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We introduce a logo classification mechanism which combines a series of deep representations obtained by fine-tuning
convolutional neural network (CNN) architectures and traditional pattern recognition algorithms. In order to evaluate the proposed
mechanism, we build a middle-scale logo dataset (named Logo-405) and treat it as a benchmark for logo related research. Our
experiments are carried out on both the Logo-405 dataset and the publicly available FlickrLogos-32 dataset.The experimental results
demonstrate that the proposed mechanism outperforms two popular ways used for logo classification, including the strategies that
integrate hand-crafted features and traditional pattern recognition algorithms and the models which employ deep CNNs.

1. Introduction

A logo is a symbolic representation of any enterprise or
organization or institution, which symbolizes the product or
service of their respective work. Logos can be composed of
a glyph, a textual message, an icon, or an image, depicted in
various colors and styles. Detection and recognition of logos
has always been important in a wide range of applications,
such as product or brand identification, copyright infringe-
ment detection, contextual advertise placement, vehicle logo
for intelligent traffic-control system [1], and brand-related
statistics from social media streams [2]. At present, with the
rapid development of multimedia information technology,
the amount of logo data on the Internet continues to grow.
Because of the surge in the amount of logos, designing effec-
tive management tools and systems is becoming imperative.
This paper focuses on developing a fundamental tool for
organizing logos by classifying them. Categorizing makes
browsing and searching for logosmore efficient and facilitates
the development of related applications. For instance, in order
to ensure the originality and uniqueness, when creating a logo
for a new product or organization, it would be useful to be

able to search through similar products or organizations to
avoid trade infringement or duplication.

According to Bengio et al. [3], learning representation
of the data makes it easier to extract useful information
when building classifier. Hence, the success of classification
algorithm largely depends on data representation because
different representations can entangle and hide more or less
the different explanatory factors of variation behind the data.
At present, the study of representation for classification has
attracted considerable attentions and it has had extensive
applications, such as graph representation [4, 5] for classifi-
cation, advertising video representation [6] for classification,
logo classification [7–9], and other classifications employing
various technologies, for example, bagmapping for themulti-
instance learning [10]. Regarding the logo classification, Neu-
mann et al. [7] classify the logos of University of Maryland
logo database by combining local and global shape features.
Sun and Chen [8] design a logo classification system to
differentiate the logo images captured through mobile phone
cameras with a limited set of images. Kumar et al. [11] propose
a logo classification system based on the appearance of logo
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Figure 1: Overview of the proposed scheme.

images, which makes use of global characteristics of logo
images for classification, like color, texture, and shape.

However, the success of most of existing work on classifi-
cation, including logo classification, which adopts traditional
pattern recognition algorithms primarily depend on the
chosen class of features. These chosen features usually tend
to be hand-crafted. A recent advance has been the use of
deep neural networks to automate visual feature extraction
in various domains. In particular, methods that use the
convolutional neural network (CNN) model have achieved
state-of-the-art results in computer vision tasks. However, as
we know, training deep neural network is difficult due to its
tendency to have many local optima. Nair and Hinton [12]
address this problem by pretraining the deep model, which
is called “greedy layerwise training.” Recently, Bianco et al.
[13] present a recognition pipeline specifically for logo using
deep learning, which is composed of a logo region proposal
followed by a CNN.

Considering that the methods adopting a CNN model
have shown good performance in image style classification
as well when pretrained modes are sufficiently fine-tuned, in
this paper, we propose a mechanism that makes full use of
both the advantages of fine-tuning CNN models and tradi-
tional pattern recognition algorithms for logo classification
task. Specifically, we firstly fine-tune several of important
deep learning models to obtain the logo representations and
then combine the learned logo representations into tradi-
tional classification algorithms. Due to the limited amount of
training data available for logo task, the deepmodels work on

networks pertained on other large-scale image datasets. The
contribution of this work is twofold:

(1) We build a publicly available logo dataset (named
Logo-405), which can be shared in the research of
logos.

(2) We present a logo classification mechanism that
combines both the advantages of deep hierarchical
convolutional neural networks and traditional pattern
recognition algorithms.

