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General deontic frames

Although the study of deontic logics has led the clari�cation of a number of problems involved

in normative reasoning, the topic is often viewed with indi�erence by researchers interested

in ethical theory more generally. Part of the reason for this, I believe, is the impression that

these logics are able to model only very crude normative theories|theories that can do no

more than classify situations, simply, as either ideal or non-ideal. However, while it is true

that standard deontic logics have concentrated on this simple classi�cation of situations, it

turns out that the underlying semantic framework can be generalized in a natural way to

accommodate a much broader range of normative theories.

In order to arrive at this generalization, in the present context of branching time, let us

now imagine that each history through a moment, rather than being classi�ed simply as

ideal or non-ideal, is assigned a particular value at that moment. These values, chosen from

some general space of values, are to represent the worth or desirability of the histories.

This change in perspective can be e�ected formally by replacing the primitive Ought in

the frames described above with a function Value that associates each moment m with a

mapping of the histories belonging to Hm into the set of values. Depending on the nature

of the particular normative theory that is being modeled, the values themselves can be

conceived of in di�erent ways, and subjected to di�erent ordering relations; but we will

asuume that the space of values is always at least partially ordered by�, so that Valuem (h) �

Valuem (h0) means that h0 has a value at m greater than or equal to that of h. The result

can be characterized as a general deontic stit frame, a structure of the form

hTree; <;Agent ;Choice ;Valuei:

In the environment of these new frames, the evaluation rule set out above for ought

statements must be abandoned, of course. But it is possible to de�ne a coherent ought

operator in this new environment by requiring that a statement of the form 
A should be

true at the index m=h whenever A is true along some history through m, and then true

also at every history through m of equal or greater value. Where M is a general deontic

stit model, resulting from the interpretation of our background language against a general
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deontic stit frame, this idea leads to the following evaluation rule:

� M;m=h j=
A if and only if there is some history h0 2 Hm such that (1)M;m=h0 j= A,

and (2) M;m=h00 j= A for all histories h00 2 Hm such that Valuem (h0) � Valuem (h00).

The new rule is similar in spirit to the previous version. In the new environment, we can

no longer think of 
A as true whenever A is a necessary condition for achieving an ideal

history, since we are no longer presented with a set of histories classi�ed as ideal; instead,

we think of 
A as true whenever A is a necessary condition for achieving a history whose

value is at least as great as some particular value.

It is easy to see that the general deontic framework presented here is, in fact, a conserva-

tive generalization of the standard deontic framework set out earlier: any standard deontic

stit model can be coded into a general deontic stit model in such a way that the same set of

ought statements is supported. Suppose that we allow only the two values 0 and 1, ordered

so that 0 � 1. We can then map each standard deontic stit model into a general deontic

stit model just like the standard model, except that at each moment it assign the value 1 to

those histories that the standard model classi�es as ideal, and the value 0 to those histories

that the standard model classi�es as non-ideal. More exactly, whereM is a standard deontic

stit model, we letM0 be a model just likeM, except that Value
m
(h) = 1 inM0 just in case

h 2 Ought (m) inM, and Valuem (h) = 0 otherwise. It is then a simple matter to verify that

a statement 
A will hold in the general deontic model M0 at an index m=h according to

our new evaluation rule just in case 
A holds in the standard modelM at the same index

m=h according to the previous evaluation rule.

In addition to encoding the information provided by the standard deontic case, however,

general deontic stit frames can be used also to represent normative theories that allow for

more than two values, and in which the ordering among values is more complex. The most

prominent of these, of course, are utilitarian theories, which take as their space of values a

set of utilities usually thought of as isomorphic to the real numbers. In the present context,

these theories can be represented through general deontic stit frames in which the function

Value associates with each history passing through a moment, as its value, a real number

15
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A and :
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representing the utility of the history at that moment, and in which the space of values, or

real numbers, is subject to its usual ordering. Let us de�ne structures of this kind|general

deontic stit frames in which the values are real numbers under their usual ordering|as

utilitarian stit frames, and the models based on these as utilitarian stit models. We will

concentrate on utilitarian models throughout the remainder of the paper.

In depicting these utilitarian stit models, we mark each history through a moment with a

number corresponding to its utility at that moment. Thus, Figure 5, for instance, represents

a situation in which, at the moment m, the histories h1, h2, h3, and h4 are taken to possess

the utilities 5, 0, 7, and 10, respectively. As a result, we can see that the formula 
A is

settled true at m in this situation, since A holds in h3 and at each history at least as valuable

as h3. The formula
B, however, is settled false, since for each history in which B is true,

there is a history of equal or greater value in which it is false. A more complicated situation

is depicted in Figure 6. Here, we are faced with an in�nite number of histories (h1, h2, h3,

: : : ) of ever increasing value (1, 2, 3, : : : ); the formula A is true at the history hi when i is
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odd, and false when i is even; and the formula B is true at hi when i is greater than 3, and

otherwise false. As a result, we can see that 
A is settled false at m, since for each history

in which A is true there is a history of equal or greater value in which it is false; but 
B is

settled true, since B is true at all histories at least as valuable as h4.

Although we concentrate in this paper on utilitarian models, I do wish simply to mention

that the general deontic framework developed here is able to accommodate even more radical

departures from standard deontic logic. In the utilitarian case, although there are a variety

of di�erent values, these values still stand in a linear ordering; but our general framework

would allow us to represent theories in which even the assumption of a linear ordering

among values is dropped. As an example, consider the approach to deontic logic described

by Bas van Fraassen in [25]. Rather than de�ning oughts against a background set of ideal

situations, van Fraassen postulates a background set of imperatives, possibly con
icting; an

ought statement is then taken as true if it is is entailed by some maximal consistent subset

of these imperatives. Of course, if the background set of imperatives does happen to contain

con
icting but individually consistent statements|say, A and :A|then it will support the
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truth of con
icting oughts of the form 
A and 
:A.

