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1 Introduction
Degrees of belief are familiar to all of us. Our confidence in the truth of some
propositions is higher than our confidence in the truth of other propositions. We
are pretty confident that our computers will boot when we push their power but-
ton, but we are much more confident that the sun will rise tomorrow. Degrees of
belief formally represent the strength with which we believe the truth of various
propositions. The higher an agent’s degree of belief for a particular proposition,
the higher her confidence in the truth of that proposition. For instance, Sophia’s
degree of belief that it will be sunny in Vienna tomorrow might be .52, whereas
her degree of belief that the train will leave on time might be .23. The precise
meaning of these statements depends, of course, on the underlying theory of de-
grees of belief. These theories offer a formal tool to measure degrees of belief,
to investigate the relations between various degrees of belief in different proposi-
tions, and to normatively evaluate degrees of belief.

The purpose of this book is to provide a comprehensive overview and assess-
ment of the currently prevailing theories of degrees of belief. Degrees of belief
are primarily studied in formal epistemology, but also in computer science and
artificial intelligence, where they find applications in so-called expert systems
and elsewhere. In the former case the aim is to adequately describe and, much
more importantly, to normatively evaluate the epistemic state of an ideally ratio-
nal agent. By employing the formal tools of logic and mathematics theories of
degrees of belief allow a precise analysis that is hard to come by with traditional
philosophical methods.

Different theories of degrees of belief postulate different ways in which de-
grees of beliefs are related to each other and, more generally, how epistemic states
should be modeled. After getting a handle on the objects of belief in section 2, we
briefly survey the most important accounts in section 3. Section 4 continues this
survey by focusing on the relation between belief and degrees of belief. Section
5 concludes this introduction by pointing at some relations to belief revision and
nonmonotonic reasoning.

2



2 The Objects of Belief
Before we can investigate the relations between various degrees of belief, we have
to get clear about the relata of the (degree of) belief relation. It is common to as-
sume that belief is a relation between an epistemic agent at a particular time to an
object of belief. Degree of belief is then a relation between a number, an epistemic
agent at a particular time, and an object of belief. It is more difficult to state what
the objects of belief are. Are they sentences or propositions expressed by sen-
tences or possible worlds (whatever these are – see Stalnaker 2003) or something
altogether different?

The received view is that the objects of belief are propositions, i.e. sets of
possible worlds or truth conditions. A more refined view is that the possible
worlds comprised by those propositions are centered at an individual at a given
time (Lewis 1979). In that case the propositions are often called properties. Most
epistemologists stay very general and assume only that there is a non-empty set
of possibilities, W , such that exactly one element of W corresponds to the actual
world. If the possibilities inW are centered, the assumption is that there is exactly
one element of W that corresponds to your current time slice in the actual world
(Lewis 1986 holds that this element not merely corresponds to, but is the actual
world respectively your current time slice therein).

Centered propositions are needed to adequately represent self-locating beliefs
such as Sophia’s belief that she lives in Vienna, which may well be different from
her belief that Sophia lives in Vienna (this is the case if Sophia does not believe
that she is Sophia). Self-locating beliefs have important epistemological conse-
quences (Elga 2000, Lewis 2001), and centered propositions are ably argued by
Egan (2006) to correspond to what philosophers have traditionally called sec-
ondary qualities (Locke 1690/1975). However, as noted by Lewis (1979: 533ff),
the difference between centered and uncentered propositions plays little role for
how belief and other attitudes are formally represented and supposed to behave
in a rational way. The reason is that they share the same set-theoretic structure,
and the latter is all that these formal representations and rationality postulates rely
on. I will therefore stick to the more familiar terminology of possibilities and
propositions, and leave it open whether these are centered or not.

Here is the aforementioned set-theoretic structure. The set of all possibibili-
ties, W , is a proposition. Furthermore, if A and B are propositions, then so are
the complement of A with respect to W , W \ A = A, as well as the intersection
of A and B, A ∩ B. In other words, the set of propositions is a (finitary) field
or algebra A over a non-empty set of possibilities W : a set that contains W and
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is closed under complementations and finite intersections. Sometimes the field of
propositions,A, is not only assumed to be closed under finite, but under countable
intersections. This means that A1 ∩ . . . ∩ An . . . is a proposition (an element of
A), if A1, . . . , An . . . are. Such a field A is called a σ-field. Finally, a field A is
complete just in case the intersection

⋂
B of all sets in B is an element of A, for

each subset B of A.
If Sophia believes (to some degree) that it will be sunny in Vienna tomorrow,

but she does not believe (to the same degree) that it will not be not sunny in Vienna
tomorrow, propositions cannot be the objects of Sophia’s (degrees of) belief(s).
After all, that it will be sunny in Vienna tomorrow and that it will not be not sunny
in Vienna tomorrow is one and the same proposition. It is only expressed by
two different, though logically equivalent sentences. For reasons like this some
accounts take sentences of a formal language L to be the objects of belief. In
that case the above mentioned set-theoretic structure translates into the following
requirements: the tautological sentence τ is assumed to be in the language L;
and whenever α and β are in L, then so is the negation of α, ¬α, as well as the
conjunction of α and β, α ∧ β.

However, as long as logically equivalent sentences are required to be assigned
the same degree of belief – and all accounts considered in this volume require this,
because they are normative accounts – the difference between taking the objects
of beliefs to be sentences of a formal language L or taking them to be proposi-
tions in a finitary field A is mainly cosmetic. Each formal language L induces a
finitary field A over the set of all models or classical truth value assignments for
L, ModL. It is simply the set of all propositions over ModL that are expressed
by the sentences in L. This set in turn induces a unique σ-field, viz. the smallest
σ-field σ (A) that contains A as a subset. It also induces a unique complete field,
viz. the smallest complete field that contains A as a subset. In the present case
where A is generated by ModL, this complete field is the powerset, i.e. the set of
all subsets, of ModL, ℘ (ModL). Hence, if we start with a degree of belief func-
tion on a formal language L, we automatically get a degree of belief function on
the field A induced by L. As we do not always get a language L from a field A,
the semantic framework of propositions is simply more general than the syntactic
framework of sentences.
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3 Theories of Degrees of Belief
We have started with the example of Sophia, whose degree of belief that it will
be sunny in Vienna tomorrow equals .52. Usually degrees of belief are taken to
be real numbers from the interval [0, 1], but we will come across an alternative in
section 4. If and only if the epistemic agent is certain that a proposition is true,
her degree of belief for this proposition is 1. If the epistemic agent is certain that
a proposition is false, her degree of belief for the proposition is 0. The converse is
true for subjective probabilities, but not in general. For instance, Dempster-Shafer
belief functions behave differently, because there one distinguishes between a be-
lief function and a plausibility function (for more see section 3.2). However, these
are extreme cases. Usually we are neither certain that a proposition is true nor that
it is false. That does not mean, though, that we are agnostic with respect to the
question whether the proposition in question is true. Our belief that it is true may
well be much stronger than that it is false. Degrees of belief quantify this strength
of belief.

3.1 Subjective Probabilities
The best developed account of degrees of belief is the theory of subjective proba-
bilities. On this view degrees of belief simply follow the laws of probability. Here
is the standard definition due to Kolmogorov (1956). Let A be a field of proposi-
tions over the set of possibilities W . A function Pr : A → < from A into the set
of real numbers, <, is a (finitely additive and unconditional) probability on A if
and only if for all A and B in A:

1. Pr (A) ≥ 0

2. Pr (W ) = 1

3. Pr (A ∪B) = Pr (A) + Pr (B) if A ∩B = ∅

The triple 〈W,A,Pr〉 is called a (finitely additive) probability space. IfA is closed
under countable intersections and thus a σ-field, and if Pr additionally satisfies

4. Pr (A1 ∪ . . . ∪ An ∪ . . .) = Pr (A1) + . . .+ Pr (An) + . . .

Pr is a σ- or countably additive probability on A (Kolmogorov 1956: ch. 2 actu-
ally gives a different but equivalent definition – see e.g. Huber 2007a: sct. 4.1).
In this case 〈W,A,Pr〉 is called a σ- or countably additive probability space.
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A probability Pr : A → < on A is called regular just in case Pr (A) > 0
for every non-empty A in A. Let APr be the set of all propositions A in A with
Pr (A) > 0. The conditional probability Pr (· | ◦) : A × APr → < on A (based
on the unconditional probability Pr : A → < on A) is defined for all A in A and
all B in APr by the ratio

5. Pr (A | B) = Pr (A ∩B) /Pr (B)

(Kolmogorov 1956, ch. 1, §4). The domain of the second argument place of
Pr (· | ◦) has to be restricted to APr, since the fraction Pr (A ∩B) /Pr (B) is not
defined for Pr (B) = 0. Note that Pr (· | B) : A → < is a probability on A, for
every B inAPr. Other authors take conditional probability as primitive and define
unconditional probability in terms of it (Hájek 2003).

What does it mean to say that Sophia’s subjective probability for the propo-
sition that tomorrow it will be sunny in Vienna equals .52? This is a difficult
question. Let us first answer a different one. How do we measure Sophia’s sub-
jective probability for such a proposition? On one account Sophia’s subjective
probability for A is measured by her betting ratio for A, i.e. the highest price she
is willing to pay for a bet that returns 1 Euro if A, and 0 otherwise. On a slightly
different account Sophia’s subjective probability for A is measured by her fair
betting ratio for A, i.e. that number r = b/ (a+ b) such that she considers the
following bet to be fair: a Euros if A, and b Euros otherwise. As we may say it:
Sophia considers it to be fair to bet you b to a Euros that A.