The remainder of this paper is organized as follows: Sec-
tion 2 provides a description of the proposedmechanism; the
experimental results and analysis are presented in Section 3;
and Section 4 concludes this paper.

2. Proposed Approach

2.1. Overview. Figure 1 illustrates an overall workflow of the
proposed scheme. It contains two stages; they are (1) feature
learning phase, in which several deep representations for
each logo are obtained by fine-tuning four popular deep
convolutional network architectures and (2) classification
phase, where the logo classification task is carried out by com-
bining both the learned deep representations and traditional
classification algorithms.

The proposed scheme combines both advantages of con-
volutional neural network in feature learning and traditional
classification algorithm. During which four popular deep
convolutional neural network architectures are firstly fine-
tuned on our logo dataset (i.e., Logo-405) and one publicly
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Figure 2: Network architecture of AlexNet [14].
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Figure 3: Fine-tuned network architecture of GoogleNet [15].

Image

Conv 1_1
num: 64

kernal size: 3
stride: 1

Conv 1_2
num: 64

kernal size: 3
stride: 1

Pool 1
kernel size: 2 

stride: 2

Conv 2_1
num: 128

kernal size: 3
stride: 1

Conv 2_2
num: 128

kernal size: 3
stride: 1

Pool 2
kernel size: 2 

stride: 2

Conv 3_1
num: 256

kernal size: 3
stride: 1

Conv 3_2
num: 256

kernal size: 3
stride: 1

Conv 3_3
num: 256

kernal size: 3
stride: 1

Pool 3
kernel size: 2

stride: 2

FC8 FC7 FC6
Pool 5

kernel size: 2 
stride: 2

Conv 5_3
num: 512

kernal size: 3
stride: 1

Conv 5_2
num: 512

kernal size: 3
stride: 1

Conv 5_1
num: 512

kernal size: 3
stride: 1

Pool 4
kernel size: 2 

stride: 2

Conv 4_3
num: 512

kernal size: 3
stride: 1

Conv 4_2
num: 512

kernal size: 3
stride: 1

Conv 4_1
num: 512

kernal size: 3
stride: 1

Figure 4: Fine-tuned network architecture of VGGNet [16].

available FlickrLogos-32 dataset, respectively. After that, four
different deep representations are obtained for each logo
image. Then, these learned deep representations are used to
differentiate logo categories by training traditional classifica-
tion models.

2.2. Transfer Learning by Fine-Tuning Deep CNNs. Convo-
lutional neural networks (CNNs) [17] have been proven to
be able to achieve great success in computer vision tasks,
especially visual feature extraction.

Deep architectures of CNNs, called “deep convolutional
neural networks (DCNNs),” have made much success in
the ImageNet Large-Scale Visual Recognition Challenge
(ILSVRC). There are several popular models for deep con-
volutional network architectures, including AlexNet [14],
GoogleNet [15], VGGNet [16], and ResNet [18].

The early layers of these DCNNs are trained with a
large dataset (ImageNet [19] is the common) to extract
generic features. In this work, we use methods that fine-
tune a pretrained model limited by the scale of logo dataset.
Specifically, we use the AlexNet, GoogleNet, VGGNet, and
ResNet implementation, respectively, trained on the Ima-
geNet dataset as the pretrained models. In our transfer
learning approach, as our dataset is relatively small (32,218
images) compared to ImageNet, we suppose fine-tuning the
last layer of the deep models instead of the earlier layers
would improve performance. To be detailed, we fine-tune the
second-to-last layer of the deep models and initialize the last

full connection layer to 405 outputs, corresponding to 405
categories of logo, to avoid training the model from starch
for classification.

Figures 2–5 show details of four fine-tuned network
architectures.

3. Experiments

3.1. Datasets. To evaluate the performance of the proposed
mechanism, two datasets are adopted in the experiments,
including Logo-405 and FlickrLogos-32 [20].

Logo-405 is a logo dataset crawled from Internet. It
contains 405 categories of logos and 32218 logo images are
included in total. To the best of our knowledge, Logo-405 is
the largest logo dataset up to now. Figure 6 illustrates the logo
images that are selected, one from each category.

