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Face representation andmatching are two essential issues in face verification task. Various approaches have been proposed focusing
on these two issues. However, few of them addressed the joint optimal solutions of these two issues in a unified framework. In this
paper, we present a second-order face representation method for face pair and a unified face verification framework, in which
the feature extractors and the subsequent binary classification model design can be selected flexibly. Our contributions can be
summarized in the following aspects. First, a novel face-pair representation method that employs the second-order statistical
property of the face pairs is proposed, which retains more information compared to the existing methods. Second, a flexible
binary classification model, which differs from the conventionally used metric learning, is constructed based on the new face-
pair representation. Finally, we verify that our proposed face-pair representation can benefit from large training datasets. All
the experiments are carried out on Labeled Face in the Wild (LFW) to verify the algorithm’s effectiveness against challenging
uncontrolled conditions.

1. Introduction

Face recognition has been extensively studied in the field of
computer vision and pattern recognition, which in general
can be categorized into two tasks, that is, face verification and
face identification. In this paper, we focus on the former one.
Face verification normally works on the data of face pairs;
that is, given a face pair, we need to decide whether they
are from the same person or not. However, this is not an
easy task due to various challenges, such as position, back-
ground, pose, lighting, and occlusion (Figure 1). Like most
pattern recognition systems, face verification task has two key
components, that is, face representation and face matching.
These two components are the central parts that most of
the researchers are concerned about. Althoughmiscellaneous
algorithms have been proposed focusing on these two com-
ponents, few of them considered both in a unified framework.
Intuitively, jointly formulating these two components may
result in a promising performance.

Over the years,many face representation approaches have
been proposed. According to the intrinsic characteristics that

are depicted, these can be classified into three simple cate-
gories: (1) local features descriptors, (2) holistic features de-
scriptors, and (3) features descriptors based on deep learning.

Local features descriptors have been proven to be very
effective for texture description. For instance, the local binary
pattern (LBP) [1, 2] encodes the structure distribution into
a histogram by computing the relative intensity magnitude
difference between each pixel and its neighbors based on the
predefined rules. Harr-like features [3] are rule-based local
feature descriptors. However, such handcrafted encoding
methods are suspected to get optimal encoding for a specific
task. Alternatively, more flexible and uniformly distributed
local descriptors can be learned for face recognition task [4].
HoG [5] and SIFT features [6] can also be categorized into
local features descriptors. And SIFT also considers robust-
ness to scale variations by building the scale spaces. Local
features descriptors are more stable to local changes such as
illumination, expression, and inaccurate alignment. Gabor
wavelets [7–9] captured the local structure corresponding to
specific spatial frequency (scale), spatial locality, and selective
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Figure 1: Confusing face pairs selected from LFW [25]. (a) shows images from different people, while (b) shows the opposite case.

orientation. They have been demonstrated to be discrimina-
tive and robust to illumination and expression changes.

The holistic features descriptors mainly focus on feature
transformation, which consists of various algorithms that cre-
ate newbut fewer featureswhile having higher discriminatory
power in a different space than the original feature space.This
can also be used for feature reduction. In such transformation
process, the advantages of statistical techniques are employed.
The typical techniques are PCA [10, 11], LDA [12], ICA [13],
LPP [14], and so forth. These techniques are categorized as
subspace learning methods and are distinguished by their
ability to preserve some desired properties of the data. The
holistic feature represents the visual features of thewhole face.
In general, the efficiency of holistic features relies heavily on
well aligned face, that is, uniform in scale, pose, illumination,
and so forth. Consequently, holistic feature is more sensitive
to misalignment [15] and other variations from intrinsic
changes (e.g., expression, pose) and ambient environment
changes (e.g., side lighting).

Deep learning [16–18] has received increasing interest in
computer vision and face verification recently, and a number
of deep learning methods have been proposed in the litera-
ture.Onemerit of deep learningmethods is that they preserve
the face image’s neighborhood relations and spatial locality
in their latent higher-level feature representations. However,
the deep learning methods need a huge number of labeled
samples, which brings about the computation assumption
issues.