It is not irrational for Sophia to be willing to bet you 5.2 to 4.8 Euros that
tomorrow it will be sunny in Vienna, but not be willing to bet you 520, 000 to
480, 000 Euros that this proposition is true. This uncovers one assumption of
the measurement in terms of (fair) betting ratios: the epistemic agent is assumed
to be neither risk averse nor risk prone. Gamblers in the casino are risk prone:
they pay more for playing roulette than the fair monetary value according to their
subjective probabilities (this may be perfectly reasonable if the additional cost is
what the gambler is willing to spend on the thrill she gets out of playing roulette).
Sophia, on the other hand, is risk averse – and reasonably so! – when she refuses
to bet you 100, 000 to 900, 000 Euros that it will be sunny in Vienna tomorrow,
while she is happy to bet you 5 to 5 Euros that this proposition is true. After all,
she might lose her standard of living along with this bet. Note that it does not help
to say that Sophia’s fair betting ratio for A is that number r = b/ (a+ b) such
that she considers the following bet to be fair: 1− r = a/ (a+ b) Euros if A, and
r = b/ (a+ b) otherwise. Just as stakes of 1, 000, 000 Euros may be too high for
the measurement to work, stakes of 1 Euro may be too low.
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Another assumption is that the agent’s (fair) betting ratio for a proposition is
independent of the truth values of the proposition. Obviously we cannot measure
Sophia’s subjective probability for the proposition that she will be happily married
by the end of the week by offering her a bet that returns 1 Euro if she will, and 0
otherwise. Sophia’s subjective probability for happily getting married by the end
of the week will be fairly low (as a hardworking philosopher she does not have
much time to date). However, assuming that happily getting married is something
she highly desires, her betting ratio for this proposition will be fairly high.

Ramsey (1926) avoids the first assumption by using utilities instead of money.
He avoids the second assumption by presupposing the existence of an “ethically
neutral” proposition (a proposition whose truth or falsity does not affect the agent’s
utilities) which the agent takes to be just as likely to be true as she takes it to be
false. For more see Hájek (2007).

Let us return to our question of what it means for Sophia to assign a certain
subjective probability to a given proposition. It is one thing for Sophia to be will-
ing to bet at particular odds or to consider particular odds as fair. It is another
thing for Sophia to have a subjective probability of .52 that tomorrow it will be
sunny in Vienna. Sophia’s subjective probabilities are measured by, but not identi-
cal to her (fair) betting ratios. The latter are operationally defined and observable.
The former are unobservable, theoretical entities that, following Eriksson & Hájek
(2007), we should take as primitive.

The theory of subjective probabilities is not an adequate description of peo-
ple’s epistemic states (Kahneman & Slovic & Tversky 1982). It is a normative
theory that tells us how an ideally rational epistemic agent’s degrees of belief
should behave. So, why should such an agent’s degrees of belief obey the proba-
bility calculus?

The Dutch Book Argument provides an answer to this question. (Cox’s theo-
rem, Cox 1946, and the representation theorem of measure theory, Krantz & Luce
& Suppes & Tversky 1971, provide two further answers.) On its standard, prag-
matic reading, the Dutch Book Argument starts with a link between degrees of
belief and betting ratios as first premise. The second premise says that it is (prag-
matically) defective to accept a series of bets which guarantees a sure loss. Such a
series of bets is called a Dutch Book (hence the name “Dutch Book Argument”).
The third premise is the Dutch Book Theorem. Its standard, pragmatic version
says that an agent’s betting ratios obey the probability calculus if and only if an
agent who has those betting ratios cannot be Dutch Booked (i.e. presented a series
of bets each of which is acceptable according to those betting ratios, but whose
combination guarantees a loss). From this it is inferred that it is (epistemically)
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defective to have degrees of belief that do not obey the probability calculus. Ob-
viously this argument would be valid only if the link between degrees of belief
and betting ratios were identity (in which case there were no difference between
pragmatic and epistemic defectiveness) – and we have already seen that it is not.

Joyce (1998) attempts to vindicate probabilism by considering the accuracy
of degrees of belief. The basic idea here is that a degree of belief function is
(epistemically) defective if there exists an alternative degree of belief function that
is more accurate in each possible world. The accuracy of a degree of belief b (A) in
a proposition A in a world w is identified with the distance between b (A) and the
truth value of A in w, where 1 represents true and 0 represents false. For instance,
a degree of belief in a true proposition is more accurate, the higher it is – and
perfectly accurate if it equals 1. The overall accuracy of a degree of belief function
b in a world w is then determined by the accuracy of the individual degrees of
belief b (A). Given some conditions on how to measure distance, Joyce is able to
prove that a degree of belief function obeys the probability calculus if and only
if there exists no alternative degree of belief function that is more accurate in
each possible world (the only-if part is not explicitly mentioned in Joyce 1998,
but needed for the argument to work and presented in Joyce’s contribution to this
volume). Therefore, degrees of belief should obey the probability calculus.

The objection to this attempt – due to Bronfman (manuscript) – that has at-
tracted most attention starts by noting that Joyce’s conditions on measures of in-
accuracy do not determine a single measure, but a whole set of such measures.
This would strengthen rather than weaken Joyce’s argument, were it not for the
fact that these measures differ in their recommendations as to which alternative
degree of belief function a non-probabilistic degree of belief function should be
replaced by. All of Joyce’s measures of inaccuracy agree that an agent whose de-
gree of belief function violates the probability axioms should adopt a probabilistic
degree of belief function which is more accurate in each possible world. However,
these measures may differ in their recommendation as to which particular proba-
bilistic degree of belief function the agent should adopt. In fact, for each possible
world, following the recommendation of one measure will leave the agent off less
accurate according to some other measure. Why, then, should the epistemic agent
move from her non-probabilistic degree of belief function to a probabilistic one in
the first place?

In his contribution to this volume Joyce responds to this question and other
objections. For more on Dutch Book Arguments, Joyce’s non-pragmatic vindica-
tion of probabilism, and arguments for (non-) probabilism in general see Hájek’s
contribution to this volume.
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We have discussed how to measure subjective probabilities, and why degrees
of belief should obey the probability calculus. It is of particular epistemologi-
cal interest how to update subjective probabilities when new information is re-
ceived. Whereas axioms 1-5 of the probability calculus are synchronic conditions
on an ideally rational agent’s degree of belief function, update rules are diachronic
conditions that tell us how the ideally rational agent should revise her subjective
probabilities when she receives new information of a certain format. If the new
information comes in form of a certainty, probabilism is extended by

Update Rule 1 (Strict Conditionalization) If Pr : A → < is your subjective
probability at time t, and between t and t′ you learn E ∈ A and no logically
stronger proposition, then your subjective probability at time t′ should be Pr (· | E) :
A → <.

Strict conditionalization thus says that the ideally rational agent’s new subjective
probability for a proposition A after becoming certain of E should equal her old
subjective probability for A conditional on E.

Two questions arise. First, why should we update our subjective probabilities
according to strict conditionalization? Second, how should we update our subjec-
tive probabilities when the new information is of a different format and we do not
become certain of a proposition, but merely change our subjective probabilities
for various propositions? Jeffrey (1983) answers the second question by what is
now known as

Update Rule 2 (Jeffrey Conditionalization) If Pr : A → < is your subjective
probability at time t, and between t and t′ your subjective probabilities in the
mutually exclusive and jointly exhaustive propositions E1, . . . , En, . . . (Ei ∈ A)
change to p1, . . . , pn, . . . (pi ∈ [0, 1]) with

∑
i pi = 1, and the positive part of

your subjective probability does not change on any superset thereof, then your
subjective probability at time t′ should be Pr ′ (·) : A → <, where

Pr ′ (·) =
∑

i Pr (· | Ei) pi.

Jeffrey conditionalization thus says that the ideally rational agent’s new subjective
probability forA after changing her subjective probabilities for the elements Ei of
a partition to pi should equal the weighted sum of her old subjective probabilities
forA conditional on theEi, where the weights are the new subjective probabilities
pi for the elements of the partition.
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One answer to the first question is the Lewis-Teller Dutch Book Argument
for strict conditionalization that is analogous to the synchronic one discussed pre-
viously (Lewis 1999, Teller 1973). Its extension to Jeffrey conditionalization is
presented in Armendt (1980) and discussed in Skyrms (1987). For more on the
issue of diachronic coherence see Skyrms’ contribution to this volume. As of
now, there is no gradational accuracy argument for either strict or Jeffrey con-
ditionalization. Other philosophers have provided arguments against strict (and,
a fortiori, Jeffrey) conditionalization: van Fraassen (1989) holds that rationality
does not require the adoption of a particular update rule (but see Kvanvig 1994),
and Arntzenius (2003) uses, among others, the “shifting” nature of self-locating
beliefs to argue against strict conditionalization as well as against van Fraassen’s
reflection principle (van Fraassen 1995). The second feature used by Arntzenius
(2003), called “spreading”, is independent of self-locating beliefs. It will be men-
tioned again in section 4.