This idea could be incorporated into the present environment by supposing that each

momentm is associated with a separate set I(m) of imperatives|a set of formulas, possibly

con
icting, each of which is taken to represent a statement that \ought" to hold at m. Let

us now suppose that Valuem (h) is de�ned as the set of imperatives from I(m) that are true

at the index m=h, so that the value assigned to a history at a moment represents the subset

of those imperatives operative at that moment that are ful�lled in that history. Since it is

better to satisfy more imperatives than fewer, we can take these values as ordered by subset

inclusion, so that Valuem (h) � Valuem (h0) just in case Valuem (h) � Valuem (h0). It then

turns out, as noted in [12], that the oughts generated by our new evaluation rule coincide

with those supported by van Fraassen's own de�nition.

Returning to our new deontic evaluation rule, we can see that the ought operator it de�nes

in general deontic stit models shares many of the logical properties of the operator de�ned

by the previous evaluation rule in standard deontic stit models. It should be apparent, for

example, that the characteristic deontic formula 
A � 3A is valid in the class of general

deontic stit models, and also that any statement of the form 
A is always either settled

true or settled false. In addition, it is easy to verify that the principles RE
, N
, and

M
 listed earlier are valid in general deontic models. But if we consider the entire class

of general deontic models, then it turns out that the ought operator de�ned by our new

evaluation rule is not a normal modal operator, for the underlying space of values might be

ordered in such a way that instances of C
 are falsi�ed. An example is provided by those

general models mentioned above that are designed to represent the theory of van Fraassen

[25]: the formula


A ^
:A �
(A ^ :A)

will be false at any index at which both 
A and 
:A are true.

In the present paper, however, we focus on utilitarian stit models, and in these models,

the underlying space of values is subject to a linear ordering: for any histories h and h0

from Hm, we have either Valuem (h) � Value
m
(h0) or Value

m
(h0) � Value

m
(h). It is easy to

see that the schema C
 is valid in any general deontic stit model in which the underlying
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space of values is subject to a linear ordering; this fact is established as Proposition 1 in

the Appendix. Thus, as long as our attention is restricted to the class of utilitarian stit

models, the ought operator de�ned by our new evaluation rule is a normal modal operator,

satisfying C
 as well as RE
, N
, and M
.

5 Ought to do: the Meinong/Chisholm analysis

The utilitarian theory of oughts sketched so far is impersonal, an account of what ought to

be. According to this theory, it makes perfect sense to say, for example, that it ought not

to snow tomorrow; this means, simply, that there is some history in which it does not snow

tomorrow, and that it fails to snow also in any history at least as valuable as that one. There

is no implication that anyone ought to see to it that it does not snow, or that anyone can do

this. However, just as we analyzed the idea of an agent's personal ability earlier through a

combination of ordinary, impersonal possibility and a stit operator, we might hope to arrive

at an account of what an agent ought to do in the same way: by combining a stit operator

with our impersonal account of what ought to be, we might attempt to analyze what an

agent ought to do as what it ought to be that he does.

The idea of analyzing what an agent ought to do as what it ought to be that he does was

advanced by a number of Austrian and German writers toward the beginning of the century,

notably Meinong and Nicolai Hartmann; and the strategy has been explicitly endorsed by

at least one contemporary: Roderick Chisholm suggests in [7, p. 150] that \S ought to bring

it about that p" can be de�ned as \It ought to be that S brings it about that p."5 In

developing this idea, Chisholm relies on his own treatment of what ought to be, in terms

of requirement, and on a simple modal analysis of action that can be found already in the

writings of St. Anselm. The same general strategy was studied in some detail in [14], which

relied on the dstit operator for its treatment of agency, and on the account of what ought to

be provided by standard deontic stit models; but in this paper, we will instead employ the

cstit operator and the more general, utilitarian approach to what ought to be. The result is

5Chisholm's paper contains a reference to Hartmann's work; a recent discussion of Meinong's proposal

can be found in Garc��a [8].
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A without 
[� cstit: A].

the proposal that a formula of the form


[� cstit: A]

can be taken to express the claim that � ought to see to it that A.

This proposal gives us a picture according to which what an agent � ought to do at a

particular momentm is determined by the way in which the histories of di�erent value �lter

through the Choicem� partition. Consider, for example, the situation depicted in Figure 7.

Here, 
A is settled true at m. However, 3[� cstit: A] is settled false: although A ought to

hold, there is nothing that � can do about it. Since, as we have seen, any statement of the

form
B � 3B is valid in utilitarian models, we know that


[� cstit: A] � 3[� cstit: A];

or that obligation implies ability: whenever it is true that � ought to see to it that A, he

must be able to do so. Because � is unable at m to see to it that A, we can thus conclude

that 
[� cstit: A] is settled false there as well. By contrast, Figure 8 depicts a situation in

which 
[� cstit : A] is settled true: [� cstit : A] holds at m=h1, and also at m=h00 for each

history h00 from Hm whose utility is at least as great as that of h1.
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Although, according to this analysis, a statement of the form 
[� cstit: A] results from

appending the generally applicable operator 
 to the formula [� cstit: A], it is still possible

to focus on the logically complex connective
[� cstit: : : :], and to investigate its properties.

It is then easy to see that this complex connective is a normal modal operator, satisfying

the principles

A � B = 
 [� cstit: A] � 
[� cstit: B];


[� cstit: >];


[� cstit: A ^B] � :
 [� cstit: A] ^
[� cstit: B];


[� cstit: A] ^
[� cstit: B] �
[� cstit: A ^B]:

6 Ought to do: a di�erent analysis

We have been considering a general approach, advocated by Meinong and Chisholm, ac-

cording to which what an agent ought to do is determined by what it ought to be that he

does. In the present framework, the formula
[� cstit: A] represents the idea that it ought

to be that � sees to it that A, and so according to the Meinong/Chisholm analysis, it is this

formula also that represents the idea that � ought to see to it that A.