Another benchmark dataset, named FlickrLogos-32, is
a publicly available collection of logo photos. It contains
32 different logo brands by downloading them from Flickr.
For each class, the dataset offers 10 training data images, 30
validation images, and 30 test images. An example of logo
image of each class from FlickrLogos-32 dataset is illustrated
in Figure 7.

3.2. Baseline Representation Methods. To validate the effec-
tiveness of the proposed classification scheme, we compared
the proposed method with other several baselines, including
global-feature-based approach, local-feature-based method,
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Figure 5: Fine-tuned network architecture of ResNet [18].

Figure 6: Logo image of each class from Logo-405.

and the models by fine-tuning deep CNNs. They are as
follows:

(i) Global-feature-based representation (GFBR): since the
HSV (hue-saturation-value) space conforms to the
more similarity of human perception, we adopted the
quantized HSV histogram.

(ii) Local-feature-based representation (LFBR): SIFT [21],
as a typical local visual descriptor, has been proved
to be able to capture sufficiently discriminative local
elements with some invariant properties to geometric
or photometric transformations and is robust to
occlusion. We first perform hierarchical k-means

in the training set to form a 10000-centered SIFT
visual vocabulary and then adopt BOW (Bag-of-
Word) technique to build the logo representation.The
SIFT feature description was built followed by [1].

(iii) Fine-tuning AlexNet representation (FTAN): it is a
deep representation of logo image by fine-tuning
AlexNet architecture. For Logo-405 dataset, the train-
ing was performed using stochastic gradient decent
with image batch size of 32 images and the learning
rate was reduced by hand after 54.42K iterations
from an initial setting of 1𝑒−3, while, with respect to
FickrLogos-32, the training was also performed using
stochastic gradient decent with image batch size of



Complexity 5

Figure 7: Logo images of each class from FlickrLogos-32.

32 images and the learning rate was reduced by hand
after 1.89 K iterations from an initial setting of 1𝑒−3.

(iv) Fine-tuning GoogleNet representation (FTGN): it is
a deep representation of logo image by fine-tuning
GoogleNet architecture. For Logo-405 dataset, the
training was performed using stochastic gradient
decent with image batch size of 32 images and the
learning rate was reduced by hand after 54.42K itera-
tions from an initial setting of 1𝑒−3, while, with respect
to FickrLogos-32, the training was also performed
using stochastic gradient decent with image batch size
of 32 images and the learning rate was reduced by
hand after 1.89 K iterations from an initial setting of
1𝑒−3.

(v) Fine-tuning VGG representation (FTVGG): it is a
deep representation of logo image by fine-tuning
VGG architecture. For Logo-405 dataset, the training
was performed using stochastic gradient decent with
image batch size of 32 images and the learning
rate was reduced by hand after 54.42K iterations
from an initial setting of 1𝑒−3, while, with respect to
FickrLogos-32, the training was also performed using
stochastic gradient decent with image batch size of
32 images and the learning rate was reduced by hand
after 1.89 K iterations from an initial setting of 1𝑒−3.

(vi) Fine-tuning ResNet representation (FTRN): it is a
deep representation of logo image by fine-tuning
ResNet architecture. For Logo-405 dataset, the train-
ing was performed using stochastic gradient decent
with image batch size of 8 images and the learning
rate was reduced by hand after 217.59 K iterations
from an initial setting of 1𝑒−3, while, with respect to

FickrLogos-32, the training was also performed using
stochastic gradient decent with image batch size of
8 images and the learning rate was reduced by hand
after 7.56K iterations from an initial setting of 1𝑒−3.

(vii) Deep architecture in [13]: it is a CNN network archi-
tecture specifically trained on FickrLogos-32 for logo
classification.

3.3. Experiment Setup. For GFBR, considering that color is
one of the most dominant and distinguishable global visual
feature when describing an image, we define it in terms of a
histogram in the quantized hue-saturation-value (HSV) color
space with 256 components (H = 16 bins, S = 4 bins, and V =
4 bins).