Face matching is the other important component of face
verification. Usually, a metric is necessary for measuring the
similarity of an input face pair, and then a learned threshold is
used to perform the matching task. Considering the optimal
similarity (or distance) metric with regard to the specific fea-
ture space, lots of automatic metric learning algorithms have
been proposed under different objectives. For instance, Guil-
laumin et al. [19] learned a Mahalanobis-like metric using
the logistic discriminant method with the objective that
positive pairs have smaller distances than negative pairs;
Davis et al. formulated the Mahalanobis learning problem as

that of minimizing the differential relative entropy between
two multivariate Gaussians, while adding an additional reg-
ularization term that emphasizes a prior of the covariance
matrix in their objective [20]. There are some other metric
learning methods which are different in their objective for
the specific tasks in the literature [21–23] as well, while they
share the same framework of face verification that is depicted
in Figure 2.

Mahalanobis-like distance learning can also be viewed
as an Euclidean distance in the linearly transformed feature
space. This refers to a more extensively researched topic, that
is, kinds of projection techniques, which we have described
in the above section as a feature representation approach.
However, all these projections are independent of the subse-
quent classifiers. Reconsidering the face verification task, if
we can represent a face pair using a unified vector, then the
face verification task can subsequently be treated as a simple
binary classification problem. That is, we determine whether
face pairs are mismatched (i.e., the different persons) or
matched (i.e., the same person). The representation not only
is able to describe the dissimilarities between face pairs, but
also naturally implies a simile classifier [24]. Therefore, this
data representation strategy endows great flexibility for the
subsequent classification model design.

Motivated by this idea, classification-related data orga-
nization for face pairs is proposed, which is more flexible
and valid to the following classification model design. And
consequently, a joint optimal approach to put face representa-
tion and face matching into a unified framework is provided.
This paper is organized as follows. Section 2 briefly reviews
the fundamental knowledge, which is used to introduce the
motivation of the proposed approach. In Section 3, a novel
representation of a face pair, which employs the second-order
statistical property, is proposed. And a framework of a face
verification system based on the proposed face-pair repre-
sentation is proposed in Section 3 too. Three basic experi-
ments under the framework are implemented to illustrate
the efficiency of the proposed method in Section 4. All the
experiments are carried out on Labeled Face in the Wild.
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Figure 2: The overall framework of face verification based on conventional Mahalanobis distance learning.

Finally, a conclusion is presented at the end of the paper in
Section 5.

2. Preliminaries

In this section, we will briefly review the conventional Maha-
lanobis distance metric learning and some classical binary
classifiers.

2.1. Mahalanobis Distance Metric Learning. Metric learning
algorithms have been proposed and some of them have
already been applied to tackle the problem of face verification
over the decades. The common objective of these methods
is to learn a suitable metric, which can be used to reduce
the distance between positive face pairs and enlarge that of
negative pairs. Since the metric can be parameterized using
a positive semidefinite matrix𝑀, the metric learning can be
transformed into learning the positive semidefinitematrix𝑀.

Let 𝑋 = {(𝑥1, 𝑥2, . . . , 𝑥𝑛} ∈ R𝑑×𝑛 be a training set of
𝑛 samples, where 𝑥𝑖 ∈ R𝑑 is the 𝑖th sample and 𝑛 is the
total number of training samples. The task of the traditional
Mahalanobis distance metric learning is to seek a square
matrix𝑀 ∈ R𝑑×𝑑. Based on the matrix𝑀, we can define the
squared distance between two samples using the following
equation:

𝑑𝑀 (𝑥𝑖, 𝑥𝑗) = (𝑥𝑖 − 𝑥𝑗)
𝑇𝑀(𝑥𝑖 − 𝑥𝑗) , (1)

where 𝑥𝑖 ∈ R𝑑 is the 𝑖th sample in the training set and𝑀 ∈
R𝑑×𝑑 is a symmetric and positive semidefinite matrix. It can
be decomposed as follows:

𝑀 = 𝐿𝑇𝐿, (2)

where 𝐿 ∈ R𝑝×𝑑 performs a linear transformation and nor-
mally 𝑝 ≪ 𝑑.

