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Abstract

We argue that the asymmetry between diverging and converging electromagnetic waves

is just one of many asymmetries in observed phenomena that can be explained by a past

hypothesis and statistical postulate (together assigning probabilities to different states

of matter and field in the early universe). The arrow of electromagnetic radiation is

thus absorbed into a broader account of temporal asymmetries in nature. We give an

accessible introduction to the problem of explaining the arrow of radiation and compare

our preferred strategy for explaining the arrow to three alternatives: (i) modifying the laws

of electromagnetism by adding a radiation condition requiring that electromagnetic fields

always be attributable to past sources, (ii) removing electromagnetic fields and having

particles interact directly with one another through retarded action-at-a-distance, (iii)

adopting the Wheeler-Feynman approach and having particles interact directly through

half-retarded half-advanced action-at-a-distance. In addition to the asymmetry between

diverging and converging waves, we also consider the related asymmetry of radiation

reaction.
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1 Introduction

The equations that describe water waves, sound waves, and electromagnetic waves are

time-symmetric and allow for both diverging waves—that propagate outwards from a central

point or region—and their time-reverse, converging waves (figure 1). If you throw a stone in a

pond, shout, or switch on a lightbulb, you will produce diverging waves (of water, sound, or light).

Diverging waves are commonplace. Converging waves are allowed by the laws of the relevant

physical theories, but in our world they are rare. We never see circular waves spontaneously

form from rustlings at the edge of a pond, increasing in amplitude as they converge towards the

center.1 Still, converging waves can occur. One way to make such waves would be to place a

large floating ring on a calm body of water and carefully pulse it up and down (while keeping it

level).2 This would result in converging waves within the ring and diverging waves outside of it.

There are a great many processes that, like diverging waves, can happen in reverse but hardly

ever do. Price has called the question as to why these processes occur in one temporal order but

not the other “the puzzle of temporal bias”:

“Late in the nineteenth century, physics noticed a puzzling conflict between the laws

of physics and what actually happens. The laws make no distinction between past

1See Popper (1956); Zeh (2007, pg. 17).
2An example like this one appears in Davies (1977, pg. 119).
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Figure 1: The figure on the left shows diverging waves moving away from the center point and
the figure on the right shows the time-reverse of this: converging waves approaching the center
point.

and future—if they allow a process to happen one way, they allow it in reverse. But,

many familiar processes are in practice ‘irreversible,’ common in one orientation but

unknown ‘backwards.’ Air leaks out of a punctured tire, for example, but never

leaks back in. Hot drinks cool down to room temperature, but never spontaneously

heat up. Once we start looking, these examples are all around us—that’s why films

shown in reverse look so odd. Hence the puzzle: What could be the source of this

wide-spread temporal bias in the world, if the underlying laws are so even-handed?”

(Price, 2004, pg. 219)

Among philosophers of physics, there has emerged a fairly widespread consensus on how

to solve the puzzle of temporal bias (though there is disagreement in the details), at least

for standard thermodynamic processes like air leaking out of a tire or hot drinks cooling to

room temperature. We can explain why the reversed processes rarely occur by introducing a

probability distribution over initial conditions that deems improbable the kind of fine-tuning that

would be necessary for such reversed processes to be common. Albert (2000) has given a clear and

influential presentation of this kind of solution, calling the two posits that specify the probability

distribution over initial conditions “the past hypothesis” and “the statistical postulate.” Wallace

(2023) has written: “There are no consensus positions in philosophy of statistical mechanics, but

the position that David Albert eloquently defends in Time and Chance . . . is about as close as

we can get.”

In stark contrast (and despite considerable work on the subject), there has emerged no

consensus as to how we ought to solve the puzzle of temporal bias for wave phenomena in

general or for electromagnetic waves in particular. There is no generally accepted explanation

for the observed arrow of electromagnetic radiation. One popular strategy3 is to give a statistical

explanation of the arrow of radiation. However, supporters of such an explanation vary

considerably in the details and there are opponents defending quite different approaches. In

an effort to move the community towards consensus, here we are throwing our support behind

3For a list of authors in addition to North (2003) and Atkinson (2006) who take this option, see footnote 24.
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North’s (2003) statistical strategy for explaining the arrow of radiation, identifying the work that

remains to be done in developing the strategy, and comparing this strategy to its main rivals

(focusing on the comparison to distant rivals over close ones).

North (2003) builds on the broad agreement as to how we ought to explain thermodynamic

asymmetries and argues that we can explain wave asymmetries using the same tools. Converging

waves (of sound, water, light, etc.) are rare because it would require extreme fine-tuning in the

initial conditions for such waves to be common. We can introduce a probability distribution over

initial conditions for matter and field that makes such fine-tuning incredibly unlikely. Because

we believe that a single probability distribution over initial conditions will suffice to explain

deflating tires, cooling beverages, diverging waves in general, and diverging electromagnetic

waves in particular, we are seeking to “absorb” the arrow of electromagnetic radiation into a

broader explanatory schema—unifying the arrow of radiation with other arrows of time.4

This article begins with a section on technical background followed by a section presenting

and defending the above-described statistical explanation of the arrow of radiation. Then,

we spend a section each on three competing strategies for explaining the arrow: First, one

can impose an additional time-asymmetric law (or postulate) that goes beyond Maxwell’s

equations in constraining the behavior of the electromagnetic field: the Sommerfeld Radiation

Condition. This condition requires that the electromagnetic field at any point in space and

time be attributable to past sources. Second, one can eliminate the electromagnetic field and

have charges interact with one another directly over spatial and temporal gaps in a retarded

action-at-a-distance theory, where the electromagnetic force on a given charge is determined by

the past behavior of other charges (a move that was advocated by Walther Ritz in his 1909 debate

with Albert Einstein). Third, one can adopt the Wheeler-Feynman half-retarded half-advanced

action-at-a-distance theory where the electromagnetic field is eliminated and the force on a

charge is determined by both the past and the future behavior of other charges.

We include subsections evaluating, in detail, the strengths and weaknesses of each strategy

for explaining the arrow of radiation. To briefly summarize, here are a few advantages of

the statistical strategy for explaining the arrow of radiation: The statistical strategy does not

require complicating the laws of electromagnetism through any addition or revision. Unlike the

three approaches just described, the statistical strategy gives a unified account of all wave and

thermodynamic asymmetries. The three alternative approaches draw a sharp distinction between

matter and field that we believe to be unwarranted—treating the electromagnetic field as either

unreal or as merely an emanation from charged matter. (Debates over the right explanation

4The arrow of electromagnetic radiation is distinct from the arrow of time itself, if there is such a thing.
The arrow of radiation is about the time-directed nature of certain wave phenomena, similar to the arrow of
entropy increase describing thermodynamic phenomena in our universe. For Maudlin (2007), time is intrinsically
directed. Nevertheless, one can still investigate the arrows of radiation and entropy increase with respect to
this fundamental arrow of time. Taking a different view, Albert (2000, 2015) and Loewer (2012a,b, 2020) deny
the existence of a fundamental arrow of time and argue that the arrows of time we observe (like the arrow of
entropy increase) can be explained without time itself being directed. Of the four strategies for explaining the
arrow of radiation explored here, two involve time-directed laws that seem to require a fundamental arrow of time
(the Sommerfeld Radiation Condition approach and the retarded action-at-a-distance approach) and two do not
require a fundamental arrow of time (the statistical approach that we favor and the Wheeler-Feynman approach).
In what follows, our focus will be on the arrow of radiation and not the arrow of time itself.
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of the arrow of radiation are thus tightly linked to debates over the ontological status of the

electromagnetic field—debates that are important for the sake of better understanding both

classical electromagnetism and quantum field theory.) The three alternative approaches do not

entirely avoid statistical reasoning and, given that such reasoning will feature in any explanation

of the arrow of radiation, we find a fully statistical explanation to be appealing.

In addition to the observed asymmetry between diverging and converging electromagnetic

waves, there is a related asymmetry of radiation reaction. When a charged body is accelerated

from rest, it emits electromagnetic radiation and feels a radiation reaction force opposing the

acceleration. If we take charged matter to be composed of extended charge distributions, then the

asymmetry of radiation reaction can be viewed as a consequence of the asymmetry of radiation.

As electromagnetic waves pass through an extended charged body on their way out, they exert

a force on that body. Radiation reaction is the result of self-interaction. If we take charged

matter to be composed of point charges, then in most versions of electromagnetism one will

need to modify the Lorentz force law to account for radiation reaction (viewing the source of

the radiation reaction asymmetry as distinct from the source of the radiation asymmetry). The

exception is Wheeler-Feynman electrodynamics, where for point charges the arrows of radiation

reaction and radiation emission are both explained by the dynamical equations together with

assumptions about an absorbing medium that surrounds all of the charges.

Throughout the article, we focus on classical electrodynamics. This is standard practice in

the literature on the arrow of radiation, though there are exceptions (Arntzenius, 1993; Atkinson,

2006). One may wonder why we should try to explain the arrow of radiation within classical

physics when we know that classical physics has been superseded by quantum physics and

classical electromagnetism has been replaced by quantum electrodynamics. This question is

especially pressing given our discussions of the early universe and the ultimate composition of

charged bodies. We think it is important to see whether and how the arrows of radiation and

radiation reaction can be explained within classical electromagnetism. Our methodology is to

push the classical theory to its limits and see what it can do, recognizing that there will be

places where further physics is needed. Figuring out how the arrows of radiation and radiation

reaction are best explained within classical electromagnetism provides insight into the laws and

ontology of the theory. Such work may also help us solve foundational problems in quantum

electrodynamics. In particular, studying self-interaction in classical electrodynamics can provide

clues as to how self-interaction should be handled in quantum electrodynamics (an important,

and notoriously difficult, subject).5

This article is intended as an accessible entry point to debates about the arrow of radiation

in classical electromagnetism and also as a comparative case for a particular explanation of this

arrow. Readers who are well-versed in the relevant literature may be particularly interested in

the following highlights: In section 2, we differentiate our understanding of the arrow of radiation

from characterizations of the arrow by Frisch and North. That section closes with a discussion

of the relation between the arrow of radiation and the arrow of radiation reaction for both

5See Sebens (2022b).
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extended charges and point charges, noting that the point charge Lorentz-Dirac equation breaks

down if converging waves are present. In section 3, we discuss cosmic microwave background

radiation and, unlike North, do not take it to be evidence for the existence of free (unsourced)

electromagnetic fields. We also depart from North by showing that backwards causation can

be avoided in a statistical explanation of the arrow of radiation. In section 4, we present

serious problems for formulating the Sommerfeld Radiation Condition (prohibiting unsourced

electromagnetic fields) if there was a first moment and instead assume an infinite past. In section

6 we separate out two absorber conditions in Wheeler-Feynman electromagnetism, noting that

it is the second absorber condition that yields time-asymmetry.

2 Waves in Classical Electromagnetism

As background for the upcoming discussion of the arrow of electromagnetic radiation, let us

briefly review some important features of classical electromagnetism. At every moment, the

magnetic field must be divergenceless,

~∇ · ~B = 0 , (1)

and the divergence of the electric field must be proportional to the density of charged matter, ρ,

~∇ · ~E = 4πρ . (2)

These are Gauss’s laws for electricity and magnetism, two of Maxwell’s equations. The time

evolution of the electric and magnetic fields (the electromagnetic field) is determined by the

remaining two of Maxwell’s equations,

~∇× ~E = −1

c

∂ ~B

∂t
(3)

~∇× ~B =
4π

c
~J +

1

c

∂ ~E

∂t
, (4)

where ~J is the current density. The time evolution of matter is given by a force law (such as

the Lorentz force law or the Lorentz-Dirac force law) plus further equations governing other

interactions (that lie outside of classical electromagnetism). Solving all of these equations

together is difficult. In this section we will focus on the task of finding electric and magnetic

fields that obey Maxwell’s equations given a stipulated history for the charged matter. We will

model matter here as a continuous charge distribution, but one could derive equations for point

charges as a special case.6

The electric and magnetic fields can be expressed in terms of the scalar potential φ and the

6The discussion in this section most closely follows that of Griffiths (2013, ch. 10), though the equations here
are written in Gaussian cgs units.
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vector potential ~A as

~E = −~∇φ− 1

c

∂ ~A

∂t
~B = ~∇× ~A . (5)

Working with such potentials ensures that two of Maxwell’s equations, (1) and (3), will be

automatically satisfied. These potentials have a gauge freedom that can be partially fixed by

adopting the Lorenz gauge condition,

~∇ · ~A = −1

c

∂φ

∂t
. (6)

With this condition in place, the remaining two Maxwell equations, (2) and (4), become

~∇ · ~E = 4πρ ⇒
(
∇2 − 1

c2
∂2

∂t2

)
φ = −4πρ (7)

~∇× ~B =
4π

c
~J +

1

c

∂ ~E

∂t
⇒

(
∇2 − 1

c2
∂2

∂t2

)
~A = −4π

c
~J , (8)

These are wave equations for each potential.

