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Abstract. We can classify the (truth-theoretic) paradoxes according to their degrees of paradoxicality. Roughly

speaking, two paradoxes have the same degrees of paradoxicality, if they lead to a contradiction under the same

conditions, and one paradox has a (non-strictly) lower degree of paradoxicality than another, if whenever the former

leads to a contradiction under a condition, the latter does so under the same condition. In this paper, we outline

some results and questions around the degrees of paradoxicality and summarize recent progress.
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1. Paradoxes and Degrees of Paradoxicality

We work in the ‘standard language’ for the Liar and the like paradoxes, that is, the language
obtained from the first-order language of the arithmetic by augmenting a distinguished unary
predicate symbol T . Let L be the first-order language of the arithmetic, which includes S, +,
· and 0 as its non-logical symbols. Let L + be the language obtained from L by augmenting a
distinguished unary predicate symbol T . Unless otherwise claimed, when we say a formula, we
mean a formula of L +. We will also use L + to denote the set of all sentences, and so by A ∈ L +,
we mean A is a sentence of L +. The intended model of the language L is N = ⟨N,′ ,+, ·, 0 ⟩, that
is, the structure of natural numbers. Correspondingly, for L +, we will only consider those models
of the form ⟨N, X⟩, where X ⊆ N is the extension of T . We can routinely define VN,X(A), i.e., the
truth value of A in the model ⟨N, X⟩. Since the ground model N is always fixed, we use VX(A)

instead of VN,X(A). When VX(A) = T(F), we will say A is true (false) for X. Sometimes, we also
use X |=A for VX(A) = T. For brevity, we use A ≡ B to denote that A↔ B is true for all X ⊆ N.

For a sentence A, we use ⌜A⌝ for the Gödel’s number of A, and ⌜A⌝ for the corresponding
numeral to the number ⌜A⌝. But, to avoid too many complications, we will often identify ⌜A⌝ with
⌜A⌝, and identify a set Σ of sentences with the set of the Gödel’s number of all sentences in Σ. For
example, we will use T ⌜A⌝ instead of T

(
⌜A⌝

)
, and use VΣ(A) instead of V{⌜B⌝ | B∈Σ}(A). For any

n ≥ 0, define inductively Tn⌜A⌝ as follows: T 0⌜A⌝ = A and Tn+1⌜A⌝ = T ⌜Tn⌜A⌝⌝ for n ≥ 0.
Our method of constructing the paradoxes is the standard one via Gödel’s diagonal lemma. For

instance, by use of Gödel diagonalization, we can construct the Liar sentence λ, which satisfies the
equivalence λ ≡ ¬T ⌜λ⌝.

Next we define the revision sequence, which is a basic notion from the revision theory of truth.
Note that the revision sequence was originally defined for arbitrarily large ordinals by Gupta and
Herzerger. But for the present purpose, we only need to consider the revision sequences of length
ω.

Studia Logica (0) 0: 1–11 © Springer 0



2 Ming Hsiung

Definition 1.1 (Gupta (1982), p. 10; Herzberger (1982), p. 68). For a set Σ of sentences, define
Σr = {A ∈ L + | Σ |=A}. Define a sequence Σ0, …, Σk, …as follows: Σ0 = Σ, and Σk+1 = Σr

k for
all k ≥ 0. This sequence is called the revision sequence starting from Σ.

We will generalize the notion of the revision sequence. To motivate the generalization, we recall
that to say a set of sentences is paradoxical is to say there is no interpretation of T such that
Tarski’s scheme T ⌜A⌝ ↔ A holds for all A in this set. A precise definition is as follows.

Definition 1.2. A set Σ of sentences is paradoxical, if there is no Γ satisfying the condition:
Γ ∩ Σ = Γr ∩ Σ. That is, there is no Γ such that for any A ∈ Σ, VΓ(T ⌜A⌝) = VΓ(A).

From now on, we always use K to denote the digraph ⟨W,R⟩ unless otherwise claimed. An
assignment in K is a mapping from W to the powerset P(L +).

Definition 1.3 (Hsiung (2009), pp. 243-244). Let Σ be a set of sentences. An assignment in K,
say t, is admissible for Σ, if for all u, v ∈W satisfying uR v,

t(v) ∩ Σ = t(u)r ∩ Σ (1)

Σ is paradoxical in K, if there is no admissible assignment for Σ in K.

