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a b s t r a c t

When remembering the past, we typically recall ‘events’ that are bounded in time and space. However, as

we navigate our environment our senses receive a continuous stream of information. How do we create

discrete long-term episodic memories from continuous input? Although previous research has provided

evidence for a role of spatial boundaries in the online segmentation of our sensory experience within

working memory, it is not known how this segmentation contributes to subsequent long-term episodic

memory. Here we show that the presence of a spatial boundary at encoding (a doorway between two

rooms) impairs participants’ later ability to remember the order that objects were presented in. A

sequence of two objects presented in the same room in a virtual reality environment is more accurately

remembered than a sequence of two objects presented in adjoining rooms. The results are captured by a

simple model in which items are associated to a context representation that changes gradually over time,

and changes more rapidly when crossing a spatial boundary. We therefore provide the first evidence that

the structure of long-term episodic memory is shaped by the presence of a spatial boundary and provide

constraints on the nature of the interaction between working memory and long-term memory.

� 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

As we move through our environment our senses receive a con-

tinuous stream of information, yet our memory of the past is sub-

jectively discrete in nature. We typically recall single instances in

time and space. These discrete ‘event engrams’ are thought to be

the fundamental unit of episodic memory (Tulving, 1983), allowing

us to re-experience or recollect previous life events (Aggleton &

Brown, 1999; Jacoby, 1991; Yonelinas, 1994). Thus, our continuous

sensory experience must be segmented in order to encode these

more discrete episodic events. Previous research has shown that

spatial boundaries play a key role in the online segmentation of

events, and this segmentation affects short-term memory

(Radvansky & Copeland, 2006; Radvansky, Tamplin, & Krawietz,

2010). However, it is not known how spatial boundaries affect

the structure of long-term episodic memory.

When asked to watch a short video clip, participants are readily

able to segment the video into ‘events’, with close agreement

across participants on the location of these event boundaries

(Newtson, 1973; Newtson & Engquist, 1976). This event segmenta-

tion process is thought to be automatic in nature, with consistent

neural responses in a network of cortical regions in the presence

of an event boundary, despite participants passively watching

videos (Zacks et al., 2001). The ‘event segmentation theory’ pro-

poses that these boundaries are defined by an increase in temporal

prediction error (Reynolds, Zacks, & Braver, 2007; Zacks, Speer,

Swallow, Braver, & Reynolds, 2007). Participants perceive an event

boundary when they are unable to predict what is about to happen

(Zacks, Kurby, Eisenberg, & Haroutunian, 2011).

However, these studies are agnostic in relation to what drives

this prediction error and therefore the perception of an event

boundary. Put simply, what environmental factors contribute to

the presence of an event boundary? Research related to the reading

of narratives suggests that readers automatically create represen-

tations analogous to those that would be created in real life. These

‘situation models’ are thought to aid the reader in understanding

and interpreting the narrative of written text (van Dijk & Kintsch,

1983; Zwaan, 1999; Zwaan & Radvansky, 1998). Within this

literature, the ‘event-indexing model’ suggests that these situation

models are centred on ‘events’ (Zwaan, Langston, & Graesser,

1995). Importantly, they suggest that events are segmented based
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on five specific dimensions, most notably both space and time (also

see Rinck & Bower, 2000; Rinck, Hähnel, Bower, & Glowalla, 1997).

This emphasis on both space and time accords with the idea that

human episodic memory is inherently spatiotemporal in nature

(O’Keefe & Nadel, 1978; Tulving, 1983). Therefore, whether

watching a video or reading a narrative, we segment our sensory

experience into ‘events’ based on the spatiotemporal characteris-

tics of the environment. Here we concentrate on the role of spatial

boundaries in event segmentation, and its effect on long-term

episodic memory.

The presence of event boundaries has been shown to affect

short-term memory. When watching videos depicting a series of

events with embedded objects, participants are better at remem-

bering objects if they are still watching the same event relative

to if they are watching a subsequent event (Swallow, Zacks, &

Abrams, 2009). Similarly, when reading narratives, participants

are better at remembering words they have seen just before

reading the phrase ‘‘a while later” relative to ‘‘an hour later”

(Speer & Zacks, 2005). The implied passage of time in ‘‘an hour

later” impaired participants’ performance for words they had just

read.

Short-term memory has also been shown to be disrupted in the

presence of a spatial boundary – in this case, a doorway. When

participants navigate a series of rooms in a virtual reality (VR)

environment, picking up and placing down objects in each room,

memory for the object they are carrying is more accurate when

tested in the same room relative to when tested in an adjoining

room (the ‘location updating effect’; Radvansky & Copeland,

2006). This effect is not simply due to being tested in the same

relative to a different context (in this case, a room) (i.e., a ‘‘con

text-dependent” memory effect; Gooden & Baddeley, 1975;

Thomson & Tulving, 1970), as performance was also impaired if

participants returned to the original room after moving to a new

room (Radvansky, Krawietz, & Tamplin, 2011). Importantly, as

the same effect is seen when participants physically walk

(Radvansky et al., 2011) or imagine walking (Lawrence &

Peterson, 2014) from one room to another, the effect is not specific

to VR environments. Although the presence of a spatial boundary

can affect short-termmemory, it is not clear whether longer lasting

effects are seen in relation to episodic memory (see Section 6 for

how the short-term ‘location updating effect’ could affect

long-term memory). In sum, the presence of an event boundary,

in narratives, videos and VR environments, can disrupt short-

term memory, suggesting a link between event segmentation and

subsequent memory.

There is also a close correspondence between event segmenta-

tion and long-term memory. The ability to consistently segment

videos into events is correlated with participants ability to remem-

ber those events later in time (Sargent et al., 2013). Further, partic-

ipants memory for video narratives is disrupted when scenes

including event boundaries are removed (Schwan & Garsoffky,

2004). Thus, remembering entire narratives is aided by the pres-

ence of event boundaries.

The key question we wish to address here is how the presence

of an event boundary affects long-term memory within a specific

event. For example, if participants encounter two objects that are

separated in both time and space, is the association between these

objects modulated by whether or not they were encountered in the

same event? Ezzyat and Davachi (2011) addressed this question,

manipulating the suggested time between two actions with the

words ‘‘a moment later” vs ‘‘a while later”. When later cued with

an action, participants were less accurate at remembering the next

action in the narrative when they were separated by the words ‘‘a

while later” relative to ‘‘a moment later”. Therefore, it is harder to

remember two sequential actions separated by an event boundary

than two actions that occurred in the same event. More recently,

the presence of an event boundary has been shown to affect mem-

ory for the temporal order of objects (DuBrow & Davachi, 2013).

Participants were presented with a series of faces and objects

and performed a different categorisation task for each stimulus

type. Event boundaries were defined as a switch in both stimulus

type and categorisation task. When later tested with a recency dis-

crimination judgement (‘‘which of these two stimuli were seen

first?”), performance was impaired if an event boundary had been

encountered between the two stimuli at encoding. These results

are consistent with the idea that stimuli encountered within an

event are more tightly associated than those encountered across

events.

Here we wanted to assess the role of spatial boundaries in rela-

tion to long-term episodic memory. By focussing on how space

shapes long-term memory we are able to draw upon existing

knowledge of the underlying neural architecture of the medial

temporal lobes (MTL), including the spatially modulated firing

characteristics of specific neurons (Hafting, Fyhn, Molden, Moser,

& Moser, 2005; Lever, Burton, Jeewajee, O’Keefe, & Burgess, 2009;

O’Keefe & Dostrovsky, 1971; Solstad et al., 2008). Of particular

interest, neurons in the MTL fire in relation to the rodents proxim-

ity to a spatial boundary (Lever et al., 2009; O’Keefe & Burgess,

1996; Solstad et al., 2008) and place cells may cluster around

doorways in multi-compartment environments (Spiers, Hayman,

Jovalekic, Marozzi, & Jeffery, 2013). This preferential coding of

boundary information might, in part, be driven by the behavioural

relevance of boundaries, allowing for the MTL system to

appropriately compartmentalise space (Stachenfeld, Botvinick, &

Gershman, 2014). Finally, we can start to link between experimen-

tal evidence for ‘contextual’ signals in the hippocampus, and how

they change across time (Mankin et al., 2015; Manns, Howard, &

Eichenbaum, 2007) with psychological models of temporal mem-

ory (e.g., Burgess & Hitch, 2005; Estes, 1950; Howard & Kahana,

2002), to further understand how the MTL supports long-term epi-

sodic memory.