With regard to LFBR, as previously described, the SIFT
was extracted from each logo image and treated as local
features. When carrying out LFBR in our task, all the
SIFT features were quantized into 10,000 visual words using
hierarchical k-means clustering technique.

With respect to the deep representations, the hyper
parameter setting used in deep architecture is elaborated
as in Section 3.2. Other parameters are adopted as their
propositional setting value in [14–16, 18].

For classification algorithms, many classical models and
their variants have been proposed, such as SVM [22, 23]
and ensemble classifier [23]. In our experiments, 10-fold
cross validation was conducted by adopting three classical
classifiers, including kNN, random forest, and SVM.

Based on the experimental results of 10-fold cross vali-
dation, the performance of each strategy was measured by
evaluating the mean average accuracy (MAA) and stand
deviation (SD).
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Table 1: Classification results by adopting fine-tuning deep CNN architectures.

(%) FTAN FTGN FTVGG FTRN
MAA 77.9084 82.3639 84.9192 84.8881
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Figure 8: The training process of FTAN.
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Figure 9: The training process of FTGN.

3.4. Experimental Result and Analysis on Logo-405. In this
section, the results conducted on Logo-405 dataset by using
three typical classifiers were reported, sequentially.

3.4.1. Results by Deep Architectures. We firstly listed the clas-
sification results by adopting fine-tuning deep architectures,
as shown in Table 1.

The learning rate curves for the test accuracy and training
loss of four fine-tuning CNNs were demonstrated in Figures
8–11, where the blue curve indicates the training loss rate and
the red curve indicates the test accuracy.

As can be seen, in general, FTVGG achieved convergence
faster than three others. In terms of test accuracy, all of them
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Figure 10: The training process of FTVGG.
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Figure 11: The training process of FTRN.

produced a dramatic increase at first, followed by a slight
increase, and reached a steady state finally.

3.4.2. Classification Results by Combining Deep Representation
and Traditional Classifiers. We conducted the classification
tasks by combining deep representations and traditional
classifiers. In this work, we adopted three typical classifiers,
that is, kNN, random forest, and SVM. Since there are four
deep representations obtained by fine-tuning deep CNN
architectures, totally twelve different experimental combina-
tions are produced.
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Table 2: Classification comparison on SVM classifier with several strategies.

Approaches MAA (%) SD
GFBR 22.9685 0.8023
LFBR 65.8460 0.9976
FTAN + SVM 92.4142 0.3392
FTGN + SVM 91.0578 0.5200
FTVGG + SVM 95.9215 0.3597
FTRN + SVM 89.3848 0.5858
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Figure 12: kNN classification performance comparison between
different strategies.

(1) Results by Combining Deep Representation and kNN
Classifier. We conducted the kNN classification task with
GFBR, LFBR, FTVGG + kNN, FTGN + kNN, FTAN + kNN,
and FTRN + kNN in terms of 15 different values of k (the
number of the nearest-neighbors), which differs from 1 to 15.

Figure 12 provides a graphical display of the experimental
results with different representation strategies under different
values of 𝑘. Both the MAA and SD of accuracy are illustrated
in the results.

The results of Figure 12 demonstrate that (1) the
approacheswhich combine both fine-tuning deep representa-
tion and kNN classier, that is, FTVGG + kNN, FTGN + kNN,
FTAN+ kNN, and FTRN+ kNN, consistently outperform the
methods that adopt hand-crafted features, including GFBR
and LFBR and (2) nearly all the strategies are not sensitive to
the value of k, especially when 𝑘 is greater than 4.

(2) Results by Combining Deep Representation and Random
Forest Classifier. This section provides experimental results
conducted on a random forest classifier with different strate-
gies, that is, GFBR, LFBR, FTVGG + random forest, FTGN +
random forest, FTAN + random forest, and FTRN + random
forest. Experiments were carried out with 20 values of nTree
(the number of trees for random forest classifier), differing
from 10 to 200.