When Σ is the set of all sentences, W is the set of natural numbers and R is the successor
relation between natural numbers, an admissible assignment t for Σ in K is a revision sequence
starting from the set t(0). And so the revision sequence is a special instance of the admissible
assignment. And the notion of being paradoxical in a digraph is also a generalization of being
paradoxical. Actually, Σ is paradoxical, iff it is paradoxical in the minimal reflexive digraph. Note
also that (1) is equivalent to

for all A ∈ Σ, Vt(v)(T ⌜A⌝) = Vt(u)(A).

And so the biconditional (1) is a formal representation of biconditional (2) in L +:

T ⌜A⌝ (holds) at v, iff A (holds) at u, (2)

(where u and v are any points in the domain of a digraph such that u bears the binary relation of
the digraph to v.) Hence, when a set of sentences is paradoxical in a digraph, we can think that it
is impossible to evaluate these sentences (without contradiction) in the digraph such that scheme
(2) holds for all of these sentences.

The idea behind the notion of paradoxicality in a digraph is that paradoxes are conditionally
contradictory. As we all know, paradoxical sentences lead to a contradiction, but unlike those
contradictory sentences such as ‘the snow is white and it is not white’, they are not absolutely
contradictory otherwise there is no way to ban them from our cherished theories.
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Definition 1.4 (Hsiung (2009), pp. 248, 254). Let Σ,Γ be two sets of sentences. Define Σ≤P Γ,
if for any digraph K, whenever Σ is paradoxical in K, Γ is also paradoxical in K. Define Σ≡P Γ, if
Σ≤P Γ and Γ≤P Σ. Define Σ<P Γ, if Σ≤P Γ but Σ ̸≡P Γ.

Note that ≡P is an equivalence relation. When Σ≡P Γ, we will say Σ and Γ have the same
degree of paradoxicality. When Σ<P Γ, we say Σ has a (strictly) lower degree of paradoxicality
than Γ.

2. Boolean Paradoxes

By the Gödel diagonal lemma, we can construct a large number of paradoxes in L +. Here are
some examples:

Example 2.1. (a) (Cliche) the n-cycle liar λn = {λni | 1 ≤ i ≤ n}, where λn1 ≡ ¬T⌜λnn⌝ and
λni+1 ≡ T ⌜λni ⌝ (1 ≤ i < n).

(b) (Herzberger (1982), pp. 74-75 and Yablo (1985), p. 340) the ω-cycle liar λω = {λωα | 1 ≤ α ≤ ω},
if λω1 ≡ ¬T⌜λωω⌝, λωi+1 ≡ T ⌜λωi ⌝ (i ≥ 1) and λωω ≡ ∀x (x > 0 → T ⌜λωẋ⌝).

(c) (Yablo (1985), p. 340 and Yablo (1993)) Yablo’s paradox ν = {ν1, ν2, ν3, . . .}, where for any
n > 0,

νn ≡ ∀x (x > n̄→ ¬T ⌜νẋ⌝)

Definition 2.2. Let ∆ be a finite set of sentences, say {δ1, δ2, . . . , δm}.

(1) ∆ is a Boolean system, if for all 1 ≤ i ≤ m,

δi ≡ fi (T ⌜δ1⌝, . . . , T ⌜δn⌝) ,

where fi is a Boolean function which has T ⌜δ1⌝, . . . , T ⌜δn⌝ as its arguments. This equivalence
is called a definitional equivalence for δi.

(2) A Boolean paradox is a paradoxical Boolean system.

Remark: Roughly speaking, Boolean paradoxes are those paradoxes in which there is no occur-
rence of quantifiers, whose scope covers at least an occurrence of the truth predicate T . For any
positive n, the n-cycle liar is a Boolean paradox, but neither the ω-cycle liar nor Yablo’s paradox
is Boolean.

Example 2.3. A typical Boolean paradox is Wen’s paradox (Wen (2001), p. 44)
δ1 ≡ T ⌜δ2⌝ ∧ ¬T ⌜δ3⌝
δ2 ≡ ¬T ⌜δ1⌝ ∨ T ⌜δ3⌝
δ3 ≡ T ⌜δ1⌝ ∧ T ⌜δ2⌝
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We can give a complete characterization of the Boolean paradoxes with respect to their degrees
of paradoxicality. The key to characterize them is the revision periods.

For the revision sequence X = ⟨Xk | k ≥ 0⟩, we also use Xk(A) = T instead of Xk |=A (and
Xk(A) = F instead of Xk ̸|=A). When Xk(A) = T, we can say A is true at stage k of X .

Definition 2.4. Let ∆ be a set of sentences.

(1) A number m ≥ 1 is a (revision) period of ∆ on a revision sequence X = ⟨Xk | k ≥ 0⟩, if there
exists a number N ≥ 0 such that Xk+m(A) = Xk(A) for all k ≥ N and for all A ∈ ∆. m is a
period of ∆, if m is a period of ∆ on some X .

