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Abstract Proponents of evidence-based medicine and some philosophers of sci-

ence seem to agree that knowledge of mechanisms can help solve the problem of

applying results of controlled studies to target populations (‘the problem of

extrapolation’). We describe the problem of extrapolation, characterize mecha-

nisms, and outline how mechanistic knowledge might be used to solve the problem.

Our main thesis is that there are four often overlooked problems with using

mechanistic knowledge to solve the problem of extrapolation. First, our under-

standing of mechanisms is often (and arguably, likely to remain) incomplete.

Secondly, knowledge of mechanisms is not always applicable outside the tightly

controlled laboratory conditions in which it is gained. Thirdly, mechanisms can

behave paradoxically. Fourthly, as Daniel Steel points out, using mechanistic

knowledge faces the problem of the ‘extrapolator’s circle’. At the same time, when

the problems with mechanistic knowledge have been addressed, such knowledge

can and should be used to mitigate (nothing can entirely solve) the problem of

extrapolation.
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Introduction

Philosophers of science have recently argued that studying mechanisms is useful for

addressing many conundrums in science and the philosophy of science. A paper that

sparked recent interest in mechanisms concluded: ‘if one does not think about

mechanisms, one cannot understand neurobiology and molecular biology’ [1, p. 24].

Investigating mechanisms also allegedly helps provide an account of causation [2–

4], scientific explanation [4, 5], and Glennan even argues that providing a

mechanism solves Hume’s problem of induction [2]. Philosophical work on

mechanisms has expanded into the social sciences [6] and medicine [7, 8]. Some

philosophers have argued that knowledge of mechanisms can help solve the

problem of applying average medical study results to target populations [9–15]. This

is alternatively referred to as the problem of ‘external validity’, ‘generalizability’,

and ‘extrapolation’. Following some work in the philosophical literature [10–13],

we use the term ‘problem of extrapolation’.

In this paper, we explore how knowledge of underlying mechanisms might solve

the problem of extrapolation. We shall argue that apart from a few cases, serious

obstacles prevent mechanisms from offering a robust tool to solve the problem. We

begin by describing the problem of extrapolation, defining mechanisms, and

outlining how knowledge of mechanisms offer a solution. We then describe four

often-overlooked problems with using mechanistic knowledge to solve the problem

of extrapolation. First, our knowledge of underlying mechanisms is often mistaken

or incomplete. Secondly, knowledge of mechanisms often cannot be justifiably

extrapolated outside the tightly controlled laboratory situations in which such

knowledge is usually produced. Thirdly, mechanisms can behave paradoxically.

Finally, using mechanistic knowledge does not overcome what Dan Steel calls ‘the

extrapolator’s circle’. It would be a mistake, however, to claim that knowledge of

mechanisms never helps mitigate the problem of extrapolation. We provide

examples of exceptional cases in which mechanistic knowledge is helpful. We

conclude that while mechanistic reasoning can be useful for solving the problem of

extrapolation in some cases, one may have to look elsewhere for more robust

solutions. Until such solutions are found, one may have to adopt a higher degree of

scepticism about the applicability of results from controlled studies to target

populations.

Why it is problematic to apply the results of controlled studies
to target populations

Average study results may not apply to individuals or subgroups within a study, or

to target populations which are sometimes relevantly different from study

populations. This problem is commonly discussed in the context of randomized

trials, but it also applies to controlled observational studies and, as we shall point

out below, results from studies that investigate underlying mechanisms. It is a

problem whether the studies are analysed using frequentist or Bayesian methods

[16].
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Consider the following imaginary example. If half the participants in a trial

experienced 100% recovery, and the other half experienced no effect, the average

outcome (50% recovery) would not describe what happened to any particular

individual in the study. In a real example taken from Peter Rothwell [17],

investigators conducting the European Carotid Surgery Trial (ECST) found that

carotid endarterectomy appeared to carry an obvious risk (an approximately 0.5%

increase in mortality) [18, 19]. However, when Rothwell restricted the analysis to

patients with severe carotid stenosis, the intervention was found to be beneficial

[17]. This is not a problem with implementing the study results to populations

outside the trial; hence, the term ‘external validity’ is misleading. Unless there is

no variation, average study results may not even apply to individuals within the

trial.