In subjective probability theory complete ignorance of the epistemic agent
with respect to a particular proposition A is often modeled by the agent’s having a
subjective probability of .5 forA as well as its complementW \A. More generally,
an agent with subjective probability Pr is said to be ignorant with respect to the
partition {A1, . . . , An} if and only if Pr (Ai) = 1/n. The principle of indifference
requires an agent to be ignorant with respect to a given partition (of “equally
possible” propositions). It leads to contradictory results if the partition in question
is not held fixed (see, for instance, the discussion of Bertrand’s paradox in Kneale
1949). A more cautious version of this principle that is also applicable if the
partition contains countably infinitely many elements is the principle of maximum
entropy. It requires the agent to adopt one of those probability measures Pr as her
degree of belief function over (the σ-field generated by) the countable partition
{Ai} that maximize the quantity

−
∑
i

Pr (Ai) log Pr (Ai) .

The latter is known as the entropy of Pr with respect to the partition {Ai}. See
Paris (1994).

Suppose Sophia has hardly any enological knowledge. Her subjective proba-
bility for the proposition that a Schilcher, an Austrian wine speciality, is a white
wine might reasonably be .5, as might be her subjective probability that a Schilcher
is a red wine. Contrast this with the following case. Sophia knows for sure that a
particular coin is fair. That is, Sophia knows for sure that the objective chance of
the coin landing heads as well as its objective chance of landing tails each equal .5.
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Under that assumption her subjective probability for the proposition that the coin,
if tossed, will land heads might reasonably be .5. Although Sophia’s subjective
probabilities are alike in these two scenarios, there is an important epistemological
difference. In the first case a subjective probability of .5 represents complete igno-
rance. In the second case it represents substantial knowledge about the objective
chances. (The principle that, roughly, one’s subjective probabilities conditional
on the objective chances should equal the objective chances is called the principal
principle by Lewis 1980.)

Examples like these suggest that subjective probability theory does not provide
an adequate account of degrees of belief, because it does not allow one to distin-
guish between ignorance and knowledge about chances. Interval-valued probabil-
ities (Kyburg & Teng 2001) can be seen as a reply to this objection without giving
up the probabilistic framework. In case the epistemic agent knows the objective
chances she continues to assign sharp probabilities as usual. However, if the agent
is ignorant with respect to a proposition A she will not assign it a subjective prob-
ability of .5 (or any other sharp value, for that matter). Rather, she will assign A
a whole interval [a, b] ⊆ [0, 1] such that she considers any number in [a, b] to be a
legitimate subjective probability for A. The size b− a of the interval [a, b] reflects
her ignorance with respect to A, that is, with respect to the partition {A,W \ A}.
(As suggested by the last remark, if [a, b] is the interval-probability for A, then
[1− b, 1− a] is the interval-probability for W \A.) If Sophia were the enological
ignoramus that we have previously imagined her to be, she would assign the inter-
val [0, 1] to the proposition that a Schilcher is a white wine. If she knows for sure
that the coin she is about to toss has an objective chance of .5 of landing heads and
she subscribes to the principal principle, [.5, .5] will be the interval she assigns to
the proposition that the coin, if tossed, will land heads.

When epistemologists say that knowledge implies belief (Steup 2006), they
use a qualitative notion of belief that does not admit of degrees (except in the triv-
ial sense that there is belief, disbelief, and suspension of judgment). The same is
true for philosophers of language when they say that a normal speaker, on reflec-
tion, sincerely asserts to ‘A’ only if she believes that A (Kripke 1979). This raises
the question whether the qualitative notion of belief can be reduced to the quan-
titative notion of degree of belief. A simple thesis – known as the Lockean thesis
– says that we should believe a proposition A just in case our degree of belief for
A is sufficiently high. Of course, the question is which threshold is sufficiently
high. We do not want to require that we only believe those propositions whose
truth we are certain of – especially if we follow Carnap (1962) and Jeffrey (2004)
and require every reasonable subjective probability to be regular (otherwise we
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would not be allowed to believe anything except the tautology). We want to take
into account our fallibility, the fact that our beliefs often turn out to be false.

Given that degrees of belief are represented as subjective probabilities, this
means that the threshold for belief should be less than 1. In terms of subjective
probabilities, the Lockean thesis then says that an epistemic agent with subjective
probability Pr : A → < believes A in A just in case Pr (A) > 1 − ε for some
ε ∈ (0, 1]. This, however, leads to the lottery paradox (Kyburg 1961, and, much
clearer, Hempel 1962) as well as the preface paradox (Makinson 1965). For ev-
ery threshold ε ∈ (0, 1] there is a finite partition {A1, . . . , An}, Ai ∈ A, and a
reasonable subjective probability Pr : A → < such that Pr (Ai) > 1 − ε for all
i = 1, . . . , n, while Pr (A1 ∩ . . . ∩ An) < 1− ε.

For instance, let ε = .02 and consider a lottery with 100 tickets that is known
for sure to be fair and such that exactly one ticket will win. Then it is reasonable,
for every ticket i = 1, . . . , 100, to assign a subjective probability of 1/100 to the
proposition that ticket i will win the lottery, Ti. We thus believe of each single
ticket that it will lose, because Pr (W \ Ti) = .99 > 1 − .02. Yet we also know
for sure that exactly one ticket will win. So Pr (T1 ∩ . . . ∩ T100) = 1 > 1 − .02.
We therefore believe both that at least one ticket will win, T1 ∩ . . . ∩ T100, as well
as of each individual ticket that it will not win: W \ T1, . . . ,W \ T100. Together
these beliefs form a belief set that is inconsistent in the sense that its intersection
is empty:

⋂
{T1 ∩ . . . ∩ T100,W \ T1, . . . ,W \ T100} = ∅. Yet consistency (and

deductive closure, which is implicit in taking propositions rather than sentences
to be the objects of belief) have been regarded as the minimal requirements on a
belief set ever since Hintikka (1961).

The lottery paradox has led some people to reject the notion of belief alto-
gether (Jeffrey 1970), whereas others have been led to the idea that belief sets need
not be deductively closed (Foley 1992 and, especially, Foley’s contribution to this
volume). Still others have turned the analysis on its head and elicit a context-
dependent threshold parameter ε from the agent’s belief set. See Hawthorne and
Bovens (1999) and, especially, Hawthorne’s contribution to this volume.

Another view is to take the lottery paradox at face value and postulate two
epistemic attitudes towards propositions – belief and degrees of belief – that are
not reducible to each other. Frankish (2004) defends a particular version of this
view. He distinguishes between a mind, where one unconsciously entertains be-
liefs, and a supermind, where one consciously entertains beliefs. For more see
Frankish’s contribution to this volume. Further discussion of the relation between
belief and probabilistic degrees of belief can be found in Kaplan (1996) as well as
Christensen (2004) and Maher (2006).
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3.2 Dempster-Shafer Belief Functions
The theory of Dempster-Shafer (DS) belief functions (Dempster 1968, Shafer
1976) rejects the claim that degrees of belief can be measured by the epistemic
agent’s betting behavior. As a consequence, they need not obey the probability
calculus either.

A particular version of the theory of DS belief functions is the transferable
belief model (Smets & Kennes 1994). It distinguishes between two mental levels:
the credal level and the pignistic level. Its twofold thesis is that fair betting ra-
tios should indeed obey the probability calculus, but that degrees of belief, being
different from fair betting ratios, need not. Degrees of belief need only satisfy
the weaker DS principles. The idea is that whenever one is forced to bet on the
pignistic level, degrees of belief are used to calculate fair betting ratios that satisfy
the probability axioms (recall the Dutch Book Argument). These are then used to
calculate the agent’s expected utility for various acts (Savage 1972, Joyce 1999).
However, on the credal level where one only entertains and quantifies various be-
liefs without using them for decision making, degrees of belief need not obey the
probability calculus.

Whereas subjective probabilities are additive (axiom 3), DS belief functions
Bel : A → < are only super-additive, i.e. for all propositions A and B in A:

6. Bel (A) +Bel (B) ≤ Bel (A ∪B) if A ∩B = ∅

In particular, the agent’s the degree of belief for A and her degree of belief for
W \ A need not sum to 1.

What does it mean that Sophia’s degree of belief for the propositionA is .52, if
her degree of belief function is represented by a DS belief functionBel : A → <?
According to one interpretation (Haenni & Lehmann 2003), the number Bel (A)
represents the strength with which A is supported by the epistemic agent’s knowl-
edge or belief base. It may well be that the agent’s knowledge or belief base nei-
ther supports A nor its complement W \ A, while it always maximally supports
their disjunction, A ∪ A.

Recall the supposition that Sophia has hardly any enological knowledge. Un-
der that assumption her knowledge or belief base will neither support the propo-
sition that a Schilcher is a red wine, Red, nor will it support the proposition
that a Schilcher is a white wine, White. However, Sophia may well be certain
that a Schilcher is either a red wine or a white wine, Red ∪White. Hence her
DS belief function Bel will be such that Bel (Red) = Bel (White) = 0 while
Bel (Red ∪White) = 1.

13



On the other hand, Sophia knows for sure that the coin she is about to toss is
fair. Hence her Bel will be such that Bel (Heads) = Bel (Tails) = .5. Thus we
see that the theory of DS belief functions can distinguish between uncertainty and
one form of ignorance. Indeed,

I (A) = 1−Bel (A1)− . . .−Bel (An)− . . .

can be seen as a measure of the agent’s ignorance with respect to the countable
partition {A1, . . . , An, . . .} (the Ai may, for instance, be the values of a random
variable such as the price of a bottle of Schilcher in Vienna on November 21,
2007).