The following expressions for φ and ~A satisfy both (7) and (8),

φ(~x, t) =

ˆ
d3~x′

ρ(~x′, tr)

|~u|

~A(~x, t) =
1

c

ˆ
d3~x′

~J(~x′, tr)

|~u|
, (9)

where ~u is a vector that points from ~x′ to ~x, ~u = ~x− ~x′, and tr is the retarded time, tr = t− |~u|
c

(the time that a signal traveling at the speed of light from ~x′ would have to have been emitted

for it to arrive at ~x at t). These are called the retarded solutions of (7) and (8). The potentials at

a point can be calculated by combining contributions to the field associated with bits of charged

matter at distant points at past (retarded) times. That is, one can find the values for φ and

~A at a given point by integrating contributions to these potentials from the charge and current

densities at each point ~x′ at the appropriate moment in the past, tr. You might interpret (9) as

telling us how past charged matter acts as source for the current electromagnetic field. For the

simple case of a charge that is briefly shaken back and forth, the electromagnetic field calculated

from the retarded potentials will describe diverging electromagnetic waves propagating outwards

after the charge is shaken, carrying away energy (figure 2.a).

The solutions in (9) are not the only solutions to (7) and (8). There are also advanced

solutions,

φ(~x, t) =

ˆ
d3~x′

ρ(~x′, ta)

|~u|

~A(~x, t) =
1

c

ˆ
d3~x′

~J(~x′, ta)

|~u|
, (10)
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where the only difference from (9) is that the retarded time, tr, is replaced by the advanced

time, ta = t+ |~u|
c (the time that a signal traveling at the speed of light from ~x at t would arrive

at ~x′). Using (10), the potentials at a point can be calculated by combining contributions to

the field associated with bits of charged matter at distant points at future (advanced) times.

You might interpret (10) as telling us how future charged matter acts as sink for the current

electromagnetic field. For a charge that is briefly shaken back and forth, the electromagnetic

field calculated from the advanced potentials will describe converging electromagnetic waves

propagating inwards, arriving at the charge as it is being shaken and depositing energy in the

charge (figure 2.b). For such an advanced solution, one might be tempted to say that the

presence of converging electromagnetic waves at some time before the shaking is caused by

the future shaking of the charge (that there is retrocausation). In this article, we will avoid

such language and generally work under the assumption that causes come before their effects.

One can retain the ordinary picture of causes preceding their effects in this case if one views the

converging waves at a particular moment as caused by the earlier presence of more widely spread

out converging waves and as causing the future motion of the charge (alongside other forces). To

avoid such waves that come in from the infinite past and are not produced by earlier motions of

charged bodies, one might stipulate that it is the retarded and not the advanced solutions that

are to be used. We will consider the merits of such a proposal in section 4.

Figure 2: On the left, a charge is shaken and sends out diverging waves (the retarded solution).
On the right, the shaken charge functions as a sink for converging waves (the advanced solution).
The motion of charged matter is the same in both figures, but the non-electromagnetic forces
needed to account for that motion would be different (as energy is transferred from matter to
field in figure a and from field to matter in figure b). To simplify the depiction of electromagnetic
waves, the dark rings only show the distribution of field energy.

In addition to the retarded and advanced solutions in (9) and (10), there are also free solutions

which describe the propagation of electromagnetic waves in the absence of charges (when the

right-hand sides of (7) and (8) are zero). By the Kirchhoff representation theorem,7 an arbitrary

solution to (7) and (8) can be written as the sum of the retarded solution (φret, ~Aret) and a

7See Earman (2011, sec. 2.3).
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free solution (φin, ~Ain) or, alternatively, as the sum of the advanced solution (φadv, ~Aadv) and a

different free solution (φout, ~Aout). The solution can be written either as

φtot(~x, t) = φret(~x, t) + φin(~x, t)

~Atot(~x, t) = ~Aret(~x, t) + ~Ain(~x, t) (11)

or

φtot(~x, t) = φadv(~x, t) + φout(~x, t)

~Atot(~x, t) = ~Aadv(~x, t) + ~Aout(~x, t) . (12)

The “in” in (φin, ~Ain) stands for “incoming,” as this contribution to the potentials cannot be

traced back to past charged matter sources and is thus thought of as coming in from the infinite

past. The “out” in (φout, ~Aout) stands for “outgoing,” as this contribution to the potentials

cannot be traced forward to future charged matter sinks and is thus thought of as going out to

the infinite future.

Generalizing from these two specific ways of decomposing the field, one can write arbitrary

potentials satisfying (7) and (8) as the sum of some constant α times the retarded solution plus

1−α times the advanced solution plus a free solution (that is α times the incoming solution plus

1− α times the outgoing solution):

φtot(~x, t) = αφret(~x, t) + (1− α)φadv(~x, t) + αφin(~x, t) + (1− α)φout(~x, t)

~Atot(~x, t) = α ~Aret(~x, t) + (1− α) ~Aadv(~x, t) + α ~Ain(~x, t) + (1− α) ~Aout(~x, t) . (13)

In section 6, we will discuss taking α to be one-half and eliminating the free field solution (the

Wheeler-Feynman approach).

Corresponding to the retarded, advanced, incoming, and outgoing potentials, we can speak

of the retarded, advanced, incoming, and outgoing electric and magnetic fields, using (5) to pass

from potentials to fields. Or, we can combine the electric and magnetic fields into the Faraday

tensor Fµν and speak of retarded, advanced, incoming, and outgoing electromagnetic fields. In

discussions of the arrow of radiation, the tensor indices are often dropped and these fields are

written as Fret, Fadv, Fin and Fout. We will adopt this terse notation in future sections.8

To better understand the Kirchhoff representation theorem, let us again consider the earlier

example of a charge that is shaken and emits electromagnetic waves (figure 2.a). In the retarded

representation (11), we have a retarded electromagnetic field describing diverging electromagnetic

waves leaving the charge after it is shaken (and also the Coulomb field around the charge).

There is no incoming (free) field. In the advanced representation (12) of the very same history,

8Although we used the scalar and vector potentials in the Lorenz gauge to pick out the retarded, advanced,
incoming, and outgoing electromagnetic fields, these separate fields can be written using the potentials in any
gauge or using the gauge-independent electric and magnetic fields (or the gauge-independent Faraday tensor).
There is no need to ontologically privilege the Lorenz gauge, though one may choose to do so (Maudlin, 2018
discusses the pros and cons).
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we have an advanced electromagnetic field describing electromagnetic waves converging on the

charge—reaching it when it shakes (and also the Coulomb field around the charge). In addition

to this advanced field, there is an outgoing (free) field. Before the shaking, the outgoing field

cancels the waves in the advanced field (destructive interference). After the shaking, the outgoing

field describes the very same diverging electromagnetic waves that the retarded field described

in the retarded representation.9 Thus, diverging waves can be expressed using either retarded or

advanced fields (with the appropriate free fields). In this case, energy is emitted from charged

matter into the electromagnetic field and we see that this energy emission can be described

using either the retarded or advanced representation. Similarly, cases of energy absorption can

be described using either the retarded or advanced representation.10

The asymmetry we seek to explain is the observed asymmetry between converging and

diverging electromagnetic waves in the total electromagnetic field. Why is it that symmetric

converging waves are rare? Of course, waves that increase in strength over time are not so rare.

Consider, for example, the way in which ocean waves converge at an uneven shoreline or the way

in which ear trumpets concentrate sound waves to aid hearing. In this article, when we speak

of “converging” waves we mean waves that approach a central point or region in a symmetric,

coordinated manner. If you oscillate a charge up and down in the z direction, it will produce

a diverging electromagnetic wave that is symmetric about the z axis. The time-reverse of this

process is a converging wave that is symmetric about the z axis. We seek to explain why this kind

of converging wave is so rare. Choosing a particular representation does not give an explanation

as to why converging waves are rare. Choosing the retarded representation and stipulating that

there are no incoming free fields does yield such an asymmetry (section 4). However, we think

there is a better way to explain the absence of converging waves: they are improbable.

There is disagreement in the literature as to the arrow of electromagnetic radiation that needs

to be explained.11 Frisch (2000, pg. 384) initially sought to explain why the incoming free field

is zero in the retarded representation, a formulation of the problem that we would resist because

some proposed explanations of the arrow of radiation involve non-zero incoming free fields. In

his later book, Frisch (2005, pg. 108) describes the asymmetry-to-be-explained as follows:

“There are many situations in which the total field can be represented as being

approximately equal to the sum of the retarded fields associated with a small number

9North (2003, pg. 1089) describes a similar case, considering the turning on of a light bulb in the advanced
representation.

10On the point that both representations are fully capable of describing energy emission and absorption, see
North (2003, pg. 1088); Frisch (2005, pg. 141); Zeh (2007, pg. 18).

11Price (1996, 2006) takes the arrow of radiation to be a macroscopic effect:

“According to this view the radiative asymmetry in the real world simply involves an imbalance
between transmitters and receivers: large-scale sources of coherent radiation are common, but large
receivers, or ‘sinks,’ of coherent radiation are unknown. ... At the microscopic level things are
symmetric, and we have both coherent sources and coherent sinks. At the macroscopic level we
only notice sources, however, because only they combine in an organized way in sufficiently large
numbers.” (Price, 1996, pg. 71)

We find it odd to draw such a sharp distinction between transmitters and receivers. Really, there are just charges
and charges sometimes emit and sometimes absorb energy. Also, radiation reaction illustrates that there is time
asymmetry at both the macro and micro level. We thus think it is wrong to say that “at the microscopic level
things are symmetric” (see Frisch, 2005, pg. 139–142, especially the point about synchrotron radiation).
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of charges (but not as the sum of the advanced fields associated with these charges),

and there are almost no situations in which the total field can be represented as

being approximately equal to the sum of the advanced fields associated with a small

number of charges.”

This is a better formulation of the arrow, but it is a step removed from what we actually observe:

diverging waves in the total electromagnetic field (Price, 2006, sec. 2.4). North (2003, sec. 2)

seeks to explain why “accelerated charges produce retarded and not advanced radiation” or, put

more precisely, why “the retarded solution requires a much more natural free-field component

than the advanced solution.” In particular, North takes the weak and relatively uniform cosmic

microwave background (CMB) to be the incoming free field in the retarded representation. As

will be discussed in section 3.2, we do not want to assume that the CMB is a truly free field

or that the true incoming free field is simple in the retarded representation. Such assumptions

could be part of an explanation of the arrow of radiation, but they are not part of the arrow

itself.