In addition, target populations can be different from study populations. Up to

90% of potentially eligible participants are sometimes excluded from trials

according to often poorly reported and even haphazard criteria [20–25]. For

example, even the most effective antidepressants in adults have doubtful effects in

children [26, 27]. In another example taken from John Worrall [28], the drug

benoxaprofen (OraflexTM in the USA and OprenTM in Europe) proved effective in

trials in 18–65 year-olds, but killed a significant number of elderly patients when it

was introduced into routine practice. The problem that average results do not apply

to individuals or subgroups within a trial is exacerbated by the fact that people can

change over time. Results from a study that were applicable at time T1 might not

apply at a different time T2.

Besides differences between people in study and target populations, study and

target contexts can differ. In a presidential address to the Philosophy of Science

Association [15], Nancy Cartwright illustrated this aspect of the problem with the

example of the Tamil Nadu Integrated Nutrition Programs (TINP I and TINP II). These

programs aimed to improve the nutritional status of preschool children (6–36 months

old) and pregnant and nursing women. To achieve the aim, investigators provided a

package of services that included nutrition education, primary health care, supple-

mentary on-site feeding of children, education for diarrhoea management, vitamin A,

deworming, supplementary feeding of women, and growth monitoring through

monthly weighing of all children aged 6–36 months.

TINP’s success was measured by comparing changes within TINP districts with

changes in non-TINP districts. Independent surveys showed that severe malnutrition

declined by at least 33% among children aged 6–24 months and by 50% among

those aged 6–60 months [29, 30]. TINP II was similarly successful, with a more

conservative independent estimate of a 44% decline in severe malnutrition over five

years [31, 32].

Inspired by TINP, a similar project called BINP (Bangladesh Integrated Nutrition

Project) was implemented in Bangladesh. Unfortunately, BINP enjoyed little

success: independent agencies reviewed the evidence and found little reason to

believe that the project had had any impact [33, 34]. While the relevant biological

traits of the study participants in Tamil Nadu and Bangladesh are unlikely to have

been very different, the social contexts in Bangladesh were dissimilar in important

ways. The first main difference appeared to be ‘leakage’: the food supplied by the
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project in Bangladesh was often used as substitutes for other family members rather

than supplements for mothers and children. Other related reasons were ‘the mother-

in-law factor’ and the ‘man shopper’ factor:

The program targeted the mothers of young children. But mothers are

frequently not the decision makers … with respect to the health and nutrition

of their children. For a start, women do not go to market in rural Bangladesh;

it is men who do the shopping. And for women in joint households—meaning

they live with their mother-in-law—as a sizeable minority do, then the

mother-in-law heads the women’s domain. [35, p. 6]

To recap, the problem of extrapolation is the problem of justifying claims that

average study results apply to ‘target populations’. For present purposes, we shall

take target populations to be populations other than average study populations. This

includes individuals or subgroups within a study, or populations that were not, and

perhaps would not have been, included in a study.

There are at least five (non-exclusive) solutions to the problem of extrapolation.

One, simple induction might be used. This is a strategy that some medical

researchers, including Iain Chalmers and Mark Petticrew, seem to advocate [36].

But the examples above suffice to reject this as a robust strategy. Moreover, even the

most vociferous proponents of simple induction would not hold, for example, that

the effects of drugs in plants or animals always apply to humans. Even simple

induction (in practice) must be justified by similarity between study and target

populations. But judgments about relevant similarities come from elsewhere, such

as arguments that relevant causal mechanisms are shared.

Two, n-of-1 trials [37], in which a single patient randomly receives the

experimental treatment or the control for alternating time periods, could be used.

The problem of extrapolation does not arise in the context of n-of-1 trials, because

the the trial population is (usually) the target population. However, n-of-1 trials are

not applicable outside relatively stable chronic ailments.

Three, pragmatic randomized trials that, insofar as possible, mimic target

conditions and have few (if any) exclusion criteria [38], could be considered.

However, pragmatic trials do not solve the problem that average results are not always

good predictors of individual or sub-group responses. Moreover, no matter how

inclusive researchers attempt to make a study, there are likely to be unrepresented

populations and circumstances, especially if one considers that circumstances and

people change over time.