Therefore, the squared distance defined in (1) can be
reformulated by

𝑑𝑀 (𝑥𝑖, 𝑥𝑗) = (𝑥𝑖 − 𝑥𝑗)
𝑇𝑀(𝑥𝑖 − 𝑥𝑗)

= (𝑥𝑖 − 𝑥𝑗)𝑇 𝐿𝑇𝐿 (𝑥𝑖 − 𝑥𝑗)

= 󵄩󵄩󵄩󵄩󵄩𝐿 (𝑥
𝑖 − 𝑥𝑗)󵄩󵄩󵄩󵄩󵄩

2

2
.

(3)

Equation (3) shows that learning a Mahalanobis metric
is equivalent to learning a linear transformation 𝐿, which
actually projects an original sample into a low dimensional
subspace due to the fact that 𝑝 ≪ 𝑑. TheMahalanobis metric
in the original space is degenerated into anEuclidean distance
between two samples in the transformed space.

2.2. Logistic Regression. Consider a set of𝑚 training samples,
denoted by {𝑥𝑖, 𝑦𝑖}𝑛𝑖=1, where𝑥𝑖 ∈ 𝑅𝑑 is the 𝑖th sample and𝑦𝑖 ∈
{−1, +1} denotes its corresponding class label. The likelihood
function of these 𝑛 samples is defined by∏𝑛𝑖=1Prob(𝑦𝑖 | 𝑥𝑖),
and the average logistic loss is defined as [26]

𝑓 (𝑤, 𝑐) = −1𝑛 log
𝑛

∏
𝑖=1

Prob (𝑦𝑖 | 𝑥𝑖)

= 1
𝑛
𝑛

∑
𝑖=1

log (1 + exp (−𝑦𝑖 (𝑤𝑇𝑥𝑖 + c))) .
(4)

Therefore, we can determine the parameters 𝑤 and 𝑐 by
minimizing the average logistic loss; that is,

min 𝑓 (𝑤, 𝑐) = 1
𝑛
𝑛

∑
𝑖=1

log (1 + exp (−𝑦𝑖 (𝑤𝑇𝑥𝑖 + c))) . (5)

The minimization problem will lead to a smooth convex
optimization problem because the average logistic loss func-
tion is a smooth and convex function.

2.3. Support Vector Machine. Given training samples 𝑥𝑖 ∈
𝑅𝑑 (𝑖 = 1, 2, . . . , 𝑚) in two classes and a label vector 𝑦𝑖 ∈
{−1, +1} denoting the corresponding label of samples 𝑥𝑖, the
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Support Vector Machine can determine the weight of the
samples by solving the following optimization problem [27]:

min
𝜔,𝑏,𝜉𝑖

1
2𝜔
𝑇𝜔 + 𝐶

𝑛

∑
𝑖=1

𝜉𝑖

subject to 𝑦𝑖 (𝜔𝑇𝜙 (𝑥𝑖) + 𝑏) ≥ 1 − 𝜉𝑖,

𝜉𝑖 ≥ 0, 𝑖 = 1, 2, . . . , 𝑛,

(6)

where 𝜙(𝑥𝑖) maps the sample 𝑥𝑖 into a higher-dimensional
space and 𝐶 > 0 is the regularization parameter. Considering
the dimensionality of the vector variable 𝜔, we usually solve
its dual problem:

min
𝛼

1
2𝛼
𝑇𝑀𝛼 − 𝑒𝑇𝛼

subject to 𝑦𝑖𝛼 = 0,
0 ≤ 𝛼𝑖 ≤ 𝐶, 𝑖 = 1, 2, . . . , 𝑛,

(7)

where 𝑒 = [1, 1, . . . , 1]𝑇 is the vector of all ones and 𝑀
is a positive semidefinite matrix, with the element 𝑚𝑖𝑗 =
𝑦𝑖𝑦𝑗𝐾(𝑥𝑖, 𝑥𝑗), where 𝐾(𝑥𝑖, 𝑥𝑗) = 𝜙(𝑥𝑖)𝑇𝜙(𝑥𝑗) is called the
kernel function.