In fact, this particular version of the Meinong/Chisholm analysis is surprisingly robust:
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as shown in [14], it is able to withstand many of the objections advanced by Peter Geach

in [9] and Gilbert Harman in [10] and [11, Appendix B] against the general strategy of

identifying what an agent ought to do with what it ought to be that he does. Nevertheless,

the proposal is vulnerable to another kind of objection. I refer to this objection as the

gambler's problem, and use it in this section to motivate a di�erent account of what an

agent ought to do.

The gambler's problem

Imagine that an agent � is faced with two options at the moment m: to gamble the sum of

�ve dollars, or to refrain from gambling. If � gambles, we suppose that there is a history in

which he wins ten dollars, and another in which he loses and comes away with nothing; but

of course, � cannot determine whether he wins or loses. If � does not gamble, we suppose

that he preserves his original stake of �ve dollars no matter how things turn out. Finally,

we suppose that the utility associated with each history at m is determined by the sum of

money that � possesses in that history. The situation can thus be depicted as in Figure 9.

Here, K1 represents the option of engaging in the gamble, and K2 the choice of refraining; A

represents the statement that � gambles, and h1 is the history along which � gambles and

wins.

It turns out that 
[� cstit : A] is settled true at m: the formula [� cstit : A] is true

at m=h1, and also, trivially, at m=h00 for each history h00 at least as valuable as h1. The

Meinong/Chisholm analysis of what an agent ought to do thus tells us unambiguously that,

in this situation, the agent ought to gamble: the most valuable history, with a utility of 10,

is that in which he gambles and wins, and it is a necessary condition for achieving this utility

that he should gamble. But this is a strange conclusion; for by gambling, the agent runs

the real risk of achieving an outcome with the utility of 0, while he is able to guarantee a

utility of 5 by refraining from the gamble. From an intuitive point of view, it appears to be

impossible to say whether the agent should gamble or not, at least without knowing the odds

of winning; and we should be suspicious of any theory that makes a de�nite recommendation

one way or the other.
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[� cstit: A], but not
J
[� cstit: A].

The problem presented by this situation seems to re
ect a real di�culty with the strategy

of identifying what an agent ought to do with what it ought to be that he does. Perhaps it

ought to be, in this situation, that the agent gambles; after all, this is what he does in the

ideal outcome, the outcome of greatest utility. Still, it does not seem to follow that gambling

is something the agent ought to do, since by doing so he risks attaining an outcome of less

utility than he could otherwise guarantee.

It might appear that this kind of problem could arise only in a general utilitarian setting,

with at least three di�erent values, since it seems to rely upon the possibility that one choice

might lead to outcomes both higher and lower in value than the intermediate outcomes

resulting from another choice. But a related problem can be seen in a pure deontic setting,

which represents outcomes as ideal or non-ideal through the assignment of only two values,

1 and 0. Consider the situation depicted in Figure 10, in which � again has two choices.

Again, this situation can be thought of as one in which the agent is faced with accepting or

refusing a gamble; and again, K1 represents the option of engaging in the gamble, and K2

the choice of refusing the gambling; A represents the statement that � gambles. In this case,
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however, the gamble is peculiar. If the agent accepts the gamble, we suppose he attains an

ideal outcome if he wins, and a non-ideal outcome if he loses; what makes the case peculiar

is that, here, the agent can guarantee an ideal outcome by declining the gamble.

It should be obvious that the gamble in this situation is not wise: why should the agent

risk a non-ideal outcome simply for the chance of achieving an outcome no greater in value

than one that he can guarantee by not gambling at all? Since the gamble is not wise, a

correct account of what the agent ought to do should tell us that the agent ought not to

gamble in this situation. But this is not the result of the theory that identi�es what an

agent ought to do with what it ought to be that he does: the statement 
[� cstit : :A] is

settled false at m, since for each history in which the agent refrains from gambling, there is

a history of equal value in which he gambles.

Let us return to the situation depicted in Figure 9. One natural way of reacting to

situations like this is to ask for additional information|in particular, probabilistic informa-

tion concerning the various outcomes that might result from the available actions. Suppose

that for each action K open to the agent � at m|each K belonging to Choicem� |we were
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provided with a probability distribution over the histories belonging to K, where the prob-

ability assigned to each history represented its chance of occurring should the agent choose

K. We could then de�ne the expected utility of an action K in the usual way, as the sum

of the values of the various histories belonging to K, with each value weighted by the the

probability assigned to its associated history. This introduction of expected utility would

provide us with a linear ordering in value, not only of the histories through a moment, but

of the actions themselves that are open to the agent at that moment. And it would then

be natural to appeal to this new ordering in de�ning what an agent ought to do: we could

suppose that in any given situation an agent ought to perform some one of those actions

open to him whose expected utility is maximal.

The approach just sketched does seem like a promising way to proceed when one possesses

the necessary probabilistic information concerning the various outcomes that might result

from an agent's actions; but in many situations, this kind of probabilistic information is

either unavailable or meaningless. In the literature on decision theory, a situation in which

the available actions might lead to their various possible outcomes with known probability is

characterized as a case of risk ; a situation in which the probability with which actions might

lead to their various possible outcomes is either unknown or meaningless is characterized as

a case of uncertainty. Is there anything coherent to say about what an agent ought to do

in these cases of uncertainty, when even probabilistic information concerning outcomes is

absent?

Dominance

In fact, the decision theoretic treatment of choice under uncertainty describes a variety of

ways in which preference orderings can be de�ned on actions as they are set out there; an

introduction to this literature can be found in Chapter 13 of Luce and Rai�a [17]. We proceed

in the present paper by adapting a particular one of these preference orderings, a dominance

ordering analogous to what Luce and Rai�a call \weak dominance," to the current framework

of action. Although the ordering to be de�ned here ignores the complexities involved in a

consideration of independent events and the actions of independent agents|both beyond
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the scope of the present paper|the simplicity of this ordering makes it especially attractive

as a starting point; a re�nement designed to accommodate independent events and agents

can be found in [13].

