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Abstract. We investigate the pair-splitting number spair which
is a variation of splitting number, pair-reaping number rpair which
is a variation of reaping number and cardinal invariants of ideals on
ω. We also study cardinal invariants of Fσ ideals and their upper
bounds and lower bounds. As an application, we answer a question
of S. Solecki by showing that the ideal of finitely chromatic graphs
is not locally Katětov-minimal among ideals not satisfying Fatou’s
lemma.

Introduction

The splitting number s and the reaping number r are cardinal in-
variants which play important role when we study P(ω)/fin.

For X, Y ∈ [ω]ω we say X splits Y if both X ∩ Y and Y \ X are
infinite. We call S ⊂ [ω]ω a splitting family if for each Y ∈ [ω]ω, there
exists X ∈ S such that X splits Y . The splitting number s is the least
size of a splitting family.

We call R a reaping family if for each X ∈ [ω]ω, there exists Y ∈ R
such that Y is not split by X, that is, X ∩Y is finite or Y \X is finite.
The reaping number r is the least size of a reaping family.

We shall study variations of splitting number and of reaping number
and study cardinal invariants of ideals of ω.

The pair-reaping number rpair and the pair-splitting number spair are
introduced in two different contexts with the same definition indepen-
dently.

One is motivated by the investigation of the dual-reaping number
rd and the dual-splitting number sd which are reaping number and
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splitting number for the structure of all infinite partitions of ω ordered
by “almost coarser” ((ω)ω,≤∗) respectively.

We call A ⊂ [ω]2 unbounded if for k ∈ ω, there exists a ∈ A such
that a∩k = ∅. For X ∈ [ω]ω and unbounded A ⊂ [ω]2, X pair-splits A
if there exist infinitely many a ∈ A such that a∩X 6= ∅ and a \X 6= ∅.
We call S ⊂ [ω]ω a pair-splitting family if for each unbounded A ⊂ [ω]2,
there exists X ∈ S such that X pair-splits A. The pair-splitting number
spair is the least size of a pair-splitting family.

We call R ⊂ P([ω]2) a pair-reaping family if for each A ∈ R, A is
unbounded and for X ∈ [ω]ω, there exists A ∈ R such that X does
not pair-split A, that is, for all but finitely many a ∈ A, a ∩X = ∅ or
a ⊂ X. The pair-reaping number rpair is the least size of a pair-reaping
family.

In [13] it is proved that there is the following relationship between
rpair, spair and other cardinal invariants.

Proposition 0.1. (1) spair ≤ non(M), non(N ).
(2) rpair ≥ cov(M), cov(N ).
(3) spair ≥ s.
(4) rpair ≤ r, sd.

It is not known whether rd ≤ spair or not.
For G ⊂ ωω, we call G a dominating family if for each f ∈ ωω, there

exists g ∈ G such that for all but finitely many n ∈ ω, f(n) ≤ g(n),
denoted by f ≤∗ g. The dominating number d is the least size of a
dominating family.

For G ⊂ ωω, we call G an unbounded family if for each f ∈ ωω, there
exists g ∈ G such that g 6≤∗ f , that is, there exist infinitely many n ∈ ω
such that g(n) > f(n). The unbounded number b is the least size of an
unbounded family.

s ≤ d and r ≥ b hold (see in [3]). Kamo proved the following
statement in [13]:

Theorem 0.2. rd ≤ d and sd ≥ b.

So we have the following diagram:
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An arrow κ → λ denotes the inequality κ ≥ λ.

In [13] by using finite support iteration of Hechler forcing, the fol-
lowing consistency results are proved.

Theorem 0.3. It is consistent that spair < add(M). Dually it is con-
sistent that rpair > cof(M).

rpair is a lower bound of r and sd, and spair is an upper bound of s
(and maybe of rd). So it is natural to ask the question whether spair ≤ d
or not and whether rpair ≥ b or not. In [14] the consistency of spair > d
and of rpair < b are shown and an upper bound of spair and a lower
bound of rpair are given.

The other source of motivation stems from the study of Borel ideals
on ω.

For a set X, we call I ⊂ P(X) an ideal on X if I satisfies the
following:

(1) for A,B ∈ I, A ∪B ∈ I,
(2) for A,B ⊂ X, A ⊂ B and B ∈ I implies A ∈ I and
(3) X 6∈ I.

In this paper we assume that all ideals on X contain all finite subsets
of X. We say an ideal I on ω is tall if for each X ∈ [ω]ω there exists
I ∈ I such that I ∩X is infinite.
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If I is an ideal on ω and Y ∈ [ω]ω, we denote by I ¹ Y the ideal
{I ∩ Y : I ∈ I} on Y .

The topology of P(ω) is induced by identifying each subset of ω
with its characteristic function, where 2ω is equipped with the product
topology of the discrete topology of 2 = {0, 1}. We call I a Borel ideal
on ω if I is an ideal on ω and I is Borel in this topology.

Let I be a tall ideal on ω. Then the uniformity number of I, denoted
by non∗(I) and the covering number of I, denoted by cov∗(I) are given
by

non∗(I) = min{|A| : A ⊂ [ω]ω ∧ (∀I ∈ I)(∃A ∈ A)(|A ∩ I| < ℵ0)},
cov∗(I) = min{|A| : A ⊂ I ∧ (∀X ∈ [ω]ω)(∃A ∈ A)(|X ∩ A| = ℵ0)}.

The (pre)orderings on the family of ideals are crucial in describing
some properties of ideals on ω. For example, Cohen-destructibility of
an ideal I on ω is equivalent to the statement I is smaller than the
nowhere dense ideal in the Katětov order ([8, 6]).

Suppose I and J are ideals on ω. Then I ≤K J if there exists a
function f : ω → ω such that for each I ∈ I, f−1[I] ∈ J . We call this
ordering Katětov order.

When we investigate the Katětov order, the uniformity number of
ideals and the covering number of ideals are significant.

Proposition 0.4. If I ≤K J , then non∗(I) ≤ non∗(J ) and cov∗(I) ≥
cov∗(J ).

In the study, the Katětov order between the finite chromatic ideal
on [ω]2, denoted by GFC , which is an Fσ-ideal, and other Borel ideals is
investigated. The pair-reaping number and the pair-splitting number
are introduced as other descriptions of the uniformity number of GFC

and the covering number of GFC .
The encounter of these two different studies produces more general

results.
In the present paper we shall investigate the relationship between

rpair, spair, cardinal invariants of ideals on ω and other classical cardinal
invariants.