3. Face Verification Based on
Second-Order Face-Pair Representation

In this section, a novel face-pair representation approach is
proposed. We firstly present a second-order face-pair repre-
sentation, and therefore the task of face verification can be
viewed as a binary classification problem in a unified frame-
work. On the one hand, the second-order representation
should keep more discriminant information; therefore, we
expect that such novel viewpoint of face verification problem
can benefit from large training samples. On the other hand,
since the proposed unified framework integrates feature
extraction and classifier selection for the face verification
problem, it should enhance the flexibility of the system.

3.1. Reformulate Face Verification. Face verification is a prob-
lem of determining whether two face images depict the same
person or not. Its formal description is as follows.

Given two faces, denoted by 𝑥1 and 𝑥2, the task of face
verification is to decide whether these two faces (a face pair)
are from different persons or the same one.

The conventional solution to the face verification is for-
mulated as ametric learning problem, for example, learning a
Mahalanobis distance between 𝑥1 and 𝑥2, which is employed
to present the similarity of a face pair. The final results are
obtained by checking the predicted distance based on a prop-
erly chosen threshold, which actually implements a matching
procedure.

However, there are four shortcomings in the metric-
learning-based face verification process: (1) the positive
definiteness of 𝑀 is required; (2) it is difficult to obtain a
closed solution to 𝑀; (3) some prior domain knowledge is

difficult to be embedded flexibly; (4) it is hard to choose the
appropriate threshold to determine the final result.

To overcome these drawbacks, we propose a unified face
verification framework, in which the face-pair representation
is employed instead of a single-face representation. Based on
the face-pair representation, the face verification problem can
be transformed into a binary classification problem defined
on a face-pair measurement space. In order to distinguish
it from single-face representation, we refer to this face-pair
representation.

For a pair of faces, denoted by𝑥1 and𝑥2, themeasurement
between a face pair is defined as

𝑋𝑘 = 𝑑 (𝑥1𝑘, 𝑥2𝑘) , (8)

where 𝑘 = 1, 2, . . . , 𝑛. Then, the face verification problem can
be transformed into binary classification problem on a face-
pair measurement space.

As a result, the target of the face verification is equivalent
to training a function 𝑓, which is defined on the transformed
face-pair measurement space𝑋:

𝑓 (𝑋𝑘) = 𝑓 (𝑑 (𝑥1𝑘, 𝑥2𝑘)) , (9)

where 𝑘 = 1, 2, . . . , 𝑛, 𝑓(𝑋𝑘) ∈ {0, 1} functions as a binary
classifier, 0 denotes that the face pair 𝑋𝑘 is from different
persons, and 1 denotes that the face pair𝑋𝑘 is from the same
person.

Specifically, the classifier is degenerated into a linear
classifier when we obtain a linear function.

𝑓 (𝑋𝑘) = 𝑊𝑇𝑋𝑘, (10)

where𝑊 corresponds to the weight to be learned in a binary
classification problem.

3.2. A Second-Order Face-Pair Representation. In the refor-
mulated binary classification task of face verification, it is
essential to construct a representation space for face pairs.
First, we define positive samples and negative samples,
respectively, as face pairs from the same person and those
from different persons. We intend to find a unified rep-
resentation of a face pair 𝑋𝑘, which is different from the
conventional single-face representation. Intuitively, the rep-
resentation should keepmore discriminant information so as
to facilitate the following verification task.

Since face verification aims to find the similarity between
two faces in the given face pairs, we can simply represent the
face pair as the difference between the measures of two faces.
Kumar et al. [24] utilized the absolute value of the difference
between two trait vectors and the weighted product was
defined to measure the similarity of two faces. However, the
definition is given subjectively, and less similarity informa-
tion is retained.

It is well known that the Mahalanobis distance computes
the distance between two samples, while taking into account
the covariance structure across the 𝑛-dimensional features.
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Motivated by this characteristic, we rewrite the initial Maha-
lanobis distance defined in Section 2 as follows:

𝑑𝑀 (𝑥1, 𝑥2) = (𝑥1 − 𝑥2)
𝑇𝑀(𝑥1 − 𝑥2)

= tr ((𝑥1 − 𝑥2)𝑇𝑀(𝑥1 − 𝑥2))

= tr (𝑀(𝑥1 − 𝑥2) (𝑥1 − 𝑥2)𝑇)

= tr ((𝑥1 − 𝑥2) (𝑥1 − 𝑥2)𝑇𝑀)

= (𝑀(:))𝑇 ((𝑥1 − 𝑥2) (𝑥1 − 𝑥2)
𝑇)
(:)
,

(11)

where (:) denotes the operation that rearranges a matrix into
a column vector.