(2) A period p of ∆ is said to be primary, if m ∤ p (i.e., p is not divisible by m) for any period m

of ∆ with m ̸= p.

Example 2.5. (a) the n-cycle paradox has the unique primary period 2i+1, where n = 2i(2j + 1)

(b) Yablo’s paradox has the unique primary period 2 (the same as the Liar does)!

(c) the ω-cycle paradox (and other transfinite cycle paradoxes) has no periods at all.

Remark: all the known paradoxes in the field of truth theory, without exception, have a unique
primary period if they have at least one.

Proposition 2.6. Every Boolean paradoxes has only finitely many but non-zero primary periods.

The following graph-theoretical notion is also crucial for our characterization of Booleans para-
doxes.

Definition 2.7. Let K = ⟨W,R ⟩ be a frame. A sequence ξ = u0 u1 . . . ul is a walk from u0 to ul,
if either uiRui+1 or ui+1Rui holds for any 0 ≤ i < l. ξ is a closed walk, if u0 = ul. ξ is a cycle, if
none of the points in ξ is repeated except that u0 = ul.

Define a mapping h on the set of walks of K as follows: for any world u ∈ W , hK(u) = 0; and
for any walk ξ = u0 u1 . . . ul ul+1 (l ≥ 0),

hK(ξ) =

 hK(u0 u1 . . . ul) + 1, if ulRul+1;
hK(u0 u1 . . . ul)− 1, otherwise.

hK(ξ) is called the height of ξ in K. The subscript K will be suppressed if no confusion arises.

Our characterization theorem about Boolean paradoxes is as follows:

Theorem 2.8. (Hsiung (2017), p. 885) For any Boolean paradox ∆ and for any digraph K, the
following three conditions are equivalent:

(a) ∆ is non-paradoxical in K.
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(b) For each connected component of K, there exists a primary period of ∆, which divides the height
of any cycle in this component.

(c) For each closed walk in K, its height is a period of ∆.

The following is a converse of Proposition 2.6, by which we can construct as we like.
A well-known notion in number theory is the notion of primitive sets. A set of numbers is called

primitive, if no number in the set divides another. It is clear that if 1 is an element of a primitive
set, this set must be the singleton {1}, which is called the trivial primitive set.

Theorem 2.9. (Hsiung (2017), p. 885) For any finite non-empty and non-trivial primitive set P ,
there exists a Boolean paradox such that the set of its primary periods is just P .

Example 2.10. A paradox of primary periods 2 and 3: {δ1, δ2, δ3}, such that
δ1 ≡ (T ⌜δ1⌝ ∧ T ⌜δ2⌝) ∨ (T ⌜δ1⌝ ∧ ¬T ⌜δ2⌝ ∧ T ⌜δ3⌝)
δ2 ≡ (T ⌜δ1⌝ ∧ T ⌜δ3⌝) ∨ (¬T ⌜δ2⌝ ∧ ¬T ⌜δ3⌝)

∨(¬T ⌜δ1⌝ ∧ T ⌜δ2⌝ ∧ T ⌜δ3⌝)
δ3 ≡ (T ⌜δ1⌝ ∧ ¬T ⌜δ3⌝) ∨ (¬T ⌜δ1⌝ ∧ T ⌜δ2⌝ ∧ ¬T ⌜δ3⌝)

By the above main theorems, we can get a description of the structure of degrees of Boolean
paradoxes.

Theorem 2.11. (Hsiung (2017), p. 885) The set of Boolean paradoxes ordered by the binary
relation ≤P is an unbounded dense lattice.

Example 2.12. An example for Denseness:

• The periods of the Liar: {2, 4, 6, . . . , 2n, . . .}

• The periods of the Joudain’s card: {4, 8, 12, . . . , 4n, . . .}

the Liar <P the Jourdain’s card.

Now find a paradox, namely ∆, such that

the Liar <P ∆ <P the Jourdain’s card.

• The periods of ∆: {4, 6, 8, 12, . . . , 4n, 6n, . . .}

Example 2.13. An example for Greatest Lower Bound:

• The periods of the Liar: {2, 4, 6, . . . , 2n, . . .}

• The periods of Wen’s paradox: {3, 6, 9, . . . , 3n, . . .}

the Liar |P Wen’s paradox.
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Find a paradox ∆, such that its degree is the greatest lower bound of degrees of the Liar and
Wen’s paradox.