In Section 1 we shall show rpair = rn for n ≥ 3 and spair = sn for
n ≥ 3. In Section 2 we shall investigate the relation between spair,
rpair and cardinal invariants of the ideal of finitely chromatic graphs.
In Section 3 we shall show the consistency of non∗(I) < b for Fσ-ideals
on ω. In Section 4 we shall answer a question by Solecki from [15].

1. n-splitting number and n-reaping number

In this section we shall show spair = sn and rpair = rn for n ≥ 2.
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We call A ⊂ [ω]n unbounded if for k ∈ ω there exists a ∈ A such
that a ∩ k = ∅.

For X ∈ [ω]ω and unbounded A ⊂ [ω]n, X n-splits A if there exist
infinitely many a ∈ A such that a ∩ X 6= ∅ and a \ X 6= ∅. We call
S ⊂ [ω]ω an n-splitting family if for each unbounded A ⊂ [ω]n there
exists X ∈ S such that X n-splits A. The n-splitting number sn is the
least size of an n-splitting family.

We call R ⊂ P([ω]n) an n-reaping family if for each A ∈ R, A is
unbounded and for X ∈ [ω]ω, there exists A ∈ R such that X does not
n-split A, that is, for all but finitely many a ∈ A, a∩X = ∅ or a ⊂ X.
The n-reaping number rn is the least size of an n-reaping family. So
spair = s2 and rpair = r2.

The following relations hold between sn for n ≥ 2 and between rn

for n ≥ 2.

Proposition 1.1. (1) spair = s2 ≥ s3 ≥ . . . ≥ sn ≥ . . . and sn ≥ s
for n ≥ 2.

(2) rpair = r2 ≤ r3 ≤ . . . ≤ rn ≤ . . . and r ≥ rn for n ≥ 2.

Proof. Fix n ≥ 2. Let S be an n-splitting family of cardinality sn. For
an unbounded A ⊂ [ω]n+1, let A∗ ⊂ [ω]n be the collection of the initial
n-many elements of an element of A. Then there exists X ∈ S which
n-splits A∗. So there exist infinitely many a ∈ A∗ such that a ∩X 6= ∅
and a \ X 6= ∅. Since for each a ∈ A∗, there exists a∗ ∈ A such that
a ⊂ a∗, there exist infinitely many a∗ ∈ A such that a∗ ∩ X 6= ∅ and
a∗ \X 6= ∅. So S is an (n + 1)-splitting family. Hence sn+1 ≤ sn.

We shall show sn ≥ s. Let S be an n-splitting family of cardinality
sn. For Y ∈ [ω]ω, fix an infinite subset AY of [Y ]n whose elements are
pairwise disjoint. Then AY is unbounded. Pick X ∈ S which n-splits
AY . So there exist infinitely many a ∈ AY such that a ∩ X 6= ∅ and
a \X 6= ∅. Hence |X ∩ Y | = |Y \X| = ω. So X splits Y . Therefore S
is a splitting family. So sn ≥ s.

We shall show rn ≤ rn+1. Let R be an (n + 1)-reaping family of
cardinality rn+1. Put R∗ the set of the initial n-many elements of an
element of R. Given X ∈ [ω]ω, pick A ∈ R such that for all but finitely
many a ∈ A, a∩X = ∅ or a ⊂ X. Put A∗ the set of initial segments of
size n of elements of A. Then for all but finite many a∗ ∈ A∗, a∗∩X = ∅
or a∗ ⊂ X. So R∗ is an n-reaping family of cardinality rn+1. Hence
rn ≤ rn+1.

We shall prove r ≥ rn. Let R be a reaping family of cardinality r.
For each Y ∈ R, fix an infinite subset AY of [Y ]n whose elements are
pairwise disjoint. R∗ is the collection of AY with Y ∈ R.
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For X ∈ [ω]ω, pick Y ∈ R such that Y \X is finite or X ∩Y is finite.
Then for all but finitely many a ∈ AY , a ⊂ X or for all but finitely
many a ∈ AY , a does not meet X. So R∗ is an n-reaping family of
cardinality r. Therefore rn ≤ r. ¤

Proposition 1.1 was proved as early as rn and sn were defined. How-
ever, it was not known whether spair = sn for n ≥ 3 or not.

Between rpair and rn, we can prove the following statement.

Proposition 1.2. rpair = rn for n ≥ 3.

Proof. We shall prove that rpair ≥ r4. Let R be a pair-reaping family of
cardinality rpair. Without loss of generality we can assume R is closed
under finite changes, i.e, if C ∈ R and |D M C| < ℵ0 then D ∈ R; and
A is pairwise disjoint for each A ∈ R. Let eA be a bijection from A to
ω. Put

R∗ = {C : ∃A, B ∈ R
(
C = {

⋃
e−1

A [b] : b ∈ B}
)
}.

We shall prove such R∗ is a 4-reaping family. Let X ∈ [ω]ω. Then
we can find A ∈ R such that for all a ∈ A, a ∩X = ∅ or a ⊂ X. Then
define YA,X ⊂ ω so that

n ∈ YA,X if

{
e−1

A (n) ⊂ X if ∃∞m ∈ ω
(
e−1

A (m) ⊂ X
)
,

e−1
A (n) ∩X = ∅ otherwise

Pick B ∈ R such that for all b ∈ B, b ∩ YA,X = ∅ or b ⊂ YA,X . Let
CA,B = {⋃ e−1

A [b] : b ∈ B} ∈ R∗. Let b ∈ B. Since for a ∈ A, a∩X = ∅
or a ⊂ X, e−1

A (i) ∩X = ∅ or e−1
A (i) ⊂ X for i ∈ b. Since b ∩ YA,X = ∅

or b ⊂ YA,X for b ∈ B,
⋃

e−1
A [b] ∩X = ∅ or

⋃
e−1

A [b] ⊂ X. So X does
not 4-split CA,B. Since |R∗| = rpair, r4 ≤ rpair. By Proposition 1.2
rpair = r3 = r4.

Similarly we can prove rpair = r2n for n ≥ 2. ¤

David Asperó conjectured that spair = s3. Shizuo Kamo gave the
proof. The proofs for the splitting numbers are not dual to the proofs
for the reaping numbers. It might simplify in terms of Galois-Tukey
connections as in [16]. However it might be difficult. In [11] and [12],
Mildenberger introduced another variation of reaping numbers rn and
rn = rm(= r) holds for n,m ∈ ω but it is proved that there are no nice
Galois-Tukey connections between Mildenberger’s reaping numbers.