If we denote ((𝑥1 − 𝑥2)(𝑥1 − 𝑥2)𝑇)(:) in (11) by𝑋, that is,

((𝑥1 − 𝑥2) (𝑥1 − 𝑥2)𝑇)
(:)
≜ 𝑋, (12)

then (11) can be rewritten as

𝑑𝑀 (𝑥1, 𝑥2) = (𝑀(:))𝑇 ((𝑥1 − 𝑥2) (𝑥1 − 𝑥2)
𝑇)
(:)

= 𝑊𝑇𝑋,
(13)

where the weight𝑊 corresponds to𝑀(:); it can be learned by
training a binary classifier. 0 denotes that the face pair 𝑋 is
from different persons and 1 denotes that the face pair 𝑋 is
from the same person.

Remark 1. The definition of 𝑋 in (12) contains covariance-
like feature representation; such second-order representation
of 𝑋 reserves more information for the face verification
problem.

Remark 2. Due to the symmetry of the feature matrix for
face-pair representation, we can use the upper triangle data
only to reduce the storage and computation burden without
any information loss.

The second-order feature representation has close rela-
tionship withMahalanobis distance metric. When we choose
the linear model as the binary classifier in the above architec-
ture (Figure 3), then the face verification process is equivalent
to computing a Mahalanobis-like distance between two
faces, while face verification process can be implemented
nonlinearly as well when the binary classifier is chosen as a
nonlinear classifier. Throughout this paper, we will apply this
mechanism for face-pair representation, while the basic re-
presentation of a single face can be various.

3.3. A Face Verification Framework Based on the Second-Order
Face-Pair Representation. The proposed second-order face-
pair representation transfers the face verification problem as
a more general two-category classification task.The overview
of face verification based on our proposed face-pair represen-
tation method is illustrated in Figure 4. The architecture can

be decomposed into three main processes: (1) basic feature
extraction for a single face, which can be implemented using
an appropriate feature extractor; (2) second-order face-pair
representation based on the difference of two faces; (3) amore
flexible two-category classifier.

It is worth noting that this is a general framework based
on second-order face-pair representation. In practice, the
basic feature extraction can be implemented with great
flexibility while incorporating prior knowledge from the
specific problem domain. For instance, a face can be encoded
by global feature descriptors or local feature descriptors. The
classification module can also be implemented with great
flexibility. For instance, logistic regression can be employed
to tackle the linear classification problem, while the kernel
support vector machine is more suitable to nonlinear classi-
fication problem.

Another advantage of our proposed framework is that
the system can benefit from learning with a large amount of
data. Intuitively, most statistical-based learning methods will
benefit from the large amount of training data. Because there
is some second-order statistical information embedded in the
proposed face-pair representation, the proposed method will
make use of the large amount of training datamore effectively.
The experiment results in Section 4do verify that.Thedimen-
sion of the second-order face-pair representation grows in
quadratic speed with the dimension of the single-face rep-
resentation, which may limit its applications in high-dimen-
sional data settings. That is, if the dimension of the feature
vector of single face is 𝑑, then that of face-pair measure space
will be 𝑑(𝑑 + 1)/2. Therefore, a feature dimension reduction
technique is necessary. Usually, dimension reduction tech-
niques are exploited to tackle this problem. However, there
is a limited compression ratio while attempting to preserve as
much information as possible to facilitate the analysis of the
latter classification process.

4. Implementation

In this section, experiments are conducted to verify the per-
formance and effectiveness of our proposed method.