We adopted the approach introduced by Radvansky and col-

leagues (e.g., Radvansky & Copeland, 2006), requiring participants

to navigate through a series of rooms in a VR environment. How-

ever, similar to DuBrow and Davachi (2013), we were interested

in long-term memory for the temporal order of objects. Therefore,

we presented two objects in each room, separated in both time and

space. Following encoding, participants performed several memory

tasks (see Methods). Critically, we assessed temporal memory by

presenting a single object and asking ‘‘which object came next?”

or ‘‘which object came immediately before?”. For half of these tri-

als, the cued and retrieved objects were encountered in the same

room, whereas for the other half they were encountered in adjoin-

ing rooms (i.e., separated by a spatial boundary). In Experiment 1,

we found evidence that temporal memory for two sequentially

presented objects was more accurate when the objects were

encountered in the same room relative to adjoining rooms. Exper-

iment 2 replicated this effect, controlling for the distance between

each object and the time between interacting with each object.

Experiment 3 replicated the effect, whilst further controlling for

the time between first seeing each object. We therefore

provide the first evidence that spatial boundaries play a key role

in shaping the content of long-term episodic event representations.

2. Experiment 1

2.1. Methods

2.1.1. Participants

43 participants (25 male) were recruited through the online

UCL Psychology Subject Pool. 22 were assigned to the ‘‘which

152 A.J. Horner et al. / Cognition 154 (2016) 151–164



object came next?” group (Group 1) and 21 to the ‘‘which object

came before?” group (Group 2). By self-report 4 participants were

left-handed and the remainder right-handed. All participants gave

informed consent and were reimbursed for their time (£7.50). The

experiment was approved by the UCL Institute of Cognitive

Neuroscience Departmental Research Ethics Committee

(ICH-AH-PWB-2-10-13a).

In total, 3 participants did not finish the experiment, leaving 20

participants per group. Group 1 had a mean age of 23.2 (SD = 3.5),

Group 2 had a mean age of 22.9 (SD = 3.3).

2.1.2. Materials

The experiment used a desktop PC, with the VR environment

displayed on a standard TFT monitor. For the VR study task, the

rooms environment was created using Google SketchUp

(http://www.sketchup.com/) and imported into Unity (https://

unity3d.com/). There were 48 equally sized rooms, distinguishable

by their wall-paper and floor colour. Each room contained two

different tables (one per object, see below). Each table was placed

relatively close to one of the doors to maximise the distance

between tables within-room and minimise the distance between

tables across-room. The 48 rooms were connected to each other

via doorways with closed but navigable doors (i.e., it was possible

to walk through the door into the next room). Each room was con-

nected to two other rooms via separate doorways creating a single

loop of 48 rooms. All scripting related to the encoding task was

based in Unity.

144 colour objects were used, a subset of those used in Horner

and Henson (2008), half man-made, half natural. 96 of these

objects were shown in the VR Study task (two per room; 48

man-made, 48 natural). The remaining 48 objects were used as

‘‘new” items in the recognition task at Test (24 man-made, 24

natural). Object presentation at Study was fixed, so that all

participants saw the same sequence of objects and rooms. Stimulus

presentation at Test was controlled by the Cogent toolbox

(http://www.vislab.ucl.ac.uk/cogent.php) in MATLAB. Presentation

order at Test was randomly chosen for each participant.

2.1.3. Procedure

2.1.3.1. Study phase. Prior to Study, participants practiced the VR

task in a separate 4-room environment with objects not used in

the main experiment. They then practiced the test tasks with these

same objects.

At Study, participants were required to navigate through a VR

environment (displayed on a computer screen in front of the par-

ticipant from a first-person perspective) and were shown a series

of objects embedded in this environment. Specifically, they navi-

gated through a series of rooms, each separated by a closed door

(Fig. 1). Objects were positioned in the centre of the tables within

the rooms, with only one object present on one table at any one

time. Participants were required to navigate to the object, using

the arrow keys on a standard keyboard. Once positioned in front

of the object, close to the edge of the table, a prompt box appeared

in the centre of the screen with two response options: ‘‘man-made”

or ‘‘natural”. Participants were required to press the ‘‘M” key if the

object was man-made and the ‘‘N” key if the object was natural

(mean accuracy = 98%). The object and response options were

removed following the participant’s response, and the next object

appeared on the next table in the sequence. As such, no two objects

were seen at the same time. If the next object was located in the

same room, participants were required to navigate to the location

of the next object (i.e., the other table) without leaving the room. If

the next object was located in the following room, participants had

to walk through a doorway into the next room, before approaching

the object. Participants moved through the rooms sequentially,

without returning to any previous rooms. The order of objects at

Study was fixed across participants.

2.1.3.2. Test phase. At Test, memory for an object was tested in

three separate ways in a single trial: (1) recognition memory, (2)

temporal memory and (3) context memory (Fig. 2). Object order

at Test was randomised. Following a 500 ms fixation cross, a single

object appeared in the middle of the screen on a grey background

with the words ‘‘old” and ‘‘new” presented below the object to the

left and right of centre respectively. The object was either ‘‘old”

(seen at Study) or ‘‘new” (not previously seen in the experiment).

There were 88 old objects (taken from rooms 3–46, see below)

and 48 new objects. Participants were required to respond using

buttons 1 (old) and 3 (new) on the keypad, within 3000 ms. If

the object was new (irrespective of how the participant responded)

a blank grey screen was presented for 1500 ms prior to the start of

a new trial.

If the object was old (again, irrespective of how the participant

responded) the object remained on screen and below this the ques-

tion ‘‘which object came next?” (Group 1) or ‘‘which object came

immediately before” (Group 2) appeared. Below the question three

further old objects were presented to the left, middle and right of

screen centre. One of the objects was the next (Group 1) or previ-

ous (Group 2) object in the encoding sequence. Participants had to

select this object, ignoring the two ‘foils’. The location (left, middle

or right) of the correct object on the screen was randomly chosen

on each trial. One of the foils was randomly selected from any of

the previous objects (i.e., seen before the cue object at Study), with

the constraint that it was not seen in the same room as the cue, or

an adjoining room. The other foil was randomly selected from any

of the subsequent objects (i.e., seen after the cue object at Study),

with the same constraint that it was not seen in the same rooms as

the cue, or an adjoining room. This constraint was imposed so that

none of the foils were taken from the same room as the cue or tar-

get object. This constraint meant we only tested memory for

objects in rooms 3–46, hence there were only 88 old objects (rather

than the full set of 96 seen at Study). Note, the selection of foils was

not constrained by whether the object had been previously pre-

sented as a cue for the recognition judgement, thus it is possible

that recognition performance may be inflated for certain objects

if they were selected as a foil in the temporal memory task prior

to being selected as a cue in the recognition task. However, this

should apply equally to objects seen first or second in a room, so

should not affect the relative difference between conditions.

For half the objects, the correct (to be selected) object was from

the same room (within-context) and for the other half the correct

object was from an adjoining room (across-context). For Group 1

(‘‘which object came next?”), the first object in the room was

always in the within-context condition (as the next object

was the second object in the room) whereas the second object

was always in the across-context condition (as the next

object was the first object in the next room). This relationship

between object number within a room and within- vs across-

context temporal order judgement was reversed for Group 2

(‘‘which object came before?”). Participants were required to

respond using buttons 1–3 on the keypad, within 6000 ms.

Following the temporal memory judgement, the centrally pre-

sented old object remained on screen for 500 ms. The question

‘‘which room was the object in?” then appeared below the object.