Before embarking on the project of explaining the arrow of radiation, we should pause to

discuss both the time-reversal invariance of electromagnetism and the asymmetry of radiation

reaction. First, let us briefly consider the question as to whether the laws of electromagnetism

are time-symmetric (or, put another way, whether they are time-reversal invariant). Recall that

the puzzle of temporal bias for electromagnetic waves (posed in section 1) asks why we observe

waves behaving in a time-directed way (diverging but not converging) when the underlying laws

are time-symmetric. In fact, there is debate as to whether the laws of electromagnetism are

truly time-symmetric.12 If you simply reverse the order of instantaneous states for matter and

field without altering the electric or magnetic fields at each moment, then the time-reverse of a

history obeying Maxwell’s equations will, in general, not obey Maxwell’s equations. If, instead,

you reverse the order of states and flip the orientation of the magnetic field, then the time-reverse

of a history obeying Maxwell’s equations will obey Maxwell’s equations. Applying this second

form of time reversal, the time-reverse of a history where the electromagnetic field is purely

retarded (with no incoming field) is a history where the electromagnetic field is purely advanced

(with no outgoing field). The time-reverse of a series of diverging waves is a series of converging

waves. Whether or not we count this form of time-reversal as true time-reversal, it is sufficient to

get the puzzle off the ground: If for every history with diverging waves there is a corresponding

history with converging waves, why do we never see converging electromagnetic waves?

In addition to the asymmetry between diverging and converging electromagnetic waves, there

is a related asymmetry in electromagnetic phenomena that needs to be explained: radiation

reaction. This asymmetry will not be our main focus, but we will discuss whether different

proposals for explaining the wave asymmetry can also explain the asymmetry of radiation

reaction. Here is the asymmetry: When a charged body accelerates, it emits radiation. That

radiation carries energy and momentum. Because momentum is conserved, the change in

12See Albert (2000, ch. 1); Malament (2004); Arntzenius & Greaves (2009); Allori (2015); Struyve (forthcoming);
Roberts (2021).
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field momentum is balanced by a change in momentum of the charged body (or whatever is

accelerating it). This radiation reaction is a time-asymmetric phenomenon somewhat similar to

friction. An accelerating charge will feel a reactive damping force that it would not feel if it were

uncharged. The time reverse of this effect would be an anti-damping force where the field gives

energy to the charge and helps it accelerate. That is not observed in nature.

For extended charged bodies, we can explain radiation reaction by analyzing the way that

electromagnetic waves propagate through bodies on their way out.13 If we can explain why

electromagnetic waves diverge, we can explain radiation reaction. For point charges, the situation

is more complicated. Calculating the force on a point charge in classical electromagnetism is

problematic because the electromagnetic field becomes infinitely strong as one approaches the

charge (and the value of the field is undefined at the location of the charge). One could try

stipulating that point charges do not notice their own fields and only experience the standard

forces from the fields of other particles (via the Lorentz force law, ~F = q ~E+ q
c~v× ~B), but then one

would miss radiation reaction and have violations of both energy and momentum conservation.

One way out of these troubles is to argue that there are no point charges in nature.14 Should

one desire to work with point charges, there are a variety of strategies available for patching

up classical electromagnetism. For example, one might replace the Lorentz force law with the

Lorentz-Dirac force law,15 which can be written in outline as

~F = ~Fext + ~Frad + ~Finc . (14)

The first term, ~Fext, is the Lorentz force from the retarded electromagnetic fields associated with

each of the other charges. The second term, ~Frad, gives the (time-asymmetric) radiation reaction

force on the charge. This radiation reaction force can be expressed in terms of time derivatives

of the charge’s position without referencing any electromagnetic fields. The final term, ~Finc, is

the Lorentz force from the free incoming electromagnetic field: ~Finc = q ~Einc + q
c~v × ~Binc. For

some free incoming fields, this force will be well-defined. However, if the incoming field contains

electromagnetic waves that converge on the charge, then this force will not be well-defined. For

example, consider the purely advanced solution in figure 2.b, where the total electromagnetic

field is a wave that converges on a charge (which we will assume here to be a point charge).

In the retarded representation (11), the incoming free field would be ill-defined at the location

of the point charge when the wave converges. Thus, the Lorentz-Dirac equation can break

down. In general, the time-reverse of a history of charged particles and fields that obeys the

Lorentz-Dirac equation will be a history where the Lorentz-Dirac equation breaks down because

~Finc is not always well-defined at the particle locations. For the law to function properly, we

must explain why the problematic incoming fields do not occur in nature. An explanation as

13See Rohrlich (1999, 2000); Sebens (2022c, sec. 2.2). Note that the forces exerted by the electromagnetic
field within an accelerating extended charged body balance both the energy lost to radiation and the energy
transferred from the body to the electromagnetic field that surrounds it and travels along with it.

14For discussion of this idea, see Arntzenius (1993, sec. 3); Jackson (1999, ch. 16); Frisch (2005, pg. 55–58,
117–118); Pietsch (2012, pg. 145); Sebens (2020, sec. 8); Wald (2022, sec. 1.4); Sebens (2022b).

15See Dirac (1938); Wheeler & Feynman (1945); Frisch (2005, sec. 3.3); Earman (2011, sec. 3); Kiessling (2011);
Lazarovici (2018, sec. 3.1).
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to why electromagnetic waves diverge might also explain this. We will come back to this point

in future sections. To review, the Lorentz-Dirac equation for point charges is time-asymmetric

but should not be viewed as the sole source of time-asymmetry in electromagnetism because

its applicability presupposes time-asymmetric radiation. There is more to be said about the

strengths and weaknesses of the Lorentz-Dirac equation, but let us not go too deep into the

problems of point charges.

3 Strategy 1: A Statistical Explanation

The motivating idea behind the statistical strategy for explaining the arrow of electromagnetic

radiation is stated clearly by Frisch (2015): converging waves are rare because “a converging

wave would require the co-ordinated behaviour of ‘wavelets’ coming in from multiple different

directions of space—delicately co-ordinated behaviour so improbable that it would strike us as

nearly miraculous.”16 As an example, consider the advanced solution in the case of a single

charge briefly shaken (figure 2.b). There we have electromagnetic waves that approach the

charge from all sides in a coordinated manner that seems improbable. To justify the claim that

such histories are improbable, we need to say more about the probabilities for different histories.

Zeh (2007, pg. 18) criticizes this kind of statistical explanation, writing:

“The popular argument that advanced fields are not found in Nature because they

would require improbable initial correlations is known from statistical mechanics, but

totally insufficient . . . The observed retarded phenomena are precisely as improbable

among all possible ones, since they describe equally improbable final correlations.”

Note that (by the Kirchhoff representation theorem) we cannot actually say that advanced

fields are absent in nature because the electromagnetic field can always be decomposed into

an advanced field and an outgoing (free) field (12). What must be explained is the fact that

converging electromagnetic waves are rarely found in nature. We can break the symmetry that

Zeh identifies by adding a statistical postulate assigning probabilities over initial conditions, not

final conditions. This is exactly the same move that is standardly made when one uses statistical

mechanics to explain the observed asymmetries of thermodynamics. Let us take a moment to

review the philosophical foundations of statistical mechanics before returning to the arrow of

electromagnetic radiation.

16In a similar complaint about the miraculous nature of converging waves, Popper (1958) writes: “If not steered
by an expanding wave, the contracting wave, though not in itself physically impossible, would nevertheless have
the character of a physical miracle: it would be like a conspiracy, undertaken by many people, each carefully
acting so as to support all the others, but without any previous arrangement, or anything like a prepared plan.”
Of course, converging waves are possible when you have a prepared plan. With the right electromagnetic wave
emitters arranged in a ring and set on a timer, you could get electromagnetic waves propagating inwards toward
a central point. (A similar example with water waves was given in the introduction.)
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3.1 The Past Hypothesis and the Statistical Postulate

We will follow the current trend among philosophers of adopting a “Boltzmannian” or

“neo-Boltzmannian” (as opposed to a “Gibbsian”) approach to statistical mechanics.17 On this

approach, we can take the entropy S of a system in a particular microstate to be proportional to

the natural logarithm of the volume W of the system’s macrostate in the space of all accessible

microstates,

S = k lnW , (15)

where k is Boltzmann’s constant. The previous sentence requires some unpacking. For a

monatomic gas in a box, the microstate is specified precisely by microscopic variables: the

positions and velocities of all the atoms in the gas. The macrostate is specified imprecisely by

macroscopic variables (macrovariables) like the pressure, temperature, and volume of the gas.

The space of all accessible microstates for a closed system is an energy hypersurface within phase

space. Phase space is a 6N -dimensional space with dimensions for the x, y, and z components

of the position and velocity of each of N atoms. By imposing constraints like the boundaries of

the box, the total energy of the gas, and that the walls of the box do not transfer energy to the

environment, we arrive at a 6N−1-dimensional constant-energy hypersurface that is the accessible

subspace within phase space. The macrostate picks out a region of this energy hypersurface and

the microstate singles out a particular point in that region (see figure 3).

Figure 3: This figure gives a depiction of the space of all accessible microstates, with small
low-entropy microstates in the corners and a large maximum-entropy equilibrium macrostate in
the center. The point representing the microstate begins in the medium-sized gray macrostate
and its evolution illustrates the second law of thermodynamics, moving through regions of
increasing entropy until the system reaches thermal equilibrium. This is exactly the evolution
one would expect from the structure of this space. Although it is not apparent in this simplified
image, in reality the space is high-dimensional, and the vast majority of the many ways out of
a small macrostate take you to a larger macrostate.18

The motion of the particular point representing the gas is determined by the laws governing

17For an introduction to this Boltzmannian approach and a comparison to the Gibbsian alternative, see
Callender (1999); Albert (2000); Goldstein (2001); Uffink (2007, sec. 4 and 5); Frigg (2008); Carroll (2010,
ch. 8); North (2011); Wallace (2015); Frigg & Werndl (2019); Goldstein et al. (2020); Myrvold (2021, ch. 7).

18Tim Maudlin has emphasized this point in his talk, “Boltzmann Entropy, the Second Law, and the
Architecture of Hell.”
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the collisions of atoms, which we might model as repulsive Newtonian forces that depend

on the distances between the atoms. The laws for collisions are ordinarily taken to be

time-reversal-invariant, such that any sequence of events allowed by the laws is also allowed

to occur in the opposite order. However, the behaviors we observe are time-directed. (This was

the puzzle of temporal bias mentioned in the introduction.) For example, a gas confined to the

left half of a box will expand to fill the entire box if the barrier is removed. The reverse process

of a gas contracting to fill only half of a box never occurs. This is just one instance of the Second

Law of Thermodynamics. In one of its formulations, it says the following:

The Second Law of Thermodynamics: The entropy of a closed system will

almost always either increase or remain the same.

Applying the definition of entropy in (15), this means that the point in phase space representing

a gas will move into macrostates of equal or greater volume until it reaches the equilibrium

macrostate (figure 3).

To explain the gas’s time-directed behavior, we can apply a statistical postulate over

the initial conditions at the moment the barrier is removed—assigning a uniform probability

distribution over the region of the energy hypersurface compatible with the known values for the

(appropriate) macrovariables. According to this probability distribution, it is overwhelmingly

likely that the gas’s microstate will move through ever larger macrostates until it reaches

equilibrium (and the gas is spread evenly throughout the entire box). Motion into a smaller

macrostate is physically possible but very unlikely.19

Imposing this kind of statistical postulate at the beginning explains why we get time-directed

behavior (obeying the Second Law of Thermodynamics) afterwards. But, such a postulate makes

poor predictions about the past. To see why, consider applying this kind of postulate at a

time after the barrier is removed but before equilibration. At this moment, one might include

macrovariables that describe the unequal pressures (or densities) in the left and right halves

of the box. When we consider the positions and velocities for atoms that are consistent with

this macrostate and assign a uniform probability distribution over the microstates compatible

with the macrostate, the forward evolution will be exceedingly likely to fill the box. So will the

backwards evolution. Knowing only the macrostate, one would not predict the gas to have been

further concentrated in the left half of the box at earlier times (though in reality it was).

In general, if you apply the above kind of statistical postulate to a particular system at a

particular time, you will predict that entropy will increase (or stay the same) both forwards

and backwards in time. To generate correct predictions for some time period of interest, you

should apply a statistical postulate at the beginning of the time period. If we are interested

in everything that has happened in the history of our universe, we can apply such a statistical

postulate sometime soon after the big bang:

19The Boltzmann equation mathematically describes how the density of the gas changes in the box. Boltzmann
derived this equation by making a statistical assumption about the collisions of the gas molecules, dubbed the
Stoßzahlansatz, which postulates that the gas molecules are typically uncorrelated when the barrier is removed.
According to the Boltzmann equation, it is overwhelmingly likely that the gas will fill the box once the barrier is
removed (Brown et al., 2009).
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The Statistical Postulate: For the purposes of making predictions in the future

of some time t0 soon after the big bang, we should apply a uniform probability

distribution to microstates compatible with the macrostate at t0—where that

macrostate is a region of the relevant energy hypersurface in the space of all

possible microstates (phase space, or some successor to it) specified using appropriate

macrovariables.