4.1. Dataset. We choose the Labeled Faces in the Wild [25]
dataset as our testing bed, which is the de facto standard
dataset for face verification. The dataset is highlighted by
three characteristics: (1) enriched in both people number
and image number per people; (2) challenges of variations
in scale, pose, lighting, background, hairstyle, clothing,
expression, color saturation, image resolution, focus, and so
forth; (3) flexibility in data organization. Data can be used in
both “restricted” and “unrestricted” settings. In “restricted”
setting, data are provided in the form of paired faces. In
“unrestricted” setting, a large amount of paired faces can be
generated as needed. Following the standard performance
reporting protocol, we report our performance on the 10-
folder sets of view 2 [25]. These 10-folder sets are indepen-
dently divided, that is, one person only in one set, 300 positive
pairs, and 300 negative pairs for each set. While reporting
performance, each one set is held out for testing and another
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9 sets are used for training.This will generate 10 sets of testing
scores. The estimated averaged accuracy and standard devia-
tion are computed following the standard definition in [25].

We use the aligned version of this dataset referred to
as “funneled,” in which all the faces are globally aligned.
Semantic facial parts are localized using an off-the-shelf
facial feature detector [34], which outputs 9 points about
corners of eyes, mouth, and nose. Based on these points, we
induce another 3 points as the center of each eye and mouth.
Then, we extract a 128-dimensional feature vector using SIFT
descriptor at these 12 localized points with three patch sizes
(16, 32, and 46) and three blur scales, leading to a 9 × 128 =
1152-dimensional descriptor for each facial part.

4.2. Experimental Setup. The performance of a face verifi-
cation system relies on many factors, such as basic feature
representation, feature transformation, metric learning, and
classification design. We try to fully consider the effects of
these factors while evaluating the proposed method. The
main consideration and the corresponding methods are
summarized in several aspects below.

First, the issue of misalignment of face image will affect
the performance of the proposed system. However, what we

focus on in this paper is the face-pair representation and its
influence on the performance of face verification system. It is
not necessary to make accurate global face alignment, since
geometric alignment based on some specified facial parts
locationwill not performwell with larger changes of pose and
expression. What is more, facial parts detection is a hard job,
and incorrect localization of one part will lead to great mis-
alignment of a whole face.

Second, we consider the basic feature representation of
a single face. Kinds of feature extraction methods can be
utilized to represent a single face and each feature extraction
method has its own advantages and deficiencies. Here, we
employ SIFT feature [6] as the basic feature for single-face
representation, considering its robustness against the com-
mon challenges, such as the variations of scale, lighting, and
rotation, especially in real-life scenarios.

Third, local feature representation of a single face is useful
in practical face verification systems, especially for enhanc-
ing the system’s robustness against great changes of pose,
expression, and lighting, since incorrect localization of one
local part will not affect other components. In this imple-
mentation, we use the facial feature detector proposed in [34]
to extract several semantic local facial components, which
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are assembled together to form the face, such as eyes, nose,
mouth corners, and eyebrows.

The final process of the pipeline is classifier design. Most
popular classifiers can be exploited to perform such two-
category classification task. Besides this, the face identifier
can also be constructed in two ways: one global classifier for a
whole face and one classifier for each facial part. The popular
techniques as logistic regression and support vector machine
are chosen as our classificationmodel. In this paper, we utilize
the off-the-shelf implementation of these two techniques for
our experiments, that is, SLEP [35] for logistic regression and
libSVM [36] for SVM.

Based on these above settings, we design three exper-
iments. The first one is used to illustrate the performance
of our method with different feature descriptors (i.e., global
features and local features) and with different classifiers (i.e.,
logic regression and kernel-SVM). The second experiment is
implemented to illustrate that the verification accuracy of our
approach can benefit from the growing number of training
face pairs. Finally, a comparison between several face verifi-
cation algorithms and our method is carried out in terms of
the verification accuracy and ROC curves.

4.3. Experimental Results. We first evaluate the performance
of the system using the proposed face-pair representation
in a global way, where all the SIFT features extracted on
these points are concatenated into a single vector as the
single-face descriptor. Since the dimension of a single face
is high, we apply PCA to obtain a more compact single-face
representation. The dimension of features reduced by PCA is
also an important issue; we experimentally chose 100 as the
best trade-off between accuracy and complexity. However, in
the global way, we find that if we choose 100 principle compo-
nents, the preserved energy is only approximately 67%. Such
low energy ratio implies that much information was lost in
the dimension reduction process. In order to preserve more
useful information within an endurable source cost, we train
a local classifier for each facial point.The process is similar to
the global way, and we also select the appropriate dimension
for each local descriptor, and then we simply average all
the local classifiers results to make the final decision. The
experimental results are listed in Table 1.