Four, it is arguable that clinical expertise can be used to determine whether trial

results are applicable to target populations or individuals within clinical practice.

While expertise may always be required to take variations in patients’ values and

circumstances and enhancing placebo effects into account [39], it is unclear how

expertise alone (without implicit or explicit appeal to empirical studies) is a

source of evidence for whether an intervention is likely to produce a putative

effect in a study or target population [40].

Five—and this is the potential solution that we shall examine in this paper—it

can be argued that mechanistic knowledge can solve the problem of extrapolation.
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Mechanisms, mechanistic reasoning, and black boxes

To understand how knowledge of mechanisms might solve the problem of

extrapolation, we must explain mechanisms, mechanistic reasoning, and evidence

from controlled clinical studies.

Philosophers have characterized ‘mechanisms’ in many ways, including the

following:

A mechanism is a structure performing a function in virtue of its component

parts, component operations, and their organization. The orchestrated function-

ing of the mechanism is responsible for one or more phenomena. [5, p. 423]

A mechanism underlying a behavior is a complex system which produces that

behavior by the interaction of a number of parts according to direct causal

laws. [2, p. 52]

Mechanisms are entities and activities organized such that they are

productive of regular changes from start or set-up to finish or termination

conditions. [1, p. 3]

A nomological machine is a stable enough arrangement of components whose

features acting in consort give rise to (relatively) stable input/output relations.

[41, p. 8]1

There are others besides [42].

It is beyond our scope to discuss the differences between these characterizations

or their similarities [12, 43], and we contend that our argument applies no matter

which of the above characterizations one prefers. Our interest here is epistemo-

logical: how can knowledge of mechanisms help us predict whether study results

can be successfully implemented? Such alleged knowledge must rest on claims

about a mechanism’s action. Whether the mechanism’s action is called ‘orchestrated

functioning responsible for one or more phenomena’ (William Bechtel and Adele

Abrahamsen) [5], ‘behavior production’ (Stuart Glennan) [44], ‘regular change

production’ (Peter Machamer, Lindley Darden, Carl Craver) [1], or ‘action’

(Cartwright) [45] is immaterial to our purpose. Regardless of how they are

characterized, mechanisms must have some action if they are to be used to support

claims that an intervention produces some effect. Following previous work, we

define ‘mechanistic reasoning’ as an inference about an intervention’s clinical effect

from alleged knowledge of relevant mechanisms and how they relate to one another

[46, 47]. By contrast, a controlled trial is a ‘black box’ as far as the inner workings

of an intervention are concerned (see Fig. 1, left-hand side).

Typically, in clinical medicine, more than one mechanism is involved in

producing a patient-relevant effect (see Fig. 1, middle). Consider the example of

mechanistic reasoning that was used to support claims that antiarrhythmic drugs

reduce mortality in certain patients. Several mechanisms (swallowing, gastric

emptying, metabolism, circulatory, and binding mechanisms) might be involved in

1 Cartwright (personal communication) claims that her ‘nomological machines’ fall into the general

category of ‘mechanisms’ as described by the other authors cited above.
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getting the drug to its pharmacological targets. These mechanisms are often well

understood and are referred to as ADME (mechanisms for absorption, distribution,

metabolism, and excretion). Having reached their cellular targets, antiarrhythmic

drugs were believed to reduce the frequency of ventricular extra beats by modifying

the heart’s electrochemical mechanism. Finally, a reduction in ventricular extra

beats should (allegedly) reduce the risk of sudden death, presumably by modifying

the circulatory mechanism (by reducing the risks associated with insufficient blood

flow to vital organs).

It is generally possible to describe the mechanistic chain or web at different

levels. In the antiarrhythmic drug example, we might have categorized the

component mechanisms (ADME, actions on the heart, etc.) as parts (or entities or

components) of a larger mechanism (the human body). Likewise, we might have

chosen the molecular or even subatomic level. We chose to refer to the ADME and

heart mechanisms in the antiarrhythmic drug example because they map most

directly on to the language used by medical researchers.