This statement resembles the formulation in (Albert, 2000, pg. 96), though we are focusing here

only on a single early moment (as in Loewer, 2020) and not directly specifying the probability

distributions to be used for subsystems at later times. The parenthetical about phase space

allows for a revision of the degrees of freedom available to a system when we move to a

physical description that includes more than just the positions and velocities of bodies—such as

quantum theories20 and, as we will see shortly, theories with fields. The choice of “appropriate”

macrovariables is left unspecified.

The Statistical Postulate will generate different predictions depending on the macrostate that

is posited at t0. If the universe were in equilibrium at t0, we would expect it to stay in (or near)

equilibrium. To generate accurate predictions, we can posit a low-entropy state:

The Past Hypothesis: At some time t0 soon after the big bang, the universe was

in a particular low-entropy macrostate “that the normal inferential procedures of

cosmology will eventually present to us” (Albert, 2000, pg. 96).

Putting the Past Hypothesis and Statistical Postulate together, we have “a probability map

of the universe” (Loewer, 2020) assigning probabilities to all possible initial states and thus to

all possible histories of the universe. Using this probability distribution, we can predict that

systems will behave in a time-directed manner (obeying the Second Law of Thermodynamics)

even if the underlying dynamical laws are time-symmetric. We thus have a resolution of the

puzzle of temporal bias, at least for certain phenomena. Soon, we will see that this explanatory

schema works for waves as well.

At this point, one might naturally wonder about the nature of the probabilities specified

by the Past Hypothesis and the Statistical Postulate. What exactly are we saying when we

specify certain probabilities over initial conditions for the universe? This is a reasonable point

of concern, but not one that we will address here (see Allori, 2020). The interpretation of the

probabilities will eventually need to be settled to complete the Boltzmannian approach and our

soon-to-come application of this approach to explaining the arrow of radiation.

For the goal of making accurate predictions about thermodynamic processes, many different

probability distributions would work just as well as the uniform one employed by the Statistical

Postulate (Wallace, 2023). Thus, although we would like to defend a statistical explanation as to

why electromagnetic waves diverge, we are not committed to the specific probability distribution

given by the combination of the Past Hypothesis and the Statistical Postulate.21

20In quantum physics one can separately impose a Past Hypothesis and Statistical Postulate for the initial
wave function or one can instead posit a particular density matrix at an early time (Chen, 2020).

21One idea for avoiding unjustified precision is to collect all of the admissible probability distributions, form an
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3.2 Incorporating the Electromagnetic Field

As formulated above, the Past Hypothesis and the Statistical Postulate do not explicitly mention

the state of the electromagnetic field. But, a full specification of the microstate of the universe

at t0 would require specifying the state of the electromagnetic field. An accurate description of

the state of the electromagnetic field at this time in the history of the universe would have to be

quantum field theoretic.22 For our purposes here, we will stick to classical physics (following the

plan set out in the introduction). We expect the lesson that converging electromagnetic waves

are deemed improbable by appropriate versions of the Past Hypothesis and Statistical Postulate

to be retained in a quantum treatment of the early universe.

We can use the simplified context of classical electromagnetism to give a fictional account of

the early universe that illustrates the way in which the arrow of electromagnetic radiation can

be explained statistically, noting that the details of that explanation will change as one moves

to more advanced physics: Long ago (at t0),23 charged matter lived in a bath of electromagnetic

radiation so intense and chaotic that, by inspection, one would not be able to discern clear

converging or diverging waves. At this time, there was no arrow of radiation in the phenomena

to be explained. It is here that we can apply the Statistical Postulate, adopting a uniform

probability distribution over microstates compatible with the macrostate for matter and field

(following North, 2003 and Atkinson, 200624). As the universe expanded, we were left with

equivalence class, and reformulate the Statistical Postulate with this equivalence class of probability distributions.
(It is debated whether equivalence classes of probability distributions capture the right degree of precision. Rinard,
2017 argues in a different context on imprecise probabilities that these equivalence classes are still too precise,
see also Chen, 2022b, p. 5 for this argument.) Going this route, we would no longer be interested in the exact
probability distribution over initial conditions but rather in something more coarse-grained: what kinds of initial
conditions are overwhelmingly likely (or “typical”) and what kinds are overwhelmingly unlikely (or “atypical”).
One could show that typical initial conditions yield the usual thermodynamic asymmetries. This approach to the
statistical postulate has been dubbed the typicality account (see, for instance, Goldstein, 2001, 2012; Maudlin,
2020; Hubert, 2021, who defend this account). For our purposes, we will stick to the ordinary statistical postulate
given above. One could easily adapt our soon-to-be-given explanation of the arrow of electromagnetic radiation
by using a modified statistical postulate if one wished to fold our explanation into a typicality account.

22See North (2003, pg. 1095–1096); Atkinson (2006, pg. 539).
23You might think of this fictional time as around 400,000 years after the big bang (Hartle, 2005, appendix A),

when charged matter formed a plasma in thermal equilibrium with the electromagnetic field (though the entire
universe was not in equilibrium, as can be inferred from the potential for further expansion).

24Other authors have defended broadly similar explanations of the arrow of radiation. O. Penrose & Percival
(1962) introduce a “law of conditional independence” saying that you could not have distant parts of the universe
coordinate to form a converging wave because those parts of the universe were never in causal contact (see also
O. Penrose, 2001). R. Penrose (1979) gives a cosmological explanation of the arrow of electromagnetic radiation,
viewing that arrow and the thermodynamic arrows as all explained by a low-entropy initial state (presenting a
version of the Past Hypothesis that is explicit about the low gravitational entropy in the early universe). Hartle
(2005, appendix A) similarly employs a version of the Past Hypothesis to explain the arrow of radiation and the
thermodynamic arrows of time, describing the radiation that was present in the early universe as lacking the kind
of correlations that would give rise to converging waves. Earman (2011, pg. 524) ends his article with a conjecture
that “any [electromagnetic] asymmetry that is clean and pervasive enough to merit promotion to an arrow of time
is enslaved to either the cosmological arrow or the same source that grounds [the] thermodynamic arrow (or a
combination of both).” Arntzenius (1993, pg. 30) seeks a unified explanation of the arrow of radiation and other
“arrows of time” within quantum field theory: “For a simpleminded philosopher like me, it would seem most
satisfactory if a unified account could be given of all arrows of time. ... I have the hope of a unified statistical
account within quantum field theory of all arrows of time.” Zeh (2007, sec. 2.2) gives a cosmological explanation
of the arrow of radiation (criticized in Frisch, 2000, sec. 4) that is not statistical, describing the early universe
as an ideal absorber with properties that allow us to ignore any free (incoming) fields that might have preceded
it. Although we would like to be able to claim Einstein as an ally, he does not consistently defend a statistical
explanation of the arrow of radiation. Ritz & Einstein (1909) write “Einstein believes that irreversibility is
exclusively due to reasons of probability” (Ritz & Einstein, 1990), but elsewhere Einstein (1909) concludes that
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charged matter in a very weak bath of radiation (the cosmic microwave background, CMB).

Although a weak bath of radiation could conceivably contain converging waves that are destined

to grow in strength as they approach charges, the Statistical Postulate applied to the earlier

strong bath makes the presence of any such waves exceedingly unlikely. Converging waves would

require precise coordination of electromagnetic field values at distant locations. Such fine-tuned

initial conditions are implausible, and rightly ruled improbable by the Statistical Postulate.

As North (2003, pg. 1088, 1091) tells the story, the cosmic microwave background radiation

is composed of free fields—incoming fields that would have to be added to the retarded fields

to get the total electromagnetic field at some point now. Although for practical purposes it

is reasonable to treat the cosmic microwave background radiation as free when analyzing the

behavior of subsystems long after the big bang, there is no clear way to settle whether any of that

radiation is truly free.25 Within classical electromagnetism, figuring out whether there are any

truly free fields (in the retarded representation) would require determining whether the history

of charged matter along the entire infinite past light-cone of each point in space fully specifies the

value of the electromagnetic field at that point, via (9), or whether a free incoming field would

have to be added, as in (11). In our actual universe, tracing that light-cone into the distant

past will eventually take us back to times in the early universe where classical electromagnetism

does not accurately approximate what is happening. One could attempt to sort the quantum

description of the electromagnetic field into a contribution attributable to past sources and a

source-free contribution, but our limited knowledge of the early universe makes it hard to see how

we could gain knowledge as to whether there is a non-zero source-free contribution. Given the

difficulty of ascertaining such a thing, we will not argue that there is an empirical case to be made

for the kind of statistical approach to explaining the arrow of electromagnetic radiation outlined

here, as compared to the alternative approaches to be discussed in the following sections (that

do not allow for the possibility of free fields). There are multiple ways to explain the observed

absence of converging electromagnetic waves. As we cannot settle the matter with data, we must

look to other considerations.

3.3 Evaluation

We find the above brief account as to the origin of the arrow of radiation to be attractive for

four main reasons (all mentioned in North, 2003). First, there is no need to modify the standard

laws of electromagnetism to explain the arrow of radiation. Some view versions of the Past

Hypothesis and the Statistical Postulate as together forming an additional law (or pair of laws)

(Chen, 2022a, 2023; Loewer, 2020). If the initial probability distribution specified by the Past

“The elementary process of the emission of light is, thus, not reversible” (Frisch, 2005, pg. 112). (For more on
Einstein’s views, see Frisch, 2005, pg. 109–114; Frisch & Pietsch, 2016.) Our goal here is not to focus on the
subtle differences between the accounts of the authors just listed, but instead to present a strong version of the
statistical approach that they are all clustering around (so that we can compare it to the very different approaches
in section 4–6).

25On this point, Lazarovici (2018, pg. 159) (who opposes free fields) writes “We will never be able to determine
that some observed radiation is truly source-free, coming in ‘from infinity’. In fact, good scientific practice is to
assume that it is not and look for—or simply infer—the existence of material sources.” (See also Zeh, 2007, ch.
2; Pietsch, 2012, sec. 7.1; Wald, 2022, pg. 9.)
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Hypothesis and Statistical Postulate is a law, then it is a law we already need to account for

other asymmetries and not an additional law peculiar to this strategy for explaining the arrow

of radiation. One might consider the Lorentz-Dirac equation (14) to be a modification to the

standard laws of electromagnetism. This equation is not needed to explain the prevalence of

diverging waves (the arrow of radiation) or to explain radiation reaction for extended charges,

but, as will be discussed below, the Lorentz-Dirac force law can be adopted to explain radiation

reaction for point charges. Some such modification would be needed to explain the arrow of

radiation reaction for point charges within any of the approaches to explaining the arrow of

radiation presented here except for the Wheeler-Feynman approach (see section 6).

Second, the statistical explanation gives a unified account of all wave asymmetries. In general,

converging waves are improbable because the strange initial conditions needed for them to occur

are improbable. Davies (1977, pg. 119) explains this well for the case of waves in a pond,

“. . . waves on real ponds are usually damped away at the edges by frictional effects.

The reverse process, in which the spontaneous motion of the particles at the edges

combine favourably to bring about the generation of a disturbance is overwhelmingly

improbable, though not impossible, on thermodynamic grounds.”

The fact that such coordination is improbable follows from the Statistical Postulate. This

postulate also explains why converging electromagnetic waves are improbable.

Third, the statistical explanation unifies wave asymmetries with familiar thermodynamic

asymmetries—gases expand, ice cubes melt, etc. These are two kinds of asymmetries that one

might have expected would receive different explanations. In fact, all of these asymmetries follow

from the Past Hypothesis and the Statistical Postulate, provided we include the electromagnetic

field in our descriptions of microstates and macrostates. The same probability distribution

explains both why waves diverge and why entropy increases.