Theorem 1.3. (Kamo) spair = sn for n ≥ 3.

Proof. We shall prove spair = s4. Let ZFC− be a large enough fragment
of ZFC. Suppose s4, s3 < spair holds. Let M0 be a model of ZFC− such
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that the cardinality is s3 and M0 ∩ [ω]ω is a 3-splitting family and
4-splitting family.

Pick an infinite subset A of [ω]2 which is not 2-split by M0 ∩ [ω]ω.
Without loss of generality we can assume this A is pairwise disjoint.

Let M1 be a model of ZFC− of cardinality s3 which contains A and
all elements of M0. Pick B in M1 such that B is an infinite subset of
[A]2 and B is not 2-split by any elements in M1 ∩ [A]ω. We can also
assume this B is pairwise disjoint.

Let C = {a∪ b : {a, b} ∈ B}. Since M0 ∩ [ω]ω is a 4-splitting family,
there exists X ∈ M0 ∩ [ω]ω such that X 4-splits C. Since A is not
2-split by X, there exist infinitely many a ∈ A such that a ⊂ X or
X ∩ a = ∅. So there exist infinitely many {a, b} ∈ B such that a ⊂ X
and b does not meet X. Put Y = {a ∈ A : a ⊂ X}. Then Y ∈ M1 and
Y 2-splits B. However, this is a contradiction to the fact B is not split
by any infinite subset of A in M1.

Similarly we can prove that spair = s2n for n ≥ 2. Therefore spair =
sn for n ∈ ω. ¤

2. The ideal of finitely chromatic graphs

In this section we shall investigate the relation between the finite
chromatic ideal, pair-splitting number and pair-reaping number.

The finite chromatic ideal on [ω]2 is defined by

GFC = {A ⊂ [ω]2 : χ(ω, A) < ℵ0}
where χ(ω, A) = min{k ∈ ω : (∃f ∈ kω)(∀a ∈ A)(|f [a]| = 2)}.
Theorem 2.1. The following conditions hold.

(1) spair = cov∗(GFC),
(2) non∗(GFC) is the minimal cardinality of a family A ⊆ [[ω]2]ω

such that for any finite partition P of ω there is an element A
of A such that for every r ∈ A there is P ∈ P such that r ⊆ P
and

(3) rpair ≤ non∗(GFC).

Proof. First we shall prove spair ≤ cov∗(GFC). Let A be a subset of
GFC such that |A| = cov∗(GFC) and

(∀X ⊂ [ω]2)(∃A ∈ A) (|X| = ℵ0 → |A ∩X| = ℵ0) .(1)

Claim 2.2. If A ∈ GFC, then there exist n ∈ ω and Ai ⊂ A for i < n
such that A =

⋃
i<n Ai and χ(Ai) = 2 for i < n.
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Proof of Claim. Suppose A ∈ GFC , k ∈ ω and f : ω → k such that for
all a ∈ A |f [a]| = 2. For i, j < k with i < j, put Ai,j = {a ∈ A : f [a] =

{i, j}}. Then χ(ω, Ai,j) = 2 and A =
⋃

i,j<k,i<j

Ai,j. ¤

By this claim, we can assume χ(ω, A) = 2 for A ∈ A. For each
A ∈ A, fix f : ω → 2 so that f witnesses χ(ω, A) = 2. Put A0 =
f−1(0) ∩⋃

A and A0 = {A0 : A ∈ A}.
Then A0 is a pair-splitting family. Let B ⊂ [ω]2 be infinite. Since

A satisfies (1), there is A ∈ A such that |A ∩B| = ℵ0. So there exist
infinitely many b ∈ B such that b ∈ A. So there exist infinitely many
b ∈ B such that b∩A0 6= ∅ and b\A0 6= ∅. Therefore spair ≤ cov∗(GFC).

We shall prove spair ≥ cov∗(GFC). Let S ⊂ [ω]ω be a pair-splitting
family. For each S ∈ S, put AS = {a ∈ [ω]2 : a∩S 6= ∅∧a∩ω \S 6= ∅}
and A(S) = {AS : S ∈ S}.

Then A(S) satisfies that for each infinite X ∈ [ω]2, there exists an
AS ∈ A(S) such that |X ∩ AS| = ℵ0. Let X ⊂ [ω]2 be infinite. Since A
is a pair-splitting family, there exists an S ∈ S such that S pair-splits
X. So there exist infinitely many a ∈ X such that a ∩ S 6= ∅ and
a \ S 6= ∅. Hence |X ∩ AS| = ℵ0. Therefore cov∗(GFC) ≤ spair.

In order to prove (2), note that if P is a finite partition of ω then
GP = {{n,m} : (∃a 6= b ∈ P )(n ∈ a ∧m ∈ b)} ∈ GFC , and moreover,
{GP : P is a finite partition of ω} is a base of GFC . Then, if A is a
family as in (2) then A itself witnesses non∗(GFC); and if B is a witness
of non∗(GFC) then defining A as the family of finite changes of elements
of B we are done. (3) follows directly from (2). ¤

It can be easily seen that GFC is an Fσ-ideal. In particular, spair is
equal to the covering number of an Fσ-ideal and rpair is bounded by
the uniformity number of an Fσ-ideal.

Concerning to the covering number of Fσ-ideals and b, we can con-
struct a proper forcing notion which destroys tallness of an Fσ-ideal
and preserves the unbounded number.

Theorem 2.3. [9] For each Fσ-ideal I, there exists a proper forcing
notion PI which is ωω-bounding and adds a new element X in the
extension such that |X ∩ I| < ℵ0 for I ∈ I ∩ V .

By using ω2-stage countable support iteration of PI , we can show
the following statement.

Corollary 2.4. Suppose I is an Fσ-ideal on ω. Then it is consistent
that cov∗(I) > d.

Corollary 2.5. It is consistent that spair = cov∗(GFC) > d.
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3. The uniformities of Fσ-ideals

The eventually different ideal is defined by

ED = {A ⊂ ω × ω : (∃m,n ∈ ω)(∀k > n) (|{l : 〈k, l〉 ∈ A}| ≤ m)}.
Define EDfin = ED ¹ 4, where 4 = {〈m,n〉 : n ≤ m}.

On the cov∗(ED) we have the following result.