Figuratively, a proposition A divides the agent’s knowledge or belief base into
three mutually exclusive and jointly exhaustive parts. A part that speaks in favor
of A, a part that speaks against A (i.e. in favor of W \ A), and a part that neither
speaks in favor of nor against A. Bel (A) quantifies the part that supports A,
Bel (W \ A) quantifies the part that supports W \A, and I (A) = 1−Bel (A)−
Bel (W \ A) quantifies the part that neither supports A nor W \A. Formally this
is spelt out in terms of a (normalized) mass function on A, a function m : A → <
such that for all propositions A in A:

m (A) ≥ 0

m (∅) = 0∑
B∈Am (B) = 1

A (normalized) mass function m : A → < induces a DS belief function Bel :
A → < by defining, for each A in A,

Bel (A) =
∑
B⊆A

m (B) .

The relation to subjective probabilities can now be stated as follows. Subjective
probabilities require the epistemic agent to divide her knowledge or belief base
into two mutually exclusive and jointly exhaustive parts: one that speaks in favor
of A and one that speaks against A. That is, the neutral part has to be distributed
among the positive and negative parts. Subjective probabilities can thus be seen
as DS belief functions without ignorance.

A DS belief function Bel : A → < induces a Dempster-Shafer plausibility
function P : A → <, where for all A in A,

P (A) = 1−Bel (A) .
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Degrees of plausibility quantify that part of the agent’s knowledge or belief base
which is compatible with A, i.e. the part that supports A together with the part
that neither supports A nor W \ A. In terms of the (normalized) mass function m
inducing Bel this means that

P (A) =
∑

B∩A 6=∅

m (B) .

If and only if Bel (A) and Bel (W \ A) sum to less than 1, P (A) and P (W \ A)
sum to more than 1. For more see Haenni’s contribution to this volume.

The theory of DS belief functions is more general than the theory of subjective
probabilities in the sense that the latter requires degrees of belief to be additive,
while the former merely requires them to be super-additive. In another sense,
though, the converse is true. The reason is that DS belief functions can be rep-
resented as convex sets of probabilities (Levi 1980, Walley 1991). As not every
convex set of probabilities can be represented as a DS belief function, sets of
probabilities provide the most general framework we have come across so far.

An even more general framework is provided by Halpern’s plausibility mea-
sures (Halpern 2003). These are functions Pl : A → < such that for all proposi-
tions A and B in A:

Pl (∅) = 0

Pl (W ) = 1

7. Pl (A) ≤ Pl (B) if A ⊆ B.

In fact, these are only the special cases of real-valued plausibility measures. While
it is fairly uncontroversial that an agent’s degree of belief function should obey
Halpern’s plausibility calculus, it is questionable whether his minimal principles
are all there is to the rationality of degrees of belief. The resulting epistemology
is, in any case, very thin.
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3.3 Possibility Theory
Possibility theory (Dubois & Prade 1988) is based on fuzzy set theory (Zadeh
1978). According to the latter theory, an element need not belong to a set either
completely or not at all, but may be a member of the set to a certain degree.
For instance, Sophia may belong to the set of black haired women to degree .72,
because her hair, although black, is sort of brown as well. This is represented by
a membership function µB : W → [0, 1], where µB (w) is the degree to which
woman w ∈ W belongs to the set of black haired woman, B.

Furthermore, the degree µB (Sophia) to which Sophia belongs to the set of
women who do not have black hair,B, equals 1−µB (Sophia). If µY : W → [0, 1]
is the membership function for the set of young women, then the degree to which
Sophia belongs to the set of black haired or young women, B ∪ Y , is given by

µB∪Y (Sophia) = max {µB (Sophia) , µY (Sophia)} .

Similarly, the degree to which Sophia belongs to the set of black haired young
women, B ∩ Y , is given by

µB∩Y (Sophia) = min {µB (Sophia) , µY (Sophia)} .

µB (Sophia) is interpreted as the degree to which the vague statement ‘Sophia is a
black haired woman’ is true.

Degrees of truth belong to philosophy of language. They do not (yet) have
anything to do with degrees of belief, which belong to epistemology. In particular,
note that degrees of truth are usually considered to be truth functional (the truth
value of a compound statement like A ∧ B is a function of the truth values of its
constituent statements A and B; that is, the truth values of A and B determine the
truth value of A ∧ B). This is the case for membership functions µ. Degrees of
belief, on the other hand, are hardly ever considered to be truth functional. For
instance, probabilities are not truth functional, because the probability of A∩B is
not determined by the probability of A and the probability of B. That is, there is
no function f such that for all probability spaces 〈W,A,Pr〉 and all propositions
A and B in A:

Pr (A ∩B) = f (Pr (A) ,Pr (B))

Suppose I tell you that Sophia is tall. How tall is a tall woman? Is a woman with
a height of 175cm tall? Or does a woman have to be at least 178cm in order to
be tall? Although you know that Sophia is tall, your knowledge is incomplete due
to the vagueness of the term ‘tall’. Here possibility theory enters by equipping
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you with a (normalized) possibility distribution, a function π : W → [0, 1] with
π (ω) = 1 for at least one ω in W . The motivation for the latter requirement is
that at least (in fact, exactly) one possibility is the actual possibility, and hence at
least one possibility must be maximally possible. Such a possibility distribution
π : W → [0, 1] on the set of possibilities W is extended to a possibility measure
Π : A → < on the field A over W by defining for each A in A:

Π (∅) = 0

Π (A) = sup {π (ω) : ω ∈ A}

This entails that possibility measures Π : A → < are maxitive (and hence sub-
additive), i.e. for all A and B in A,

8. Π (A ∪B) = max {Π (A) ,Π (B)}.

The idea is, roughly, that a proposition is at least as possible as all of the possibili-
ties it comprises, and no more possible than the “most possible” possibility either.
Sometimes, though, there is no most possible possibility (i.e. the supremum is no
maximum). For instance, that is the case when the degrees of possibility are 1/2,
3/4, 7/8, . . . , 2n−1

2n
, . . . In this case the degree of possibility for the proposition

is the smallest number which is at least as great as all the degrees of possibili-
ties of its elements. In our example this is 1. (As will be seen below, this is the
main formal difference between possibility measures and unconditional ranking
functions.)

We can define possibility measures without recourse to an underlying possi-
bility distribution as functions Π : A → < such that for all propositions A and B
in A:

Π (∅) = 0

Π (W ) = 1

Π (A ∪B) = max {Π (A) ,Π (B)}

It is important to note, though, that the last clause is not well-defined for disjunc-
tions or unions of infinitely many propositions (in this case one would have to use
the supremum operation sup instead of the maximum operation max). The dual
notion of a necessity measure N : A → < is defined for all propositions A in A
by

N (A) = 1− Π
(
A
)
.
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This implies that
N (A ∩B) = min {N (A) , N (B)} .

The latter equation can be used to start with necessity measures as primitive. De-
fine them as functions N : A → < such that for all propositions A and B in
A:

N (∅) = 0

N (W ) = 1

N (A ∩B) = min {N (A) , N (B)}
Then possibility measures Π : A → < are obtained by the equation

Π (A) = 1−N
(
A
)
.

Although the agent’s epistemic state is completely specified by either Π or N , the
agent’s epistemic attitude towards a particular proposition A in A is only jointly
specified by Π (A) andN (A). The reason is that, in contrast to probability theory,
Π (W \ A) is not determined by Π (A). Thus, degrees of possibility (as well as
degrees of necessity) are not truth functional either. The same is true for DS belief
and DS plausibility functions as well as Halpern’s plausibility measures.

In our example, let WH be the set of values of the random variable H =
Sophia’s height in cm between 0cm and 300cm, WH = {0, . . . , 300}. Let πH :
WH → [0, 1] be your possibility distribution. It is supposed to represent your
epistemic state concerning Sophia’s body height, which contains your knowledge
that she is tall. For instance, your πH might be such that πH (n) = 1 for any
natural number n ∈ [177, 185] ⊂ W . In this case your degree of possibility for
the proposition that Sophia is at least 177cm tall is

ΠH (H ≥ 177) = sup {πH (n) : n ≥ 177} = 1.

The connection to fuzzy set theory now is that your possibility distribution πH :
WH → [0, 1], which is based on your knowledge that Sophia is tall, can be inter-
preted as the membership function µT : WH → [0, 1] of the set of tall woman.
So the epistemological thesis of possibility theory is that your degree of possi-
bility for the proposition that Sophia is 177cm tall given the vague and hence
incomplete knowledge that Sophia is tall equals the degree to which a 177cm tall
woman belongs to the set of tall woman. In more suggestive notation,

πH (H = n | T ) = µT (n) .

For more see the contribution to this volume by Dubois and Prade.
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3.4 Summary
Let us summarize the accounts we have dealt with so far. Subjective probability
theory requires degrees of belief to be additive. An ideally rational epistemic
agent’s subjective probability Pr : A → < is such that for any A and B in A:

3. Pr (A) + Pr (B) = Pr (A ∪B) if A ∩B = ∅
The theory of DS belief functions requires degrees of belief to be super-additive.
An ideally rational epistemic agent’s DS belief function Bel : A → < is such that
for any A and B in A:

6. Bel (A) +Bel (B) ≤ Bel (A ∪B) if A ∩B = ∅
Possibility theory requires degrees of belief to be maxitive and hence super-additive.
An ideally rational epistemic agent’s possibility measure Π : A → < is such that
for any A and B in A:

7. Π (A ∪B) = max {Π (A) ,Π (B)}
All of these functions are special cases of real-valued plausibility measures Pl :
A → <, which are such that for all A and B in A:

8. Pl (A) ≤ Pl (B) if A ⊆ B

We have seen that each of these accounts provides an adequate model for some
epistemic situation (Halpern’s plausibility measures do so trivially). We have fur-
ther noticed that subjective probabilities do not give rise to a notion of belief that
is consistent and deductively closed. Therefore the same is true for the more gen-
eral DS belief functions and Halpern’s plausibility measures. It has to be noted,
though, that Roorda (1995) provides a definition of belief in terms of sets of prob-
abilities. (As will be mentioned in the next section, there is notion of belief in
possibility theory that is consistent and deductively closed in a finite sense.)