Fourth, the symmetric treatment of charged matter and electromagnetic field fits well with

quantum field theory where charged matter and the electromagnetic field are modeled by very

similar equations (suggesting that they are the same kind of thing—see Sebens, 2022b). In the

statistical approach advocated here, the field is just as real as matter and it has independent

degrees of freedom (its state is not fixed by the behavior of charged matter, as in section 4,

though it is constrained by it). The appeal of such a picture has been expressed in a memorable

way by Penrose (1979, pg. 590)26 while criticizing the Wheeler-Feynman approach (which we

will come to in section 6),

“And I have to confess to being rather out of sympathy with the whole

[Wheeler-Feynman] programme, which strikes me as being unfairly biased against

the poor photon, not allowing it the degrees of freedom admitted to all massive

particles!”

Wald (2022, pg. 2, 9–10) makes a similar remark when he addresses the “pernicious myth” that

electromagnetic fields are produced by charged matter (as in section 4),

26See also Rohrlich (2007, pg. 196); Pietsch (2012, pg. 141–142).
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“. . . the view that electromagnetic fields are produced by charges is particularly

untenable in quantum field theory, since it is essential for the understanding of

such phenomena as the vacuum fluctuations of the electromagnetic field that the

electromagnetic field have its own dynamical degrees of freedom, independently of

the existence of charged matter.”

Wald presents this lesson from quantum field theory at the beginning of his book on classical

electromagnetism, presumably because he thinks that we can learn about the proper formulation

of classical electromagnetism by studying its successor, quantum electrodynamics. We also think

that debates within one theory can sometimes be informed by looking to deeper physics. Ideally,

these two theories should fit together neatly, with classical electromagnetism arising as a classical

limit to quantum electrodynamics and quantum electrodynamics derivable by quantizing the

classical electromagnetic field.

Having noted some reasons in favor of the above statistical strategy for explaining the arrow

of electromagnetic radiation, let us now respond to four potential objections. The first objection

we will consider is the entirely reasonable request for more details. In particular, a request

for details on the correct probability distribution to apply over states of the electromagnetic

field in the early universe—a request for details as to how the electromagnetic field should be

incorporated into the Past Hypothesis and Statistical Postulate. Unfortunately, those are not

details that we can easily provide. The microstates that one would be assigning probabilities

over in the very early universe are not simply classical arrangements of charged matter and

specifications of the state of the electromagnetic field.27 At such a time, an adequate description

of the physics would require quantum field theory (in particular, quantum electrodynamics).

Arntzenius (1993), North (2003, pg. 1096), and Atkinson (2006) have discussed the importance

of quantum electrodynamics for explaining the arrow of electromagnetic radiation. We agree that

the ultimate explanation of the arrow of radiation should appeal to quantum electrodynamics

and understand that there is much work to be done. Still, we think the simplified classical

parable told in section 3.2 is helpful for getting a flavor for the kind of explanation that we

expect quantum electrodynamics to yield. It is correct in spirit, thought not in details.

A second objection to the above statistical explanation of the arrow of radiation is that it

allows for backwards causation—deeming it merely improbable and not impossible. We do not

think the statistical explanation requires allowing for the possibility of backwards causation,

though it has been paired with this view elsewhere. North (2003, pg. 1095) writes:

27There are a variety of problems that arise if you try to use such classical microstates for matter and field to
develop a Boltzmannian statistical mechanics along the lines described in section 3.1. As is well known, classical
attempts to explain the spectrum of black-body radiation failed and Max Plank derived the correct spectrum by
appealing to quantum considerations (Kuhn, 1978). Here is a less well known problem: you cannot independently
specify the states of matter and field to pick out a microstate. Gauss’s law (2) requires a certain coherence between
states of matter and field. However, states of the electromagnetic field that obey this constraint might still be
unacceptable. As Hartenstein & Hubert (2021) have shown, generic states of the electromagnetic field obeying
the synchronic Maxwell equations, (1) and (2), will give rise to pathological future behavior where shock fronts
disrupt the dynamics and cause the theory to break down (see also Lazarovici, 2018, sec. 8.1). One way to resolve
the problems raised by Hartenstein & Hubert (2021) would be to adopt an approach where the electromagnetic
field does not have any independent degrees of freedom, as in sections 4–6.
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“The temporally symmetric laws say that both advanced and retarded radiation

could be emitted. However, given the universe’s thermal disequilibrium, the

charges are overwhelmingly likely to radiate towards the future, as part of the

overwhelmingly likely progression towards equilibrium in that temporal direction.

They are overwhelmingly unlikely to radiate towards the past because the universe

was at thermal equilibrium in that direction. Note that on this view the retarded

nature of radiation is statistical: advanced radiation is not prohibited but given

extremely low probability.”

When North speaks of “advanced radiation” or “radiat[ing] towards the past,” she is talking

about situations where there is a converging wave in the total electromagnetic field approaching

a particular charge that resembles the advanced field of that charge (so that, locally, the advanced

representation seems more natural than the retarded representation). Such situations may be

described as involving backwards causation.28 But, they do not need to be. Even when you

consider a converging electromagnetic wave that can be represented by a purely advanced field

(with no outgoing field), as in figure 2.b, you do not need to view the electromagnetic field at

any point in space and time as caused by future charges. You can instead view it as caused by

earlier states of the electromagnetic field (see section 2). The wave moves towards the charge

because it has been moving towards the charge. In general, whether the electromagnetic field

is purely retarded, purely advanced, or neither, it is possible to understand its time evolution

purely in terms of forward causation.

A third objection that might be raised to our account is that the Past Hypothesis and

Statistical Postulate, when spelled out precisely for electromagnetic field and matter, will be

complicated. The exact degree of complexity remains to be seen and the cost of that complexity

will depend on whether one views these principles as laws of nature or as something else. For now,

let us just note that if you would like to adopt versions of the Past Hypothesis and Statistical

Postulate to explain thermodynamic asymmetries, you cannot confine these principles to matter

and ignore the electromagnetic field (seeking simplicity). Specifying the initial state of the

charged matter alone will fail to determine its future evolution because there are many states of

the field compatible with any such state of charged matter (e.g., a given electromagnetic wave

could be present or absent). We need a way of selecting a particular state of the electromagnetic

field, or of assigning probabilities over different states, if we want to be able to make predictions

about the future motion of matter.

A fourth potential objection to our account is that we have not yet explained radiation

reaction. As was discussed in section 2, for extended charged bodies radiation reaction can be

explained by analyzing the way that electromagnetic waves propagate through such bodies on

their way out. The arrow of radiation reaction follows from the arrow of radiation. That kind

28Although we will generally view causes as preceding their effects, we see the appeal of allowing for causes
that are in the future of their effects if there are periods of time (or regions of spacetime) where (relative to what
we call past and future) entropy decreases and waves converge. Boltzmann’s hypothesis that the low-entropy of
the early universe arose as a fluctuation from a high-entropy distant past would give rise to such periods of time
before the early universe reached its low-entropy state (Carroll, 2010, ch. 10).
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of explanation can go through even if the (retarded) waves emitted by the charged body are

not the only electromagnetic waves in existence. There may be other waves that were emitted

by other charged bodies in the past or waves that are part of the free incoming electromagnetic

field. So long as those waves do not conspire to converge on the accelerating charge, we will

see radiation reaction (as well as reaction to the forces from the other waves). If all charges

are extended charges, we can stop there. For point charges, there are multiple ways of handling

radiation reaction. As was discussed in section 2, one idea is to replace the Lorentz force law with

the Lorentz-Dirac force law (14). If we treat the electromagnetic field at t0 as a free incoming

field, then the Lorentz-Dirac force law gives a well-defined equation of motion so long as Finc is

well-defined at every point in spacetime that a charge passes through and no waves in the initial

field converge precisely on any of the point charges. Although our statistical explanation of the

arrow of radiation does not deem such precisely converging waves impossible, they are effectively

ruled out as they would only occur in a set of measure zero among the allowed initial conditions.

One should expect waves that converge on a region to be rare and waves that converge on a

point to be absent. Thus, the Lorentz-Dirac force law can be used to explain radiation reaction

once statistical moves have been made to tame the free field.

4 Strategy 2: The Sommerfeld Radiation Condition

An alternative strategy for explaining the arrow of radiation is to modify the laws of

electromagnetism. The cleanest way of doing this is by restricting the space of physical

possibilities allowed by the theory to histories of matter and field where the electromagnetic

field has no free (incoming) component in the retarded representation, F = Fret + Fin:29

The Sommerfeld Radiation Condition: The total electromagnetic field is purely

retarded. At every point in spacetime, Fin = 0 and F = Fret.

This condition eliminates free fields from the retarded representation, though they would still

be present if one chose to use the advanced representation, F = Fret = Fadv + Fout.
30 If the

electromagnetic field is purely retarded (Fin = 0) at one time, it will be purely retarded at all

times. Thus it is equivalent to require that the field be purely retarded at one time, or to require,

as above, that it be purely retarded at all times.

Assuming that there was an infinite past, the Sommerfeld Radiation Condition states that

the electromagnetic field at a point in spacetime can be calculated by integrating contributions

from progressively further distances and earlier times out to spatial and past infinity along the

29Sommerfeld wrote down the original formulation of the condition in 1912 in order to have unique solutions to
the Helmholtz equation (for the history, see Schot, 1992). This equation is time-independent, and the condition
is accordingly a restriction on the solutions at spatial infinity. This original boundary condition evolved into
the above Sommerfeld Radiation Condition, requiring that all radiation be attributable to past sources. In his
textbook, Sommerfeld (1949, p. 189) gives the following motivation for his boundary condition: “We call it the
condition of radiation: the sources must be sources, not sinks, of energy. The energy which is radiated from the
sources must scatter to infinity; no energy may be radiated from infinity into the prescribe singularities of the
field [. . . ].”

30See Frisch (2005, pg. 156–157).
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light-cone (9).31 If there was a first moment, one might attempt to impose a version of the

Sommerfeld Radiation Condition by restricting the spatial integrals for the retarded potentials

(9) so that the retarded times being integrated over never precede the first moment (as a way of

positing that Fin = 0 at the initial moment and thus at all future moments). But, that will not

work. The recipe just described would have the consequence that, at the first moment, there is no

electromagnetic field at any point in space where there is no charged matter—even right next to

a charged body (in violation of Gauss’s law, one of Maxwell’s inviolable equations). Instead, one

might attempt to stipulate that the electromagnetic field at the first moment is just the field of

each bit of charge at the first moment. For example, a point charge at rest would be surrounded

by a Coulomb electric field. However, this strategy breaks down because the field generated by

a bit of charged matter via (9) depends on its imagined past, and multiple fictional pasts will be

compatible with the initial state of charged matter at the first moment (Hartenstein & Hubert,

2021). Thus, we do not see a precise way of stating the Sommerfeld Radiation Condition under

the assumption of a first moment.32 To move forward with our assessment of this proposal, let

us assume that there was an infinite past.

4.1 Justification

In his excellent and widely-used textbook on classical electromagnetism, Griffiths (2013, pg.

446–447) gives the following justification for adopting the Sommerfeld Radiation Condition:

“Although the advanced potentials are entirely consistent with Maxwell’s equations,

they violate the most sacred tenet in all of physics: the principle of causality.

They suggest that the potentials now depend on what the charge and the current

distribution will be at some time in the future—the effect, in other words, precedes

the cause. Although the advanced potentials are of some theoretical interest, they

have no direct physical significance.

“... the theory itself is time-reversal invariant, and does not distinguish ‘past’

from ‘future.’ Time asymmetry is introduced when we select the retarded potentials

in preference to the advanced ones, reflecting the (not unreasonable!) belief that

electromagnetic influences propagate forward, not backward, in time.”