Three images of rooms from the Study task were then presented

underneath this question. One of the images was of the room in

which the object was originally presented. The location (left, mid-

dle or right) of the correct room was randomly chosen on each

trial. One foil was from a preceding (but not adjacent) room and

the other foil was from a subsequent (but not adjacent) room. Par-

ticipants had to select the image of the room in which the object
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was originally seen using buttons 1–3 on the keypad, within

6000 ms. Following the context task, a grey screen was presented

for 1500 ms prior to the start of a new trial. Participants were

encouraged to respond on each trial, such that guessing was

encouraged. If participants failed to respond to any of the tasks

in the time given, that specific task component of the trial was

marked as incorrect. Across participants, the mean percentage

of trials where no response was given was low (3.3% for the

recognition judgement, 0.99% for the temporal memory judgement

and 0.63% for the context memory judgement).

2.1.4. Statistical analyses

First, for temporal order memory, we report a 2 � 2 mixed

ANOVA with the within-subject factor ‘‘Context” (within- vs

across-context) and the between-subject factor ‘‘Direction”,

relating to the direction of the temporal order question (i.e., which

Fig. 1. Virtual reality environment. Screenshots of (A) an example room in Experiment 1, showing a doorway and the two tables where objects were shown and (B) an

example man-made/natural question when the participant approached an object. (C) An overhead view of the room layout in Experiment 1 including the locations of the

tables, with an example path (in blue) taken by a participant through all 48 rooms. The bottom right hand corner zooms in on two rooms, showing the path (in blue), tables (in

green) and doorways (in magenta). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Experimental design. (A) An example object sequence at Study showing within-context and across-context object pairs. (B) Trail sequence at Test for an ‘old’ object,

showing trial timings for the recognition, temporal order and context memory judgements. Timings shown are the maximum time during which participants were required

to respond. Each trial began with a 500 ms fixation cross. Between each memory judgement the object stayed on the screen with no other text or stimuli for 500 ms. A blank

screen was presented for 1500 ms at the end of each trial.
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object came next/before). The first object in each room was

assigned to the within-context condition in Group 1 and the

across-context condition of Group 2 (and vice versa for the second

object in each room). This analysis was designed to look for an

effect of context, and to assess whether this effect varied as a func-

tion of the direction of the temporal order question being asked.

For the main recognition and context memory results, we report

2 � 2 mixed ANOVAs with the within-subject factor ‘‘Object”,

relating to whether the object was seen first or second in the room,

and the between-subject factor ‘‘Direction”, relating to the

direction of the temporal order question (i.e., which object came

next/before). These analyses were conducted to rule out any

difference in either recognition or context memory in relation to

whether objects were seen first or second within a room, and fur-

ther whether this effect differed between the two participant

groups. Note, the groups only differed in relation to the direction

of the temporal order question, so no differences were predicted

in relation to recognition or context memory. For completeness,

we also present this analysis on temporal order memory (an inter-

action between Object and Direction in this analysis is identical to

a main effect of Context in the main temporal order analysis

described above).

For the main effects and interactions within each ANOVA we

report partial-eta squared effect sizes (gp
2). Significant interactions

are further interrogated with paired t-tests. For these t-tests, we

report Cohen’s d as the mean difference between conditions

divided by the mean standard deviation across conditions (dav)

(Cumming, 2012; Lakens, 2013). Given the specific predictions

relating to temporal order memory, we report these data prior to

the recognition and context memory data.

All data required for these analyses are freely available on

Figshare (http://dx.doi.org/10.6084/m9.figshare.1609803.v3). The

means for each participant across all conditions for the recognition

memory, temporal order memory and context memory tasks, as

well as the time and path distance across conditions, are included.

2.2. Results

2.2.1. Temporal memory

Mean temporal accuracy was above chance at 44% (Table 1), t

(39) = 5.46, p < 0.001, d = 0.86 (chance = 33%). A 2 � 2 mixed

ANOVA with a within-subject factor of Context (within-context

vs across-context) and a between-subject factor of Direction

(‘‘which object came next” – Group 1 vs ‘‘which object came

before” – Group 2) revealed a main effect of Context, F(1,38)

= 12.50, p < 0.001, gp
2 = 0.25, with higher accuracy in the within-

context than across-context condition (Fig. 3A). This effect did

not interact with Direction, F(1,38) = 2.57, p = 0.12, gp
2 = 0.06

(nor was there a main effect of Direction, F(1,38) = 3.60, p = 0.07,

gp
2 = 0.09, though we note a trend for higher accuracy in the

‘‘which came next” (0.47) versus ‘‘which came before” (0.40)

question). Participants were better at remembering the sequence

Table 1

Temporal memory. Mean (and standard deviation) across Experiments 1–3 and the control analyses of Experiments 2–3 (Experiments 2-C & 3-C) for the Within-context and

Across-context conditions across the two temporal memory questions ‘‘which object came next?” and ‘‘which object came before?”.

Which object came next? Which object came before?

Within-context Across-context Within-context Across-context

Experiment 1 0.52 (0.15) 0.42 (0.10) 0.42 (0.15) 0.38 (0.13)

Experiment 2 0.45 (0.17) 0.38 (0.18) 0.46 (0.21) 0.41 (0.16)

Experiment 2-C 0.45 (0.18) 0.38 (0.19) 0.44 (0.21) 0.42 (0.17)

Experiment 3 0.52 (0.18) 0.44 (0.14) 0.49 (0.18) 0.44 (0.15)

Experiment 3-C 0.52 (0.20) 0.41 (0.15) 0.47 (0.19) 0.43 (0.17)

Fig. 3. Temporal memory. Mean temporal accuracy for within-context and across-context object pairs (collapsed across the direction of the temporal question) for (A)

Experiment 1, (B) Experiment 2 and (C) Experiment 3 as well as the control analyses for (D) Experiment 2 and (E) Experiment 3. Error bars represent ±1 standard error of the

mean. The dotted line shows chance level of performance (0.33, given three-alternative forced choice). *** p < 0.001, ** p < 0.01, * p < 0.05.
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of objects when both objects were seen in the same room relative

to when they were seen in adjoining rooms. Crossing a spatial

boundary, by walking through a doorway, therefore affects long-

term memory for sequentially presented objects.

Finally, a 2 � 2 (Object � Direction) mixed ANOVA revealed a

significant interaction, F(1,38) = 12.50, p < 0.001, gp
2 = 0.25

(identical to the main effect of Context seen above). No significant

main effects of either Object, F(1,38) = 2.57, p = 0.12, gp
2 = 0.06, or

Direction, F(1,38) = 3.60, p = 0.07, gp
2 = 0.09, were present.

2.2.2. Recognition & context memory

Recognition accuracy was high, with a mean hit rate of 76%

(though note the mean hit rate across conditions may be inflated

due to the use of objects as foils in the temporal memory task,

making them easier to recognise in later trials) and a correct rejec-

tion rate of 83% (Table 2). A 2 � 2 (Object � Direction; see Meth-

ods) mixed ANOVA on hit rate failed to reveal any significant

main effects or interactions, F’s < 2.50, p’s > 0.12, gp
2’s < 0.07. Thus,

recognition memory did not differ according to whether the object

was seen first or second in the room.

Mean accuracy in the context memory task (33%) did not differ

from chance, t(39) = 0.17, p = 0.87, d = 0.03 (Table 3). A 2 � 2

(Object � Direction) mixed ANOVA failed to reveal any significant

main effects or interactions, F’s < 0.21, p’s > 0.65, gp
2’s < 0.01.

Therefore, context memory did not differ from chance, and was

not modulated by whether the object was seen first or second

within the room.

2.2.3. Time and distance between objects at encoding

We next focussed on the mean time and path distance

between objects within- vs across-room. If the time (and

distance) between objects is shorter within-context relative to

across-context then this might explain the pattern of results

we observed. Participants may have better memory for objects

seen closer together in time and space than those seen

further apart, regardless of the presence of any spatial

boundaries. Note that the VR environment was designed such

that the straight line distance between objects within-room

was 10.2 virtual metres (vm) and across-rooms was 8.7 vm. As

such, the straight line distance was further within-room than

across-rooms. However, it is the path distance and time

between objects that may also be critical.