• The periods of ∆: {2, 3, 4, 6, . . . , 2n, 3n, . . .}

Example 2.14. An example for Least Upper Bound:

• The periods of the Liar: {2, 4, 6, . . . , 2n, . . .}

• The periods of Wen’s paradox: {3, 6, 9, . . . , 3n, . . .}

the Liar |P Wen’s paradox.

Find a paradox ∆, such that its degree is the least upper bound of degrees of the Liar and
Wen’s paradox.

• The periods of ∆: {6, 12, 18, . . . , 6n, . . .}

Even we only consider Boolean paradoxes, and even they are only a small part of the paradoxes
and have relatively simple syntactical structures, the area of our study is proved to be rich in
mathematical structures and properties.

Now we raise a question about Boolean paradoxes. Wen’s paradox (as shown in Example 2.3) is
evidently not directly self-referential. But the paradoxes we construct by the methods of Theorem
2.9 are usually directly self-referential (an typical example is shown in Example 2.10). Our question
is whether we can construct a non-directly-self-referential Boolean paradox for a given finitely many
primary periods.

Problem 2.15. (Hsiung (2017), p. 898-899) Give a procedure by which for any non-empty
and non-trivial primitive set of numbers, we can construct a indirectly self-referential
Boolean paradox whose primary periods are just the elements of this set.

Note 1: See Hsiung (2020) for a formal definition of self-referentiality. Roughly, a Boolean
paradox {δi | i ∈ I} is indirectly self-referential, if for any i ∈ I, there is no occurrence of T ⌜δi⌝
in the right side of definitional equivalence of δi; otherwise, it is directly self-referential. For
example, the n-cycle liar is directly self-referential, only when n = 1. The ω-cycle liar is directly
self-referential. And, Wen’s paradox is indirectly self-referential.

Note 2 (Dec. 2022): Zeng & Hsiung (202x) answer this question by finding a ‘syntactical’
procedure. Still, we want a purely semantical procedure in a similar way as we construct a general
Boolean paradox which is given in Hsiung (2017).

We also take an interest in constructing Boolean paradoxes with certain specific properties.
Here’s an example (This question is relatively easy and is only intended as an exercise.).
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A Boolean system is the reflection of another one (that is, obtained from the latter by reflection),
if it is obtained from the latter one by interchanging the predicates ‘true’ and ‘false’. Formally,
let ∆ = {δi | i ∈ I} be a Boolean system with the definitional equivalences δi ≡ fi (T ⌜δi⌝ | i ∈ I),
then ∆′ = {δ′i | i ∈ I} with the definitional equivalences δ′i ≡ fi (¬T ⌜δ′i⌝ | i ∈ I) is the reflection of
∆. A Boolean paradox preserves paradoxicality under reflection, if its reflection is also paradoxical.
For instance, the n-cycle liar preserves paradoxicality under reflection, iff n is even. Wen’s paradox
does not preserve paradoxicality under reflection.

Give a general procedure to construct a Boolean paradox preserving paradoxicality under re-
flection.

3. The Algebraic Structure for Degrees of Paradoxes

Theorem 2.11 provides us a description of the algebraic structure for degrees of Boolean para-
doxes. A natural question is to ask about the algebraic structure for degrees of all paradoxes. For
instance, can Theorem 2.11 be extended to all the paradoxes, no matter they are Boolean or not.

A basic result about the paradoxes is that their degrees are bounded above by the degree of
ω-liar or by the degree of McGee’s paradox (McGee (1985), p. 400).

Theorem 3.1. (Hsiung (2020)) The ω-liar and McGee’s paradox have the highest degree of para-
doxicality.

Dually, we ask:

Problem 3.2. (Hsiung (2017), p. 913) Is there a paradox whose degree is the lowest
(among all the degrees of paradoxes)?

We conjecture that the answer to this question is positive. A reasonable candidate is the paradox
whose primary periods are exactly the prime numbers. And, if it is so, the crucial point of this
question is how to construct such a paradox.

There are some new questions we can ask of course. The first question we ask is about the
completeness of degrees of paradoxes.

Problem 3.3. Is the structure for degrees of paradoxes complete? In other words, for
countably infinite many paradoxes, is there always a paradox whose degree is least
upper bound/greatst lower bound of the degrees of these paradoxes?

Remark: Problem 3.3 is well-defined because of Theorem 3.1 and Problem 3.2.

Problem 3.4. For any paradox, is there any paradox such that the supremum of
their degrees is just the degree of ω-liar (i.e., the greatest degree)? Or, For any
paradoxicality, is there any degree of paradoxicality such that their supremum is just
the greatest degree?
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Dually, we ask: for any paradox, is there any paradox such that the infimum of
their degrees is just the smallest degree (assume it does exist)?