Similar reasoning appears in Schwinger et al. (1998, pg. 346); Jefimenko (2000);33 Rohrlich

31See North (2003, pg. 1087); Price (2006); Earman (2011, sec. 2.8).
32Frisch (2005, pg. 107) suggests that we might ignore the Coulomb fields when applying the Sommerfeld

Radiation Condition at a given moment such as the initial moment. One way to do this, for point charges, would
be to include, at the initial moment, only the generalized Coulomb field for each charge (Zeh, 2007, pg. 29). This
amounts to calculating the retarded fields that would have been generated if each particle had always been moving
before the initial moment with the same velocity that they have at the initial moment. Hartenstein & Hubert
(2021, sec. 3.3) show that there will be persistent and proliferating discontinuous jumps in the electromagnetic
field values if you only match the velocities (and not the accelerations) between the hypothetical past trajectories
and the actual future trajectories of charged particles. The fact that we do not observe such discontinuities speaks
strongly against this proposal.

33Jefimenko incorporates the principle of causality into a broader vision regarding how fundamental laws in
physics should be formulated:

“Causal relations between phenomena are governed by the principle of causality. According to this
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(2000, 2002, 2006, 2007). There are at least three points where one might criticize Griffiths’

argument. First, although it is true that, for the purely advanced potentials (10), the value

of the electromagnetic field at a given point in spacetime can be calculated mathematically by

examining charges in the future (along the future light cone), it does not automatically follow

that effects will precede their causes. As we discussed in section 2, advanced solutions can

be interpreted with an ordinary order of cause and effect. For example, the purely advanced

converging wave in figure 2.b can be seen as a cause of the charge’s motion (instead of as an effect

that precedes this cause). Second, to justify the use of purely retarded solutions Griffiths must

reject not only purely advanced solutions, but also solutions that are neither purely retarded nor

purely advanced and involve free fields whether they are expressed in the retarded or advanced

representation. Finally, one could of course contest the “principle of causality” requiring causes

to precede effects, though we will not explore that avenue here.

In a solution to Maxwell’s equations that violates the Sommerfeld Radiation Condition and

is not purely retarded, the value of the electromagnetic field at a given point in space cannot

be fully attributed to past sources. One could attempt to defend the Sommerfeld Radiation

Condition by arguing that the electromagnetic field is created by charges and must always be

fully attributable to past sources. But, why make this assumption? We see that defense as

begging the question as to whether the condition should be adopted.

Frisch (2000, sec. 5)34 argues that the Sommerfeld Radiation Condition is justified not

by a deeper principle (like a principle of causality), but by the same kind of evidence that

justifies Maxwell’s equations. We accept Maxwell’s equations because of their success in

explaining and predicting the behavior of charged matter and the electromagnetic field. With

the Sommerfeld Radiation Condition, the predictive and explanatory power of electromagnetic

theory arguably increases, as this condition may be used to explain why electromagnetic waves

generally diverge by ruling out certain solutions to Maxwell’s equations containing converging

principle, all present phenomena are exclusively determined by past events. Therefore equations
depicting causal relations between physical phenomena must, in general, be equations where a
present-time quantity (the effect) relates to one or more quantities (causes) that existed at some
previous time.” (Jefimenko, 2000, pg. 4)

Jefimenko’s equations (16), giving the current state of the electromagnetic field in terms of the past behavior of
charges, fit this mold.

34In his later book, Frisch (2005, pg. 152) defends a variant of the Sommerfeld Radiation Condition that he
calls the “retardation condition”: “. . . each charged particle physically contributes a fully retarded component to
the total field.” This causal claim appears to leave open the possibility of there being a genuinely free incoming
field in addition to the retarded fields associated with charges. Thus, we do not see in this claim any restriction
on the space of physical histories allowed within classical electromagnetism. (For Frisch, it is a claim about
counterfactuals.) Without restricting the allowed histories or assigning a probability distribution over them, we
do not yet have the kind of resources that would be needed to explain the arrow of electromagnetic radiation. Frisch
(2005, pg. 152) combines his retardation condition with a time-asymmetric assumption about the distribution of
absorbing media that might be called an “absorber condition”: “. . . space-time regions in which we are interested
generally have media acting as absorbers in their past. . . . fields that are not associated with charges that are
relevant to a given phenomenon can generally be ignored, and it is easy to choose initial-value surfaces on which
the incoming fields are zero.” Setting the toothless retardation condition aside, this absorber condition could
be used as part of a statistical explanation of the arrow of radiation (as it would require statistical reasoning
to explain why certain media act as absorbers and not emitters—see Frisch, 2000, sec. 4; Price, 2006, sec. 3).
That being said, we do not think the condition is necessary to explain the asymmetry between converging and
diverging waves. A statistical explanation that assigns probabilities over states of the electromagnetic field in the
early universe will render converging waves automatically improbable (section 3). There is no need to rely on
assumptions about their eventual absorption.
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waves. If imposing the Sommerfeld Radiation Condition were the only way to explain the

asymmetry of electromagnetic radiation, this would be a decisive argument for its inclusion

among the laws of classical electromagnetism. However, the presence of competing proposals

leaves room for debate as to whether the condition should be adopted.

4.2 Evaluation

In favor of the Sommerfeld Radiation Condition, we believe that it is indeed capable of explaining

why electromagnetic waves diverge, at least when combined with plausible statistical assumptions

about the charged matter emitting the waves. If there are no incoming free fields and each bit of

charged matter makes a fully retarded contribution to the electromagnetic field, then it would

require a carefully constructed arrangement of moving charges to form a wave that converges to

a central point or region. Such an arrangement would be exceedingly unlikely to occur in nature.

Although the Sommerfeld Radiation Condition can be used to explain the arrow of radiation,

we do not think that the condition needs to be posited in order to explain the arrow.35 As we

argued in the previous section, the arrow can be explained statistically without imposing such a

condition.

In addition to explaining why electromagnetic waves diverge, the Sommerfeld Radiation

Condition can also be used to explain the asymmetry of radiation reaction. Standard textbook

treatments of radiation reaction for extended charged bodies assume that radiation is fully

retarded.36 However, as was discussed in section 3.3, the radiation reaction force can be

attributed to electromagnetic waves exiting an extended charged body without assuming that

these sourced waves are the only electromagnetic waves present in nature. If we shift our attention

from extended charges to point charges, the Sommerfeld Radiation Condition alone will not be

enough to derive radiation reaction forces (or to ensure conservation of energy and momentum).

That being said, one can combine the Sommerfeld Radiation Condition with some adjustment

to the laws of electromagnetism to explain radiation reaction. For example, one can adopt

35Price (2006, pg. 507) has argued that the Sommerfeld Radiation Condition is neither a necessary nor a
sufficient condition for “the observed asymmetry of radiation.” Here is his argument that the Sommerfeld
Radiation Condition is not sufficient:

“At least for some kinds of wave phenomena, there are possible solutions in which both Fin = 0
and Fout = 0. (Intuitively, imagine that the sources of ripples are surrounded by a good absorber,
so that no waves can escape over the boundary S.) If such cases are possible—and mere possibility
is enough, for the purposes of this point—then the [Sommerfeld Radiation Condition, Fin = 0]
cannot be sufficient for an observable asymmetry, on pain of contradiction. Whatever the observed
asymmetry amounts to, it is certainly an asymmetry, and so could not consistently hold in both
directions at once.” (Price, 2006, pg. 502)

As an electromagnetic illustration of Price’s description, imagine briefly oscillating a charge that emits an
electromagnetic wave which is later absorbed by a spherical shell containing charges that are shaken by the
wave, dissipating the wave’s electromagnetic energy into heat (random motion). In the time-reversed process,
thermal motion of charges in the shell leads them to shake in unison and produce an electromagnetic wave that
converges on the charge at the center. The Sommerfeld Radiation Condition does not forbid this time-reversed
process, but we have good reason to think it improbable. Thus, even though the Sommerfeld Radiation Condition
allows for the possibility of converging electromagnetic waves, it may still be used to explain why we do not observe
them. As Price puts the lesson of the quoted argument above: the Sommerfeld Radiation Condition does not
characterize the observed asymmetry of radiation that we seek to explain, but that leaves open the role that such
a condition might play in explaining the observed asymmetry.

36See Jackson (1999, ch. 16); Griffiths (2013, sec. 11.2.3); Frisch & Pietsch (2016, pg. 18).
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the Lorentz-Dirac force law (14). This law breaks down for certain free incoming fields, but it

yields well-defined forces if there are no incoming fields—as would be ensured by the Sommerfeld

Radiation Condition.

There are a number of criticisms that can be raised against using the Sommerfeld Radiation

Condition to explain the arrow of electromagnetic radiation. First, one might argue that there

is an Occam’s razor cost to adding another law to electromagnetism, complicating Maxwell’s

simple and elegant equations. However, comparisons of simplicity are not so straightforward.

One can write new fundamental laws for electromagnetism giving the electric and magnetic fields

directly in terms of the past behavior of charged matter via Jefimenko’s equations,37

~E(~x, t) =

ˆ
d3~x′

[
ρ(~x′, tr)

|~u|2
û+

ρ̇(~x′, tr)

c|~u|
û−
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ˆ
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[(
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~̇J(~x′, tr)

c|~u|
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× û

]
, (16)

using similar notation as in (9). Jefimenko’s equations ensure that Maxwell’s equations and the

Sommerfeld Radiation Condition are all obeyed. In our assessment, the original formulation of

electromagnetism scores higher on simplicity and elegance as compared to the modified theory

incorporating the Sommerfeld Radiation Condition. But, there is room for disagreement.

Second, the rejection of incoming free fields puts charged matter and electromagnetic field

in very different roles. The field must be created by matter but matter need not be created by

anything else. As was discussed in section 3.3, this clashes with more fundamental physics where

charged matter and electromagnetic field are treated similarly. There is no empirical evidence

against the existence of incoming free fields (see section 3.2), and we think it would be unnatural

to deem them physically impossible.

Third, unlike the statistical approach, this strategy would not give a unified explanation as

to why waves of all kinds diverge. The Sommerfeld Radiation Condition can be used in an

explanation as to why electromagnetic waves diverge, but it will be of little help in explaining

why water or sound waves diverge. One might argue that analogous assumptions about waves

having sources can be used to explain asymmetries in other wave phenomena, but it will not be

the Sommerfeld Radiation Condition itself that explains these asymmetries. For example, the

time-asymmetry of gravitational waves could potentially be explained by positing a radiation

condition for gravity.38

Fourth, unlike the statistical approach, this strategy would not give a unified explanation of

thermodynamic asymmetries and wave asymmetries. The statistical account that we defended

in the previous section gives a unified explanation of both using tools we already have and need

(the Past Hypothesis and the Statistical Postulate).

37See Jackson (1999, sec. 6.5); Jefimenko (2000); Griffiths (2013, sec. 10.2.2).
38One may be inclined to subsume those different radiation conditions into a generalized radiation condition,

which then appears to unify the different wave asymmetries. But this kind of radiation condition would still
impose a different radiation condition for each domain. So this generalized radiation condition would not truly
unify these asymmetries.
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As a fifth and final criticism, one might object that the Sommerfeld Radiation Condition

can only explain the asymmetry between converging and diverging electromagnetic waves if one

combines it with some kind of statistical story. After all, even if the electromagnetic field is

fully retarded, it is possible to have coordinated motions of charged bodies create converging

electromagnetic waves. One can argue that such motions are improbable by appealing to

a probability distribution like the one generated by the Past Hypothesis and the Statistical

Postulate. However, if we take that probability distribution to range over states of both matter

and field, then (as we argued in the previous section) there is no need to impose any additional

conditions. We already have a satisfactory explanation of the arrow of radiation.