Suppose, then, that K and K 0 are actions open to the agent � at m|members of

Choicem� |and that they are related as follows: each history belonging to K 0 is at least as

valuable as any history belonging to K, and some history belonging to K 0 is more valuable

than some history belonging to K. In these circumstances, a principle sometimes described

as the \sure-thing" principle tells us that K 0 is a better set of outcomes, a better gamble,

than K: by selecting an arbitrary outcome from K 0, the agent is sure to do at least as well

as he would by selecting an arbitrary outcome from K, and he might do better.6

Let us now introduce the symbol � to represent the preference ordering on actions given

by the sure-thing principle. Where K and K 0 are actions open to an agent at m, we take

K � K 0

to mean that: (1) Valuem (h) � Valuem (h0) for each history h in K and each history h0 in K 0,

and (2) Valuem (h) < Valuem (h0) for some history h in K and some history h0 in K 0. When

K � K 0, we say that the action K 0 dominates the action K, and we note for future reference

that this dominance relation is transitive and asymmetric: if K � K 0 and K 0 � K 00, we can

conclude that K � K 00; and if K � K 0, it is impossible to have K 0 � K.

The dominance ordering among actions can be illustrated through our gambling examples.

In the situation depicted by Figure 9, we have neither K1 � K2 nor K2 � K1; neither of the

actions open to the agent is preferable to the other. In the case of Figure 10, however, we

do have K1 � K2, since in that situation it is better for the agent not to gamble.

A new deontic operator

As with expected utilities, this dominance ordering allows us to compare the actions them-

selves available to an agent at a moment, not merely the histories through that moment.

6A discussion of the sure-thing principle from a di�erent perspective can be found in Savage [20, Section

2.7].
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This new ordering is weaker than the ordering derived from expected utilities; for exam-

ple, it is not linear. Nevertheless, the dominance ordering is strong enough to support the

de�nition of a reasonable deontic operator representing what an agent ought to do. Let us

introduce the new, two-place operator
J
[: : : cstit: ], allowing us to construct statements

of the form
J
[� cstit: A];

with the intuitive meaning that � ought to see to it that A. The evaluation rule for this

new operator is:

� M;m=h j=
J
[� cstit : A] if and only if there is a history h0 2 Hm such that (1)

M;m=h0 j= [� cstit: A], and (2) Choicem� (h
00) � Choicem� (h

0) for each history h00 2 Hm

such that M;m=h00 6j= [� cstit: A].

And the idea underlying this rule is as follows. The formula
J
[� cstit : A] is to be true at

an index m=h whenever: there is a history h0 through m along which [� cstit : A] is true,

hence some action Choicem� (h
0) available to � that guarantees the truth of A, and which is

such that, if � does not guarantee the truth of A, it must be that the action he performs is

worse than Choicem� (h
0).

Having introduced this new deontic operator directly representing what an agent ought

to do, we abandon the Meinong/Chisholm strategy of attempting to explicate what an agent

ought to do as what it ought to be that he does. We continue to use the formula
[� cstit: A]

as a representation of the idea that it ought to be that � sees to it that A; but the distinct

idea that � ought to see to it that A is now carried by the new formula
J
[� cstit: A].

It should be clear that the new analysis gives us the correct results in our two gambling

examples. In the case of Figure 9, where it is appears to be impossible to conclude either

that the agent should gamble or that he should not, both
J
[� cstit: A] and

J
[� cstit: :A]

are settled false. In the case of Figure 10, where it seems that the agent should refrain from

gambling, the statement
J
[� cstit: :A] is settled true, as desired.

We now turn to some observations concerning the logic of our new deontic operator.
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Although perhaps apparent already, it is worth noting explicitly that the notion carried

by this new operator of what an agent ought to do is logically neither weaker nor stronger

than the notion of what it ought to be that he does, but incomparable: both the formulas


[� cstit: A] �
J
[� cstit: A];

J
[� cstit: A] � 
[� cstit: A]

are invalid in the class of utilitarian stit models. A countermodel to the �rst is provided

by Figure 9; a countermodel to (an instance of) the second is provided by Figure 10. It is

interesting to note, however, that if we limit our attention to the class of those utilitarian

stit models that can be taken to represent standard deontic stit models|those utilitarian

models in which the space of values is limited to 1 and 0, representing the ideal and non-ideal

histories|then the �rst of these two formulas is valid in this more restricted class; the fact

is established as Proposition 2 in the Appendix. Thus, while the notion of what it ought to

be that an agent does is incomparable in a general utilitarian setting to the notion of what

an agent ought ought to do, it is a logically stronger notion in a pure deontic setting.

Even in a general utilitarian setting, however, although the notion of what an agent ought

to do is incomparable to the notion of what it ought to be that he does, these two notions

are at least guaranteed not to con
ict: we will never come across a situation in which the

agent ought to see to it that A, although it ought to be that he sees to it that :A. This

guarantee is due to the validity of

:[
J
[� cstit: A] ^
[� cstit: :A]];

which is established as Proposition 3 in the Appendix.

It is clear from the structure of the evaluation rule for the new operator that any statement

of the form
J
[� cstit : A] is always either settled true or settled false; and also that the

characteristic deontic formula

J
[� cstit: A] � 3[� cstit: A]
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is valid. The new operator is, moreover, a normal modal operator, satisfying the principles

RE
J
: A � B =

J
[� cstit: A] �

J
[� cstit: B];

N
J
:
J
[� cstit: >];

M
J
:
J
[� cstit: A ^ B] � :

J
[� cstit: A] ^

J
[� cstit: B];

C
J
:

J
[� cstit: A] ^

J
[� cstit: B] �

J
[� cstit: A ^ B]:

Although, it is easy to establishRE
J
, N
J
, andM

J
, the veri�cation of C

J
is surprisingly

di�cult. The reason for this di�culty may become apparent if we recall that the proof of

validity provided in Proposition 1 for the analogous formula C
 relied crucially on the

assumption of linearity for the underlying ordering of values. The dominance ordering

on actions that �gures in the de�nition of our new deontic operator is not linear; but as

Proposition 5 of the Appendix shows, the validity of C
J

can nevertheless be established.