Lemma 3.1. cov∗(ED) = non(M).

Proof. We will use the following lemma, due to Bartoszyński and Miller.

Lemma 3.2 ([1], Lemma 2.4.8). For any cardinal κ the following are
equivalent:

(a) κ < non(M),
(b) (∀F ∈ [ωω]κ)(∃g ∈ ωω)(∃X ∈ [ω]ω)(∀f ∈ F )(∀∞n ∈ X)(f(n) 6=

g(n)) and
(c) (∀F ∈ [C]κ)(∃g ∈ ωω)(∀S ∈ F )(∀∞n)(g(n) /∈ S(n))

Let F be a subset of ωω of minimal cardinality such that

(∀g ∈ ωω)(∀X ∈ [ω]ω)(∃f ∈ F)(∃∞n ∈ X)(f(n) = g(n))

(We are identifying every function f ∈ ωω with its graph {(n, f(n)) :
n < ω}.) Define A = F ∪ {{n} × ω : n < ω}. Obviously A ⊆ ED.
We claim that A is a covering family. Let X be an infinite subset
of ω × ω. If there exists n < ω such that Xn = X ∩ ({n} × ω) is
infinite, then Xn is an infinite subset of an element of A. If the set
A = {n < ω : Xn 6= ∅} is infinite then there exists f ∈ F such that
f(n) = min(Xn) for infinitely many n ∈ A. Hence, f ∩X is infinite.

On the other hand, let A be a subset of ED with |A| < non(M).
For every A ∈ A, let nA < ω such that |Ak| ≤ nA for all k ≥ nA, and
define a slalom SA by

SA(n) =

{
∅ if n < nA

An if n ≥ nA

Note that |{SA : A ∈ A}| ≤ |A|, and by the lemma above, there
exists g ∈ ωω such that for every A ∈ A, g(n) /∈ SA(n), for almost all
n < ω. Hence, g ∩A is finite for all A ∈ A, and so, A is not a covering
family. ¤
Theorem 3.3. If I is a Borel ideal on ω, then non∗(I) = ω or
EDfin ≤K I. So non∗(I) = ω or non∗(EDfin) ≤ non∗(I).

Proof. For a Borel ideal I, let us consider the following two-player
game: In stage k, Player I chooses a finite subset Fk of ω and then,
Player II chooses a natural number nk 6∈ Fk.
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I F0 ∈ [ω]<ω F1 ∈ [ω]<ω . . .
II n0 6∈ F0 n1 6∈ F1 . . .

Player I wins if {ni : i ∈ ω} ∈ I and Player II wins {ni : i ∈ ω} ∈ I+.

Claim 3.4. If Player I has a winning strategy then EDfin ≤K I.

Proof of Claim. If Player I has a winning strategy then there is a
cofinite-branching tree T ⊂ ω<ω such that every t ∈ T is an increas-
ing sequence and rng(f) ∈ I for all f ∈ [T ]. Choose g : ω → ω
a strictly increasing function such that if n ∈ ω and t ∈ T with
rng(t) ⊂ g(n) then [g(n + 1),∞) ⊆ SuccT (t). Then every selector
of {[g(n), g(n + 1)) : n ∈ ω} is the range of a branch of T . Therefore
every selector of {[g(n), g(n + 1)) : n ∈ ω} is in I.

Choose f : ω → 4 an injection so that for each n ∈ ω, there exists
k ∈ ω such that f [[g(n), g(n + 1))] ⊂ {〈k, l〉 : l ≤ k}.

We shall show this f witnesses EDfin ≤K I. Let I ∈ EDfin and m ∈
ω be such that for all but finitely many k, |{〈k, l〉 : l ≤ k ∧ 〈k, l〉 ∈ I}| ≤
m. So f−1[I] is a union of m-many selectors of {[g(n), g(n + 1)) : n ∈
ω}. Since every selector of {[g(n), g(n + 1)) : n ∈ ω} is in I, f−1[I] ∈ I
i.e., EDfin ≤K I. ¤
Claim 3.5. If Player II has a winning strategy, then non∗(I) = ω.

Proof of Claim. Player II has a winning strategy if and only if there
exists an infinitely-branching tree T ⊂ ω<ω such that rng(f) ∈ I+ for
all f ∈ [T ].

We shall show {succT (t) : t ∈ T} is a witness of non∗(I). Assume to
the contrary that there exists I ∈ I such that |I ∩ succT (t)| = ω for
all t ∈ T . Then there exists b ∈ [T ] such that rng(b) ⊂ I ∈ I. This is
a contradiction. Therefore non∗(I) = ω. ¤

By Borel determinacy this game is determined i.e., either Player I or
Player II has a winning strategy. So EDfin ≤K I or non∗(I) = ω. ¤

Concerning to the cardinal invariants of EDfin, we have proved the
following.

Proposition 3.6. The following relations hold:

(1) non∗(EDfin) ≤ r,
(2) cov(M) = min{d, non∗(EDfin)} and
(3) non(M) = max{b, cov∗(EDfin)}.
Proof. For any A ⊆ ∆ we will denote by An = {m ≤ n : 〈n,m〉 ∈ A}.
Let us prove (1). We will say that a family R of infinite subsets of ω
is hereditarily reaping if for every X ∈ R and every infinite subset Y
of X there is R in R such that R ⊆ Y or R ⊆ X \ Y .
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Lemma 3.7. r = min{|R| : R is hereditarily reaping}
Proof. It will be enough to prove that there is a hereditarily reaping
family with cardinality r. Let Q be a reaping family with cardinality
r. Define Qn by recursion on n < ω. Let Q0 = Q. Given Qn and
A ∈ Qn, let Qn+1 ¹ A be a reaping family on A with cardinality r. Put
Qn+1 =

⋃
A∈Qn

Qn+1 ¹ A. So, R =
⋃

n<ω Qn is a hereditarily reaping
family. ¤

Let R be a hereditarily reaping family, and for every R ∈ R and
n < ω define XR,n = {(m,n) : m ≥ n ∧ m ∈ R}. We will see that
A = {XR,n : R ∈ R ∧ n < ω} witnesses non∗(EDfin). Let I be in
EDfin, and choose {fi : i ≤ n} functions such that I ⊆ ⋃

i≤n fi. Define
Aj = {k : (∃i ≤ n)(fi(k) = j)}, for j ≤ n. If Aj is finite for some
j ≤ n, then I ∩ XR,j is finite for every R ∈ R. So we can assume
Aj is infinite for j ≤ n. Let R0 be in R such that R0 ∩ A0 = ∅ or
R0 ⊆ A0. In general, for 1 ≤ j ≤ n we can find Rj ∈ R such that
Rj ∩ (Rj−1 ∩ Aj) = ∅ or Rj ⊆ Rj−1 ∩ Aj. If the first case is true for a
j ≤ n we are done, because for j minimal, we have that XRj ,j ∩ I = ∅.
Suppose that Rj ⊆ Rj−1 ∩ Aj for all j ≤ n. Then, for any k ∈ Rn,
I ∩ ({k} × ω) = n + 1, and so, XRn,n+1 ∩ I = ∅.