5 Strategy 3: Retarded Action-at-a-Distance

With the Sommerfeld Radiation Condition in place, the value of the electromagnetic field at

the present location of a charge can always be traced back to the behavior of charges in the

past. In interactions between past and present charges, one might argue that the field is an

unnecessary intermediary that can and should be eliminated (as Ritz argued in his debate with

Einstein, Ritz & Einstein, 1909; Frisch & Pietsch, 2016, pg. 20). In this way, electromagnetism

can be reformulated as a retarded action-at-a-distance theory where charges interact directly

with one another across gaps in space and time (Mundy, 1989; Jefimenko, 2000; Lange, 2002;

Earman, 2011, sec. 2.5; Griffiths, 2013, pg. 460). For extended charged bodies, this can be

done by calculating the Lorentz force density ~f = ρ ~E + ρ
c~v × ~B using the retarded electric and

magnetic fields that appear in Jefimenko’s equations (16), and then treating the result as a

fundamental equation for electromagnetic force density in terms of the past behavior of charged

matter. For point charges, one can first take the limit as extended charges become point-size to

derive the Liénard-Wiechert potentials from the general expressions for the retarded potentials

in (9). Then, one can use these potentials to generate point charge versions of Jefimenko’s

equations (Feynman et al., 1964, ch. 21; Jefimenko, 2000, sec. 1.4; Griffiths, 2013, sec. 10.3).

From these, one can then use the Lorentz force law, ~F = q ~E+ q
c~v× ~B, to eliminate the fields and

construct a theory with unmediated retarded action-at-distance. Each point charge acts as if it

is responding to the retarded electric and magnetic fields produced by every other point charge,

though these fields are not part of the theory’s fundamental ontology—its base-level account as

to what exists. (These fields can be treated either as useful fictions or as non-fundamental but

still real.) Because charges respond to the (fictional/non-fundamental) fields of other charges

but not to their own fields, we avoid the problem for point charges of ill-defined self-interaction

from section 2.

Because this strategy for explaining the arrow of radiation is so similar to the last, we can

move directly into an assessment of its strengths and weaknesses.
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5.1 Evaluation

On this approach, the electromagnetic field is treated as a non-fundamental entity or as a

calculational tool, not as part of the fundamental ontology of the theory. That being said,

the values that the field takes are exactly the same as in the previous proposal where the

Sommerfeld Radiation Condition is imposed to eliminate any incoming free field. Thus, just

as the Sommerfeld Radiation Condition can explain why converging electromagnetic waves are

rare, so can a retarded action-at-distance formulation of electromagnetism. As before, converging

waves would require precise arrangements of accelerating charges that can reasonably be treated

as improbable.

In comparison to a formulation of electromagnetism that includes the Sommerfeld Radiation

Condition, a retarded action-at-distance formulation has a sparser ontology and, one might argue,

simpler laws. At the bottom level, there are only charged bodies. There is no electromagnetic

field. Maxwell’s equations, the Lorentz force law, and the Sommerfeld Radiation Condition are

not fundamental laws. In their place, we have a single (rather complicated) force law. For point

charges, the force on a point charge qk with velocity ~v is
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∑
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where j is an index on the particles, ~uj = ~x − ~xj(tr,j) is the vector pointing to q now from the

position of the j-th charge at the retarded time tr,j (when the backwards light cone of q intersects

the world line of the j-th charge), and ûj is the unit vector pointing in the same direction.39

As compared to (17), we find Maxwell’s equations and the the Lorentz force law to be a more

attractive set of laws. But, there is a certain appeal to having a single law.

In addition to explaining the arrow of electromagnetic radiation, one can also

attempt to explain radiation reaction within a retarded action-at-a-distance formulation of

electromagnetism. For extended charges, the explanation will be just as in the previous section.

One can derive the radiation reaction forces by considering (retarded) interactions between

different pieces of a charged body. For point charges, the force law given above (17) cleanly

avoids infinite or ill-defined self-interaction but would not yield any radiation reaction force,

because it is derived by only including ordinary Lorentz forces from the retarded fields of other

charges. However, one might attempt to incorporate radiation reaction by, for example, starting

instead from the Lorentz-Dirac force law and then eliminating the electromagnetic fields that

appear in it.

In section 4.2, we criticized the Sommerfeld Radiation Condition for treating charged

matter and the electromagnetic field as fundamentally different sorts of things (whereas,

in our opinion, quantum field theory points to them being the same sort of thing). A

39To arrive at (17), one can plug the electric and magnetic fields for a point charge from Feynman et al. (1964,
sec. 21-1) (rewritten in cgs units) into the Lorentz force law.
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retarded action-at-a-distance version of electromagnetism goes even further, not just viewing

the electromagnetic field as a mere emanation from charged matter but eliminating it entirely.

As with the Sommerfeld Radiation Condition, the explanation as to why electromagnetic

waves diverge given by a retarded action-at-a-distance version of electromagnetism would be

very different from the explanations as to why non-electromagnetic waves (like sound waves and

water waves) diverge. Also, the explanation for electromagnetic wave asymmetries would be

distinct from explanations of thermodynamic asymmetries.

Again repeating a criticism of the Sommerfeld Radiation Condition, one would need to appeal

to statistical assumptions regarding the motions of charges within a retarded action-at-a-distance

formulation of electromagnetism to explain the arrow of electromagnetic radiation. Once

statistical reasoning is brought in, why not give a fully statistical explanation of the arrow

(as in section 3)?

Beyond these disadvantages inherited from the Sommerfeld Radiation Condition approach,

the retarded action-at-a-distance strategy comes with a couple problems of its own. First, energy

and momentum will not be conserved (Mundy, 1989; Lange, 2002, ch. 5; Earman, 2011, pg. 496;

Sebens, 2022a). The ordinary derivations of energy and momentum conservation in classical

electromagnetism assume that the electromagnetic field carries both energy and momentum

(Griffiths, 2013, ch. 8).40 If the electromagnetic field is eliminated, then the field’s energy and

momentum are absent and the conservation laws no longer hold. For example, if two positively

charged bodies are shot straight at each other, they will repel one another, initially slowing down

and losing kinetic energy. Normally, we would say that during this process energy is transferred

from the bodies to the electromagnetic field. But, if the field does not exist then the energy is

simply lost. One might try to recover conservation of energy by relocating the energy of the field

in the charged bodies and viewing it as potential energy determined by the current arrangement

of charged bodies. But, this will not always be possible because the energy in the field depends

on the past motions of charged matter.

The second problem that is unique to the retarded action-at-a-distance strategy is

non-locality: because the electromagnetic field does not exist, interactions between charged

bodies are spatially and temporally non-local. This is a feature that the approach wears on its

sleeve in the name “action-at-a-distance.” It is not obvious why or whether we should desire

spatially and temporally local theories (Lazarovici, 2018, sec. 4.3). Lange (2002) presents an

in-depth analysis of locality in classical electromagnetism, arguing that the best version of the

theory includes fields and is both spatially and temporally local. But, he does not argue that

this version is best because it is local. Instead, he argues for it by other means (building on

the problems with energy and momentum conservation). We agree that non-locality is not the

main problem for retarded action-at-a-distance. There are plenty of other reasons to dislike the

approach.

40For extended distributions of charge, conservation of energy and momentum is straightforward. For point
charges, things are not so straightforward because radiation reaction complicates derivations of energy and
momentum conservation (Lazarovici, 2018, sec. 4.2).
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6 Strategy 4: The Wheeler-Feynman Theory

Before we get to the Wheeler-Feynman half-retarded half-advanced action-at-a-distance theory,41

let us first consider a variant that includes the electromagnetic field. In section 4, we

considered supplementing classical electromagnetism with the Sommerfeld Radiation Condition,

requiring that in the retarded representation (11) there is no (incoming) free field and thus

that the total electromagnetic field is fully retarded. Adopting the half-retarded half-advanced

representation—(13) with α = 1/2—we can impose a similar condition to rule out any

(half-incoming half-outgoing) free field and ensure that the electromagnetic field is half-retarded

half-advanced:

The Wheeler-Feynman Radiation Condition: The total electromagnetic field

is half-retarded half-advanced. At every point in spacetime, 1
2Fin + 1

2Fout = 0 and

F = 1
2Fret + 1

2Fadv.

Now, we can remove the electromagnetic field to get an action-at-a-distance theory—as in the

transition from a field theory in section 4 to a retarded action-at-a-distance theory in section 5.

The primary attraction of the Wheeler-Feynman action-at-a-distance theory is that it enables

a derivation of the Lorentz-Dirac equation of motion for point particles (14), which includes

radiation reaction and excludes any infinite or ill-defined self-interaction. Thus, we will assume

in this section that we are dealing with point charges and not charge distributions.42

In the Wheeler-Feynman action-at-a-distance theory, the force on point charge k at (~xk, t)

from every other charge j is43

~Fk(~xk, t) = qk
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where we have simplified the mathematics by helping ourselves to the retarded and advanced

electric and magnetic fields of each charge, even though these fields are not part of the theory’s

fundamental ontology (the fields are either useful fictions or non-fundamental entities).44 In

reality, the force from particle j on particle k is the combination of a direct interaction with

particle j in the past—at the point in spacetime where its trajectory intersects the past light-cone

of (~xk, t)—and a direct interaction with particle j in the future—at the point in spacetime where

its trajectory intersects the future light-cone of (~xk, t) (see figure 4). The first interaction is

41The Wheeler-Feynman theory and its explanation of the arrow of radiation are discussed in Davies (1977,
sec. 5.7 and 5.8); Arntzenius (1993, sec. 5), Frisch (2005, ch. 6); Price (1996, 2006); Lazarovici (2018).

42Bauer et al. (2013) discuss the Wheeler-Feynman theory for charge distributions.
43This force law has been called the Fokker-Tetrode-Schwarzschild equation (Bauer et al., 2013) and can be

written concisely in relativistic notation as

mk z̈
µ
k (τ) =

qk

c

N∑
j 6=k

1

2

(
Fµν
(j)ret

(zk(τ)) + Fµν
(j)adv

(zk(τ))
)
żkν(τ), (18)

where zk(τ) is the trajectory of the kth charge in Minkowski space-time, τ the corresponding proper time, and a
dot indicates derivation with respect to proper time.

44The retarded and advanced electric and magnetic fields in (19) are calculated from the retarded and advanced
Liénard–Wiechert potentials of each particle via equation (5).
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naturally interpreted as forwards causation and the second as backwards causation. In (19),

self-interactions are excluded from the outset. The force on charge k comes solely from the other

charges, j 6= k. Wheeler and Feynman sought to derive the correct force of radiation reaction

by viewing it as the result interaction with other charges, not self-interaction. Let us now turn

to their derivation.

A B

t

x

Figure 4: The Wheeler-Feynman theory is an action-at-a-distance theory where interactions are
half-retarded and half-advanced. The force that charge B exerts on charge A at the present
moment is the sum of a retarded force from B’s earlier state (when B crosses the past light-cone
of A) and an advanced force from B’s later state (when B crosses the future light-cone of A).

6.1 Time-Asymmetry

Thus far, no time-asymmetry has been introduced. The Wheeler-Feynman theory is

time-symmetric. Somehow, we need to find explanations for both the asymmetry of

electromagnetic radiation (why waves diverge) and the asymmetry of radiation reaction. Let

us first see how Wheeler and Feynman sought to explain radiation reaction as the result

of half-retarded half-advanced action-at-a-distance between the accelerating charge and the

charges that surround it.45 We will review the most general derivation given by Wheeler &

Feynman (1945, pg. 169–171), where they postulate a condition on the absorbing behavior of

the surrounding particles to derive the Lorentz-Dirac equation (see also Frisch, 2005, Ch. 6;

Forgione, 2020). In the end, we will see that Wheeler and Feynman’s strategy for explaining

45Without imposing assumptions on the arrangement of charges surrounding the accelerating charge, you cannot
derive the correct radiation reaction force. For example, if the universe contains only a single charged particle
then the Wheeler-Feynman theory predicts that there will be no radiation reaction force.
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radiation reaction also yields an explanation as to why electromagnetic waves diverge.

Figure 5: Wheeler and Feynman’s Absorber Condition posits the existence of an absorber
surrounding the charges under consideration, stopping any electromagnetic waves from escaping
the region. The absorber is shown here as nearby, but in reality it could be very far away.