In any case, the choice of descriptive level [48], or indeed, how one

characterizes mechanisms, does not affect our arguments. The essential feature of

mechanistic reasoning is that it involves an inferential chain (or web) linking the

intervention with a clinically relevant outcome via (productive!) mechanisms. If

the productive capacities of the mechanisms linking the intervention with the

clinical effect can be established, then we have good evidence in the form of what

we call ‘mechanistic reasoning’ no matter how the productive ability of the

mechanisms is characterized.

BLACK BOX 

Intervention (e.g. 
antiarrhythmic 

drugs) 

Outcome (e.g. 
mortality) 

OTHER 
UNCONSIDERED 

MECHANISMS 

*absorbtion, distribution, metabolism, and excretion mechanisms 

ADME* 

HEART’S ELECTROCHEMICAL 
MECHANISM 

MECHANISMS INVOLVED  
IN DEATH 

Drug 

Reduced 
mortality 

Active agent 

Stabilized heart 

Increased 
Mortality 

Fig. 1 Controlled clinical study and mechanistic reasoning: the example of antiarrhythmic drugs
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How knowledge of mechanisms allegedly solves the problem of extrapolation

Philosophers of science often disagree with evidence-based medicine (EBM)

proponents about the role of mechanisms for supporting claims about efficacy, but

they seem to agree about the role of mechanisms when it comes to extrapolation

[39]. Some influential proponents of EBM have stated, for example, that:

A sound understanding of pathophysiology is necessary to interpret and apply

the results of clinical research. For instance, most patients to whom we would

like to generalize the results of randomized trials would, for one reason or

another, not have been enrolled in the most relevant study. The patient may be

too old, be too sick, have other underlying illnesses, or be uncooperative.

Understanding the underlying pathophysiology allows the clinician to better

judge whether the results are applicable to the patient at hand. [49, p. 2423]

This advice continues in three editions of an EBM textbook [50–52], and critics of

EBM also share this view [53]. To be sure, the term used by some EBM proponents

(‘pathophysiologic rationale’) appears to be different from our ‘mechanistic

reasoning’. At the same time, pathophysiology involves the study of how bodily

processes behave in normal and abnormal circumstances [54], and ‘rationale’ is a

synonym of ‘reasoning’ [54]. Hence, we take ‘pathophysiologic rationale’ to mean

(roughly) the same as ‘mechanistic reasoning’.

By way of support for the EBM view, Gordon Guyatt and Paul Glasziou (in

conversation) have offered the following illustration. A trial might exclude

everyone over the age of 60. They claim that mechanistic considerations support

the view that the intervention is likely to work for a 61 year-old but may not work

for a 90 year-old. Presumably, they take it that the success of the intervention

depends on the operation of pathophysiologic mechanisms that change only slowly

beyond 60 and so would not have changed substantially in most 61 year-olds but

would be highly likely to have changed by the time they are 90.

In a growing body of literature that began with discussions of the applicability of

results from animal studies to humans, philosophers of science have taken what may

be interpreted as a position very similar to that of many EBM proponents. These

philosophers of science have argued that knowledge of mechanisms can justify

implementing average study results to target populations by analogy [9–15]. On this

view, extrapolation is justified insofar as the relevant mechanisms—and hence the

mechanistic reasoning linking the intervention and outcome—are shared in the

study and target populations.

Dan Steel is the philosopher of science who has written most extensively on the

subject and he correctly points out that this simple mechanistic solution to the

problem fails because of the ‘extrapolator’s circle’ [12, 13]. In order to determine

whether the mechanism in the target is sufficiently similar to the mechanism in the

study population to justify extrapolation, one must know how relevant mecha-

nisms in the target behave. But, Steel argues, if one had knowledge of

mechanisms in the target population, then one would have strong mechanistic

reasoning supporting the claim that the intervention caused the outcome in the

target population. This would make the initial study (in the model) redundant. In
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Steel’s words, ‘it needs to be explained how we could know that the model and

the target are similar in causally relevant respects without already knowing the

causal relationship in the target’ [12, p. 78].