In order to prove (2) we will need the following lemma, due to Bar-
toszyński and Miller.

Lemma 3.8 ([1], Lemma 2.4.2). For any cardinal κ the following con-
ditions are equivalent:

(i) κ < cov(M) and
(ii) (∀F ∈ [ωω]κ)(∀G ∈ [[ω]ω]κ)(∃g ∈ ωω)(∀f ∈ F )(∀X ∈ G)(∃∞n ∈

X)(f(n) = g(n)). ¤
Let X be a subset of [∆]ℵ0 with |X | < cov(M). For every X ∈ X

define GX = {n < ω : X ∩ ({n} × ω) 6= ∅} and let fX ∈ ωω be a
function such that fX(n) ∈ X ∩ ({n} × ω). By the previous lemma,
there is a function g ∈ ωω such that fX(n) = g(n) for infinitely many
elements n of GX , for all X ∈ X . Then, ∆ ∩ g is an element of EDfin

having an infinite intersection with every element of X , proving |X | <
non∗(EDfin). So cov(M) ≤ non∗(EDfin). In addition, it is a well known
fact that cov(M) ≤ d. Therefore cov(M) ≤ min{d, non∗(EDfin)}.

We shall show min{d, non∗(EDfin)} ≤ cov(M). Let κ be a cardinal
lower than d and non∗(EDfin). We will prove and use the following
lemma.

Lemma 3.9. Let κ be an infinite cardinal. The following conditions
are equivalent.
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(a) κ < non∗(EDfin) and
(b) for every bounded family F of κ functions in ωω and every family

A of κ infinite subsets of ω there exists a function g ∈ ωω such that
for all f ∈ F and A ∈ A, f(n) = g(n) for infinitely many n ∈ A.

Proof. Suppose that κ satisfies (b) and let B be a family of κ infinite
subsets of ∆. For every B ∈ B, let XB = {n : Bn 6= ∅} and fB : ω → ω
such that (n, fB(n)) ∈ B if n ∈ XB, and fB(n) = 0 if not. The families
F = {fB : B ∈ B} and A = {XB : B ∈ B} have cardinality κ, and
so, there exists a function g ∈ ωω such that for all B ∈ B there are
infinitely many n ∈ XB such that g(n) = fB(n), showing that g has an
infinite intersection with B.

On the other hand assume that κ < non∗(EDfin), F ⊆ ωω and A ⊆
[ω]ω have cardinality κ, and F is bounded by an increasing function
h ∈ ωω. We will identify every f ∈ F with a subset of an EDfin-positive
subset ∆′ of ∆, as follows: Define X = h[ω], ∆′ =

∏
n∈X n, A′ = h[A]

if A ∈ A, and for f ∈ F , define f ′ : X → ω by f ′(n) = f(h−1(n)).
So, F ′ = {f ′ : f ∈ F} is a family of infinite subsets of ∆′. Let
B = {f ′ ¹ A′ : f ∈ F ∧ A ∈ A}. Since |B| = κ, there exists I ∈ EDfin

such that I ∩ B is infinite for all B ∈ B. Let {gi : i ≤ N} be a
set of functions in ωω such that I ⊆ ⋃

i≤N gi. Define Bf,A = {n ∈ A′ :
f ′(n) = gi(n)}, for some i ≤ N such that |(f ′ ¹ A′)∩gi| = ℵ0, and define
C = {Bf,A : f ∈ F ∧ A ∈ A}. By Proposition 3.6 (1) |C| ≤ κ < r, and
so, there exists Y ∈ [ω]ω such that |Y ∩Bf,A| = ω = |Bf,A \Y |. We can
find a partition {Y0, Y1} of Y such that |Y0 ∩Bf,A| = ℵ0 = |Y1 ∩Bf,A|,
for all f ∈ F and for all A ∈ A, and inductively, we can find a partition
{Y0, Y1, . . . , Yn} of Y such that for every i ≤ n, |Bf,A ∩ Yi| = ℵ0. Now,
we define g(n) = gi(n) if n ∈ Yi and g(n) = 0 if n /∈ Y . Given f and A,
if i ≤ n is such that Bf,A = {n ∈ A′ : f ′(n) = gi(n)} then f ′(n) = g(n)
for infinitely many n ∈ Yi ∩ A′, and so, f(n) = g(h(n)) for infinitely
many n ∈ h−1[Yi] ∩ A. ¤

Let us prove that κ < cov(M) when κ < min{d, non∗(EDfin)}, by
using Lemma 3.8. Let F and G be families such that F ∈ [ωω]κ and
G ∈ [[ω]ω]κ.

Claim 3.10. There exists h ∈ ωω such that for all X ∈ G and for all
f ∈ F , f(n) < h(n) for infinitely many n ∈ X.

Proof of the Claim. For all f ∈ F, X ∈ G, let eX be the enumeration
of X and let hf,X ∈ ωω be such that hf,X(n) ≥ f(eX(i)) for all i ≤ n.
Since κ < d, there is a function h which is not dominated by {hf,X :
X ∈ G ∧ f ∈ F}. This h does the work. ¤
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Now, for every f ∈ F define f ′ ∈ ωω such that f ′(n) = f(n) if f(n) <
h(n) and f ′(n) = 0 otherwise; for every f ∈ F and for every X ∈ G
define Cf,X = {n ∈ X : f(n) < h(n)}, A = {Cf,X : f ∈ F ∧ X ∈ G}
and F = {f ′ : f ∈ F}. F is bounded and so, by Lemma 3.9, there is
g ∈ ωω such that for all f ∈ F and for all A ∈ A, g(n) = f ′(n) for
infinitely many n ∈ A and in consequence, g(n) = f(n) for infinitely
many n ∈ Cf,X ⊂ X for every X ∈ G. Therefore κ < cov(M) by
Lemma 3.9.