Due to a bug in the VR Study task (resolved in Experiments

2–3), we only had accurate time and path distance data from 10

participants in Experiment 1 (4 from Group 1 and 6 from Group

2). In all 10 participants, the time (mean: 7.75 sec vs 10.72 sec)

and path distance (mean: 7.86 vm vs 10.46 vm) was shorter

between objects within- than across-rooms. Note, the shorter path

distance than straight line distance within-room is due to how the

location for each is measured. The straight line distance is mea-

sured from the exact location of the object in the environment.

The path distance is measured from the location the participant

was in when the object question was triggered. These are not iden-

tical, as the question was triggered just before the participant

reached the edge of the table. Experiment 1 therefore can’t rule

out the possibility that the temporal memory effect is driven by

this difference in time and path distance (though cannot be

explained in relation to straight line distance).

2.3. Discussion

Experiment 1 revealed that participants were more accurate

when judging which object came next (or before) in a sequence

if they were seen in the same room relative to if they were seen

in adjoining rooms. This effect is seen despite the temporal judge-

ment always testing sequentially presented objects (i.e., which

object came immediately next or before in the sequence). Further,

though participants were required to navigate through the rooms,

the spatial context was not directly relevant to the encoding task

(semantic categorisation) or the temporal memory task. Finally,

participants performed at chance in the context memory task, sug-

gesting they could not explicitly remember what room the object

was seen in. Thus, it would seem that participants’ memory for

object order was modulated by spatial context (and the presence

of spatial boundaries) despite no explicit memory for these spatial

contexts at retrieval. However, one key issue needs to be

addressed, as the time and path distance was shorter between

objects within- than across-context.

3. Experiment 2

Experiment 2 was designed to replicate Experiment 1, with sev-

eral important changes. First, the experiment was split into two

separate Study-Test blocks, resulting in fewer objects/rooms to

encode during each block. This was done in order to potentially

improve both temporal and context memory accuracy. Second,

the size of each roomwas doubled (with the number of total rooms

halved). This increased the distance between objects within-room

relative to across-room, with the intention of removing (or revers-

ing) the time/path distance confound present in Experiment 1.

Importantly, each half of these larger rooms had different

wallpaper. As such, the background visual information at the time

of encoding each object was different for both within-room and

across-room object pairs. Finally, the direction of the temporal

order question (i.e., ‘‘which object came next?” vs ‘‘which object

came before?”) became a within-subject manipulation. In one of

Table 2

Recognition memory. Mean (and standard deviation) across Experiments 1–3 for the 1st and 2nd object hit rate and correct rejections (CRs) across the two temporal order

questions ‘‘which object came next?” and ‘‘which object came before?”.

Which object came next? Which object came before?

1st Object 2nd Object CRs 1st Object 2nd Object CRs

Experiment 1 0.79 (0.16) 0.76 (0.18) 0.85 (0.15) 0.75 (0.15) 0.73 (0.17) 0.81 (0.19)

Experiment 2 0.79 (0.17) 0.80 (0.14) 0.87 (0.13) 0.78 (0.17) 0.77 (0.15) 0.86 (0.17)

Experiment 3 0.85 (0.19) 0.86 (0.17) 0.93 (0.11) 0.87 (0.16) 0.87 (0.16) 0.93 (0.07)

Table 3

Context memory. Mean (and standard deviation) across Experiments 1–3 for the 1st

and 2nd objects across the two temporal order questions ‘‘which object came next?”

and ‘‘which object came before?”.

Which object came next? Which object came

before?

1st Object 2nd Object 1st Object 2nd Object

Experiment 1 0.32 (0.08) 0.33 (0.08) 0.33 (0.08) 0.33 (0.08)

Experiment 2 0.31 (0.10) 0.33 (0.10) 0.33 (0.07) 0.36 (0.10)

Experiment 3 0.35 (0.10) 0.30 (0.09) 0.34 (0.10) 0.31 (0.10)
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the Study-Test blocks, participants were asked the ‘‘next” question

and in the other they were asked the ‘‘before” question.

3.1. Methods

Experiment 2 was identical to Experiment 1 with the following

exceptions.

3.1.1. Participants

From Experiment 1, collapsing across Groups 1 and 2, we calcu-

lated a Cohen’s d of 0.49 for the difference in within-context vs

across-context temporal order judgements. To achieve a power of

0.90, this requires 37 participants. 42 participants (21 Male) were

recruited in Experiment 2. By self-report 6 participants were

left-handed and the remainder right-handed. In total, 6 partici-

pants did not finish the experiment, leaving 36 participants with

a mean age of 23.4 (SD = 4.6).

3.1.2. Materials

The VR environment was modified by removing the walls

between alternate rooms (i.e., rooms 1 and 2 became a single room,

as did rooms 3 and 4, etc.), creating half the number of rooms that

were double the size. The two tables were situated close to each

doorway in order to maximise the distance between objects

within- than across-rooms. The wallpaper was kept the same as

in Experiment 1, such that each half room had different wallpaper

from the other half of the room. This was done in order to minimise

the background similarity when encoding each object within- vs

across-rooms. The same number of objects was seen at Study,

but split between two separate Study-Test phases. The order of

objects at Study was changed from Experiment 1 (though still

fixed).

3.1.3. Procedure

Participants navigated the 24 rooms, categorising 48 objects in

a single Study block. This was followed by a Test block where 40

old objects (from rooms 3–22) and 24 new objects were presented

in the same format as Experiment 1. Participants then performed a

second Study block. The rooms were identical between blocks,

however participants started in a different room and navigated in

the opposite direction to the first Study block (i.e., anti-clockwise

if the first block was clockwise). 48 new objects were encoded

0during the second Study block. This was followed by a final Test

block where 40 of these objects and 24 new objects were

presented. Participants performed both temporal order questions

(i.e., ‘‘which object came next?” and ‘‘which object came before?”)

separately, one in each Test block. The order of encoding blocks

and the direction of the temporal order question was counterbal-

anced across participants, resulting in four counterbalancing

permutations. This counterbalancing ensured that, across

participants, each object acted as cue and target in both the

within-context and across-context condition. Thus, despite the

fixed encoding order, each object contributed to both the within-

context and across-context condition.

3.1.4. Statistical analyses

For temporal memory, we present a 2 � 2 repeated measures

ANOVA with the factors Context (within- vs across-context) and

Direction (‘‘which object came next” vs ‘‘which object came

before”). For recognition and context memory we present 2 � 2

repeated measures ANOVAs with factors Object (first vs second)

and Direction (‘‘which object came next” vs ‘‘which object came

before”). We also present a similar ANOVA of the temporal

memory data for completeness.

Finally, for temporal memory, we also present a 2 � 2 � 2

mixed ANOVA (Block � Object � Question order), where Block

(1st vs 2nd) and Object (1st vs 2nd) are within-subject factors

and Question order (which came next, which came before vs which

came before, which came next) is a between-subjects factor. This

analysis allows us to assess whether temporal memory

performance differed across encoding blocks. Note, a three-way

interaction in this ANOVA is equivalent to the main effect of

Context seen in the main analysis.

3.2. Results

3.2.1. Temporal order memory

Mean temporal memory accuracy was above chance at 43%

(Table 1), t(35) = 4.43, p < 0.001, d = 0.74. Accuracy was therefore

similar to Experiment 1, despite the number of objects encoded

during one Study block being halved. A 2 � 2 repeated measures

ANOVA with factors Context and Direction revealed a main effect

of Context, F(1,35) = 8.39, p < 0.01, gp
2 = 0.19, with higher accuracy

in the within-context than across-context condition (Fig. 3B). This

effect did not interact with Direction, F(1,35) = 0.43, p = 0.52,

gp
2 = 0.01 (nor was there a main effect of Direction,

F(1,35) = 0.22, p = 0.64, gp
2 = 0.01). We therefore replicated the

results of Experiment 1 – participants were better at judging

temporal order within- than across-context.