Moreover, we have seen arguments for the thesis that degrees of belief should
obey the probability calculus. Smets (2002) tries to justify the corresponding the-
sis for DS belief functions. To the best of my knowledge nobody has yet published
an argument for the thesis that degrees of belief should obey Halpern’s plausibil-
ity calculus (not just in the sense that only plausibility measures are reasonable
degree of belief functions, but in the sense that all and only plausibility measures
are reasonable degree of belief functions.) I am not aware of an argument for the
corresponding thesis for possibility measures either. However, there exists such
an argument for the formally similar ranking functions. These functions also give
rise to a notion of belief that is consistent and deductively closed. They are the
topic of the next section.
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4 Belief, Degrees of Belief, and Ranking Functions
Subjective probability theory as well as the theory of DS belief functions take the
objects of belief to be propositions. Possibility theory does so only indirectly,
though possibility measures on a field of propositionsA can also be defined with-
out recourse to a possibility distribution on the underlying set of possibilities W .
A possibility ω in W is a complete and consistent description of what the world
may look like relative to the expressive power of W . W may contain two possi-
bilities: according to ω1 it will be sunny in Vienna tomorrow, according to ω2 it
will not. Or else, W may comprise grand possible worlds à la Lewis (1986).

We usually do not know which of the possibilities in W corresponds to the
actual world. Otherwise these possibilities would not be genuine possibilities for
us, and our degree of belief function would collapse into the truth value assign-
ment corresponding to the actual world. All we usually know for sure is that there
is exactly one possibility which corresponds to the actual world. However, to say
that we do not know which possibility that is does not mean that all possibilities
are on a par. Some of them will seem really far-fetched, while others will strike
us as more reasonable candidates for the actual possibility.

This gives rise to the following consideration. We can partition the set of pos-
sibilities, that is, form sets of possibilities that are mutually exclusive and jointly
exhaustive. Then we can order the cells of this partition according to their plau-
sibility. The first cell in this ordering contains the possibilities that we take to be
the most reasonable candidates for the actual possibility. The second cell contains
the possibilities which we take to be the second most reasonable candidates. And
so on.

If you are still equipped with your possibility distribution from the preced-
ing section you can use your degrees of possibility for the various possibilities
to obtain such an ordered partition. Note, though, that an ordered partition – in
contrast to your possibility distribution – contains no more than ordinal informa-
tion. While your possibility distribution enables you to say how possible you take
a possibility to be, an ordered partition only allows you to say that one possibility
ω1 is more plausible than another ω2. In fact, an ordered partition does not even
let you say that the difference between your plausibility for w1 (say, tomorrow the
temperature in Vienna will be between 15 ◦C and 20 ◦C) and for w2 (say, tomor-
row the temperature in Vienna will be between 20 ◦C and 25 ◦C) is smaller than
the difference between your plausibility for w2 and for the far-fetched w3 (say,
tomorrow the temperature in Vienna will be between 45 ◦C and 50 ◦C).

This takes us directly to ranking theory (Spohn 1988; 1990), which goes one
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step further. Rather than merely ordering the possibilities in W , a pointwise rank-
ing function κ : W → N ∪ {∞} additionally assigns natural numbers to the
(cells of) possibilities. These numbers represent the degree to which an ideally
rational epistemic agent disbelieves the various possibilities in W . The result is a
numbered partition of W ,

κ−1 (0) , κ−1 (1) , . . . , κ−1 (n) = {ω ∈ W : κ (ω) = n} , . . . , κ−1 (∞) .

The first cell κ−1 (0) contains the possibilities the agent does not disbelieve (which
does not mean that she believes them). The second cell κ−1 (1) is the set of pos-
sibilities the agent disbelieves to degree 1. And so on. It is important to note that,
except for κ−1 (0), the cells κ−1 (n) may be empty, and so would not appear at all
in the corresponding ordered partition. κ−1 (0) must not be empty, though. The
reason is that one cannot consistently disbelieve everything.

More precisely, a function κ : W → N ∪ {∞} from a set of possibilities
W into the set of natural numbers extended by ∞, N ∪ {∞}, is a (normalized)
pointwise ranking function just in case κ (ω) = 0 for at least one ω in W , i.e.
just in case κ−1 (0) 6= ∅. The latter requirement says that the agent should not
disbelieve every possibility. It is justified, because she knows for sure that one
possibility is the actual one. A pointwise ranking function κ : W → N ∪ {∞}
on W induces a ranking function % : A → N ∪ {∞} on a field of propositions A
over W by defining for each A in A,

% (A) = min {κ (ω) : ω ∈ A} (=∞ if A = ∅) .

This entails that ranking functions % : A → N ∪ {∞} are (finitely) minimitive
(and hence sub-additive), i.e. for all propositions A and B in A,

9. % (A ∪B) = min {% (A) , % (B)} .

As in the case of possibility theory, (finitely minimitive and unconditional) rank-
ing functions can be directly defined on a field of propositions A over a set of
possibilities W as functions % : A → N ∪ {∞} such that for all A and B in A:

% (∅) =∞

% (W ) = 0

% (A ∪B) = min {% (A) , % (B)}
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The triple 〈W,A, %〉 is a (finitely minimitive) ranking space. Suppose A is closed
under countable/complete intersections (and thus a σ-/complete field). Suppose
further that % additionally satisfies, for every countable/possibly uncountable B ⊆
A,

% (B) = min {% (A) : A ∈ B} .
Then % is a countably/completely minimitive ranking function, and 〈W,A, %〉 is a
countably/completely minimitive ranking space. Finally, a ranking function % on
A is regular just in case % (A) <∞ for every non-empty or consistent proposition
A in A. For more see Huber (2006), which discusses under which conditions
ranking functions on fields of propositions induce pointwise ranking functions on
the underlying set of possibilities.

Let us pause for a moment. The previous paragraphs introduce a lot of ter-
minology for something that seems to add only little to what we have already
discussed. Let the necessity measures of possibility theory assign natural instead
of real numbers in the unit interval to the various propositions so that∞ instead
of 1 represents maximal necessity and maximal possibility. Then the axioms for
necessity measures become:

N (∅) = 0, N (W ) =∞, N (A ∩B) = min {N (A) , N (B)}

Now think of the rank of a proposition A as the degree of necessity of its negation
W \A, % (A) = N (W \ A). Seen this way, finitely minimitive ranking functions
are a mere terminological variation of necessity measures:

% (∅) = N (W ) =∞

% (W ) = N (∅) = 0

% (A ∪B) = N
(
A ∩B

)
= min

{
N
(
A
)
, N
(
B
)}

= min {% (A) , % (B)}

(If we take necessity measures as primitive rather than letting them be induced
by possibility measures, and if we continue to follow the rank-theoretic policy of
adopting a well-ordered range, we can obviously also define countably and com-
pletely minimitive necessity measures.) Of course, the fact that (finitely minim-
itive and unconditional) ranking functions and necessity measures are formally
alike does not mean that their interpretations are the same. The latter is the case,
though, when we compare ranking functions and Shackle’s degrees of potential
surprise (Shackle 1949; 1969). (These degrees of potential surprise have made
their way into philosophy mainly through the work of Isaac Levi – see Levi 1967a;
1978.) So what justifies devoting a whole section to ranking functions?
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Shackle’s theory lacks a notion of conditional potential surprise. Shackle
(1969: 79ff) seems to assume a notion of conditional potential surprise as prim-
itive that appears in his axiom 7. This axiom further relies on a connective that
behaves like conjunction except that it is not commutative and is best interpreted
as ‘A followed by B’. Axiom 7, in its stronger version from p. 83, seems to
say that the degree of potential surprise of ‘A followed by B’ is the greater of the
degree of potential surprise of A and the degree of potential surprise of B given
A,

ς (A followed by B) = max {ς (A) , ς (B | A)} ,

where ς is the measure of potential surprise. Spohn’s contribution to this volume
also discusses Shackle’s struggle with the notion of conditional potential surprise.

Possibility theory, on the other hand, offers two notions of conditional pos-
sibility (Dubois & Prade 1988). The first notion of conditional possibility is ob-
tained by the equation

Π (A ∩B) = min {Π (A) ,Π (B | A)} .

It is mainly motivated by the desire to have a notion of conditional possibility
that makes also sense if possibility does not admit of degrees, but is a merely
comparative notion. The second notion of conditional possibility is obtained by
the equation

Π (A ∩B) = Π (A) Π (B || A) .

The inspiration for this notion seems to come from probability theory. While none
of these two notions is the one we have in ranking theory, Spohn’s contribution to
this volume shows that, by adopting the second notion of conditional possibility,
one can render possibility theory isomorphic to real-valued ranking functions. For
reasons explained below, I prefer to stick to ranking functions taking only natural
numbers as values, though – and for the latter there is just one good notion of
conditional ranks.