7 Hints at a general theory

The analysis set out here presents, I believe, a coherent theory of what an agent ought to do,

and one that improves on the Meinong/Chisholm idea of identifying what an agent ought to

do with what it ought to be that he does. There are, however, a number of ways in which

the theory as as it stands might be re�ned and generalized: I close simply by mentioning

two of these.

Strategies

First, the theory as it stands focuses only on a moment. It speci�es what an agent ought

to do at a moment entirely on the basis of the actions available to the agent at that very

moment, ignoring any actions that might be available later on. Of course, agents do not

usually con�ne their attention to momentary actions; more often, they work out plans of

action over intervals of time. Nevertheless, although a full account of what an agent ought

to do over some period of time would ultimately have to be richer than the momentary

theory presented here, it might seem that we could safely ignore the problems involved in

developing such a full account if we were willing to settle, at �rst, only for an accurate
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Figure 11:
J
[� cstit: A] settled false.

momentary account of what an agent ought to do. Unfortunately, this is not so: there are

situations in which, by concentrating only on a moment, ignoring the later actions available

to an agent, we are left with a distorted picture of what the agent ought to do even at that

very moment.

An example is provided by Figure 11, which depicts the options open to the agent � at

the moment m1, and then also at the later moment m2. At m1, the agent faces a choice

between K1 = fh1; h2g and K2 = fh3; h4g, and then at m2 a choice between K3 = fh1g and

K4 = fh2g. The histories h1 through h4 possess the values indicated, relative to both m1

and m2; and the statement A is true at the indices m1=h1, m1=h2, m2=h1, and m2=h2.

Now what should the agent do at the moment m1? Well, if we look at m1 alone, the

situation appears to be identical to that depicted in Figure 9, our �rst gambling example.

Neither of the actions K1 or K2 dominates the other, and so the theory as it stands cannot

recommend either action over the other. As a result, both
J
[� cstit: A] and

J
[� cstit: :A]

are settled false at m1.

From an intuitive point of view, however, this result is incorrect. The current situation
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is not like the earlier gambling example. In the present case, it is as if the agent could �rst

gamble, and then later on choose whether or not he is to win. If the agent selects the action

K1 at m1, he then faces at m2 the further choice between K3 and K4. By adopting the

strategy of �rst selecting K1 and then selecting K3, he can guarantee an outcome of value

10, the highest value that he can guarantee through any available strategy. Since K1 is

the action that � performs at m1 in the best strategy available, it appears|from this more

general perspective, which involves looking at later moments|that K1 should be classi�ed

as a better action than K2 even at m1, and therefore, that at m1 � ought to see to it that

A.

Of course, generalizing the notion of what an agent ought to do in this way|evaluating

present actions partly on the basis of later possibilities|would involve formulating precisely

the notion of a strategy gestured at in the previous paragraph, and then working this notion

into the semantics of a new deontic operator. An appropriate notion of strategy can be

found in Belnap [1], but the detailed work involved in adapting this notion to the present

deontic setting has not yet been carried out.

Alternative preference criteria

The account set out here of what an agent ought to do exploits the analogy between the

present theory of action in an indeterministic setting and the decision theoretic treatment

of choice under uncertainty. The account is based on one particular preference criterion

studied in decision theory, a dominance criterion: it adapts this criterion to de�ne a prefer-

ence ordering for the present theory of action, and then appeals to the resulting preference

ordering in the de�nition of a new deontic operator.

Although the particular preference criterion relied upon here|the dominance criterion|

seems to be especially attractive, it is not the only preference criterion studied within the

theory of decision under uncertainty, and others have their merits. A second way of gener-

alizing the present theory of what an agent ought to do, then, is to explore the results of

developing an account like that set out here against the background of some of the other

preference criteria found in the theory of decision under uncertainty. Simply to illustrate the
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kind of generalization involved, we now consider how the theory might be developed against

the background of the well-known maximin preference criterion.

A decision problem under uncertainty can be formulated as follows. An individual must

choose from among a �nite number of actions K1, K2, : : : , Km. One of a �nite number of

states of nature s1, s2, : : : , sn obtains, but the individual does not know which, and has

no information either about relative probabilities. The outcome of his action depends not

only on the particular action he performs, but on the state of nature that obtains; thus,

an outcome can be de�ned as a pair hKi; sji, with Ai an action and sj a state of nature.

With each such outcome there is associated a real number u[hKi; sji], representing its utility.

Given this information|the actions, the states of nature, and the utilities of outcomes|

the goal of a preference criterion is the de�nition of an intuitively plausible ranking of the

available actions.

The maximin criterion is a particularly conservative preference criterion, which ranks

each action in accord with the least favorable outcome that might result from that action.

Formally, an action Ki is assigned as its security level sl [Ki] the minimum of the numbers

u[hKi; s1i], u[hKi; s2i], : : : , u[hKi; sni], representing the utilities of the various outcomes that

might result from that action. The available actions can then be ranked in accord with their

security levels; and according to maximin theory, an agent should choose some action whose

security level is maximum.

The picture found in the study of decision under uncertainty is less general than the

picture provided by our present framework of utilitarian stit models, for a number of reasons.

One important di�erence is this: each action in decision under uncertainty is associated with

a �nite number of possible outcomes, determined by the �nite number of possible states of

a�airs; but the set of possible outcomes associated with an action in the present framework|

the set of histories contained in that action|may be in�nite.

Because an action in the present framework may allow for an in�nite set of possible

outcomes, its security level cannot be de�ned simply as the minimum of the values of its

outcomes, for there may be no such minimum. Instead, we de�ne the notion by cases. If

K is an action available at the moment m, then either there is a lower bound to the set of
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values of histories contained in K or not. If so, then sl [K]|the security level of K|can be

de�ned as the greatest lower bound of these values:

sl [K] = glbfValuem (h) : h 2 Kg;

where glb is a function mapping a set of numbers into its greatest lower bound. If not, then

we take

sl [K] = �1;

where �1 is a special value introduced into our utilitarian system of values, and ordered

so that it is strictly less than every real number.