To escape from this circle, Steel offers a more sophisticated account of how

mechanistic knowledge might help us justify implementing study results, namely,

comparative process tracing. Comparative process tracing involves two steps:

1. ‘Learn the mechanism in the model organism, by means of process tracing or

other experimental means’ [12, p. 89]. ‘Process tracing’ involves a step-by-step

reconstruction of the path connecting an end-point (an initial cause or a final

effect) with other elements of the mechanism via intermediate nodes.

2. ‘Second, compare stages of the mechanism in the model organism with that of

the target organism in which the two are most likely to differ significantly’ [12,

p. 89].

A key feature of Steel’s account is that one need not know everything about the

mechanisms in the target, but only the relevant parts of the mechanism, namely,

those that are likely to differ significantly. Often, the needed points of comparison

can be limited to stages of the mechanism close to the endpoint—the reasoning

being that differences upstream matter only if they generate differences further

downstream. This significantly reduces the number of points in the mechanism that

need to be compared. Hence, one need not know everything about the mechanism in

the target in advance, and the extrapolator’s circle is allegedly avoided.

In spite of its intuitive appeal, mechanistic reasoning, even in Steel’s more

sophisticated account, is plagued by several problems that make it unsuitable as a

robust solution to the problem of extrapolation.

Problems with mechanistic knowledge for solving the problem of extrapolation

(Epistemological) problems with identifying relevant mechanisms

Mechanistic reasoning will be useful only insofar as relevant mechanisms are

correctly identified and understood. But correct identification of all relevant

mechanisms in any population is far more difficult than is often presumed. For

example, a plausible (but incorrect) mechanism for blood creation led to various

erroneous diagnoses and treatments such as bloodletting. Even if some mechanisms

are correctly identified, other mechanisms (or features of mechanisms) are often

missed. This can lead to mistaken predictions about efficacy, and in the case of

extrapolation, the mistaken claim that mechanistic reasoning in study and target

mechanisms are shared. To see how even apparently sensible mechanisms can lead

to mistaken predictions, recall that mechanistic reasoning supported the view that

anti-arrhythmic drugs would reduce mortality. However, a subsequent randomized

trial suggested that the reasoning was mistaken. In the Cardiac Arrhythmia

Suppression Trial (CAST), 1,827 patients were randomized after myocardial

infarction to receive antiarrhythmic drugs (encainide, flecainide, or moricizine) or

placebo. Ten months later the antiarrhythmic drugs were discontinued because of

282 J. Howick et al.

123



excess mortality: 4.5% of those who took either encainide or flecainide had died of

arrhythmias or cardiac arrest, while only 1.2% of those who took placebo had died

for similar reasons [55]. The experimental drugs also accounted for 4.7% greater all-

cause mortality (see Fig. 1, right hand side). The drugs activated an unsuspected

mechanism that increased mortality.

Even in areas that are very well understood, such as the cholesterol pathway,

drugs can activate unexpected mechanisms, with dramatic consequences [56].

Thalidomide, for example, was introduced to relieve morning sickness but was later

found to cause severe birth defects. Surprising side effects can also be positive.

Sildenafil was originally designed to treat angina, but in the first clinical trials, it

revealed the surprising effect of producing penile erection; it was subsequently

marketed as ViagraTM and became a huge commercial success.

Steel would presumably reject the claim that all relevant mechanisms need to be

identified, because it is often allegedly sufficient to identify downstream stages

(‘bottlenecks’) through which the eventual clinical outcome must be produced.

However, this raises the issue of how researchers know that they have identified the

bottlenecks correctly, and whether they are sure they have not missed some

additional mechanisms activated by the intervention but bypassing the bottleneck.

The antiarrhythmic drug example and many others [57, 58] suggest that our

knowledge of mechanisms is often lacking. Indeed some have argued that medicine

did more harm than good until quite recently, precisely because of reliance on faulty

or incomplete knowledge of mechanisms [59]. Steel fails to acknowledge this

literature and hence leaves us wondering how mechanistic reasoning that is

grounded in sufficient knowledge of mechanisms can be distinguished from

mechanistic reasoning based on incomplete or mistaken alleged knowledge of

mechanisms.