A 2 � 2 � 2 mixed ANOVA (Block � Object � Question order)

failed to reveal a main effect of Block, F(1,34) = 1.82, p = 0.19,

gp
2 = 0.05, nor did this factor interact with Object or Question

order, F’s < 0.16, p’s > 0.69, gp
2’s < 0.01. The only significant effect

was a three-way interaction between Block, Object and Question

order, F(1,34) = 8.12, p < 0.01, gp
2 = 0.19 (equivalent to the main

effect of Context in the main analysis). A 2 � 2 repeated measures

ANOVA with factors Object and Direction revealed a significant

interaction, F(1,35) = 8.39, p < 0.01, gp
2 = 0.19, identical to the

main effect of Context reported above (and no main effects

F’s < 0.44, p’s > 0.51, gp
2 < 0.02).

3.2.2. Recognition and context memory

Recognition accuracy was high, with a mean hit rate of

79% and a correction rejection rate of 87% (Table 2). A 2 � 2

(Order � Direction) repeated measures ANOVA on hit rate failed

to reveal any significant main effects or interactions, F’s < 1.51,

p’s > 0.22, gp
2 < 0.05. As in Experiment 1, recognition memory did

not differ according to whether the object was seen first or second

in the room.

Mean accuracy in the context memory task (33%) did not differ

from chance, t(35) = 0.32, p = 0.75, d = 0.05 (Table 3). A 2 � 2

(Order � Direction) repeated measures ANOVA on hit rate failed

to reveal any significant main effects or interactions, F’s < 2.30,

p’s > 0.13, gp
2 < 0.07. As in Experiment 1, context memory did not

differ from chance, and wasn’t modulated by whether the object

was seen first or second in the room.

3.2.3. Time and distance between objects at encoding

In Experiment 2, we collected accurate time and distance

information at encoding for all participants. By increasing the size

of each room, the straight line distance between objects

within-room (17.9 vm) was greater than across-rooms (10.7 vm).

Therefore, whereas the difference in straight line distance between

within-room and across-room in Experiment 1 was �1 vm, here it

was �7 vm. Importantly, this increase in distance was maintained

for the mean path length between objects. The mean path length

was significantly greater within-room (17.55 vm) than across-

rooms (13.56 vm), t(35) = 14.84, p < 0.001, d = 2.51. Experiment 2

therefore produced the same pattern of temporal order results

despite the straight line and path distance being longer between

objects within- than across-rooms.
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However, the time taken to navigate between objects was

shorter within-room (11.98 sec) than across-rooms (12.95 sec), t

(35) = 3.50, p < 0.01, d = 0.28. As such, the temporal memory effect

seen in Experiments 1 and 2 may still be attributable to this differ-

ence in time between objects within- vs across-rooms. To control

for this difference, we performed a control analysis that removed

pairs of objects (per room) based on the time taken to travel

between object 1 and 2 (within-room) vs between object 2 and

object 1 in the next room (across-room). We rank-ordered pairs

according to the difference between within- vs across-room time,

and iteratively removed pairs until the mean time within- vs

across-rooms across all remaining trials was equal, or the relation-

ship had been reversed (i.e., longer mean time within- than across-

rooms). This procedure resulted in a mean removal of 3.56 trials

per participant per block per condition (range = 1–14; from a total

of 20 trials).

Following this paired trial removal procedure, the time within-

room (12.06 sec) was longer than across-rooms (11.62 sec), t(35)

= 27.75, p < 0.001, d = 0.14. Thus, we reversed the time difference

seen in the main analyses of Experiment 1 and 2. Despite this, a

2 � 2 (Context � Direction) repeated measures ANOVA on tempo-

ral order accuracy (Table 1) revealed a main effect of Context,

F(1,35) = 6.72, p < 0.05, gp
2 = 0.16, with higher accuracy within-

room than across-room (Fig. 3D). This effect did not interact with

Direction, F(1,35) = 1.48, p = 0.23, gp
2 = 0.04 (nor was there a main

effect of Direction, F(1,35) = 0.18, p = 0.67, gp
2 < 0.01). Therefore,

the temporal order difference was seen in Experiment 1 and 2,

regardless of whether the time, straight line distance, or path

distance between sequential objects was longer or shorter

within-room than across-rooms.

3.3. Discussion

Experiment 2 replicated Experiment 1. Temporal order accuracy

was higher for objects seen in the same room than adjoining

rooms. This was seen despite the straight line distance and path

distance between successive objects being longer within-room

than across-room. Further, the effect remained when we per-

formed an analysis to control for the time between successive

objects. The effect was also seen despite the two halves of each

room having different wallpaper, such that the background scene

when performing the object categorisation task was different

within-room and across-room. Thus, objects becomemore strongly

associated by virtue of their shared context, despite being sepa-

rated in both space and time.

However, Experiments 1–2 may still suffer from one further

issue. When a participant interacted with an object, the next object

was immediately present on the next table. When interacting with

the first object in a room, the second object in the room

(within-context) could be seen immediately (or shortly after par-

ticipants turned to face the next table). When interacting with

the second object in a room, the first object in the next room

(across-context) would only be seen once the participant moved

through the doorway. Thus, although we controlled for the time

between interacting with each object within- vs across-room, the

time between viewing each object was not controlled.

4. Experiment 3

We conducted a final experiment to control for the viewing

time of objects within- vs across-room. When a participant inter-

acted with an object, a question mark would appear in the location

that the next object would be seen. Participants were required to

walk up to the question mark. Once close enough, the same prompt

window would appear, as in Experiments 1–2, asking whether the

object was man-made or natural. Only at the point when the

prompt box appeared would the question mark be replaced by

the object to be encoded. Thus, the time the object was seen was

identical to the time the encoding task prompt box was triggered.

4.1. Methods

Experiment 3 was identical to Experiment 2 with the following

exceptions.

4.1.1. Participants

41 participants (13 Male) were recruited. By self-report 2 par-

ticipants were left-handed and the remainder right-handed. 3 par-

ticipants did not finish the experiment, leaving 38 participants

with a mean age of 22.2 (SD = 4.4).

4.1.2. Procedure

The procedure was identical to Experiment 2, apart from a

question mark would appear in the location of the next object to

be encoded. Only when the participants triggered the encoding

question would the question mark be replaced by the object.

4.2. Results

4.2.1. Temporal order memory

Mean temporal memory accuracy was above chance at 48%

(Table 1), t(37) = 8.07, p < 0.001, d = 1.31. A 2 � 2 repeated

measures ANOVA with factors Context and Direction revealed a

main effect of Context, F(1,37) = 15.73, p < 0.001, gp
2 = 0.30, with

higher accuracy in the within-context than across-context

condition (Fig. 3C). This effect did not interact with Direction,

F(1,37) = 1.89, p = 0.18, gp
2 = 0.05 (nor was there a main effect of

Direction, F(1,37) = 0.56, p = 0.46, gp
2 = 0.02). We therefore repli-

cated the results of Experiments 1–2 – participants were better

at judging temporal order within- than across-context.

As in Experiment 2, a 2 � 2 � 2 mixed ANOVA

(Block � Object � Question order) failed to reveal a main effect of

Block, F(1,36) = 0.17, p = 0.69, gp
2 < 0.01, nor did Block interact sig-

nificantly with Object or Question order, F’s < 0.55, p’s > 0.46,

gp
2’s < 0.02. The only significant effect was a three-way interaction

between Block, Object and Question order, F(1,36) = 15.37,

p < 0.001, gp
2 = 0.30 (equivalent to the main effect of Context in

the main analysis). A 2 � 2 repeated measures ANOVA with factors

Object and Direction revealed a significant interaction,

F(1,37) = 15.73, p < 0.001, gp
2 = 0.30, identical to the main effect

of Context reported above (and no main effects F’s < 1.90,

p’s > 0.17, gp
2 < 0.05).

4.2.2. Recognition and context memory

Recognition accuracy was high, with a mean hit rate

of 86% and a correction rejection rate of 93% (Table 2). A 2 � 2

(Order � Direction) repeated measures ANOVA on hit rate failed

to reveal any significant main effects or interactions, F’s < 1.21,

p’s > 0.27, gp
2 < 0.04. As in Experiments 1–2, recognition memory

did not differ according to whether the object was seen first or

second in the room.