The conditional ranking function % (· | ·) : A×A → N ∪ {∞} (based on the
unconditional ranking function % : A → N ∪ {∞}) is defined for all A and B in
A with A 6= ∅ as

% (A | B) = % (A ∩B)− % (B) ,

where∞−∞ = 0. Further stipulating % (∅ | B) = ∞ for all B in A guarantees
that % (· | B) : A → N ∪ {∞} is a ranking function, for every B in A. It is,
of course, also possible to take conditional ranking functions as primitive and to
define (unconditional) ranking functions in terms of them.
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The number % (A) represents the agent’s degree of disbelief for the proposition
A. If % (A) > 0, the agent disbelieves A to a positive degree. Therefore, on pain
of inconsistency, she cannot also disbelieve W \ A to a positive degree. In other
words, for every propositionA inA, at least one ofA andW \A has to be assigned
rank 0. If % (A) = 0, the agent does not disbelieve A to any positive degree. This
does not mean, however, that she believes A to a positive degree – the agent may
suspend judgement and assign rank 0 to bothA andW \A. Belief in a proposition
is thus characterized as disbelief in its negation.

For each ranking % : A → N ∪ {∞} we can define a corresponding belief
function β% : A → Z ∪ {∞} ∪ {−∞} that assigns positive numbers to those
propositions that are believed, negative numbers to those that are disbelieved, and
0 to those with respect to which the agent suspends judgement:

β% (A) = % (W \ A)− % (A)

Each ranking function % : A → N ∪ {∞} induces a belief set:

B% =
{
A ∈ A : %

(
A
)
> 0
}

=
{
A ∈ A : %

(
A
)
> % (A)

}
= {A ∈ A : β% (A) > 0}

B is the set of all propositions the agent believes to some positive degree or, equiv-
alently, whose complements she disbelieves to a positive degree. The belief set
B% induced by a ranking function % is consistent and deductively closed (in the
finite sense). The same is true for the belief set induced by a possibility measure
Π : A → <,

BΠ =
{
A ∈ A : Π

(
A
)
< 1
}

= {A ∈ A : NΠ (A) > 0} .

If % is a countably/completely minimitive ranking function, then the belief set
B% induced by % is consistent and deductively closed in the following count-
able/complete sense:

⋂
C 6= ∅ for every countable/possibly uncountable C ⊆ B%;

and A ∈ B% whenever
⋂
C ⊆ A for any countable/possibly uncountable C ⊆ B%

and any A ∈ A. Ranking theory thus offers a link between belief and degrees of
belief that is preserved when we move from the finite to the countably or uncount-
ably infinite case. As shown by the example in section 3.3, this is not the case
for possibility theory. (Of course, as indicated above, the possibility theorist can
copy ranking theory by taking necessity measures as primitive and by adopting a
well-ordered range).

As for subjective probabilities there are rules for updating one’s epistemic state
represented by a ranking function. In case the new information comes in form of
a certainty, ranking theory’s counterpart to probability theory’s strict conditional-
ization is
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Update Rule 3 (Plain Conditionalization) If % : A → N ∪{∞} is your ranking
function at time t, and between t and t′ your learn E ∈ A and no logically
stronger proposition, then your ranking function at time t′ should be % (· | E) :
A → N ∪ {∞}.

If the new information merely changes your ranks for various propositions, rank-
ing theory’s counterpart to probability theory’s Jeffrey conditionalization is

Update Rule 4 (Spohn Conditionalization) If % : A → N ∪ {∞} is your rank-
ing function at time t, and between t and t′ your ranks in the mutually exclu-
sive and jointly exhaustive propositions E1, . . . , Em, . . . (Ei ∈ A) change to
n1, . . . , nm, . . . (ni ∈ N ∪ {∞}) with mini {ni} = 0, and the finite part of your
ranking function does not change on any superset thereof, then your ranking func-
tion at time t′ should be %′ : A → N ∪ {∞}, where

%′ (·) = min i {% (· | Ei) + ni} .

As the reader will have noticed by now, whenever we substitute 0 for 1, ∞ for
0, min for +, + for ×, and > for <, a true statement about probabilities almost
always turns into a true statement about ranking functions. (There are but a few
known exceptions to this transformation; Spohn 1994 mentions one.)

Two complaints about Jeffrey conditionalization carry over to Spohn condi-
tionalization: Jeffrey respectively Spohn conditionalization is not commutative
(Levi 1967b); any two regular probability measures respectively ranking functions
can be related to each other via Jeffrey respectively Spohn conditionalization (by
letting the evidential partition consist of the set of singletons containing the pos-
sibilities in W ). The first complaint is misconceived, because both Jeffrey and
Spohn conditionalization are result- rather than evidence-oriented: the parameter
pi respectively ni characterizes the resulting degree of (dis)belief in Ei rather than
the amount by which the evidence received between t and t′ boosts or lowers the
degree of (dis)belief in Ei. These parameters thus depend on both the prior epis-
temic state and the evidence received. Evidence first shifting E from p at t to p∗

at t′ and then to p′′ at t∗∗ is not a rearrangement of evidence first shifting E from
p at t to p∗∗ at t′ and then to p∗ at t′′. Field (1978) respectively Shenoy (1991)
presents a probabilistic respectively rank-theoretic update rule that is evidence-
oriented in the sense of characterizing the evidence as such, independently of the
prior epistemic state. Both of these rules are commutative.

The second complaint confuses input and output: Jeffrey respectively Spohn
conditionalization does not rule out any evidential input as impossible (just as
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it does not rule out any prior epistemic state as impossible that is not already
ruled out by the probability respectively ranking calculus). However, that does
not imply that it is empty as a normative rule. On the contrary, for each prior
epistemic and each evidential input there is one and only one posterior epistemic
state that is compatible with Jeffrey respectively Spohn conditionalization. It is up
to the agent what to do with a given epistemic state and a given evidential input,
but it is up to nature which evidential input the agent receives.

One reason why an epistemic agent’s degrees of belief should obey the prob-
ability calculus is that otherwise she is vulnerable to a Dutch Book (standard ver-
sion) or an inconsistent evaluation of the fairness of bets (depragmatized version).
For similar reasons she should update her subjective probability according to strict
or Jeffrey conditionalization, depending on the format of the new information.
Why should degrees of disbelief obey the ranking calculus? And why should an
epistemic agent update her ranking function according to plain or Spohn condi-
tionalization?

The answers to these questions require a bit of terminology. An epistemic
agent’s degree of entrenchment for a proposition A is the number of “independent
and minimally positively reliable” information sources it takes for the agent to
give up her disbelief that A. If the agent does not disbelieve A to begin with, her
degree of entrenchment for A is 0. If no finite number of information sources is
able to make the agent give up her belief that A is false, her degree of entrench-
ment for A is∞.

Suppose we want to determine Sophia’s degree of entrenchment for the propo-
sition that Vienna is the capital of Austria. This can be done by, say, putting her on
the Stephansplatz and by counting the number of people passing by and telling her
that Vienna is the capital of Austria. Her degree of entrenchment for the proposi-
tion that Vienna is the capital of Austria equals n precisely if she stops disbelieving
that Vienna is the capital of Austria after n people have passed by and told her it
is. The relation between these operationally defined degrees of entrenchment and
the theoretical degrees of disbelief is similar to the relation between betting ratios
and degrees of belief: under suitable conditions (when the information sources are
independent and minimally positively reliable) the former can be used to measure
the latter. Most of the time the conditions are not suitable, though. In section 3.1
primitivism seemed to be the only plausible game in town. In the present case
“going hypothetical” (Eriksson & Hájek 2007) is more promising: the agent’s de-
gree of disbelief in A is the number of information sources saying A that it would
take for her to give up her disbelief that A, if those sources were independent and
minimally positively reliable.

26



Now we are in the position to say why degrees of disbelief should obey the
ranking calculus. They should do so, because an agent’s belief set is and will al-
ways be consistent and deductively closed in the finite/countable/complete sense
just in case her entrenchment function is a finitely/countably/completely minim-
itive ranking function and, depending on the format of the evidence, the agent
updates according to plain or Spohn conditionalization (Huber 2007b).

It follows that the above definition of conditional ranks is the only good no-
tion: both plain and Spohn conditionalization depend on the notion of conditional
ranks, and the theorem does not hold if we replace that notion by another one. Fur-
thermore, the definition of degrees of entrenchment makes only sense for natural
numbers – after all, we have to count the independent and minimally positively
reliable information sources. Therefore every concession to possibility theory –
be it by adopting a different notion of conditional ranks or by allowing real-valued
ranking functions – is a concession too much.

With the possible exception of decision making (see, however, Giang & Shenoy
2000), we can do everything with ranking functions that we can do with probabil-
ity measures. In fact, in contrast to probability theory, ranking theory also has a
notion of yes-or-no belief that is crucial if we want to stay in tune with traditional
epistemology. (In addition, this allows for rank-theoretic theories of belief revi-
sion and of nonmonotonic reasoning that are the topic of the next section.) Let me
conclude this section with what I take to be a further advantage of ranking over
probability theory.