Figure 13 provides a graphical display of the experimental
results with different representation strategies under different
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Figure 13: Random forest classification performance comparison
between different strategies.

values of nTree, where RF indicates random forest classifier.
Similarly, both the MAA and SD of accuracy are illustrated
in the results.

We notice that (1) with respect to all the strategies,
the performance apparently tends to be better when nTree
increases and (2) the performance of the approaches that
combine fine-tuning deep representation and random forest
classifier, that is, FTVGG + random forest, FTGN + random
forest, FTAN + random forest, and FTRN + random forest, is
significantly superior to LFBR and GBFR.

(3) Results by Combining Deep Representation and SVM Clas-
sifier. This section provides experimental results conducted
on SVM classifier with different strategies, that is, GFBR,
LFBR, FTAN + SVM, FTGN + SVM, FTVGG + SVM, and
FTRN + SVM.

Table 2 lists the experimental results with different repre-
sentation strategies. Both the MAA and SD of accuracy are
also illustrated in the results.

Similar conclusion can be drawn from Table 3 where
the performance of the approaches that combine fine-tuning
deep representation and SVM classifier, that is, FTAN +
SVM, FTGN + SVM, FTVGG + SVM, and FTRN + SVM,
is significantly superior to LFBR and GBFR.

Lastly, we conclude this section by reporting the best
performance of each strategy to compare three groups of
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Table 3: The comparison between different strategies at their best performance.

FTAN FTAN + kNN FTAN + RF FTAN + SVM
77.9084 83.3292 83.9748 92.4142
FTGN FTGN + kNN FTGN + RF FTGN + SVM
82.3639 87.7491 85.2070 91.0578
FTVGG FTVGG + kNN FTVGG + RF FTVGG + SVM
84.9192 92.6811 92.9046 95.9215
FTRN FTRN + kNN FTRN + RF FTRN + SVM
85.3234 85.3964 82.4291 89.3848

GFBR + kNN GFBR + RF GFBR + SVM
18.1854 34.7383 22.9685

LFBR + kNN LFBR + RF LFBR + SVM
37.8982 51.8752 65.846

strategies, including the approaches that adopt fine-tuning
deep CNNs (i.e., FTAN, FTGN, FTVGG, and FTRN), the
methods which combine fine-tuning deep architectures and
traditional classifiers (i.e., FTVGG + kNN, FTGN + kNN,
FTAN + kNN, FTRN + kNN, FTVGG + random forest,
FTGN + random forest, FTAN + random forest, FTRN +
random forest, FTAN+ SVM, FTGN+ SVM, FTVGG+ SVM,
and FTRN + SVM), and those strategies employing hand-
crafted features (i.e., GFBR, LFBR). The comparison results
are shown in Table 3, where RF represents random forest
classifier.

We have the observations from Table 3 that the proposed
mechanisms that combine fine-tuning deep architectures and
traditional classifiers demonstrate the superiority compared
with other two groups of approaches, including the ones that
adopt fine-tuning deep architectures and hand-crafted ones.
The proposed classification mechanism specially obtains
5.4%, 6.1%, and 14.5% improvement on kNN, random forest,
and SVM, respectively, towards FTAN strategy. For FTGN, it
obtains 5.4%, 2.8%, and 8.7% when combining kNN, random
forest, and SVM, respectively. With regard to FTVGG, it
improves 7.8%, 8.0%, and 11% on kNN, random forest, and
SVM, respectively. However, there is little improvement for
FTRN when combining traditional classifiers. For example,
FTRN+SVM improves 4.1%while FTRN+ kNNobtains only
0.1% improvements.

With respect to the three classifiers used in the experi-
ments, we observe that SVM outperforms kNN and random
forest in nearly all tasks. Several factors may have contributed
to this result. First, Logo-405 is of the high-dimensional
representation, where the feature dimension of each logo is
as high as 4096 in our deep representation strategies. Second,
Logo-405 belongs to small sample size data compared with
other large-scale datasets, for example, ImageNet [19]. Last,
Logo-405 is of balanced data to some extent, in which each
class consists of several tens to a hundred of logo images. We
know that SVM works well for such kind of data, while kNN
and random forest do not.