Mean accuracy in the context memory task (32%) did not differ

from chance, t(37) = 0.85, p = 0.40, d = 0.14 (Table 3). A 2 � 2

(Order � Direction) repeated measures ANOVA on hit rate revealed

a main effect of object 1 versus object 2, F(1,37) = 4.97, p < 0.05,

gp
2 = 0.12. Neither the main effect of Direction, F(1,37) = 0.30,

p = 0.86, gp
2 < 0.01, nor the interaction between Order and

Direction, F(1,37) = 0.43, p = 0.52, gp
2 = 0.01, reached significance.

Given that performance did not differ from chance in any of the

four conditions separately, t’s < 1.97, p’s > 0.06, and no effect of

Order was seen in Experiments 1 and 2, the main effect of Order
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seen here is most likely a Type I error. In sum, as in Experiments

1–2, context memory did not differ from chance (though some

evidence was seen for variation across object order, unlike in

Experiments 1–2).

4.2.3. Time and distance between objects at encoding

As in Experiment 2, the straight line distance between objects

within-room (17.9 vm) was greater than across-rooms (10.7 vm).

Also in line with Experiment 2, the mean path length was signifi-

cantly greater within-room (17.51 vm) than across-rooms

(13.45 vm), t(37) = 27.99, p < 0.001, d = 3.39. Experiment 3 there-

fore replicated the results of Experiments 1–2 despite straight line

and path distance being longer between objects within- than

across-rooms.

In line with Experiment 2, the time taken to navigate between

objects was shorter within-room (13.33 sec) than across-rooms

(15.15 sec), t(37) = 7.12, p < 0.001, d = 0.56. We performed the

same control analysis as in Experiment 2, selectively removing

pairs of trials based on the time taken to travel between objects

within-room versus across-room. This procedure resulted in a

mean removal of 5.54 trials per participant per block per condition

(range = 1–18; from a total of 20 trials).

Following this paired trial removal procedure, the time within-

room (13.58 sec) was longer than across-rooms (13.20 sec), t(37)

= 6.23, p < 0.001, d = 0.12. Thus, we reversed the time difference

seen in the main analyses of Experiments 1–3. Despite this, a

2 � 2 (Context � Direction) repeated measures ANOVA on tempo-

ral memory accuracy (Table 1) revealed a main effect of Context,

F(1,37) = 11.52, p < 0.01, gp
2 = 0.24, with higher accuracy within-

room than across-room (Fig. 3E). This effect did not interact with

Direction, F(1,37) = 2.05, p = 0.16, gp
2 = 0.05 (nor was there a main

effect of Direction, F(1,37) = 0.23, p = 0.64, gp
2 < 0.01). Therefore,

Experiment 3 replicated the results of Experiment 2 for both the

main temporal memory analysis, and the analysis to control for

time between objects within- versus across-rooms.

4.3. Discussion

Experiment 3 replicated Experiments 1–2. This was despite

tightly controlling for the time each object was seen. Thus, across

three experiments we show better temporal memory for objects

seen within the same room relative to those seen in adjacent

rooms despite controlling for (1) the straight line, (2) the path dis-

tance, (3) the encoding time and (4) the viewing time between

objects within- versus across-rooms.

5. Computational model

The results of Experiments 1–3 provide clear evidence for the

role of spatial boundaries in the formation of event memories.

Items encountered within a single spatial context are more readily

associated than items encountered in adjacent spatial contexts,

even when similarly distanced in both space and time. We next

present a simple computational model to account for these results.

The model makes as few assumptions as possible with regard to

the potential mechanism driving the effect. The intent was to

develop the most parsimonious model that is capable of

parametrising the spatial boundary effect.

We built upon an existing class of memory models, where items

become associated with a ‘context’ signal present at encoding (e.g.,

Bower, 1972; Burgess & Hitch, 1999; Estes, 1950; Howard &

Kahana, 2002; Raaijmakers & Shiffrin, 1981). This context signal

varies over time, such that items presented in a sequence will each

become associated with a different context. Because the context

signal drifts over time, items encountered closer together in time

will be associated with more similar contexts than items encoun-

tered further away in time. Importantly, we allow the rate of

change in this context signal to vary according to external stimuli.

Specifically, the rate of change increases in the presence of a spatial

boundary, resulting in greater differentiation in contexts between

adjacent objects encountered in separate rooms relative to those

encountered in the same room. This simple addition to the model

captures the temporal memory effect seen in Experiments 1–3.

5.1. Methods

As in Estes (1950), we explicitly modelled a time-varying ‘con-

text’ representation at encoding. The context was a vector of 100

‘features’ that each moved independently and stochastically

between two binary states (0 and 1) over time according to a

specified matrix of transition probabilities (i.e., a Markov model).

Initially, each feature was randomly assigned to one of the binary

states with equal probability. At subsequent timepoints, the

‘baseline’ probability of a feature transitioning from 0-to-1 or

1-to-0 was 0.01. As such the population of feature states – i.e.,

the context vector – drifted stochastically over time (Fig. 4A). The

baseline transition probability was chosen to ensure a relatively

slow drift across time. Future studies would be needed to accu-

rately estimate the ‘real world’ drift rate.

We simulated 191 timepoints for each iteration of the model

(see below). 48 objects were ‘presented’ at fixed intervals across

these timepoints. The first object was presented at the 2nd time-

point, and each successive object was presented 4 timepoints

thereafter. To simplify the model, we presumed the association

between each object presented and the context vector at that time-

point was maximal (i.e., there is no variation in encoding strength

between the object and its context).

The key manipulation we made to incorporate the effect of spa-

tial boundaries was to allow the rate of change of the context vec-

tor to vary across time. Every 8 timepoints (for a single timepoint),

we changed the probability of each feature making a transition

between states from 0.01 to 0.08. This served to increase the rate

of change of the context vector for these timepoints. The increase

in transition probabilities was chosen to ensure a clear distinction

between contextual representations across rooms. Future studies

will be needed to precisely measure this increase, relative to the

baseline transition probabilities. We defined these timepoints as

‘spatial boundaries’, with the 7 timepoints between each spatial

boundary corresponding to a single ‘room’. Each object was pre-

sented on the 2nd and 6th timepoint in each room, ensuring every

object was separated by three timepoints irrespective of the

within-context vs across-context manipulation (Fig. 4D). Thus, as

in Experiments 1–3, the model was presented with two objects,

then a spatial boundary, continuously for 24 ‘rooms’.

At retrieval, we compared the dissimilarity (referred to as

‘representational distance’) between the context vector associated

with the cue object at encoding relative to the three choice alterna-

tives presented (i.e., the correct adjacent object and the two foils).

The two foils were randomly chosen with the same constraints as

Experiments 1–3. We calculated Pearson’s r for the cue context rel-

ative to the three choice object contexts, defining representational

distance as 1 � r (Fig. 4C and D). For each trial, we calculated this

distance measure and calculated the proportion of the distance

for the correct choice relative to the foil with the next shortest dis-

tance. We then set a threshold based on these proportions across

all trials (irrespective of within- vs across-context condition) so

that the model was correct in �45% of trials (i.e., approximately

equating performance to Experiments 1–3). For simplicity, we do

not model a formal ‘decision making’ process at retrieval (e.g.,

Ratcliff, 1978). Though such a mechanism could readily be

incorporated into the model, we wanted to focus explicitly on
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how a time-varying context representation could account for our

findings. We ran 10 differently seeded iterations of the model

and calculated the accuracy for within-context and across-

context accuracy for each iteration.

The MATLAB code to run this model, and produce the figures

shown in Fig. 4, is freely available on Figshare (http://dx.doi.org/

10.6084/m9.figshare.1609804.v3).

5.2. Results

How can such a time-varying context signal account for our

results? Presuming the context signal drifts at a uniform rate

across time (p = 0.01), no differences in accuracy would be

expected between the within-context and across-context condi-

tions. This is because the similarity in contexts between the cue

and correct answer will be similar between the two conditions.

Indeed, when we did not modulate the rate of change in the pres-

ence of an event boundary, performance in the within-context

(47%) condition was comparable to the across-context condition

(48%).