Why studies of mechanisms suffer from problems of generalizability

The functioning of most mechanisms is discovered in tightly controlled

laboratory experiments that expressly exclude as many potentially interfering

variables as possible. Why would effects discovered in tightly controlled

laboratory circumstances generalize more readily than effects discovered in

controlled clinical studies? If they do not, then any knowledge about the

mechanisms gained in these controlled settings is less likely to be shared by

‘real world’ populations. For example, St. John’s wort has been shown in

laboratory settings to induce the activity of cytochrome P450 (CYP) isoenzymes,

which are extensively involved in metabolizing about 50% of known drugs [60],

including many steroids. However, a clinical study suggested St. John’s wort did

not reduce the concentrations of androgenic steroids [61], presumably because of

some compensatory mechanism. In this example the behaviour of a mechanism

in the laboratory was not reproducible in a real clinical setting. Knowledge of

mechanisms gained in these tightly controlled contexts may differ relevantly

from mechanisms in both trial and target populations and therefore cannot

straightforwardly be used to justify claims about similarity between trial and

target populations.
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The unwarranted ontological assumption that mechanisms are productive

of regular relationships between inputs and outputs

Claude Bernard, perhaps the grandfather of contemporary mechanistic reasoning in

medicine, believed that mechanisms were productive of stable deterministic laws

that precluded the need for any further ‘empirical’ evidence (for example, from

controlled studies). He stated for example that:

Now that the cause of the itch is known and experimentally determined, it has

all become scientific, and empiricism has disappeared. We know the tick, and

by it we explain the transmission of the itch, the skin changes and the cure,

which is only the tick’s death through appropriate application of toxic

agents.… We cure it always without any exception, when we place ourselves

in the known experimental conditions for reaching this goal. [62, p. 214]

While few today believe that more than a handful of diseases (if any!) are cured

‘always and without exception’ [63]—and indeed Claude Bernard himself

advocated clinical trials when mechanisms were unknown [64]—the belief that

mechanisms produce stable relationships is widely held among mechanist philos-

ophers of science. Consider other excerpts from the recent literature.

[Mechanisms are] entities and activities organized such that they are

productive of regular changes from start or set-up to finish or termination

conditions. [1, p. 3 emphasis added]

The existence of a mechanism provides evidence of the stability of a causal

relationship. If we can single out a plausible mechanism, then that mechanism

is likely to occur in a range of individuals, making the causal relation stable

over a variety of populations. [7, p. 159, emphasis added]

Nomological machines [mechanisms] generate causal laws between inputs and

predictable outputs. [65, p. 156, emphasis added]

The belief that mechanisms are productive of stable relationships might be

borrowed from mechanics, where, if the quantum level is ignored, there are many

mechanisms productive of stable input-output relationships. For instance, Cart-

wright cites the example of a toaster’s mechanism [41]. But mechanisms in the

human body and social world, especially those that are pertinent to clinically

relevant outcomes, are generally far more complex than toasters and other

mechanical machines. Besides the epistemological problems with discovering any

assumed regularity (such as extreme sensitivity to initial conditions and complex

interactions), mechanisms themselves might not behave regularly at all [66].

Mechanisms’ irregular behaviour is perhaps best exemplified by paradoxical

reactions. Smith et al. have listed many drugs that sometimes worsen the condition

for which they are indicated [67]. To name a few, antiepileptic drugs can both

prevent and cause seizures [68, 69], antidepressants can both ameliorate and worsen

depressive symptoms [70, 71], and antiarrhythmic drugs can cause arrhythmias [72].

Even the same molecule can initiate different mechanisms depending on its

environment within the body.
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If mechanisms can have paradoxical and unanticipated effects, then even if it is

established that some mechanisms in the study and target populations are shared,

one cannot know whether they will behave the same way in different populations. A

supporter of mechanistic reasoning might, of course, claim that the paradoxical

behaviour of the mechanism is simply a sign that some other mechanism (or feature

of the mechanism) that can explain the paradox is yet to be identified. But this

objection seems to rely on a determinist metaphysics that requires independent

arguments.

To recap, mechanistic reasoning as a strategy for solving the problem of

extrapolation faces several hitherto unmet challenges. We will now argue in more

detail that neither Steel’s comparative process tracing nor Cartwright’s account

overcomes the problems we have pointed out above.