To sum up, we actually ask whether the degrees of paradoxicality can form a Boolean algebra.
Up to now, we can summarize the above observations and problems by Figure 1. Note, in

Figure 1, the big diamond stands for the degrees of paradoxes, and the small diamond surrounded
by the dashed line stands for the degree of Boolean paradoxes. The degrees of the Liar and its
finitary variants occur in the middle line of the two diamonds, and the degree of Yablo’s paradox
occurs at the same level as that of the Liar (Theorem 5.1).

λ

λ2

λ4

...

λω

ν
λ3λ5

Figure 1: degrees of paradoxes

As far as the small diamond is concerned, Theorem 2.11 provides a lot of information. The
future main task is to investigate the whole big diamond.

Note (Dec. 2022): We have found a general procedure to construct the non-Boolean paradoxes
with some periodicity characteristics. See Hsiung (2022).

4. Some Implicitly defined Paradoxes

We can define semantically some paradoxes in L + without seeing their syntactical specification.
The following are some simplest examples.

Definition 4.1 (Hsiung (2009), 248). For any positive number n, a set of sentences Σn is called
an n-jump liar, if for any frame K and for any admissible assignment t of K, and for any points
u, v ∈W with uRn v and any A ∈ Σn,

t(v) |=A ⇐⇒ t(u) ̸|=A. (3)



Some Open Questions about Degrees of Paradoxes 9

Note: uRn v denotes that there exist u0, …, un such that u0 = u, un = v and for 0 ≤ i < n,
uiRui+1. Clearly, the liar paradox is a 1-jump liar. It is also the unique one that we have known
its syntactical representation among all the jump liars.

Problem 4.2 (Hsiung (2009), 269). For any number n > 1, specify a set of sentences (of
L +) which is an n-jump liar.

A more general class of paradoxes like jump liars is defined as follows. For convenience, I will
use

ψ
P (u,v)⇐===⇒ φ

to denote the statement that “ψ ⇐⇒ φ” holds for all worlds u and v in the domain of a frame
such that the condition P (u, v) is satisfied.

Definition 4.3. For any positive number n, let λi (1 ≤ i ≤ n) be sentences such that for any
frame K and for any admissible assignment t of K, we have

t(v) |=λ1
uRv⇐==⇒ t(u) ̸|=λn. (4-1)

t(v) |=λ2
uR2v⇐==⇒ t(u) ̸|=λ1. (4-2)

t(v) |=λ3
uR3v⇐==⇒ t(u) ̸|=λ2. (4-3)

. . . . . .

t(v) |=λn
uRnv⇐===⇒ t(u) ̸|=λn−1. (4-n)

Problem 4.4. Find the characterization frames for the set of λi (1 ≤ i ≤ n). And if
possible, construct these sentences in L +.

5. Yablozation of Paradoxes

One interesting respect of Yablo’s paradox is that it gives a method of eliminating self-reference
of a paradox (see for instance Schlenker (2007)). More interesting, such a method seems not to
damage the degree of paradoxes which removing the self-reference of a paradox.

Theorem 5.1. (Hsiung (2013), p. 26) The Yablo’s paradox has the same degree of paradoxicality
as the Liar.

More generally, for any n-cycle liar λn, we can define its Yablozation νn as follows: let νn =

{νij | 1 ≤ i ≤ n, j ≥ 1} such that

(1) for all j ≥ 1, ν1j is the sentence which says νnk is untrue for all k > j;

(2) for all 1 ≤ i < n, j ≥ 1, νi+1
j is the sentence which says νik is true for all k > j.
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As is illustrated in the right column of table 1, all of these sentences form an infinite matrix. Note
that the above procedure of Yablozation is also called “unwinding”. See for instance Cook (2004),
pp. 770-771.

λn νn

λn1 ν11 ν12 ν13 . . .

λn2 ν21 ν22 ν23 . . .

λn3 ν31 ν32 ν33 . . .

. . . . . . . . . . . . . . .

λnn νn1 νn2 νn3 . . .

Table 1: The n-cycle liar and its Yablozation

Theorem 5.2. For any positive integer n, the n-cycle liar and its Yablozation have the same degree
of paradoxicality.

Clearly, the above procedure of Yablozation can be extended to any paradox. For instance, for
Yablo’s paradox itself, we can Yabloze it one more and get an even big monster paradox.

Problem 5.3. Does a paradox always have the same degree of paradoxicality as its
Yablozation?

There is no reason to resist conjecturing that the answer should be positive.
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