We shall prove (3). It is well known that b ≤ non(M) and note
that ED ≤K EDfin and so, cov∗(EDfin) ≤ cov∗(ED) = non(M). So
max{b, cov∗(EDfin)} ≤ non(M).

To show max{b, cov∗(EDfin)} ≥ non(M), we are going to use the
following lemma.

Lemma 3.11 ([1], Theorem 2.4.7). non(M) is the size of the smallest
family F ⊆ ωω such that for every g ∈ ωω there is an element f of F
such that f(n) = g(n) for infinitely many n ∈ ω. ¤

Let κ be a cardinal greater than cov∗(EDfin) and greater than b.
Let G = {fα : α < κ} be an unbounded family of functions in ωω,
and let Gα a witness of cov∗(EDfin) in ∆α = {〈n,m〉 : m ≤ fα(n)},
for all α < κ. Without loss of generality we can assume that every
element of I of Gα is the graph of a function in ωω. We will prove that
F =

⋃
α<κ Gα is such that for every g ∈ ωω there is f ∈ F such that

f(n) = g(n) for infinitely many n ∈ ω. Given g ∈ ωω, let α < κ be
such that fα �∗ g. Then, g ∩ ∆α is infinite and so, there is I ∈ Gα

such that I ∩ (g ∩∆α) is infinite. Since I is the graph of a function in
F , we are done. ¤

By Proposition 3.6, it is consistent that non∗(EDfin) < b. For exam-
ple if the ground model satisfies Martin axiom, then the random forcing
corresponding to the product space 2ω1 forces non∗(EDfin) = cov(M) =
ω1 < b = c. However, we cannot use this argument to show the consis-
tency of non∗(I) < b for every Fσ-ideal I because cov(N ) ≤ non∗(GFC)
and the random forcing corresponding to the product space 2ω1 forces
cov(N ) = c whenever the ground model satisfies Martin axiom.

However, Fσ-ideals on ω have the following good property.

Theorem 3.12. [10] I is an Fσ-ideal on ω if and only if I = Fin(ϕ)
for some lower semi-continuous submeasure ϕ, where Fin(ϕ) = {A ⊂
ω : ϕ(A) < ∞}. Here ϕ : P(ω) → [0,∞] is a lower semi-continuous
submeasure if

(1) ϕ(∅) = 0,
(2) whenever X,Y ⊂ ω and X ⊂ Y , ϕ(X ∪ Y ) ≤ ϕ(X) + ϕ(Y ),
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(3) ϕ({n}) < ∞ for n ∈ ω and
(4) ϕ(A) = limn→∞ ϕ(A ∩ n) for every A ⊂ ω.

To show the consistency of non∗(I) < b, we shall use the Laver
forcing L. L is defined by T ∈ L if T ⊂ ω<ω is a tree and for s ∈ T
with stem(T ) ⊂ s, |succT (s)| = ℵ0. L is ordered by inclusion. Then L
adds an unbounded real.

Proposition 3.13. Let G be a L-generic over V and fG =
⋃{stem(T ) :

T ∈ G}. Then fG ∈ ωω and fG dominates for all g ∈ ωω ∩ V .
Therefore, if Lω2 is an ω2-stage countable support iteration of Laver

forcing, then V Lω2 |= b = c.

By Proposition 3.13 it is enough to show that Lω2 preserves non∗(I)
for each Fσ-ideal I on ω. We shall use the Laver property.

Definition 4. [4] A forcing notion P have the Laver property if for
every H : ω → ω ∈ V

°
(
∀f ∈

∏
n∈ω

H(n) ∩ V [Ġ]

)
(∃A : ω → ω<ω ∈ V )

(∀n ∈ ω) (f(n) ∈ A(n) ∧ |A(n)| ≤ 2n) .

The Laver property has the following good property.

Theorem 4.1. [4] The Laver property is preserved under countable
support iteration of proper forcing notions.

Theorem 4.2. [1, p353] The Laver forcing L has the Laver property.

So Lω2 has the Laver property.

Theorem 4.3. If I is an Fσ-ideal on ω, then it is consistent that
non∗(I) < b.

Proof. Let I be an Fσ-ideal and let ϕ be a lower semi-continuous sub-
measure such that I = Fin(ϕ).

If a forcing notion P has the Laver property, then P has the following
good property:

Lemma 4.4. If P has the Laver property, then

°P “(∀X ∈ I ∩ V [Ġ])(∃A ∈ [ω]ω ∩ V ) (|X ∩ A| < ℵ0) ”.

Proof of Lemma. Let p ∈ P and let Ẋ be a P-name such that °P “Ẋ ∈
I”. Without loss of generality we can assume that there exists n ∈ ω
such that p °P “ϕ(Ẋ) < n”.
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Claim 4.5. Let ϕ : P(ω) → [0,∞] be a lower semi-continuous sub-
measure such that Fin(ϕ) = I for some Fσ-ideal on ω. For each k ∈ ω
and l ∈ ω, there exists m ∈ ω such that ϕ([l,m]) > k.

Proof of Claim. Since [l,∞) 6∈ I, ϕ([l,∞)) = ∞. Because ϕ has the
lower semi-continuous, there exists m > l such that ϕ([l,m]) > k. ¤

Let Π = 〈Ij : j ∈ ω〉 be an interval partition of ω such that
ϕ(Ij) > 2j · n. By the Laver property, there exist q ≤ p and A :
ω → ⋃

j∈ω P(2Ij) ∈ V such that for j ∈ ω, A(j) ⊂ 2Ij and |A(j)| ≤ 2j

and q °P “∀j ∈ ω
(
Ẋ ¹ Ij ∈ A(j)

)
”. Without loss of generality we

can assume ϕ(J) ≤ n for J ∈ A(j) and for j ∈ ω. By the fi-
nite subadditivity of ϕ, ϕ(

⋃
A(j)) ≤ ∑

J∈A(j) ϕ(J) ≤ 2j · n. So

Ij \ Aj 6= ∅ for j ∈ ω. Choose yj ∈ Ij \
⋃

A(j) for j ∈ ω. Put

Y = {yj : j ∈ ω}. Then q °P “Ẋ ∩ Y = ∅”. Therefore °P “∀X ∈
I∃Y ∈ [ω]ω ∩ V (|X ∩ Y | < ℵ0) ”. ¤

So if the ground model satisfies CH, then V Lω2 |= [ω]ω ∩V witnesses
non∗(I). Therefore it is consistent non∗(I) < b. ¤

In [7] Masaru Kada introduced a cardinal invariant associated with
the Laver property.