Table 1 shows that when we choose logistic regression as
the binary classifier, the performance of the system with local
feature descriptors is enhanced compared to the one with
global feature descriptors. Since different binary classifiers
can be adopted as the classifier model in our proposed frame-
work, we can also choose SVM with RBF kernel (KSVM) as
the classification model; the performance of the system with
local feature descriptors is enhanced from 80.35% to 83.07%
compared to the one with global feature descriptors. We also
noted that integrating the nonlinear classifier into the system
will improve the performance compared to using a linear clas-
sifier, that is, logistic model. The corresponding ROC curve
is shown in Figure 5.

Due to the second-order statistical property of the pro-
posed face-pair representation method, the corresponding
face verification model will benefit from a large amount
of training data. A single-face encoding method [24] has

Table 1: Performance of the proposedmethod with different feature
descriptors and classifiers.

Data organization manner Classifier Recog. rate (%)
Global LR 76.10 ± 0.67
Local LR 78.12 ± 0.47
Global KSVM 80.35 ± 0.64
Local KSVM 83.07 ± 0.52

Table 2: Recognition rates of the method used in [24] and
performance of our method with large training data.

Methods Recog. rate (%)
Abs. prod. [24] 80.79 ± 0.75
Our method 82.74 ± 0.63
Our method with large data 84.02 ± 0.52

Table 3: Face verification accuracy of differentmethods in the LFW-
restricted setting.

Method Recog. rate (%) AUC
Eigenfaces [28] 60.02 ± 0.79 0.6483
Nowak [29] 73.93 ± 0.49 0.8131
Hybrid descriptor-based [30] 78.47 ± 0.51 0.8532
V1-like/MKL [31] 79.35 ± 0.55 0.8742
APEM (fusion) [32] 84.08 ± 1.20 0.8541
Spartans [33] 87.55 ± 0.21 0.8982
Our method 86.08 ± 0.62 0.8783

shown its efficiency in face verification problem, where only
73 attributes scores are used to encode each face. Based on
this single-face encoding method, we get a 1701-dimensional
vector for a face pair. In order to enlarge the size of the
training dataset, we randomly add 1000 positive pairs and
the same number of negative samples, to verify the trend of
performance improvement with the number of training data.
The final results show that improved performance is obtained
with increased number of training samples. From Table 2, we
can see that more than one percent point improvement is
obtained compared to the trained model under the restricted
setting, andnearly four percent point improvement is achieved
compared to the initial abs. prod. [24].

Finally, a comparison between several face verification
algorithms and ourmethod is carried out in terms of the veri-
fication accuracy and ROC curves.The experiments are care-
fully performed with the protocol of Image-Restricted, No
Outside Data. All experiments use centered 150 × 150 crops
of “LFW-funneled” images. The recognition rate and AUC
of different methods are shown in Table 3, and the corre-
sponding ROC curve is shown in Figure 6. It shows that our
method outperforms most of the existing methods except for
Spartans, which preprocessed the data more delicately.

5. Conclusions

In this paper, we derived a second-order face-pair represen-
tation based on the formula of the conventional Mahalanobis
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Figure 5: ROC curves of the system with different settings.
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Figure 6: ROC curves of our method and typical techniques in LFW-restricted settings.

distance metric learning. This face-pair representation pro-
vides more discriminate information. Based on the face-
pair representation, a unified face verification framework
is put forward, which makes the proposed approach more
flexible. The flexibility can be summarized in two aspects:
(1) flexibility of choosing feature extractor for a single face

and (2) flexibility of selecting the classifiers. What is more,
this novel face-pair representation brings the second-order
statistical property of the difference between two faces.
Three basic experiments on LFW have been implemented
to illustrate the efficiency and validation of the proposed
method.
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Face verification is a complex problem that has substantial
connections with deep convolutional neural networks, and
their integration could improve the performance, both in
theory and in application aspects. In our future work, we will
try to integrate the deep CNN into the unified framework, to
obtain more satisfied feature representation and improve the
performance of face verification task.
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