3.5. Experimental Result and Analysis on FlickrLogos-32.
In this section, we evaluated the proposed mechanism on
FlickrLogos-32 [20]. The experimental results conducted

Table 4: Classification results by adopting fine-tuning deep archi-
tectures.

(%) FTAN FTGN FTVGG FTRN
MAA 82.5893 90.1786 91.5179 92.8571

on Logo-405 dataset by using three typical classifiers are
reported, sequentially.

3.5.1. Results by Fine-Tuning Deep Architectures. We also
firstly listed the classification results by adopting fine-tuning
deep architectures, as shown in Table 4.

The learning rate curves for the test accuracy and training
loss of four fine-tuning CNNs were demonstrated in Figures
14–17, where the blue curve indicates the training loss rate and
the red curve indicates the test accuracy.

As can be seen from the above results that the training
process on FlickrLogos-32 obtains faster convergence com-
pared with Logo-45 probably because of its smaller size.
In general, FTRN achieved convergence a litter slower than
three others. In terms of test accuracy, all of them produced a
dramatic increase at first, followed by small fluctuation, and
reached a steady state finally.

3.5.2. Classification Results by Combining Deep Represen-
tation and Traditional Classifiers. Similarly, we conducted
the classification tasks by combining deep representations
and traditional classifiers. In this work, we adopted three
typical classifiers, that is, kNN, random forest, and SVM.
Since there are four deep representations by fine-tuning
deepCNNarchitectures, totally twelve different experimental
combinations are produced.

(1) Results by Combining Deep Representation and kNN
Classifier. We conducted the kNN classification task with
GFBR, LFBR, FTVGG + kNN, FTGN + kNN, FTAN + kNN,
and FTRN + kNN in terms of 15 different values of k (the
number of the nearest-neighbors), which differs from 1 to 15.

Figure 18 provides a graphical display of the experimental
results with different representation strategies under different
values of 𝑘. Both the MAA and SD of accuracy are illustrated
in the results.
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Figure 14: The training process of FTAN.
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Figure 15: The training process of FTGN.

The results of Figure 18 demonstrate that (1) the
approaches that combine both fine-tuning deep representa-
tion and kNN classier, that is, FTVGG + kNN, FTGN + kNN,
FTAN + kNN, and FTRN + kNN, consistently outperform
the methods that adopt hand-crafted features, like GFBR and
LFBR and (2) nearly all the strategies are not sensitive to the
value of k, especially when 𝑘 is greater than 3.

(2) Results by Combining Deep Representation and Random
Forest Classifier. This section provides experimental results
conducted on a random forest classifier with different strate-
gies, that is, GFBR, LFBR, FTVGG + random forest, FTGN +
random forest, FTAN + random forest, and FTRN + random
forest. Experiments were carried out with 20 values of nTree
(the number of trees for random forest classifier) differing
from 10 to 200.

Figure 19 gives a graphical display of the experimental
results with different representation strategies under different
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Figure 16: The training process of FTVGG.
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Table 5: Classification comparison on SVM classifier with several
strategies.

Approaches MAA (%) SD
GFBR 19.9107 2.6133
LFBR 72.1875 1.4888
FTAN + SVM 94.3304 1.3151
FTGN + SVM 94.7768 1.4125
FTVGG + SVM 98.1250 0.6243
FTRN + SVM 97.4554 1.0741
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Figure 19: Random forest classification performance comparison
between different strategies.

values of nTree. Similarly, both the MAA and SD of accuracy
are illustrated in the results.

We find that, (1) with respect to all the strategies, the per-
formance apparently tends to be better when nTree increases
and (2) the performance of the approaches that combine fine-
tuning deep representation and random forest classifier, that
is, FTVGG + random forest, FTGN + random forest, FTAN
+ random forest, and FTRN + random forest, is significantly
superior to LFBR and GBFR.

(3) Results by Combining Deep Representation and SVM Clas-
sifier. This section provides experimental results conducted
on SVM classifier with different strategies, that is, GFBR,
LFBR, FTAN + SVM, FTGN + SVM, FTVGG + SVM, and
FTRN + SVM.