We call a function from ω to [ω]<ω a slalom. Let S be the collection of
slaloms such that ∀φ ∈ S∀n ∈ ω(|φ(n)| ≤ 2n). l is the smallest cardinal
κ such that for every h ∈ ωω there is a set Φ ⊂ S with cardinality κ
such that, for every f ∈ ω with f(n) < h(n) for all n < ω, there is
φ ∈ Φ such that for all but finitely many n ∈ ω, we have f(n) ∈ φ(n).

Pawlikowski showed that the dual notion to the definition of l char-
acterizes trans-add(N ), transitive additivity of the null ideal (see [1,
p.91]). That is, trans-add(N ) is the smallest size of ≤∗-bounded family
F ⊂ ωω such that for every φ ∈ S there is f ∈ F such that for infinitely
many n ∈ ω, f(n) 6∈ φ(n).

As the proof of Theorem 4.3 we can prove the following statement.

Corollary 4.6. If I is an Fσ-ideal, then

(1) non∗(I) ≤ l and
(2) cov∗(I) ≥ trans-add(N ).

Proof of Corollary. 1. Let I be an Fσ-ideal on ω and let ϕ be a lower
semi-continuous submeasure such that Fin(ϕ) = I. Choose Π = 〈Ij :
j ∈ ω〉 an interval partition of ω such that ϕ(Ij) > 2j · j. Choose Φ a
family of functions from ω to

⋃
j∈ω P(2Ij) such that

i. |Φ| ≤ l,
ii. for each j ∈ ω and φ ∈ Φ, φ(j) ∈ 2Ij and |φ(j)| ≤ 2j and
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iii. for each X ∈ [ω]ω, there exists φ ∈ Φ such that for all but finitely
many j ∈ ω, X ∩ Ij ∈ φ(j),

Without loss of generality we can assume that for each φ ∈ Φ and
each j ∈ ω, J ∈ φ(j) implies ϕ(J) ≤ j. For each j ∈ ω and φ ∈ Φ,
ϕ(

⋃
φ(j)) ≤ ∑

J∈φ(j) ϕ(J) ≤ 2j · j. So for each j ∈ J , Ij \
⋃

φ(j) 6= ∅.
For each φ ∈ Φ, choose Xφ ∈ [ω]ω such that Xφ ∩ Ij \

⋃
φ(j) 6= ∅.

Put A = {Xφ : φ ∈ Φ}. We shall show for each I ∈ I, there exists
X ∈ A such that |A ∩ I| < ℵ0.

Let I ∈ I and let n ∈ ω such that ϕ(I) < n. Choose m ∈ ω and
φ ∈ Φ so that for j ≥ m, I ∩ Ij ∈ φ(j). Then for j ≥ max n,m
Xφ ∩ Ij ∩ I = ∅. So |Xφ ∩ I| < ℵ0. Hence non∗(I) ≤ l.

2. Let I be an Fσ-ideal. Let A ⊂ I such that |A| < trans-add(N ). Let
Π = 〈Ij : j ∈ ω〉 be an interval partition of ω such that ϕ(Ij) > 2j · j.

Since |A| < trans-add(N ), there exists φ : ω → ⋃
j∈ω P(2Ij) such

that

i. for each j ∈ ω, φ(j) ⊂ P(2Ij),
ii. for each j ∈ ω, |φ(j)| ≤ 2j and
iii. for each I ∈ A for all but finitely many j ∈ ω, I ∩ Ij ∈ φ(j).

Without loss of generality we can assume that for each j ∈ ω and
J ∈ φ(j), ϕ(J) < j. By the finite subadditivity of ϕ, ϕ(

⋃
φ(j)) ≤∑

J∈φ(j) ϕ(J) ≤ 2j · j for each j ∈ ω. So Ij \
⋃

φ(j) 6= ∅ for j ∈ ω.

Choose Xφ ∈ [ω]ω such that Xφ ∩ Ij \
⋃

φ(j) for j ∈ ω. For each
I ∈ A, there exists m ∈ ω such that j ≥ m implies I ∩ Ij ∈ φ(j).
Then j ≥ m implies I ∩ Ij ∩ Xφ = ∅. So |I ∩Xφ| < ℵ0. Therefore
trans-add(N ) ≤ cov∗(I). ¤
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cov(N ) oo cov∗(EDfin) oo non(M) oo cof(M) oo cof(N )

cov∗(I)
²²

trans-add(N )
²²

b oo
²²

d
²²

l

non∗I
²²

add(N )
²²

oo add(M)
²²

oo cov(M)
²²

oo non∗(EDfin) oo
²²

non(N )
²²

,

where I is an Fσ-ideal on ω and non∗(I) 6= ω.

Corollary 4.7. (1) It is consistent rpair < b.
(2) rpair ≤ l and spair ≥ trans-add(N ).

Question 4.8. (1) rd ≤ spair?
(2) If I is a Borel ideal, then non∗(I) ≤ cof(N )?

5. Fatou’s lemma and a question of Solecki

In this section we answer a question of S. Solecki related to the
Katětov order by using cardinal invariants of Borel ideals.

For a sequence of (an)n∈ω of real numbers and an ideal I on ω,
limI inf an = sup{r ∈ R : {n ∈ ω : an < r} ∈ I}.

Let (X,B, µ) be a σ-finite measure space with µ defined on σ-algebra
B. Let fn : X → [0,∞] be a sequence of µ-measurable functions and let
I be an ideal on ω. We say that Fatou’s lemma holds on 〈fn : n ∈ ω〉
with respect to I if∫

lim
I

inf fndµ ≤ lim
I

inf

∫
fndµ

where
∫

is the lower integral, i.e., if g ≥ 0, then
∫

gdµ = sup

{∫
fdµ : f ≤ g and f is µ-measurable

}
.
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Let I be an ideal on ω. We say that Fatou’s lemma holds for I if
Fatou’s lemma holds with respect to I for any sequence 〈fn : n ∈ ω〉 of
measurable functions from X to [0,∞) on any σ-finite measure space.