How Daniel Steel’s comparative process tracing does not avoid

the extrapolator’s circle

Recall Steel’s argument that comparative process tracing is a mechanist solution to

the problem of extrapolation that does not fall into the extrapolator’s circle.

Comparative process tracing relies on ‘[j]udgments about where significant

differences are and are not likely to occur … based on inductive inferences

concerning known similarities in related mechanisms in a class of organisms, and on

the impact those differences make’ [12, p. 89]. In short, Steel divides parts of the

mechanisms (in both the model and target) into two categories: those that are known

(or suspected) to be similar, and those for which significant differences are likely.

Consider the single example (the carcinogenic effects of the aflatoxin AFB1) that

Steel offers in support of his thesis:

It was found that AFB1, the most common aflatoxin, was converted to the

same phase I metabolite across [human and rodent] groups…. Given the sharp

differences in carcinogenic effects of AFB1 in rats and mice, it was of obvious

interest to inquire which of these two animal models was a better guide for

humans. It was found that although the phase I metabolism of AFB1 proceeded

similarly among mice, rats, and humans (and in fact at a higher rate in mice),

the phase II metabolism among mice was extremely effective in detoxifying

AFB1 but not among rats or humans…. Furthermore, this metabolite bound to

DNA in rat liver cells in vivo at sites at which the nucleotide base guanine was

present to form complexes called DNA adducts…. It was further found that

such cells suffered unusually frequent mutations in which guanine-cytosine

base pairs were replaced with adenine-thymine pairs, a mutagenic effect found

in vivo among rats and in vitro among cells of a variety of origins, including

bacteria and human [cells]…. In addition, guanine-cytosine to adenine-

thymine mutations were found in activated oncogenes present in rats exposed

to AFB1 but were absent in the controls…. Thus, comparative process tracing

yielded the conclusion that the rat was a better model than the mouse.

[12, p. 91]
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This example—and comparative tracing in general—does not support the view that

comparative process tracing escapes the extrapolator’s circle. First, consider the

parts of the mechanism that are allegedly known to be similar (phase I metabolism

in the aflatoxin example). In order to establish that phase I metabolism was similar

across groups, Steel cites a study involving humans as well as rodents [73]. But once

the study in humans is available, the rodent study becomes redundant and Steel

faces the extrapolator’s circle.

This leaves the parts of the mechanism that are suspected to differ between the

target and model. In Steel’s example, the phase II similarity between rats and

humans (and the difference between mice and humans) was likely to differ but the

similarity was allegedly established by a study in humans. This makes the study in

rats redundant. Moreover, the study Steel cites in support of the view that rats are

better models than mice [74] does not involve clinical outcomes, but merely in vitro

studies of human blood samples.

In short, for both categories of comparisons (those in which model and target

mechanisms are likely to be similar and those in which model and target

mechanisms are likely to be different), the study of the model is redundant and

comparative process tracing does not escape the extrapolator’s circle.

Steel’s claim that all similarities and differences need not be known provided that

‘bottlenecks through which any influence on the outcome must be transmitted’ can

be found [12, p. 90] does not save his argument. Besides the problem of correctly

identifying bottlenecks (see above), this potential reply slips back into the

extrapolator’s circle: if one knows where the bottlenecks are in the target, then

the knowledge of the mechanism in the study population (at least upstream from the

bottleneck) becomes redundant. As for the mechanisms downstream from a

bottleneck, either they are known to be similar or known to be different. In each

case, studies of the target are required to establish the similarity or difference and

the extrapolator’s circle re-emerges.

Cartwright’s example fails to support the view that mechanisms can solve

the problem of extrapolation

With the common problems with mechanistic reasoning in mind, we now revisit

Cartwright’s TINP example to show why it does not support using mechanistic

reasoning to solve the problem of extrapolation. The ‘man shopper’ and ‘mother-in-

law’ factors in the BINP study upset the mechanism that was effective in the TINP

study by preventing delivery of the food to the children’s stomachs. This post-hoc

explanation might have informed policy makers how to modify BINP and prevented

its failure. However, knowledge of the different mechanisms might have produced

harm. Imagine that the World Bank hired consultants who correctly identified the

problems. The consultants might reasonably propose to deliver the food directly to

the mother, and not allow the men or mothers-in-law to lay their hands on it (or

alternatively ‘educate’ the mothers-in-law and men). But such a plan could easily

backfire: the mothers-in-law and fathers could feel resentful and become abusive

towards mothers and children. In this imaginary—but sadly by no means
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implausible—example, appeal to mechanisms when extrapolated would lead to

harm. The cause of the failure would have been the inability to identify all relevant

mechanisms activated by the modified intervention. Ironically, if all relevant

mechanisms had been identified, then investigators would have fallen into the

extrapolator’s circle!