Table 5 provides the experimental results with different
representation strategies. Both the MAA and SD of accuracy
are also illustrated in the results.

Similar conclusion can be draw from Table 5 where the
performance of the approaches that combine fine-tuning
deep representation and random forest classifier, that is,
FTAN + SVM, FTGN + SVM, FTVGG + SVM, and FTRN
+ SVM, is significantly superior to LFBR and GBFR.

Lastly, we conclude this section by reporting the best
performance of each strategy to compare three groups of
strategies; they are (1) the approaches that adopt fine-tuning
deep architectures (i.e., FTAN, FTGN, FTVGG, FTRN, and
themethod proposed by Bianco et al. in [13]), (2) themethods
which combine fine-tuning deep architectures and traditional
classifiers (i.e., FTVGG + kNN, FTGN + kNN, FTAN + kNN,
FTRN + kNN, FTVGG + random forest, FTGN + random
forest, FTAN + random forest, FTRN + random forest, FTAN
+ SVM, FTGN + SVM, FTVGG + SVM, and FTRN + SVM),
and (3) those strategies employing hand-crafted features (i.e.,
GFBR, LFBR). The results are shown in Table 6, where RF
represents random forest classifier.

We have the observations from Table 6 that the pro-
posed classification mechanisms which combine fine-tuning
deep architectures and traditional classifiers demonstrate the
superiority compared with other two groups of approaches,
including the ones that adopt fine-tuning deep architec-
tures and hand-crafted ones. The proposed scheme specially
obtains 8.5%, 10.7%, and 11.7% improvements on kNN,
random forest, and SVM, respectively, towards FTANstrategy.
With respect to FTGN, it obtains 3.9%, 3.3%, amd 4.6%
when combining kNN, random forest, and SVM, respectively.
Regarding FTVGG, it improves 5.9%, 6.6%, and 6.6% on
kNN, random forest, and SVM, respectively, while, with
regard to FTRN, it can achieve 4.6%, 4.4%, and 4.6%
improvements when combining kNN, random forest, and
SVM, respectively. Compared to the method presented by
Bianco et al. [13], the proposed mechanism obtains the
improvement up to 7.125%.

4. Conclusion

With the amount of logo data on the Internet continuing
to grow, designing effective management tools and systems
is becoming imperative. This paper focuses on developing a
fundamental tool for organizing logos by classifying them,
which could make browsing and searching for logos more
efficient.We design a combinationmechanism that integrates
both the advantages of deep learning models and traditional
classification algorithms. Specifically, we firstly obtain the
logo representations by fine-tuning several important deep
architectures and then combine the learned logo repre-
sentations with several traditional classifiers to carry out
the logo classification task. While deep learning requires a
large amount of data for training, we manage to achieve a
high level of accuracy with a small-scale training set using
transfer learning. Meanwhile, we build a Logo-405 dataset,
which is larger than the existing logo datasets and can be
publicly available. Experiments were conducted on both the
Logo-405 dataset and FlickrLogos-32 dataset, and the results
demonstrated that the proposed combination mechanism
can effectively support logo classification and achieve better
performance compared with other approaches, including the
methods which integrate hand-crafted features and tradi-
tional pattern recognition algorithms and the models which
employ deep CNNs.
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Table 6: The comparison between different strategies at their best performance.

FTAN FTAN + kNN FTAN + RF FTAN + SVM
82.5893 91.1161 93.2589 94.3304
FTGN FTGN + kNN FTGN + RF FTGN + SVM
90.1786 94.1071 93.4821 94.7768
FTVGG FTVGG + kNN FTVGG + RF FTVGG + SVM
91.5179 97.4107 98.0804 98.1250
FTRN FTRN + kNN FTRN + RF FTRN + SVM
92.8571 97.4107 97.2321 97.4554
Bianco et al. [13] GFBR + kNN GFBR + RF GFBR + SVM
91.0000 12.4107 35.625 19.9107

LFBR + kNN LFBR + RF LFBR + SVM
16.2946 74.1518 72.1875
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