The ideal S is a critical (locally minimal in the Katětov order) among
the ideals which satisfy Fatou’s lemma. Let Ω = {U ∈ Clopen(2ω) :
µ(U) = 1

2
}. S is an ideal on Ω generated by the set {Ix : x ∈ 2ω} where

Ix = {U ∈ Ω : x ∈ U}.
Theorem 5.1. [15] Let I be a Borel ideal on ω.
I does not satisfy Fatou’s lemma if and only if there exists X ∈ I+

such that S ≤K I ¹ X.

Concerning this theorem, Solecki asked the following question.

Question 5.2. [15] Can S be replaced by GFC?

When we think about question related to the Katětov order, cardinal
invariants of ideals are significant.

Theorem 5.3. cov∗(S) = non(N ).

To prove this theorem, we will use the following lemmas.

Lemma 5.4. [5] For any {Un : n ∈ ω} ⊂ Ω,

µ({x ∈ 2ω : ∃∞n (x ∈ Un)}) ≥ 1

2
.

Proof of Lemma. Assume to the contrary that there exists {Un : n ∈
ω} ∈ [Ω]ω with µ({x ∈ 2ω : ∃∞n ∈ ω(x ∈ Un)}) < 1

2
. Then there

exists a compact set K ⊂ 2ω such that µ(K) > 1
2

and K is disjoint

with {x ∈ 2ω : ∃∞n ∈ ω(x ∈ Un)}. Let δ = µ(K) − 1
2

> 0. Then
µ(K ∩ Un) ≥ 1

2
for each n ∈ ω.

For each k ∈ ω, define Ak ⊂ K by

Ak = {x ∈ K : |{n ∈ ω : x ∈ Un}| = k}.
Then µ(K) =

∑
k∈ω µ(Ak). So there exists m ∈ ω such that

∑
k≥m µ(Ak) <

δ
2
. For each n < m, choose a compact subset Cn of An so that

µ(An \ Cn) ≤ δ
2m

.

Put C =
⋃

n<m Cn. Then µ(
⋃

n<m An \ C) ≤ δ
2
. Since

µ(K \ C) =
∑
n≥m

µ(An) + µ(
⋃

n<m

An \ C) <
δ

2
+

δ

2
= δ,

µ(C ∩Un) ≥ µ(C) + 1
2
− 1 > 0 for n ∈ ω. However,

∑
n∈ω µ(C ∩Un) ≤

m·µ(C) < ∞ by Cn ⊂ An for n < m. This is a contradiction. Therefore
µ({x ∈ 2ω : ∃∞n(x ∈ Un)}) ≥ 1

2
.

¤
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Lemma 5.5. Given X ⊂ 2ω.

(1) If µ∗(X) < 1
2
, then {Ix : x ∈ X} does not witness to cov∗(S).

(2) If {Ix : x ∈ X} does not witness to cov∗(S), then µ∗(X) ≤ 1
2
.

Proof of Lemma. (1). Assume µ∗(X) < 1
2
. By the definition of the

outer measure, there exists a compact subset K of 2ω such that µ(K) =
1
2

and K ∩X = ∅.
Let {Un : n ∈ ω} be a strictly decreasing sequence of open sets such

that K =
⋂

n∈ω Un. Choose Vn ∈ Ω such that Vn 6∈ {Vi : i < n} and
Vn ⊂ Un. Let Y = {Vn : n ∈ ω}.

Since K ∩ X = ∅, for each x ∈ X, there exists n ∈ ω such that
x 6∈ Un. So |Y ∩ Ix| < ω for every x ∈ X.

(2). Suppose {Ix : x ∈ X} does not witness to cov∗(S). Choose
Y = {Un : n ∈ ω} ∈ [Ω]ω such that |Ix ∩ Y | < ω. By Lemma 5.4,
µ({x ∈ 2ω : |Ix ∩ Y | = ω}) = 1

2
. So

µ∗(X) ≤ µ({x ∈ 2ω : |Ix ∩ Y | < ω}) ≤ 1

2
.

¤

Proof of Theorem 5.3. Firstly we shall show cov∗(S) ≤ non(N ).
Let X be a non-null set with µ∗(X) > 0.

Claim 5.6. There exists Y ⊂ 2ω such that |Y | = |X| and µ∗(Y ) = 1.

Then {Ix : x ∈ Y } is a witness to cov∗(S) by Lemma 5.5.
Next we shall show cov∗(S) ≥ non(N ). Let κ < non(N ) and let X ⊂ 2ω

with |X| = κ. Then µ∗(X) = 0. By Lemma 5.5, {Ix : x ∈ X} does not
witness to cov∗(S). So κ < cov∗(S). Therefore non(N ) ≤ cov∗(S). ¤

Corollary 5.7. GFC ≥K S but GFC 6≤K S.

Proof. GFC ≥K S is proved in [15]. We shall only show GFC 6≤K S.
In the Cohen model, cov∗(GFC) = spair < cov∗(S) = non(N ) since

spair ≤ non(M) [13]. By Proposition 0.4, GFC 6≤K S in the Cohen
model. By absoluteness of the Katětov order on Borel ideals, ZFC `
GFC 6≤K S. ¤

We need to find a Borel ideal I such that I ≥K S but for every
X ∈ I+, I ¹ X 6≥K GFC .

nwd denotes the ideal of nowhere dense subsets of Q.
By the Sierpiński’s characterization of Q we have the following.

Theorem 5.8. [2] nwd 'K nwd ¹ X for every X ∈ nwd+.
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Given a forcing notion P, we say an ideal I on ω is P-indestructible
if P does not add an infinite subset of ω which is almost disjoint from
every element of I. We say an ideal I is P-destructible if I is not P-
indestructible. The ideal nwd is important when we think which ideals
on ω are Cohen-destructible.

Theorem 5.9. [8, 6] I is Cohen-destructible if and only if I ≤K nwd.

Using this theorem, we can decide the Katětov order between GFC

and nwd and between S and nwd

Theorem 5.10. (1) S ≤K nwd.
(2) GFC 6≤K nwd.

Proof. Since adding c+-many Cohen reals enlarges cov∗(S) = non(N ) ≥
cov(M), Cohen forcing destroys S. By Theorem 5.9, S ≤K nwd.

However, adding ω2-many Cohen reals implies that cov∗(GFC) =
spair ≤ non(M) = ω1, while cov∗(nwd) ≥ ω2. Hence GFC is Cohen-
indestructible. So GFC 6≤K nwd. ¤

By Theorem 5.8 and 5.10, S can not be replaced by GFC in Theorem
5.1. So the answer of Question 5.2 is in the negative.
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