Contrary to a widely held view there is no such thing as a genuinely unbiased
assignment of probabilities (an ur- or tabula rasa prior, as we may call it) – even
if we consider just a finite set of (more than two) possibilities. For instance, it
is often said that assigning a probability of 1/6 to each of the six outcomes of a
throw of a die is such an unbiased assignment. To see that this is not so it suffices
to note that it follows from this assignment that the proposition that the number
of spots the die will show after being thrown is greater than one is five times
the probability of its negation. More generally, for every probability measure Pr
on the powerset of {1, . . . , 6} there exists a contingent proposition A such that
Pr (A) > Pr

(
A
)
. That is the sense in which there is no genuinely unbiased ur- or

tabula rasa prior. This is in contrast to ranking theory, where the ur- or tabula rasa
prior is that function % : A → N ∪ {∞} such that % (A) = 0 for all consistent
propositions A in A, no matter how rich the field of propositions A.

In probability theory we cannot adequately model conceptual changes – es-
pecially those that are due the agent’s not being logically omniscient. Prior to
learning a new concept the probabilistic agent is equipped with a probability mea-
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sure Pr on some field A over some set W . When the agent learns a new concept,
the possibilities ω in W become more fine grained. For instance, Sophia’s set of
enological possibilities with regard to a particular bottle of wine prior to learning
the concept BARRIQUE is W1 = {red,white}. After learning that concept her set
of possibilities is

W2 = {red & barrique, red &¬ barrique,white & barrique,white &¬ barrique} .

To model this conceptual change adequately, the field of propositions over the
new set of possibilities W2 will contain a counterpart-proposition for each old
proposition in the field over W1. In our example, the fields are the powersets.
The counterpart-proposition of the old proposition that the bottle of wine is red,
{red} ⊆ W1, is {red & barrique, red &¬ barrique} ⊆ W2. The important episte-
mological feature of these conceptual changes is that Sophia does not learn any
factual information; that is, she does not learn anything about which of the pos-
sibilities corresponds to the actual world. If %1 is Sophia’s ranking function on
the powerset of W1, we want her %2 to be such that %1 (A) = %2 (A′) for each old
propositionA in the powerset ofW1 and its counterpart propositionA′ in the pow-
erset of W2, and such that %2 (B) = %2

(
B
)

for each (contingent) new proposition
B. This is easily achieved by letting %2 copy %1 on the counterpart-propositions of
the old propositions, and letting it copy the ur-prior on all the new propositions.
In contrast to this there is no way of obtaining probability measures Pr1 on the old
field and Pr2 on the new field that are related in this way.

The same is true for the different conceptual change that occurs when Sophia
learns the new concept ROSÉ and thus that her old set of possibilities was not
exclusive. If %1 is Sophia’s ranking function on the powerset of W1, her %3 on
the powerset of W3 = {red, rosé,white} is that function %3 such that %1 ({ω}) =
%3 ({ω}) for each old singleton-proposition {ω}, and %3 ({ω′}) = 0 for each new
singleton-proposition {ω′}. Again, we cannot model this change in probability
theory, since the only new probability measure that, in this sense, conservatively
extends the old one assigns 0 to the (union of all) new possibilities. (It is important
to note that one and the same sentence may pick out different propositions with re-
spect to the two sets of possibilities. For instance, with respect to W1 the sentence
‘It is not a bottle of red wine’ picks out the proposition that it is a bottle of white
wine, {white}, while with respect to W2 this sentence picks out the proposition
that it is a bottle of rosé or white wine, {rosé,white}.) Arntzenius (2003) relies
on just this inability of probability theory to cope with changes of the underlying
set of worlds when he uses “spreading” to argue against conditionalization and
reflection.
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5 Belief Revision and Nonmonotonic Reasoning

5.1 Belief and Belief Revision
We have moved from degrees of belief to belief, and found ranking theory to pro-
vide a link between these two notions, thus satisfying the Lockean thesis. While
some philosophers (most probabilists) hold the view that degrees of belief are
more basic than beliefs, others adopt the opposite view. This is generally true of
traditional epistemology, which is mainly concerned with the notion of knowl-
edge and its tripartite definition as justified true belief. Belief in this sense comes
in three “degrees”: the ideally rational epistemic agent either believes A, or else
she believes W \ A and thus disbelieves A, or else she neither believes A nor
W \ A and thus suspends judgment with respect to A. Ordinary epistemic agents
sometimes believe both A and W \ A, but since they should not do so, we may
ignore this case.

According to this view an agent’s epistemic state is characterized by the set of
propositions she believes, her belief set. Such a belief set is required to be con-
sistent and deductively closed (Hintikka 1961). In belief revision theory a belief
set is usually represented as a set of sentences from a formal language L rather
than as a set of propositions. The question addressed by belief revision theory
(Alchourrón & Gärdenfors & Makinson 1985, Gärdenfors 1988, Gärdenfors &
Rott 1995) is how an ideally rational epistemic agent should revise her belief set
B ⊆ L if she learns new information in form of a sentence α from L. If α is
consistent with B in the sense that B 6` ¬α, the agent should simply add α to B
and close this set under (classical) logical consequence. In this case her new belief
set, i.e. her old belief set B revised by the new information α, B+̇α, is the set of
logical consequences of B ∪ {α}:

B+̇α = Cn (B ∪ α) = {β ∈ L : B ∪ {α} ` β}

Things get interesting when the new information α contradicts the old belief set
B. The basic idea is that the agent’s new belief set B+̇α should contain the new
information α and as many of the old beliefs in B as is allowed by the requirement
that the new belief set be consistent and deductively closed. To state this more
precisely, let us introduce the notion of a contraction. To contract a statement α
from a belief set B is to give up the belief that α is true, but to keep as many of
the remaining beliefs from B while ensuring consistency and deductive closure.
Where B−̇α is the agent’s new belief set after contracting her old belief set B by
α, the A(lchourrón)G(ärdenfors)M(akinson) postulates for contraction −̇ can be
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stated as follows. (Note that +̇ as well as −̇ are functions from ℘ (L) × L into
℘ (L).) For every set of sentences B ⊆ L and any sentences α and β in L:

−̇1. If B = Cn (B), then B−̇α = Cn
(
B−̇α

)
. Deductive Closure

−̇2. B−̇α ⊆ B. Inclusion

−̇3. If α 6∈ Cn (B), then B−̇α = B. Vacuity

−̇4. If α 6∈ Cn (∅), then α 6∈ Cn
(
B−̇α

)
. Success

−̇5. If Cn ({α}) = Cn ({β}), then B−̇α = B−̇β. Preservation

−̇6. If B = Cn (B), then B ⊆ Cn
((
B−̇α

)
∪ {α}

)
. Recovery

−̇7. If B = Cn (B), then
(
B−̇α

)
∩
(
B−̇β

)
⊆ B−̇ (α ∧ β).

−̇8. If B = Cn (B) and α 6∈ B−̇ (α ∧ β), then B−̇ (α ∧ β) ⊆ B−̇α.

−̇1 says that the contraction of B by α, B−̇α, should be deductively closed, if B is
deductively closed. −̇2 says that a contraction should not give rise to new beliefs
not previously held. −̇3 says that the epistemic agent should not change her old
beliefs when she gives up a sentence she does not believe to begin with. −̇4 says
that, unless α is tautological, the agent should really give up her belief that α is
true if she contracts by α. −̇5 says that the particular formulation of the sentence
the agent gives up should not matter; in other words, the objects of belief shoud be
propositions rather than sentences. −̇6 says that the agent should recover her old
beliefs if she first contracts by α and then adds α again. According to −̇7 the agent
should not give up more beliefs when contracting by α∧β than the ones she gives
up when she contracts by α alone or by β alone. −̇8 finally requires the agent not
to give up more beliefs than necessary: if the agent gives up α when she contracts
by α ∧ β, she should not give up more than she gives up when contracting by α
alone.

Given the notion of a contraction we can now state what the agent’s new belief
set B+̇α should look like. First, the agent should clear B to make it consistent with
α. That is, the agent first should contract B by ¬α. Then she should simply add
α and close under (classical) logical consequence. The recipe just described is
known as the Levi identity:

B+̇α = Cn
((
B−̇¬α

)
∪ {α}

)
Revision +̇ defined in this way satisfies a corresponding list of properties. For
every set of sentences B ⊆ L and any sentences α and β in L:

30



+̇1. B+̇α = Cn
(
B+̇α

)
.

+̇2. α ∈ B+̇α.

+̇3. If ¬α 6∈ Cn (B), then B+̇α = Cn (B ∪ {α}).

+̇4. If ¬α 6∈ Cn (∅), then ⊥ 6∈ B+̇α.

+̇5. If Cn ({α}) = Cn ({β}), then B+̇α = B+̇β.

+̇6. If B = Cn (B), then
(
B+̇α

)
∩ B = B−̇¬α.

+̇7. If B = Cn (B), then B+̇ (α ∧ β) ⊆ Cn
((
B+̇α

)
∪ {β}

)
.

+̇8. If B = Cn (B) and ¬β 6∈ B+̇α, then Cn
((
B+̇α

)
∪ {β}

)
⊆ B+̇ (α ∧ β).

(The contradictory sentence ⊥ can be defined as the negation of the tautological
sentence >, ¬>.) Rott (2001) discusses many further principles and variations of
the above.

In standard belief revision theory the new information is always part of the
new belief set. Non-prioritized belief revision relaxes this requirement (Hansson
1999). The agent might consider the new information to be too implausible to
be added and decide to reject it; or she might add only a sufficiently plausible
part of the new information; or else, she might add the new information and then
check for consistency, which makes her give up part or all of the new information
again, because her old beliefs turn out to be more entrenched. (The degrees of
entrenchment mentioned in the previous section are named after this relation, but
it is to be noted that the former are operationally defined, while the latter is a
theoretical notion).