In our model, we varied the rate of contextual drift in the pres-

ence of a spatial boundary (increasing from p = 0.01 to p = 0.08). In

other words, the context signal changes more quickly when you

walk through a doorway than when walking across a room.

Allowing the rate of contextual drift to vary in the presence of a

spatial boundary decreases the similarity in contexts between

two adjacent objects across-rooms relative to within-room. As

object representations are directly associated with this context sig-

nal, and accuracy is driven by the similarity of the context signal at

encoding, this results in more accurate temporal memory

within-context (57%) than across-context (38%; Fig. 4B). Our model

therefore appropriately captures the main behavioural finding in

Experiments 1–3.

6. General discussion

Our continuous sensory experience is thought to be segmented

into discrete events that are subsequently encoded in long-term

episodic memory. Across three experiments we show that spatial

boundaries play an important role in this segmentation process.

Fig. 4. Computational model. (A) Schematic of the model, showing the ‘context vector’ and transition probabilities at 5 arbitrary timepoints. The transition probabilities

increase in the presence of a ‘spatial boundary’, as shown between timepoints t = n + 2 and n + 3 (highlighted in red). Note, the example ‘context vectors’ are for illustrative

purposes and show a higher rate of change between timepoints than the actual model. (B) Mean accuracy for the 10 model iterations for the within-context and across-

context conditions. Error bars represent ±1 standard error of the mean. The dotted line shows chance level of performance (0.33, given three-alternative forced choice). Note,

the mean level of performance across conditions is set to 0.45 in each iteration to match the behavioural performance in Experiments 1–3. (C) Representational distance

(1 � r) for each timepoint relative to all other timepoints for a single iteration of the model. The black square in the top left shows the area magnified in (D). (D) A magnified

view of the representational distance across three ‘rooms’. The 7 timepoints of each square are shown with black squares. Red lines represent a ‘spatial boundary’ where the

rate of change in the context vector is increased. The solid magenta squares highlight when each object is ‘presented’ and the non-solid magenta squares highlight the

representational distance between each successive object pairing, highlighting the smaller distance within-room than across-room. (For interpretation of the references to

colour in this figure legend, the reader is referred to the web version of this article.)
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Specifically, the presence of a spatial boundary affects long-term

memory for the temporal order of objects. When two objects are

sequentially presented in the same room, temporal memory is

more accurate than when the two objects are presented in

adjoining rooms. In other words, long-term temporal memory is

disrupted when two objects are separated by a spatial boundary.

Further, we provide a parsimonious algorithmic model to explain

this effect, allowing for the parameterisation of the effect in future

studies.

Previous research has shown that moving through a spatial

boundary (doorway) disrupts short-term memory for objects from

the previous room, the ‘location updating effect’ (Radvansky &

Copeland, 2006). In these experiments, memory for the object they

are currently ‘carrying’ (i.e., the second object in the room) is

disrupted when probed shortly after moving through a doorway

relative to the same object when probed midway through the

room. Could the simple act of forgetting the last object in the room

account for our long-term temporal memory effect? If the associa-

tive strength between two objects is modulated by their availabil-

ity in working memory, it is possible this would lead to stronger

associations between objects seen in the same room relative to

those seen in adjoining rooms. This is because the last object in

the previous room will no longer be available in working memory

when the first object in the next room is encountered.

The most obvious predicted long-term consequence of the

short-term ‘location updating effect’ would be that, if the last

object seen in each room was removed from working memory

more rapidly than the first object in each room, it should have less

opportunity to be stored in long term memory so that recognition

memory for these items would be impaired compared to those

seen first in the room. Collapsing across all three experiments,

we could find no difference in recognition hit rate between objects

seen first or second in each room, t(113) = 0.55, p = 0.59, d = 0.03.

Thus, we could find no evidence for a simple consequence of the

‘location updating effect’ on long-term memory, at least in relation

to recognition memory for single items. Rather, while the transi-

tion of information from working memory to long-term memory

may be triggered by crossing a spatial boundary, the efficiency of

the transition is not affected (consistent with Barreau & Morton,

1999).

This finding seems potentially at odds with the ‘location updat-

ing effect’. If removal of items from working memory by crossing a

boundary shortly after encoding does not affect their encoding into

long-term memory, why is short-term memory performance

affected? Why can’t the newly encoded long-term representation

support performance in the absence of a working memory repre-

sentation? The most obvious resolution is that performance based

on long term memory representations is worse than that based on

working memory, perhaps due to the large number of similar items

already encoded into long-term memory, or because of impaired

retrieval from long-term memory when in a new room (e.g.,

context-dependent memory; Gooden & Baddeley, 1975; Thomson

& Tulving, 1970; Tulving & Thompson, 1973, though see

Radvansky et al., 2011).

Although the present spatial boundary effect is unlikely to be

driven up the ‘location updating effect’ per se (i.e., recent objects

being removed from working memory), both effects are likely to

be driven by the same underlying event segmentation process.

Whereas event segmentation may remove specific items from

working memory (affecting short-term memory), the same process

must also modulate the associative strength between items (either

directly, or indirectly by a shared contextual representation, see

Computational Model and further discussion below), thus affecting

long-term temporal memory. These two apparently independent

effects of event segmentation, giving rise respectively to distinct

short-term and long-term effects, may be mutually consistent

within the context of a more sophisticated model of the interaction

between working memory and long term memory. Thus, if we

assume that associations between items and contextual

representations (which may include item information) are formed

by both being present simultaneously in working memory, then

the location updating effect on working memory means that

within-room items will be associated to similar contextual repre-

sentations (while co-active in working memory), whereas items

in contiguous rooms will be associated to distinct contextual

representations. This possibility corresponds to the idea that work-

ing memory comprises the active part of long term memory (e.g.,

Cowan, 1995; Fuster, 1997; Melton, 1963) and that plasticity is

Hebbian in associating co-active elements (Hebb, 1949). It also

corresponds to the idea that processing in working memory con-

tributes directly to the formation of episodic memories, consistent

with the idea that working memory contains an ‘episodic buffer’

(Baddeley, 2000).

Such long-term event segmentation effects have been shown in

relation to non-spatial event boundaries (DuBrow & Davachi,

2013). However, the role of spatial boundaries in relation to the

structure of long-term episodic memory has not been explored.

In the case of DuBrow and Davachi (2013), event boundaries were

defined by a change in the stimulus-type (faces vs objects) and in

the categorisation task performed to each stimulus-type (see

Davachi & DuBrow, 2015 for a review). Thus, the event boundaries

were explicitly linked to the encoding task. Here, the event bound-

aries were incidental to the object encoding task. Although partic-

ipants had to navigate through the rooms, the encoding task

related to each object remained constant throughout. Thus, we

show that changes in the background context (as opposed to the

encoding task) also affects memory for object sequences.

One important difference between the current experiments and

those of DuBrow & Davachi is the nature of the temporal memory

task. Whereas we asked ‘‘which object came next (or before)?”,

they presented two objects and asked ‘‘which object was more

recent?”. Although seemingly subtle, it could be that these tasks

are solved with different mechanisms. For example, whereas

DuBrow & Davachi’s recency judgement could utilise an item-

based familiarity signal (if one presumes that such a signal

decreases over time, such that objects seen further back in time

will generate a smaller familiarity signal), our sequential judge-

ment could be inferred from direct associations between objects,

or between objects and an associated ‘context’ signal (as we have

explicitly modelled). In other words, it is possible that our ‘‘tempo-

ral memory” task could be solved without any specific ‘‘temporal”

memory representation. However, here we were not interested in

‘temporal memory’ per se, but the effects of spatial boundaries on

episodic memory; our ‘temporal memory’ task being the most

effective means to assess such an effect.

Given the key role spatial context is thought to play in episodic

memory (Burgess, Maguire, & O’Keefe, 2002; O’Keefe & Nadel,

1978; Tulving, 1983), it is perhaps surprising that the relationship

between spatial boundaries and the structure of episodic memory

has not been previously assessed. The emphasis of previous work

has often related to the information encoded in an event engram

within the hippocampus – i.e., whether ‘event’ representations are

inherently spatial in nature (e.g., Burgess, Becker, King, & O’Keefe,

2001; Byrne, Becker, & Burgess, 2007; Cohen & Eichenbaum,

1993; Robin et al., 2016; Ryan, Althoff, Whitlow, & Cohen, 2000).