Wheeler and Feynman’s absorber condition (figure 5) requires that the charges whose motion

we are studying be surrounded by an absorber that completely absorbs any radiation they emit,

where “complete absorption means that a test charge placed anywhere outside the absorbing

medium will experience no disturbance” (Wheeler & Feynman, 1945, pg. 169). It is hard to see

how such perfect absorption could occur or why we should assume that it does, but let us press

on to see what can be achieved by adopting this idealization. In precise terms, Wheeler and

Feynman’s assumption is the following:

The Absorber Condition: All of the charges under consideration are surrounded

by an absorber such that anywhere outside the absorber the total field (which is the

sum of the half-retarded half-advanced fields of the charge under consideration and

all of the other charges, including those in the absorber) is zero,

∑
j

(
1

2
F

(j)
ret +

1

2
F

(j)
adv

)
= 0 (outside the absorber) . (20)

From the absorber condition, it follows that the individual sums in (20) are zero outside the

absorber:
∑
j

1
2F

(j)
ret = 0 and

∑
j

1
2F

(j)
adv = 0. That is because, outside the absorber, the first sum

represents diverging waves and the second sum represents converging waves. It is impossible for

these waves to fully destructively interfere if the sums are not individually zero. Because the

sums are individually zero, their difference is zero:

∑
j

(
1

2
F

(j)
ret −

1

2
F

(j)
adv

)
= 0 (outside the absorber) . (21)
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This difference is a solution to the free Maxwell equations (because of the minus-sign). If it is

always zero outside the absorber, it must be zero inside as well,

∑
j

(
1

2
F

(j)
ret −

1

2
F

(j)
adv

)
= 0 (everywhere). (22)

To calculate the force on a given particle k, we need to analyze the sum of the half-retarded

half-advanced fields of all other particles at the location of k,

∑
j 6=k

(
1

2
F

(j)
ret +

1

2
F

(j)
adv

)
. (23)

This can be rewritten as

∑
j 6=k

F
(j)
ret +

(
1

2
F

(k)
ret −

1

2
F

(k)
adv

)
−
∑
all j

(
1

2
F

(j)
ret −

1

2
F

(j)
adv

)
︸ ︷︷ ︸

= 0

, (24)

where (22) has been used to eliminate the final term. The first term is the sum of the

fully retarded fields associated with every other particle, which would give us a retarded

action-at-a-distance theory (as in section 5) if it were the only term. This is the first term

in the Lorentz-Dirac equation. Although it is not immediately apparent, the second term in

(24) captures radiation reaction. It can be replaced by a formula due to Dirac, yielding the

second term in the Lorentz-Dirac equation (14). Thus, we have arrived at the Lorentz-Dirac

equation (without any free incoming field) and a potential explanation as to the time-directed

nature of radiation reaction. Also, because the non-radiation-reaction force on a charge can

be attributed to the retarded fields of other charges, we appear poised to give an explanation

as to why electromagnetic waves diverge analogous to the one in section 5 based on retarded

action-at-a-distance.

Pausing here, it may look like we have derived time-asymmetric consequences from

time-symmetric assumptions. In fact, (24) is not alone sufficient to explain either the arrow of

radiation reaction or the arrow of radiation. To see the problem, note—as Wheeler & Feynman

(1945, pg. 170) do—that we can also derive the following equation for the field acting on charge

k (23), ∑
j 6=k

F
(j)
adv −

(
1

2
F

(k)
ret −

1

2
F

(k)
adv

)
+
∑
all j

(
1

2
F

(j)
ret −

1

2
F

(j)
adv

)
︸ ︷︷ ︸

= 0

, (25)

in the same way that (24) was derived. Using (25) to derive the force on k, the first term yields

a non-radiation-reaction force that can be attributed to the fully advanced fields of the other

particles and the second term yields a radiation reaction force that is opposite in sign to the

force derived from the second term of (24). The Absorber Condition ensures that the force on

k can be calculated equivalently from either (24) or (25). The Absorber Condition allows for

both converging and diverging electromagnetic waves in the total half-retarded half-advanced
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electromagnetic field.

To get time asymmetry, Wheeler & Feynman (1945, pg. 170) assume that “In our example [of

an accelerated charge surrounded by an absorber] the particles of the absorber were either at rest

or in random motion before the time at which the impulse was given to the source. . . . the sum

. . . of the retarded fields of the adsorber [sic] particles had no particular effect on the acceleration

of the source.” If we number the particles surrounded by the absorber 1 through N and the

particles of the absorber N + 1 through M , (24) can be rewritten as

N∑
j 6=k

F
(j)
ret +

M∑
j=N+1

F
(j)
ret +

(
1

2
F

(k)
ret −

1

2
F

(k)
adv

)
. (26)

Wheeler and Feynman are claiming that the second sum is (at least approximately) zero. Let

us label this as another condition:

The Second Absorber Condition: The sum total of the retarded fields of the

particles in the absorber (N + 1 through M) at the location of any particle under

consideration is negligible:
M∑

j=N+1

F
(j)
ret ≈ 0 . (27)

One can ask why we should assume that the Second Absorber Condition holds. Wheeler &

Feynman (1945, pg. 170) appeal to statistical considerations: “We have to conclude with Einstein

that the irreversibility of the emission process is a phenomenon of statistical mechanics connected

with the asymmetry of the initial conditions with respect to time.” To explain their dismissal

of a converging wave solution, Wheeler & Feynman (1945, pg. 170) write “No electrodynamic

objection can be raised against this solution of the equations of motion. Small a priori probability

of the given initial conditions provides the only basis on which to exclude such phenomena.”

The Second Absorber Condition requires that the past behavior of the absorber particles

is sufficiently disordered that the retarded fields do not combine to form converging waves. By

contrast, the future behavior of absorber particles is sufficiently ordered that the advanced waves

do combine to form diverging waves. With the two absorber conditions in place, if you briefly

shake a single charge (as in figure 2.a) the total half-retarded half-advanced field after shaking

will be the sum of a diverging retarded wave from the charge, of half the usual strength, and

an equally strong diverging advanced wave from the other charges (figure 6). Although the

total field is not part of the theory’s fundamental ontology, we can recognize that other particles

within the absorber will react as if they are experiencing a force from this diverging wave.

6.2 Evaluation

In evaluating the Wheeler-Feynman half-retarded half-advanced action-at-a-distance theory,

the pros and cons closely resemble those for a retarded action-at-a-distance version of

electromagnetism (section 5). For point charges, either kind of action-at-a-distance theory will

easily avoid infinite or ill-defined self-interaction. The main difference is the handling of radiation
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k

CONSTRUCTIVE  
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t

x

PAST ABSORBER

FUTURE ABSORBER

Figure 6: In the Wheeler-Feynman theory with the two absorber conditions, if a charge is briefly
shaken then after the shaking there will be constructive interference between the half-retarded
field of the charge and the half-advanced fields of the other charges. This yields the usual
diverging wave (figure 2.a). Before the shaking, there will be destructive interference between
the half-advanced field of the charge and the half-advanced fields of the other charges. Thus,
the shaking will not generate a contribution to the total field in the past.

reaction. To the extent that the two absorber conditions are plausible, the Wheeler-Feynman

theory has a way of deriving radiation reaction from interaction with other charges. By contrast,

a simple retarded action-at-a-distance version of electromagnetism beginning with the Lorentz

force law will fail to incorporate radiation reaction. Still, a more complicated version that begins

with the Lorentz-Dirac force law could include radiation reaction (see section 5.1).

As was the case for retarded action-at-a-distance, it will be possible to explain the arrow of

electromagnetic radiation in Wheeler-Feynman electrodynamics by assigning low probabilities

to histories where particles generate converging waves. The exact details as to how one assigns

probabilities will be complicated because one cannot simply assign probabilities to states at a

time and ask how those states evolve (as was discussed in section 3.1). In the Wheeler-Feynman

theory, the time evolution depends on both the past and the future. Although a statistical

explanation of the arrow of radiation should be possible, its complexity may make it unattractive.

The Second Absorber Condition can potentially be given a statistical explanation once the

first is in place, but why should we assume that charged matter around us is always surrounded

by a perfect absorber? In other words, why should we accept the original Absorber Condition?

The condition is not merely a constraint on the state of the universe at a time, but rather a

global constraint requiring distant charges to behave in a very specific manner. Supporters of the

Wheeler-Feynman theory have proposed relaxing or removing the original Absorber Condition

(Hogarth, 1962; Hoyle & Narlikar, 1995; Bauer et al., 2014; Lazarovici, 2018), arguing that
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there are other ways to explain the arrows of radiation and/or radiation reaction within the

Wheeler-Feynman theory. We will not explore such proposals here.

We have repeatedly objected to approaches that treat the electromagnetic field and charged

matter as very different kinds of things (sections 3.3, 4.2, and 5.1). Wheeler-Feynman

electrodynamics eliminates the electromagnetic field from the fundamental ontology and thus

does not treat it in a similar manner to charged matter. As Wheeler & Feynman (1949, pg. 426)

put it, “There is no such concept as ‘the’ field, an independent entity with degrees of freedom

of its own.” Our objection to such differing treatment of matter and field was that it does not

fit well with quantum field theory, where the electromagnetic field looks very similar to charged

matter. Feynman had hoped that the Wheeler-Feynman approach would lead to a better version

of quantum field theory (Feynman, 1965), but that dream has not yet been realized.

In the Wheeler-Feynman theory, the explanation as to why electromagnetic waves diverge

is distinct from the explanations as to why other waves diverge. The half-retarded

half-advanced nature of electromagnetic waves is not a general feature of wave phenomena.

The Wheeler-Feynman explanation as to why electromagnetic waves diverge is somewhat akin

to the explanations of thermodynamic asymmetries (in that the explanations are all statistical),

but it is not clear how these explanations are going to be bundled together because one cannot

simply assign a probability distribution over initial conditions. The combined account will not

be based on a past hypothesis and statistical postulate of the type discussed in section 3.

The Wheeler-Feynman theory involves interactions that occur across spatiotemporal gaps

both forward and backward in time. It is thus a non-local theory with backwards causation.

These are oddities that can be stomached, but it is important to recognize that there are other

versions of electromagnetism that avoid them.

The elimination of the electromagnetic field in Wheeler-Feynman electrodynamics means

that the theory violates conservation of energy and momentum, at least if we assume that those

quantities are features of the state of the universe at a time. There have been attempts to recover

a kind of conservation by allowing these quantities to be determined by the past and the future

as well as the present (Wheeler & Feynman, 1949; Lazarovici, 2018, pg. 155). Although this

kind of move may be acceptable for justifying the use of energy and momentum conservation in

calculations, we do not find it appealing as a description of energy and momentum in nature.

Lastly, we want to point out the main mathematical difficulty in the Wheeler-Feynman

theory. Because the electromagnetic field is removed and interactions are half-retarded

and half-advanced, the dynamical equations are not standard differential equations but

delay-differential equations. They relate the force on a charge at one time to the states of other

particles at different times. These laws do not (in general) allow one to formulate and solve

initial value problems, as in other physical theories, by specifying the complete physical state

at a time and evolving the state forwards. Therefore, solving the Wheeler-Feynman equations

is cumbersome (even for simple systems) and very few precise results have been calculated (see

Hartenstein & Hubert, 2021, for an overview on how to tackle delay-differential equations).
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7 Conclusion

The arrow of radiation is one of many arrows of time that appear in physics. We have defended

the view that the arrow of radiation can be absorbed into a larger statistical framework that also

explains the other arrows. We regard this unification as one of the most compelling advantages

of the account. The time-asymmetric behavior of electromagnetic waves is explained in the same

way as the time-asymmetric behavior of water waves, sound waves, melting ice cubes, deflating

tires, and so much more. Another compelling advantage of this strategy for explaining the arrow

of electromagnetic radiation is that we do not need to change the laws of electromagnetism, as

is done in each of the competing strategies. Also, matter and field are treated as similar kinds

of things, each possessing independent degrees of freedom.

The point of disagreement between our preferred strategy and the others is not whether

the explanation of the arrow of radiation should be statistical or not, but whether it should

be purely statistical or only partially statistical. As we have seen, strategies 2 through 4

(that is, the Sommerfeld Radiation Condition, the retarded action-at-a-distance theory, and the

Wheeler–Feynman theory) will ultimately need to invoke some statistical reasoning to exclude

converging waves. If statistical assumptions are needed on any account, why not embrace a fully

statistical account of the arrow of radiation?
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