The assignment to each action of a security level allows us to rank the actions in accord

with the maximin theory; and this new ranking can then be used in the de�nition of a new

deontic operator, representing what an agent ought to do according to the maximin theory.

We let the formula
L
[� cstit: A] represent the idea that � ought according to the maximin

theory to see to it that A, with an evaluation rule as follows:

� M;m=h j=
L
[� cstit : A] if and only if there is a history h0 2 Hm such that (1)

M;m=h0 j= [� cstit : A], and (2) sl [Choicem� (h
00)] < sl [Choicem� (h

0)] for each history

h00 2 Hm such that M;m=h00 6j= [� cstit: A].

The idea, of course, is that
L
[� cstit : A] should hold at m whenever there is an action K

available to � at m that guarantees the truth of A, and which is such that, if � does not

guarantee the truth of A, the action he performs has a security level lower than that of K.

In order to illustrate this new operator, let us return again to our �rst gambling example,

depicted in Figure 9. Here, sl [K1] is 0 while sl [K2] is 5; the option of declining the gamble

has a higher security level than that of gambling. Because of this, it is easy to see that �

ought to refrain from gambling according to the maximin theory: the formula
L
[� cstit: :A]

is settled true at m

Turning now to the logic of this maximin operator, it is again obvious that the formula
L
[� cstit: A] is either settled true or settled false at any moment, and that the characteristic

deontic formula
L
[� cstit: A] � 3[� cstit: A]
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J
[� cstit: A], but not

L
[� cstit: A].

is valid. Furthermore, we note without proof that this new operator is a normal modal

operator, validating RE
L
, N
L
, and M

L
, and C

L
(the

L
-analogs to RE

J
, N
J
, and

M
J
, and C

J
). In fact, since the ranking according to security level leads to a linear

ordering of actions, the veri�cation of C
L

is considerably more straightforward than that

of C
J
.

The maximin conception of what an agent ought to do di�ers both from our previous

analysis of what an agent ought to do, based on the dominance ordering, and also from the

notion of what it ought to be that an agent does. Compared to the dominance notion, the

maximin conception is logically neither weaker nor stronger: both the schemata

L
[� cstit: A] �

J
[� cstit: A];

J
[� cstit: A] �

L
[� cstit: A]

are invalid. As we have seen, a counterexample to (an instance of) the �rst is provided by

Figure 9. A counterexample to the second is found in Figure 12, where
J
[� cstit : A] is

settled true but
L
[� cstit: A] is settled false. Still, although these two notions di�er, there
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can be no con
ict between them: the validity of

:[
J
[� cstit: A] ^

L
[� cstit: :A]]:

is easily established.

Compared to the notion of what it ought to be that an agent does, the maximin conception

of what the agent ought to do is, again, neither weaker nor stronger; and in fact, here, we

do have a real con
ict. As we can see from Figure 9, the formula


[� cstit: A] ^
L
[� cstit: :A]

is satis�able: although it ought to be that � sees to it that A, what he ought to do according

to the maximin conception is to see to it that :A. This direct con
ict between what it

ought to be that an agent does and the maximin conception of what the agent ought to

do is perhaps not too surprising. For the maximin conception ranks actions entirely on the

basis of their worst possible outcomes, completely ignoring any better results to which those

actions might lead; the notion of what it ought to be that an agent does, on the other hand,

focuses only on the best outcomes that might result from a given action, giving no weight

to any risks the agent might have to run in an attempt to achieve those best outcomes.

A Proofs of propositions

Proposition 1 Let M be a general deontic stit model in which the underlying space of

values is subject to a linear ordering. Then C
 is true at every index m=h from M.

Proof WhereM is a general deontic stit model with a linear ordering of values, suppose

M;m=h j=
A^
B. We know from the evaluation rule that there exist histories h1; h2 2

Hm such that

(�) M;m=h1 j= A, and M;m=h00 j= A for all histories h00 2 Hm such that

Value
m
(h1) � Value

m
(h00);

and
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(��) M;m=h2 j= B, and M;m=h00 j= B for all histories h00 2 Hm such that

Valuem (h2) � Valuem (h00).

In order to show thatM;m=h j=
(A^B), we must show that there is some history h0 2 Hm

such that (1) M;m=h0 j= A ^B, and (2) M;m=h00 j= A ^ B for all histories h00 2 Hm such

that Valuem (h0) � Valuem (h00). Since the underlying space of values is subject to a linear

ordering, we have either Valuem (h1) � Valuem (h2) or Valuem (h2) � Valuem (h1). We can

thus reason by cases.

Suppose Valuem (h1) � Valuem (h2). In this case, we identify h0 with h2. Then (��) tells

us that M;m=h0 j= B, and we can conclude from (�), since Valuem (h1) � Valuem (h0), that

M;m=h0 j= A. Thus we have (1) M;m=h0 j= A ^ B. Now consider a history h00 2 Hm

such that Valuem (h0) � Valuem (h00). From (��), we know that M;m=h00 j= B. And since

Value
m
(h1) � Value

m
(h0), we can conclude that Value

m
(h1) � Value

m
(h00); and so (�) tells

us also that M;m=h00 j= A. Therefore,M;m=h00 j= A ^B; and so we have established that

(2) M;m=h00 j= A ^ B for all histories h00 2 Hm such that Value
m
(h0) � Value

m
(h00).

The argument is symmetric in the case in which Valuem (h2) � Valuem (h1).

Proposition 2 Let M be a utilitarian stit model in which the values assigned to histories

are limited to 0 and 1, with 0 < 1. Then the formula 
[� cstit: A] �
J
[� cstit: A] is true

at every index m=h from M.

Proof Let M be a utilitarian stit model in which the values assigned to histories are

limited to 0 and 1, and suppose M;m=h j= 
[� cstit : A]. Then there is some history

h1 2 Hm such that (1) M;m=h1 j= [� cstit : A], and (2) M;m=h2 j= [� cstit : A] for all

histories h2 2 Hm such that Valuem (h1) � Valuem (h2). Now either Valuem (h0) = 0 for each

history h0 2 Hm or not. If so, then it follows from (2) that [� cstit : A] holds at m=h0 for

each h0 2 Hm; and so it is easy to see that
J
[� cstit : A] must be settled true at m. So

suppose not|that there is some h0 2 Hm such that Valuem (h0) = 1.