To recap, mechanistic reasoning provides prima facie promise for solving the

problem of extrapolation, but several obstacles stand in the way of its providing an

actual solution. First, it is rarely possible to identify all relevant mechanisms.

Second, studies of mechanisms themselves (whether in animals or humans) suffer

from their own problems of ‘external validity’. Third, mechanisms can behave

paradoxically. Steel’s comparative process tracing fails to solve the problem, and

contrary to what Cartwright asserts, appealing to knowledge of mechanisms to solve

the problem of extrapolation can harm rather than help. At the same time, there are

some well-defined cases in which mechanistic knowledge can provide a reliable

solution to the problem of extrapolation.

When mechanistic knowledge can help justify applying average study
results to target populations

The limits to our knowledge of mechanisms listed above must temper our

confidence in all mechanistic reasoning, whether it is used to establish efficacy [46,

47] or to solve the problem of extrapolation. However, some claims about

mechanisms are based on stronger evidence than others [46], and in these cases

mechanistic reasoning can be used to justify extrapolation. For example, the

proximate causes of stroke have been known for centuries [75, 76]. A burst artery in

the brain causes a haemorrhagic stroke, while an ischemic stroke is caused by a

blockage of an artery that supplies blood to the brain, by either thrombosis or

embolism. Aspirin benefits patients who have had an ischemic stroke, but may harm

those who have had a haemorrhagic stroke. The cause of the stroke (identification of

the mechanism that has been disturbed) can be discovered by a CT scan. In this

case, extrapolation of studies (of the treatments for ischemic or haemorrhagic

stroke) to individual patients uses mechanistic reasoning to classify patients into

groups that are likely to benefit or not from an intervention.

To cite another example of how understanding mechanisms can reduce

harmful extrapolation, recall from earlier that the drug benoxaprofen (OraflexTM

in the USA and OprenTM in Europe) proved effective in clinical trials, but killed

some elderly patients when it was used in routine practice [77]. This was due to

altered pharmacokinetics in the elderly patients, which should have been

suspected, based on what is known about the physiology and pathology of

ageing; frail elderly subjects have reduced liver function and benoxaprofen is

metabolized in the liver. There are other well-known examples of effect

modification by age, including antihypertensive drug treatments, which reduce

total mortality in middle-aged patients but may not do so in elderly ones [78],

and reducing dosages of growth hormone for adults with growth hormone

deficiency [79, 80].
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Conclusion

The problem of extrapolation is real, and simple induction fails in many important

cases. In this paper we have evaluated mechanistic knowledge as a potential

solution to the problem and concluded it is rarely successful. We have illustrated

four often overlooked problems with using mechanistic knowledge for solving the

problem of applicability: current knowledge of mechanisms is often mistaken, the

mechanistic knowledge itself can lack external validity, mechanisms can behave

paradoxically, and the mechanist solution does not overcome the problem of the

extrapolator’s circle. Where these problems have been addressed, knowledge of

mechanisms can mitigate the problem of extrapolation, often by sounding a bell of

caution when implementing study results to target populations whose mechanisms

are known to differ significantly.

When mechanistic understanding is lacking, how might extrapolation of study

results to target populations be justified? Certainly more systematic investigations of

the various potential solutions described in this paper (pragmatic trials, n-of-1 trials,

and clinical expertise) are warranted. Or, an intervention that shows promise in a trial

could be rolled out to target populations slowly, and modified according to what is

systematically observed. A possibility that has been implied throughout this paper is

that we have to learn to live with a much higher degree of uncertainty and scepticism

about the effects of many medical interventions, even those whose effects have been

established in well-controlled population studies.
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