The notion of entrenchment provides the connection to degrees of belief. In
order to decide which part of her belief set she wants to give up, belief revision
theory equips the ideally rational epistemic agent with an entrenchment ordering.
Technically, this is a relation � on L such that for all α, β, and γ in L:

E1. If α � β and β � γ, then α � γ. Transitivity

E2. If α ` β, then α � β. Dominance

E3. α � α ∧ β or β � α ∧ β. Conjunctivity

E4. If ⊥ 6∈ Cn (B), then α 6∈ B just in case ∀β ∈ L : α � β. Minimality
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E5. If ∀α ∈ L : α � β, then β ∈ Cn (∅). Maximality

B is a fixed set of background beliefs. Given an entrenchment ordering � on L
we can define a revision +̇ as follows:

B+̇α = {β ∈ B : ¬α ≺ β} ∪ {α}

Here α ≺ β holds just in case α � β and β 6� α. Then one can prove the
following representation theorem.

Theorem 1 Let L be a formal language, let B ⊆ L be a set of sentences, and
let α be a sentence in L. Each entrenchment ordering � on L induces a revision
operator +̇ on L satisfying +̇1-+̇8 by defining B+̇α = {β ∈ B : ¬α ≺ β}∪{α}.
For each revision operator +̇ on L satisfying +̇1-+̇8 there is an entrenchment
ordering � on L that induces +̇ in exactly this way.

It is, however, fair to say that belief revision theorists distinguish between degrees
of belief and entrenchment. Entrenchment, so they say, characterizes the agent’s
unwillingness to give up a particular belief, which may be different from her de-
gree of belief for the respective sentence or proposition. Although this distinction
seems to violate Occam’s razor by unnecessarily introducing an additional epis-
temic level, it corresponds to Spohn’s parallelism (see Spohn’s contribution to this
volume) between subjective probabilities and ranking functions as well as to Stal-
naker’s stance in his (1996: sct. 3). Weisberg (to appear: sct. 7) expresses similar
sentiments.

Suppose the agent’s epistemic state is represented by a ranking function % (on a
field of propositions over the set of modelsModL for the language L, as explained
in section 1). Then the ordering �% that is defined for all α and β in L by

α �% β if and only if % (Mod (¬α)) ≤ % (Mod (¬β))

is an entrenchment ordering for B = {α ∈ L : % (Mod (¬α)) > 0}.
Ranking theory thus covers AGM belief revision theory as a special case. It is

important to see how ranking theory goes beyond AGM belief revision theory. In
the latter theory the agent’s prior epistemic state is characterized by a belief set B
together with an entrenchment ordering �. If the agent receives new information
in form of a sentence α, the entrenchment ordering is used to turn the old belief set
into new one, viz. B+̇α. The agent’s posterior epistemic state is thus characterized
by a belief set only. The entrenchment ordering itself is not updated. Therefore
AGM belief revision theory cannot handle iterated belief changes. To the extent
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that belief revision is not simply a one shot game, AGM belief revision theory
is thus no theory of belief revision at all. (The analogical situation in terms of
subjective probabilities is to characterize the agent’s prior epistemic state by a
set of propositions together with a subjective probability measure, and to use that
measure to update the set of propositions without ever changing the probability
measure itself.)

In ranking theory the agent’s prior epistemic state is characterized by a ranking
function % (on a field over ModL). That function determines the agent’s prior
belief set B, and so there is no need to additionally specify B. If the agent receives
new information in form of a proposition A, as (the propositional equivalent of)
AGM belief revision theory has it, there are infinitely many ways to update her
ranking function that all give rise to the same new belief set B+̇A. Let n be
an arbitrary positive number in N ∪ {∞}. Then Spohn conditionalization on the
partition {A,ModL \ A}with n > 0 as new rank forModL\A (and consequently
0 as new rank for A), %′n (ModL \ A) = n, determines a new ranking function %′n
that induces a belief set B′n. It holds for any two positive numbers m and n in
N ∪ {∞}:

B′m = B′n = B+̇A,

where the latter is the belief set described two paragraphs ago.
Plain conditionalization is the special case of Spohn conditionalization with

∞ as new rank for ModL \ A. The new ranking function obtained in this way is
%′∞ = % (· | A), and the belief set it induces is the same B+̇A as before. However,
once the epistemic agent assigns rank∞ to ModL \A, she can never get rid of A
again (in the sense that the only information that would allow her to give up her
belief that A is to become certain that A is false, i.e. assign rank ∞ to A; that
in turn would make her epistemic state collapse in the sense of turning it into the
tabula rasa ranking from section 4 that is agnostic with respect to all contingent
propositions). Just as one is stuck with A once one assigns it probability 1, so one
is basically stuck with A once one assigns its negation rank∞. As we have seen,
AGM belief revision theory is compatible with always updating in this way. That
explains why it cannot handle iterated belief revision. To rule out this behavior
one has to impose further constraints on entrenchment orderings. Boutilier (1996)
as well as Darwiche & Pearl (1997) do so by postulating constraints compatible
with, but not yet implying ranking theory. Hild & Spohn (to appear) argue that
one really has to go all the way to ranking theory.
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5.2 Belief and Nonmonotonic Reasoning
A premise β classically entails a conclusion γ, β ` γ, just in case γ is true in every
model or truth value assignment in which β is true. The classical consequence
relation ` (conceived of as a relation between two sentences, i.e. `⊆ L × L,
rather than as a relation between a set of sentences, the premises, and a sentence,
the conclusion) is non-ampliative in the sense that the conclusion of a classically
valid argument does not convey information that goes beyond the information
contained in the premise.
` has the following monotonicity property. For any sentences α, β, and γ in

L:

If β ` γ and α ` β, then α ` γ.

That is, if γ follows from β, then γ follows from any sentence α that is at least
as logically strong as β. However, everyday reasoning is often ampliative. When
Sophia sees the thermometer at 33◦ Celsius she infers that it is not too cold to
wear her sundress. If Sophia additionally sees that the thermometer is placed
above the oven where she is boiling her pasta, she will not infer that anymore.
Nonmonotonic reasoning is the study of reasonable consequence relations which
violate monotonicity (Gabbay 1985, Makinson 1989, Kraus & Lehmann & Magi-
dor 1990; for an overview see Makinson 1994).

For a fixed set of background beliefs B, the revision operators +̇ from the
previous section give rise to nonmonotonic consequence relations |∼ as follows
(Makinson & Gärdenfors 1991):

α |∼ β if and only if β ∈ B+̇α

Nonmonotonic consequence relations on a language L are supposed to satisfy the
following principles from Kraus & Lehmann & Magidor (1990).

KLM1. α |∼ α. Reflexivity

KLM2. If ` α↔ β and α |∼ γ, then β |∼ γ. Left Logical Equivalence

KLM3. If ` α→ β and γ |∼ α, then γ |∼ β. Right Weakening

KLM4. If α ∧ β |∼ γ and α |∼ β, then α |∼ γ. Cut

KLM5. If α |∼ β and α |∼ γ, then α ∧ β |∼ γ. Cautious Monotonicity

KLM6. If α |∼ β and α |∼ γ, then α ∨ β |∼ γ. Or
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The standard interpretation of a nonmonotonic consequence relation |∼ is ‘If . . .,
normally . . .’. Normality among worlds is spelt out in terms of preferential models
〈S, l,≺〉 for L, where S is a set of states and l : S → ModL is a function from
S to the set of models for L, ModL, that assigns each state s its model or world
l (s). The abnormality relation ≺ is a strict partial order on ModL that satisfies
a certain “smoothness” condition. For our purposes it suffices to note that the
order among the worlds that is induced by a pointwise ranking functions is such
an abnormality relation. Given a preferential model 〈S, l,≺〉 we can define a
nonmonotonic consequence relation |∼ as follows. Let α̂ be the set of states in
whose worlds α is true, i.e. α̂ = {s ∈ S : l (s) |= α}, and define

α |∼ β if and only if ∀s ∈ α̂ : if ∀t ∈ α̂ : t 6≺ s, then l (s) |= β.

That is, α |∼ β holds just in case β is true in the least abnormal among the α-
worlds. Then one can prove the following representation theorem.

Theorem 2 Let L be a language, let B ⊆ L be a set of sentences, and let α be
a sentence in L. Each preferential model 〈S, l,≺〉 for L induces a nonmonotonic
consequence relation |∼ on L satisfying KLM1-KLM6 by defining

α |∼ β if and only if ∀s ∈ α̂ : if ∀t ∈ α̂ : t 6≺ s, then l (s) |= β.

For each nonmonotonic consequence relation on L satisfying KLM1-KLM6 there
is a preferential model 〈S, l,≺〉 for L that induces |∼ in exactly this way.

Whereas the classical consequence relation preserves truth in all logically possible
worlds, nonmonotonic consequence relations preserve truth in all least abnormal
worlds. For a different semantics in terms of inhibition nets see Leitgeb (2004).

What is of particular interest to us is the fact that these nonmonotonic conse-
quence relations can be induced by a fixed set of background beliefs B and various
forms of degrees of belief over B. We will not attempt to indicate how this works.
Makinson’s contribution to this volume is an excellent presentation of ideas un-
derlying nonmonotonic reasoning and its relation to degrees of belief. Similar
remarks apply to Rott’s contribution to this volume, in which entrenchment or-
derings, ranking functions, and further models of epistemic states are defined for
beliefs as well as disbeliefs and non-beliefs.
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