Then by (2) again, we have [� cstit : A] true at m=h0; and so the �rst clause is satis�ed

for the truth of M;m=h j=
J
[� cstit : A]. Suppose the second clause is not. Then there

36



must be some h00 2 Hm such that (i) M;m=h00 6j= [� cstit: A] and (ii) it is not the case that

Choicem� (h
00) � Choicem� (h

0). Now either Valuem (h3) = 0 for each history h3 2 Choicem� (h
00)

or not. If so, then since h0 2 Choicem� (h
0) and Value

m
(h0) = 1, it follows from the de�nition

of the � relation that Choicem� (h
00) � Choicem� (h

0), contrary to (ii). But if not|if there

is some history h3 2 Choicem� (h
00) such that Valuem (h3) = 1|then we know from (2) yet

again that M;m=h3 j= [� cstit: A]. But then it is easy to see, since h3 2 Choicem� (h
00), that

M;m=h00 j= [� cstit : A] as well, contrary to (i). Hence, the second clause for the truth of

M;m=h j=
J
[� cstit: A] must be satis�ed.

Proposition 3 The formula :[
J
[� cstit: A]^
[� cstit: :A]] is valid in utilitarian models.

Proof Suppose the contrary, that there is an index m=h in a utilitarian model M such

that M;m=h j=
J
[� cstit : A] and M;m=h j= 
[� cstit : :A]. Because M;m=h j=

J
[� cstit: A], the evaluation rule for this connective tells us that there is a history h1 2 Hm

such that (1) M;m=h1 j= [� cstit: A], and (2) Choicem� (h
00) � Choicem� (h1) for each history

h00 2 Hm such that M;m=h00 6j= [� cstit : A]. Because M;m=h j= 
[� cstit : :A], we

can conclude from the evaluation rule for 
 that there is a history h2 2 Hm such that (3)

M;m=h2 j= [� cstit: :A], and (4) Value
m
(h00) < Value

m
(h2) for each history h00 2 Hm such

that M;m=h00 6j= [� cstit : :A]. From (1) we can conclude that M;m=h1 6j= [� cstit : :A],

and so from (4) that Valuem (h1) < Valuem (h2). From (3) we can conclude thatM;m=h2 6j=

[� cstit : A], and so from (2) that Choicem� (h2) � Choicem� (h1). But now we have both

Choicem� (h2) � Choicem� (h1) and Valuem (h1) < Valuem (h2); and that is impossible, since

the de�nition of the � relation tell us that Choicem� (h2) � Choicem� (h1) entails Valuem (h2) �

Valuem (h1).

Proposition 4 Let K and K 0 be two actions belonging to Choicem� , and suppose that neither

dominates the other; that is, both K � K 0 and K 0 � K fail. Then either: (A) Valuem (h) =

Valuem (h0) for all h 2 K and h0 2 K 0, or (B) there exist h 2 K and h0 2 K 0 such that

Valuem (h) < Valuem (h0), and there exist h 2 K and h0 2 K 0 such that Valuem (h0) <

Valuem (h).
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Proof Suppose both (A) and (B) are false. The falsity of (A) tells us that Value
m
(h) 6=

Valuem (h0) for some h 2 K and h0 2 K 0. The falsity of (B) tells us that either (1)

Value
m
(h0) � Value

m
(h) for all h 2 K and h0 2 K 0 or (2) Value

m
(h) � Value

m
(h0) for

all h 2 K and h0 2 K 0. So suppose, �rst, that (1). Together with the falsity of (A), however,

this yields the result that (3) Valuem (h0) < Valuem (h) for some h 2 K and h0 2 K 0; but (1)

and (3) tell us that K 0 � K, contrary to hypothesis. Likewise, if we suppose that (2), the

falsity of (A) yields the result that K � K 0, again contrary to hypothesis. Therefore neither

(1) not (2) can be assumed along with the falsity of (A); but since either (1) or (2) must

hold if (B) is false, the falsity of (B) cannot be assumed along with the falsity of (A).

Proposition 5 The formula C
J

is valid in the class of utilitarian stit models.

Proof Where M is a utilitarian stit model, suppose that M;m=h j=
J
[� cstit : A] ^

J
[� cstit: B]. Then we know that there exist histories h1; h2 2 Hm such that

(�) M;m=h1 j= [� cstit : A] and Choicem� (h
00) � Choicem� (h1) for each history

h00 2 Hm such that M;m=h00 6j= [� cstit: A],

and

(��) M;m=h2 j= [� cstit : B] and Choicem� (h
00) � Choicem� (h2) for each history

h00 2 Hm such that M;m=h00 6j= [� cstit: B].

In order to show thatM;m=h j=
J
[� cstit: A^B], we must show that there exists a history

h0 2 Hm such that (1)M;m=h0 j= [� cstit: A^B], and (2) and Choicem� (h
00) � Choicem� (h

0)

for each history h00 2 Hm such that M;m=h00 6j= [� cstit : A ^ B]. We proceed by cases,

with our primary case structure organized around the relation between Choicem� (h1) and

Choicem� (h2).

Case I: Choicem� (h1) � Choicem� (h2). Here, we identify h
0 with h2. We know already from

(��) thatM;m=h2 j= [� cstit: B]. So suppose it were the case thatM;m=h2 6j= [� cstit: A].

We could then conclude from (�) that Choicem� (h2) � Choicem� (h1); but since the � relation

is asymmetric, this would contradict the Case I hypothesis. Thus M;m=h2 j= [� cstit : A].

38



Combining these observations, we have M;m=h2 j= [� cstit: A ^B]; and so the �rst clause

is satis�ed for the truth of M;m=h2 j=
J
[� cstit: A ^B].