Here, we focus on the role of spatial boundaries in the formation

of event representations. When two objects are separated in space

and time, what environmental factors increase/decrease the likeli-

hood that theywill be associated, and therefore encoded in the same

event representation? The formation of associations between infor-

mation separated in space and time is thought to be a key function

of the hippocampus (Staresina & Davachi, 2009; Wallenstein,
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Eichenbaum, & Hasselmo, 1998). Here we show that spatial

boundaries play a role in determining the extent to which dis-

parately presented objects become associated.

Models of memory often include a time-varying ‘context’ repre-

sentation (e.g., Bower, 1972; Estes, 1950; Raaijmakers & Shiffrin,

1981). When a stimulus is encountered, it is associated with the

context representation at that specific time-point. These models

have been used to explain a wide body of behavioural phenomena,

from spontaneous recovery in traditional associative learning

(Estes, 1955), to primacy and recency in short-term memory

(Burgess & Hitch, 1999), to forward recall in free recall tasks

(Howard & Kahana, 2002). This class of model is also readily able

to support temporal order memory judgements (Bower, 1972).

We infer that two objects were seen closer together in time as they

are each associated with context representations that are more

similar than two objects seen further apart in time. This type of

model, in which the context signal drifts relatively separately from

the external surroundings, is consistent with the observation of

slow ‘drift’ in the population firing of pyramidal cells in CA1 of

the rodent hippocampus across time, when controlling for the

location and behaviour of the rodent (Mankin et al., 2015; Manns

et al., 2007; Rubin, Geva, Sheintuch, & Ziv, 2015).

In the present experiments participants had better memory for

object pairs seen within the same room relative to adjoining

rooms, despite controlling for both the time and distance between

object pairs. Thus, a model with uniform contextual drift cannot

account for this effect. As such, we allowed the rate of contextual

drift to vary in relation to the presence of a spatial boundary. This

allowed the context representation to change more rapidly in the

presence of a spatial boundary relative to the baseline level of drift.

This simple addition was able to fully account for the key finding in

Experiments 1–3 (Fig. 4).

What might drive this change in context signal across rooms?

The most likely possibility is the external environmental features

themselves. For example, the layout of the room, the colour of

the wallpaper, the locations of the doors, etc. might all contribute

to a general ‘context’ representation in the hippocampus and sur-

rounding medial temporal lobe. This idea is similar to the way in

which the Temporal Context Model allows the context signal at

timepoint t + 1 to incorporate item information from timepoint t

(Howard & Kahana, 2002; Polyn & Kahana, 2008). However, here

the effect would need to be driven by the surrounding spatial

context, as opposed to the items themselves, as we controlled for

the time between objects within- vs across-rooms (in the control

analyses of Experiments 2–3). The neural signature of this

might be the phenomenon of ‘‘remapping”, whereby place cells

in the rodent hippocampus change their firing dependent on the

context (Anderson & Jeffery, 2003; Bostock, Muller, & Kubie,

1991; Leutgeb et al., 2005; Wills, Lever, Cacucci, Burgess, &

O’Keefe, 2005).

Importantly, the extent of remapping is driven by environmen-

tal differences such as the locations of boundaries, the colour of the

walls or the smell of the environment. Note, in Experiment 2 the

two halves of each room had different wallpaper and the two

tables in each room were never the same. Thus, at the time of

performing the object encoding task, the background scene was

dissimilar both within- and across-room. If a context signal was

changing in relation to the surrounding context, it would appear

that basic visual features (e.g., the colour of the walls) do not con-

tribute (or contribute minimally). Thus the present experiments

indicate a specific role for the walls in separating the different

rooms into different contexts. This may reflect the specific role

played by physical boundaries in spatial navigation – such that

enhanced encoding of doorways by hippocampal place cells is seen

(Spiers et al., 2013), supporting subsequent navigation

(Stachenfeld et al., 2014), while their spatial receptive fields within

a given context are specifically determined by the proximal

boundaries (Hartley, Burgess, Lever, Cacucci, & O’Keefe, 2000).

Note, our model makes no predictions in relation to whether

the context signal passively ‘‘drifts” at variable rates determined

by the external environment, or whether it changes as a direct

response to perceptual changes in the external environment. It is

an algorithmic model that enables the quantification of the spatial

boundary effect. Finally, it is interesting to note that participants

were at chance in the context judgement task. Although they could

remember the order that objects were presented, they could not

remember what room the object was seen in. Thus, if participants

were solving the temporal memory judgement via an associated

context signal (as we have explicitly modelled), they would appear

to not have conscious access to such a signal (at least in the present

experiments).

An alternative explanation for the doorways effect is that the

act of walking through a spatial boundary results in the encoding

of information encountered pre-boundary into long-term memory.

For instance, the objects (as well as surrounding contextual

information) might be actively maintained in working memory,

akin to the idea of an ‘‘episodic buffer” (Baddeley, 2000), and sub-

sequently encoded into long-term memory in the presence of a

spatial boundary (see also Barreau & Morton, 1999). Interestingly,

recent fMRI research has shown an increase in hippocampal BOLD

response at the offset of video clips is predictive of subsequent

memory for the videos (Ben-Yakov & Dudai, 2011; Ben-Yakov,

Eshel, & Dudai, 2013; Ben-Yakov, Rubinson, & Dudai, 2014).

Extending this research to the current experiments, the prediction

would be that an increase in hippocampal BOLD should be seen

when participants walk through a doorway (equivalent to the

end of a video clip in the studies by Ben-Yakov and colleagues).

The behavioural doorways effect should correlate with this

increase, as opposed to hippocampal activity at the time of encod-

ing the individual objects. It is worth noting that Ezzyat and

Davachi (2011) did not see such a relationship in their fMRI study

of narrative structures. However, the spatial boundaries in the pre-

sent experiment might be more salient event boundaries than the

perhaps more subtle narrative manipulation used by Ezzyat &

Davachi (i.e., ‘‘a while later” vs ‘‘a moment later”). As such,

hippocampal activity changes might be more prominent, and more

predictive of subsequent temporal memory, when using the door-

way manipulation relative to narrative manipulations.

Despite the evidence presented that spatial boundaries play a

key role in shaping long-term episodic memory, it is important

to note that space is unlikely to be the sole determining factor.

The work of Davachi and colleagues suggests a role for short vs

long passages of time in narratives, where no clear spatial context

manipulation is present (Ezzyat & Davachi, 2011). Further,

switches in task and/or stimulus-type appear to also segregate

our experience and have lasting consequences on temporal order

memory (DuBrow & Davachi, 2013, 2014). Finally, ‘event’ represen-

tations can also be constructed through shared content, where no

obvious overlap in spatiotemporal context is present. For example,

independently encoded but overlapping pairwise associations can

be integrated into coherent ‘event’ representations when all possi-

ble pairs are explicitly encoded (Horner, Bisby, Bush, Lin, &

Burgess, 2015; Horner & Burgess, 2014). Thus, hippocampus

dependent ‘event’ representations (Burgess et al., 2001; Cohen &

Eichenbaum, 1993; Eichenbaum, Yonelinas, & Ranganath, 2007;

O’Keefe & Nadel, 1978; Ryan et al., 2000) can be formed via shared

context or content, allowing for subsequent recollection (Jacoby,

Toth, & Yonelinas, 1993; Tulving, 1983; Yonelinas, 1994).

Regardless of the precise mechanism, the present experiments

provide evidence that the presence of a spatial boundary

modulates temporal memory for object sequences. Participants

are better at remembering ‘‘which object came next (or before)”
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when the two objects were encountered in the same room relative

to when they were encountered in adjacent rooms. This effect was

seen despite controlling for both the time and path distance

between object pairs within- versus across-room. We therefore

provide the first evidence that the structure of long-term episodic

memory is shaped by participants’ surrounding spatial context.
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