In order to see that the second clause is satis�ed, we must see that, for each h00 2 Hm,

if M;m=h00 6j= [� cstit : A ^ B], then Choicem� (h
00) � Choicem� (h2). So suppose M;m=h00 6j=

[� cstit : A ^ B]. We must then have either (i) M;m=h00 6j= [� cstit : A] or (ii) M;m=h00 6j=

[� cstit : B]. If (ii), then it follows at once from (��) that Choicem� (h
00) � Choicem� (h2). So

suppose (i). In that case, it follows from (�) that Choicem� (h
00) � Choicem� (h1); but then we

can conclude that Choicem� (h
00) � Choicem� (h2) from the transitivity of � and the Case I

hypothesis.

Thus, both clauses are satis�ed, and we can conclude in this case that M;m=h j=
J
[� cstit: A ^ B].

Case II: Choicem� (h2) � Choicem� (h1). The argument in this case is analogous to that of

Case I, with h0 chosen as h1.

Case III: Neither Choicem� (h1) � Choicem� (h2) nor Choice
m

� (h2) � Choicem� (h1). We then

consider three subcases.

Case III.1: There exists a history h3 2 Choicem� (h1) such that for all histories h4 2

Choicem� (h2) we have Valuem (h3) � Valuem (h4); that is, Choicem� (h1) contains a history

whose value is a lower bound of the values of the histories belonging to Choicem� (h2).

Here, we identify h0 with h2. We know from (��) that M;m=h2 j= [� cstit : B]. Now

suppose it were the case that M;m=h2 6j= [� cstit : A]. We could then conclude from (�)

that Choicem� (h2) � Choicem� (h1); but this would contradict the Case III hypothesis. Thus

M;m=h2 j= [� cstit: A]. Combining these observations, we haveM;m=h2 j= [� cstit: A^B];

and so, as in Case I, the �rst clause is satis�ed for the truth ofM;m=h2 j=
J
[� cstit: A^B].

In order to see that the second clause is satis�ed, we must see that, for each h00 2 Hm,

if M;m=h00 6j= [� cstit : A ^ B], then Choicem� (h
00) � Choicem� (h2). So suppose again that

M;m=h00 6j= [� cstit: A^B]. Then as before, we must have must have either (i)M;m=h00 6j=

[� cstit : A] or (ii) M;m=h00 6j= [� cstit : B]. Again, it follows at once from (ii) and (��)

that Choicem� (h
00) � Choicem� (h2). And it follows from (i) and (�) that Choicem� (h

00) �

Choicem� (h1), but here we cannot rely, as in Case I, on transitivity and the case hypothesis
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to yield Choicem� (h
00) � Choicem� (h2).

Instead, we must note that, according to Proposition 4, the Case III hypothesis can hold

under only two conditions: either (A) Value
m
(h) = Value

m
(h0) for each h 2 Choicem� (h1) and

each h0 2 Choicem� (h2); or (B) there exists an h 2 Choicem� (h1) and an h0 2 Choicem� (h2) such

that Valuem (h) < Valuem (h0), and there exists an h 2 Choicem� (h1) and an h0 2 Choicem� (h2)

such that Valuem (h0) < Valuem (h). Of course, under the condition (A), we can conclude

that Choicem� (h
00) � Choicem� (h2) at once from the fact that Choicem� (h

00) � Choicem� (h1).

So suppose condition (B) holds. Then we can conclude as follows that Choicem� (h
00) �

Choicem� (h2) from the fact that Choicem� (h
00) � Choicem� (h1) together with the additional

information provided by the Case III.1 hypothesis. By this hypothesis, we know that each

history from Choicem� (h2) has a value greater than or equal to that of h3 2 Choicem� (h1);

and since Choicem� (h
00) � Choicem� (h1), we know that each history from Choicem� (h

00) has a

value less than or equal that of h3. Therefore each history from Choicem� (h2) has a value

greater than or equal to the value of any history from Choicem� (h
00). From condition (B), we

know that some history from Choicem� (h2) has a value properly greater than that of some

history from Choicem� (h1), which must again have a value greater than or equal to that

of any history from Choicem� (h
00). So we know that some history from Choicem� (h2) must

have a value properly greater than that of some history from Choicem� (h
00). Hence we have

Choicem� (h
00) � Choicem� (h2).

So both clauses are satis�ed, and we can again conclude in this case that M;m=h j=
J
[� cstit: A ^ B].

Case III.2: There exists a history h4 2 Choicem� (h2) such that for all histories h3 2

Choicem� (h1) we have Valuem (h4) � Valuem (h3); that is, Choicem� (h2) contains a history

whose value is a lower bound of the values of the histories belonging to Choicem� (h1). The

agrument in this case is similar to that of Case III.1, with h0 chosen as h1.

Case III.3: For each history h3 2 Choicem� (h1) there is a history h4 2 Choicem� (h2) such

that Valuem (h4) < Valuem (h3), and for each history h4 2 Choicem� (h2) there is a history

h3 2 Choicem� (h1) such that Value
m
(h3) < Value

m
(h1); that is, neither Choicem� (h1) not

Choicem� (h2) contains a history whose value is lower bound of the values of the histories
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contained in the other. (To guide imagination, note that this case would be satis�ed if each

of Choicem� (h1) and Choicem� (h2) contained a history having the value of every real number

greater than, say, 4).

Here we can choose h0 as either h1 or h2; so let us pick h2. Then just as in Case III.1,

we can show that M;m=h2 j= [� cstit : A ^ B], satisfying the �rst clause for the truth

of M;m=h j=
J
[� cstit : A ^ B]. We can continue following the argument of Case III.1

in the treatment of the second clause until it arrives at the intermediate conclusion that

Choicem� (h
00) � Choicem� (h1) in case M;m=h2 6j=

J
[� cstit : A]. It is then necessary to

conclude from this only that Choicem� (h
00) � Choicem� (h2). But this follows by elementary

reasoning from the Case III.3 hypothesis and the de�nition of the � relation.

So both clauses are again satis�ed, and we can conclude in this �nal case thatM;m=h j=
J
[� cstit: A ^ B].
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